
Borland
VisiBroker™ 8.0

C++ API Reference Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance
with the License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications
covering subject matter in this document. Please refer to the product CD or the About
dialog box for the list of applicable patents. The furnishing of this document does not give
you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of
their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiBroker C++ API
April 2007

i

Contents

Chapter 1
Generated interfaces and classes 1
Generated interfaces and classes overview 1
<Interface_name>. 1
<Interface_name>ObjectWrapper 2
POA<class_name>. 2
tie<class_name> 2
<class_name>_var 2

Chapter 2
Core interfaces and classes 3
PortableServer::AdapterActivator 3

IDL Defintion . 3
PortableServer::AdapterActivator methods 3

BindOptions . 4
Deprecated as of VisiBroker 4.x 4
BindOptions members 4

BOA . 5
Deprecated as of VisiBroker 4.0 5
Include file . 5
CORBA::BOA methods 5
VisiBroker extensions to CORBA::BOA 9

CompletionStatus 9
IDL Definition 9
CompletionStatus members 10

Context . 10
Include file . 10
Context methods. 10

PortableServer::Current. 12
IDL Definition 12
PortableServer::Current methods 12

Exception . 13
Include file . 13

Object . 13
Include file . 13
CORBA::Object methods 13
VisiBroker extensions to CORBA::Object 15

ORB. . 17
Include file . 17
CORBA::ORB methods 17
VisiBroker extensions to CORBA::ORB 23

PortableServer::POA 24
PortableServer::POA methods. 24

PortableServer::POAManager 32
Include file . 33
PortableServer::POAManager methods 33

Principal. . 34
Include file . 35
Principal methods 35

PortableServer::RefCountServantBase. 35
Include file . 35
PortableServer::RefCountServantBase methods . 35

PortableServer::ServantActivator 35
Include file . 35
PortableServer::ServantActivator methods 36

PortableServer::ServantBase 36
Include file . 36

PortableServer::ServantBase methods. 37
PortableServer::ServantLocator 37

Include file . 37
PortableServer::ServantLocator methods 38

PortableServer::ServantManager 38
Include file . 39

SystemException 39
Include file . 39
SystemException methods 39

Chapter 3
Dynamic interfaces and classes 43

Include file . 43
Any methods 43
Insertion operators 44
Extraction operators 45

ContextList . 45
ContextList methods 45

DynamicImplementation 47
DynamicImplementation methods 47

DynAny . 47
Include file . 48
Important usage restrictions 48
DynAny methods 48
Extraction methods 49
Insertion methods 50

DynAnyFactory 51
DynAnyFactory methods 51

DynArray . 51
Important usage restrictions 51
DynArray methods 51

DynEnum . 52
Important usage restrictions 52
DynEnum methods 52

DynSequence . 53
Important usage restrictions 53
DynSequence methods. 53

DynStruct . 54
Important usage restrictions 54
DynStruct methods 54

DynUnion . 55
Important usage restrictions 55
DynUnion methods 55

Environment . 56
Include file . 56
Environment methods 56

ExceptionList . 57
ExceptionList methods 57

NamedValue . 59
Include file . 59
NamedValue methods 59

NVList . 60
Include file . 60
NVList methods. 60

Request . 63
Include file . 63
Request methods. 63

ii

ServerRequest . 66
Include file . 67
ServerRequest methods 67

TCKind . 69
TypeCode. . 70

Include file . 70
TypeCode constructors 70
TypeCode methods 70

Chapter 4
Interface repository interfaces and classes
75

AliasDef. . 75
AliasDef methods 75

ArrayDef . 76
ArrayDef methods 76

AttributeDef . 76
AttributeDef methods 76

AttributeDescription. 77
AttributeDescription members. 77

AttributeMode. . 78
AttributeMode values 78

ConstantDef . 78
ConstantDef methods 78

ConstantDescription 79
ConstantDescription members 79

Contained. . 79
Include file . 80
Contained methods 80

Container . 81
Include file . 82
Container methods 82

DefinitionKind. . 86
DefinitionKind values 87

Description . 87
Description members 87

EnumDef . 88
EnumDef methods. 88

ExceptionDef . 88
ExceptionDef methods 88

ExceptionDescription 88
ExceptionDescription members 89

FixedDef . 89
Methods . 89

FullInterfaceDescription 89
FullInterfaceDescription members. 90

FullValueDescription 90
Variables. . 90

IDLType . 92
Include file . 92
IDLType methods 92

InterfaceDef. . 92
Include file . 92
InterfaceDef methods 93

InterfaceDescription 94
InterfaceDescription members 95

IRObject . 96
Include file . 96
IRObject methods 96

ModuleDef . 96

ModuleDescription 96
ModuleDescription members. 96

NativeDef .97
OperationDef .97

Include file .97
OperationDef methods98

OperationDescription 99
OperationDescription members 99

OperationMode 100
OperationMode values 100

ParameterDescription 100
ParameterDescription members 100

ParameterMode 100
ParameterMode values. 101

PrimitiveDef . 101
PrimitiveDef methods 101

PrimitiveKind . 101
PrimitiveKind values 101

Repository . 102
Include file . 102
Repository methods 102

SequenceDef . 103
SequenceDef methods. 104

StringDef . 104
StringDef methods 104

StructDef . 104
StructDef methods 105

StructMember . 105
StructMember methods 105

TypedefDef . 105
TypeDescription 106

TypeDescription members 106
UnionDef . 106

UnionDef methods 106
UnionMember . 107

UnionMember members 107
ValueBoxDef. . 107

Methods . 107
ValueDef. . 108

Methods . 108
ValueDescription 110

Values . 110
WstringDef . 111

WStringDef methods 111

Chapter 5
Activation interfaces and classes 113
ImplementationStatus 113

Include file . 113
ImplementationStatus members 113

OAD . 114
Include file . 115
OAD methods 115

ObjectStatus. . 118
Include file . 118
ObjectStatus members. 118

ObjectStatusList 118
Include file . 118
ObjectStatusList methods 119

iii

Chapter 6
Naming Service (VisiNaming) interfaces
and classes 121

NamingContext 121
NamingContext methods 122

NamingContextExt 126
NamingContextExt methods 126

Binding and BindingList 127
BindingIterator 128

BindingIterator methods 128
NamingContextFactory 129

Methods . 129
ExtendedNamingContextFactory 129

Methods . 130

Chapter 7
Event service interfaces and classes 131
ConsumerAdmin 131

IDL definition. 131
ConsumerAdmin methods 131

EventChannel . 132
Methods . 132

EventChannelFactory 132
IDL definition. 132
EventChannelFactory methods 133

ProxyPullConsumer 133
IDL definition. 133

ProxyPushConsumer 134
IDL definition. 134

ProxyPullSupplier 134
IDL definition. 134

ProxyPushSupplier 134
IDL definition. 135

PullConsumer . 135
IDL definition. 135

PushConsumer 135
IDL definition. 135

PullSupplier . 136
IDL definition. 136
PullSupplier methods 136

PushSupplier . 136
IDL definition. 136

SupplierAdmin 137
IDL definition. 137

Chapter 8
Server Manager Interfaces and Classes 139
The Container Interface 139

The Container Interface 139
Methods related to property manipulation and

queries 139
Methods related to operations 140
Methods related to children containers 141
Methods related to storage 142

The Storage Interface 142
Storage Interface Methods for C++ 142

Chapter 9
Transaction Service interfaces and classes
145

CosTransactions and VISTransactions modules. . . 146
Looking at the CosTransactions module 146

Data types 146
Structures 147
Exceptions. 148

Looking at the VISTransactions module 149
Current interface 149

Choosing a Current interface 149
Obtaining a Current object reference 151
Using the Current object reference 151
Is your VisiTransact Transaction Service instance

available? . 151
Checked behavior 152
Current methods 152

TransactionalObject interface 164
TransactionFactory interface. 164

TransactionFactory methods 165
Control interface 167

Control methods 168
Terminator interface 169

Terminator methods 169
Coordinator interface 171

Coordinator methods 173
RecoveryCoordinator interface 179

RecoveryCoordinator methods 179
Resource interface. 180

Resource methods 181
Synchronization interface 184

Synchronization methods. 185
VISTransactionService class 187

VISTransactionService methods 187
VISSessionManager module 188

Looking at the module 188
Structures 190
Exceptions. 191

ConnectionPool interface 192
Obtaining a ConnectionPool object reference. 192
Using ConnectionPool object references . . . 193
Exceptions. 193
Methods . 193
getConnection() 193
getConnectionWithCoordinator() 194
getProfileAttributes() 195

Connection interface 196
Data types 196
Methods . 196
getAttributes() 196
getInfo() . 197
getNativeConnectionHandle() 197
hold() . 198
isSupported() 199
release() . 200
releaseAndDisconnect(). 201

iv

resume() 201
The ITSDataConnection class 202

Native handle acquisition interface 202
Local transaction connection and completion

interface . 202
Global transaction connection and completion

interface . 203

Chapter 10
Native Messaging Interfaces and Classes
205

RequestAgent 205
Include File 205
IDL definition 205
RequestAgent Methods 206

create_request 206
poll . 206
destroy_request 207

RequestDesc . 207
Include File 207
IDL Definition 207

RequestDesc Fields 208
ReplyRecipient 208

Include File 208
ReplyRecipient methods 209

reply_available 209
REPLY_NOT_AVAILABLE 209

Include File 209
IDL definition 209

Property . 209
Include File 209
IDL definition 209

Property Fields 210
PropertySeq . 210

Include File 210
OctetSeq . 210

Include File 210
RequestTag. 210

Include File 210
RequestTagSeq. 210

Include File 211
Cookie . 211

Include File 211
DuplicatedRequestTag 211

Include File 211
PollingGroupIsEmpty 211

Include File 211
RequestNotExist 211

Include File 212

Chapter 11
Portable Interceptor interfaces and classes
213

About Interceptors 213
ClientRequestInfo. 214

Include file . 215
ClientRequestInfo methods 215

ClientRequestInterceptor 216
Include file . 217
ClientRequestInterceptor methods 217

Codec . 218
Include file . 218
Codec Member Classes 219
Codec Methods 219

CodecFactory . 220
Include file . 220
CodecFactory Member 220
CodecFactory Method 220

Current . 220
Include file . 221
Current Methods 221

Encoding . 221
Include file . 222
Members . 222

ExceptionList . 222
Include file . 222

ForwardRequest. 222
Include file . 223

Interceptor . 223
Include file . 223
Interceptor methods 223

IORInfo . 223
Include file . 224
IORInfo Methods 224

IORInfoExt. . 225
Include file . 226
IORInfoExt Methods 226

IORInterceptor. 226
Include file . 226
IORInterceptor Methods 226

ORBInitializer . 227
Include file . 228
ORBInitializer Methods. 228

ORBInitInfo . 228
Include file . 228
ORBInitInfo Member Classes 228
ORBInitInfo Methods 229

Parameter . 231
Include file . 231
Members . 231

ParameterList . 231
Include file . 232

PolicyFactory . 232
Include file . 232
PolicyFactory Method 232

RequestInfo . 232
Include file . 232
RequestInfo methods 233

ServerRequestInfo 235
Include file . 236
ServerRequestInfo methods 236

ServerRequestInterceptor 238
Include file . 238
ServerRequestInterceptor methods 238

Chapter 12
5.x Interceptor and object wrapper
interfaces and classes 241

Introduction . 241
InterceptorManagers 241

v

IOR templates. 242
InterceptorManager 242
InterceptorManagerControl 242

Include file . 242
InterceptorManagerInterceptor method 242

BindInterceptor 243
Include file . 243
BindInterceptor methods. 243

BindInterceptorManager 244
Include file . 244
BindInterceptorManager method 244

ClientRequestInterceptor 244
Include file . 245
ClientRequestInterceptor methods 245

ClientRequestInterceptorManager 246
Include file . 246
ClientRequestInterceptorManager methods . . . 246

POALifeCycle Interceptor 247
Include file . 247
POALifeCycleInterceptor methods. 247

POALifeCycleInterceptorManager 247
Include file . 248
POALifeCycleInterceptorManager method . . . 248

ActiveObjectLifeCycleInterceptor 248
Include file . 248
ActiveObjectLifeCycleInterceptor methods . . . 248
ActiveObjectLifeCycleInterceptorManager. . . . 249
Include file . 249
ActiveObjectLifeCycleInterceptorManager method .

249
ServerRequestInterceptor 249

Include file . 249
ServerRequestInterceptor methods 249

ServerRequestInterceptorManager 251
Include file . 251
ServerRequestInterceptorManager method . . . 251

IORCreationInterceptor 251
Include file . 251
IORInterceptor method 252

IORCreationInterceptorManager 252
Include file . 252
IORCreationInterceptorManager method 252

Closure . 252
ExtendedClosure 252
VISClosure . 253

Include file . 253
VISClosure members 253

VISClosureData. 254
VISClosureData methods 254

ChainUntypedObjectWrapperFactory. 254
Include file . 254
ChainUntypedObjectWrapperFactory methods . 254

UntypedObjectWrapper 256
Include file . 256
UntypedObjectWrapper methods 256

UntypedObjectWrapperFactory 257
Include file . 257

UntypedObjectWrapperFactory constructor . . . 257
UntypedObjectWrapperFactory methods. 257

Chapter 13
Quality of Service interfaces and classes
259

CORBA::PolicyManager 259
IDL definition 259
Methods . 259

CORBA::Object 260
IDL definition 260
Methods . 260

Messaging::RebindPolicy 262
IDL definition 262
Policy values 262

QoSExt::DeferBindPolicy 263
IDL definition 263

QoSExt::RelativeConnectionTimeoutPolicy 263
IDL definition 264

Messaging::RelativeRequestTimeoutPolicy 264

Chapter 14
IOP and IIOP interfaces and classes 265
GIOP::MessageHeader 265

MessageHeader members 265
GIOP::CancelRequestHeader 266

CancelRequestHeader members. 266
GIOP::LocateReplyHeader 266

LocateReplyHeader members 266
GIOP::LocateRequestHeader 267

LocateRequestHeader members 267
GIOP::ReplyHeader 267

Include file . 268
ReplyHeader members 268

GIOP::RequestHeader. 268
Include file . 268
RequestHeader members 268

IIOP::ProfileBody 269
ProfileBody members. 269

IOP::IOR . 270
Include file . 270
IOR members. 270

IOP::TaggedProfile. 270
TaggedProfile members 270

Chapter 15
Marshal buffer interfaces and classes 273
CORBA::MarshalInBuffer 273

Include file . 273
CORBA::MarshalInBuffer constructors/destructors .

274
CORBA::MarshalInBuffer methods 274
CORBA::MarshalInBuffer operators 277

CORBA::MarshalOutBuffer 277
Include file . 277

vi

CORBA::MarshalOutBuffer constructors/destructors
278

CORBA::MarshalOutBuffer methods 278
CORBA::MarshalOutBuffer operators 280

Chapter 16
Location service interfaces and classes281
Agent . 281

IDL definition 282
Include file . 282
Agent methods 282

Desc . 286
IDL definition 286
Desc members 286

Fail . 287
Fail members 287

TriggerDesc. 287
IDL definition 287
TriggerDesc members 288

TriggerHandler 288
IDL definition 288
Include file . 288
TriggerHandler methods. 288

<type>Seq . 289
<type>Seq methods 289

<type>SeqSeq 290
<type>SeqSeq methods. 290

Chapter 17
Initialization interfaces and classes 293
VISInit . 293

Include file . 293
VISInit constructors/destructors 293
VISInit methods 294

Chapter 18
Real-Time CORBA interfaces and classes
295

Introduction . 295
Include file . 296

RTCORBA::Current. 296
RTCORBA::Current Creation and Destruction . 296
IDL definition 296
RTCORBA::Current methods 296

RTCORBA::Mutex 297
Mutex Creation and Destruction. 297
IDL definition 297
RTCORBA::Mutex Methods 298

RTCORBA::NativePriority 298
IDL definition 298

RTCORBA::Priority 298
IDL definition 299

RTCORBA::PriorityMapping 299
PriorityMapping Creation and Destruction . . . 299
IDL definition 300
PriorityMapping Methods 300

RTCORBA::PriorityModel. 301
RTCORBA::PriorityModelPolicy 301

IDL definition 302
RTCORBA::RTORB 302

RTORB Creation and Destruction 302
IDL definition 302
RTORB Methods 303

RTCORBA::ThreadpoolId 305
IDL definition 305

RTCORBA::ThreadpoolPolicy 305
IDL definition 305

Chapter 19
Pluggable Transport Interface Classes 307
VISPTransConnection 307

Include file . 307
VISPTransConnection methods 307

VISPTransConnectionFactory 310
Include file . 310
VISPTransConnectionFactory methods 310

VISPTransListener. 311
Include file . 311
VISPTransListener methods 311

VISPTransListenerFactory. 312
Include file . 312
VISPTransListenerFactory methods 312

VISPTransProfileBase. 313
Include file . 313
VISPTransProfileBase methods 313
VISPTransProfileBase members 314
VISPTransProfileBase base class methods . . . 314

VISPTransProfileFactory 315
Include file . 315
VISPTransProfileFactory methods 315

VISPTransBridge 315
Include file . 315
VISPTransBridge methods 315

VISPTransRegistrar 316
Include file . 316
VISPTransRegistrar methods 316

Chapter 20
VisiBroker for C++ Logging 319
VISDLoggerMgr 319

Include file . 319
VISDLoggerMgr methods 319

VISDLogger . 321
Include file . 321
VISDLogger methods 321

VISDAppenderFactory 322
Include file . 322
VISDAppenderFactory methods 322

VISDAppender 322
Include file . 322
VISDAppender methods 323

VISDLayoutFactory 323
Include file . 323
VISDLayoutFactory methods. 323

VISDLayout . 324
Include file . 324
VISDLayout methods. 324

VISDConfig . 325
Include file . 325
LogAppenderConfig structure 325

vii

VISDLogRecord. 325
Include file . 325
VISDLogRecord methods 325

VISDLogLevel . 326
Include file . 326
Level enumeration 326

Index 329

viii

 1 : Generated interfaces and classes 1

Generated interfaces and classes
This section describes classes generated by the VisiBroker for C++ IDL compiler, their
uses, and their features.

Generated interfaces and classes overview
The VisiBroker IDL compiler generates classes that make it easier for you to develop
client applications and object servers. Many of these generated classes are available
for CORBA classes.

– stub classes

– servant classes

– tie classes

– var classes

<Interface_name>
The <interface_name> class is generated for a particular IDL interface and is intended
for use by client applications. This class provides all of the methods defined for a
particular IDL interface. When a client uses an object reference to invoke methods on
the object, the stub methods are actually invoked. The stub methods allow a client
operation request to be packaged, sent to the object implementation, and the results to
be reflected. This entire process is transparent to the client application.

When a client uses a local object reference to invoke methods on the local object, there
is no stub method involved.

Note

You should never modify the contents of a stub class generated by the IDL compiler.

2 VisiBroker C++ API Reference Guide

<Interface_name>ObjectWrapper

<Interface_name>ObjectWrapper
This class does not apply to local interfaces. For non-local interface, this class is used
to derive typed object wrappers and is generated for all your non-local interfaces when
you invoke the idl2cpp command with the -obj_wrapper option. For more information
about the -obj_wrapper option, see “Programmer tools for C++” in the VisiBroker for
C++ Developer's Guide.

static void add(CORBA::ORB_ptr orb, CORBA::ObjectFactory factory,
VISObjectWrapper::Location loc); static void remove(CORBA::ORB_ptr orb,
CORBA::ObjectFactory factory, VISObjectWrapper::Location loc);

Removes an un-typed object wrapper from a server application.

POA<class_name>
The _POA_<class_name> class is an abstract base class generated by the IDL compiler,
which is used to derive an object implementation class. Object implementations are
usually derived from a servant class, which provides the necessary methods for
receiving and interpreting client operation requests.

tie<class_name>
The _tie_<class_name> class is generated by the IDL compiler to aid in the creation of
delegation implementations. The tie class allows you to create an object
implementation that delegates all operation requests to another object. This allows you
to use existing objects that you do not wish to inherit from the CORBA::Object class.

<class_name>_var
The <class_name>_var class is generated for an IDL interface and provides simplified
memory management semantics.

Parameter Description

orb The ORB the client wishes to use, returned by the ORB_init method.

factory The factory method for the object wrapper class that you want to remove.

loc The location of the object wrapper being removed, which should be one of the
following values: VISObjectWrapper::Client, VISObjectWrapper::Server
VISObjectWrapper::Both

 2: Core interfaces and classes 3

Core interfaces and classes
This section describes the VisiBroker for C++ core interfaces and classes.

PortableServer::AdapterActivator
Adapter activators are associated with Portable Object Adapters (POAs). They make it
possible for POAs to create child POAs under the following circumstances:

– On demand,

– As a side-effect of receiving a request which names the child POA (or one of its
children), or

– When the find_POA method is called with an activate parameter set to TRUE.

For more information about POAs, see “Using POAs” in the VisiBroker for C++
Developer's.

IDL Defintion

interface AdapterActivator {

 boolean unknown_adapter(in POA parent, in string name);

};

PortableServer::AdapterActivator methods

CORBA::Boolean unknown_adapter(PortableServer::POA_ptr parent, const char*
name);

This method is called when the VisiBroker ORB receives a request for an object
reference which identifies a target POA that does not exist. The VisiBroker ORB

4 VisiBroker C++ API Reference Guide

BindOpt ions

invokes this method once for each POA that must be created in order for the POA to
exist (starting with the ancestor POA closest to the root POA).

BindOptions

Deprecated as of VisiBroker 4.x

struct BindOptions

This structure is used to specify options to the _bind method, described in “Object”.
Each process has a global BindOptions structure that is used for all _bind
invocations that do not specify bind options. You can modify the default bind options
using the Object::_default_bind_options method.

Bind options may also be set for a particular object and will remain in effect for the
lifetime of the connection to that object.
Include file

The corba.h file should be included when you use this structure.

BindOptions members

CORBA::Boolean defer_bind;

If set to TRUE, the establishment of the connection between client and the object
implementation is delayed until the first client operation is issued.

If set to FALSE, the _bind method should establishes the connection immediately.

CORBA::Boolean enable_rebind;

If set to TRUE and the connection is lost, due to a network failure or some other error,
the VisiBroker ORB attempts to re-establish a connection to a suitable object
implementation.

If set to FALSE, no attempt is made to reconnect the client with the object
implementation.

CORBA::Long max_bind_tries;

This member specifies the number of times to retry a bind request when the OAD is
busy.

CORBA::ULong send_timeout;

This member specifies the maximum time in seconds that a client is to block waiting
to send an operation request. If the request times out, CORBA::NO_RESPONSE
exception is raised and the connection to the server is destroyed.

The default value of 0 (zero) indicates that the client is to block indefinitely.

Parameter Description

parent The parent POA associated with the adapter activator on which
the method is to be invoked.

name The name of the POA to be created (relative to the parent).

 2: Core interfaces and classes 5

BOA

CORBA::ULong receive_timeout;

This member specifies the maximum time in seconds that a client is to block waiting
for a response to an operation request. If the request times out, a
CORBA::NO_RESPONSE exception is raised and the connection to the server is
destroyed.

The default value of 0 (zero) indicates that the client is to block indefinitely.

CORBA::ULong connection_timeout;

This member specifies the maximum time in seconds that a client is to wait for a
connection. If the time specified is exceeded, a CORBA::NO_IMPLEMENT exception is
raised.

The default value of 0 indicates that the default system time-out for connections is to
be used.

BOA

Deprecated as of VisiBroker 4.0

class BOA

The BOA class represents the Basic Object Adaptor and provides methods for
creating and manipulating objects and object references. Object servers use the
BOA to activate and deactivate object implementations and to specify the thread
policy they wish to use.

You do not instantiate a BOA object. Instead, you obtain a reference to a BOA object
by invoking the ORB::BOA_init method.

Borland VisiBroker provides extensions to the CORBA BOA specification which are
covered in “VisiBroker extensions to CORBA::BOA”. These methods provide for the
management of connections, threads, and the activation of services.

Include file

Include the file corba.h when you use this class.

CORBA::BOA methods

CORBA::Object_ptr create(const CORBA::ReferenceData& refData,
extension::CreationImplDef& creationImplDef)

This method registers the specified implementation with the OAD.

Parameter Description

refData This parameter is not used, but is provided for compliance with
the CORBA specification.

creationImp
lDef

This pointer's true type is CreationImplDef. It provides the
interface name, object name, path name of the executable and
the activation policy and other parameters. See “Activation
interfaces and classes” for a complete discussion of the
CreationImplDef class.

6 VisiBroker C++ API Reference Guide

BOA

void deactivate_impl(extension::ImplementationDef_ptr implDefPtr)

This method causes requests to the implementation to be discarded.

The method deactivates the implementation specified by implDefPtr. Once this
method is called, no further client requests are delivered to the object within this
implementation until the objects and implementation are re-activated. To cause the
implementation to again accept requests, call impl_is_ready or obj_is_ready.

void deactivate_obj(CORBA::Object_ptr objPtr)

This method requests that the BOA deactivate the specified object. Once this method
is invoked, the BOA does not deliver any requests to the object until obj_is_ready or
impl_is_ready is invoked.

void dispose(CORBA::Object_ptr objPtr)

This method unregisters the implementation of the specified object from the Object
Activation Daemon. Once this method is invoked, all references to the specified
object are invalid and any connections to this object implementation are broken. If
the object has been allocated, it is the application’s responsibility to delete the
object.

Note

This method is deprecated as of VisiBroker 4.x. You are urged to use the OAD's
interface instead.

static CORBA::BOA_ptr _duplicate(CORBA::BOA_ptr ptr)

This static method duplicates the BOA pointer that is passed in as a parameter.

void exit_impl_ready()

This method provides backward compatibility with earlier releases of VisiBroker for
C++. It invokes BOA::shutdown, described in “void shutdown()”, which causes a
previous invocation of the impl_is_ready method to return. This method cannot be
invoked in the context of an active request.

Parameter Description

implDefP
tr

This pointer's true type is CreationImplDef. It provides the interface
name, object name, path name of the executable and activation
policy, along with other parameters.

Parameter Description

objPtr A pointer to the object to be deactivated.

Parameter Description

objPtr A pointer to the object to be unregistered.

Parameter Description

ptr A BOA pointer.

 2: Core interfaces and classes 7

BOA

CORBA::ReferenceData_ptr get_id(CORBA::Object_ptr objPtr)

This method returns the reference data for the specified object. The reference data
is set by the object implementation at activation time and is guaranteed to remain
constant throughout the life of the object.

CORBA::Principal_ptr get_principal(CORBA::Object_ptr objPtr,
CORBA::Environment_ptr env=NULL)

This method returns the Principal object associated with the specified object. This
method may only be called by an object implementation during the processing of a
client operation request.

void impl_is_ready(const char *service_name, extension::Activator_ptr
activator, CORBA::Boolean block = 1)

This method instructs the BOA to delay activation of the object implementation
associated with the specified service_name until a client requests the service. Once
a client requests the service, the specified Activator object is used to activate the
object implementation. If block is set to 0, this method blocks the caller until the
exit_impl_ready method is invoked.

void impl_is_ready(extension::ImplementationDef_ptr impl=NULL)

This method notifies the BOA that one or more objects in the server are ready to
receive service requests. This method blocks the caller until the exit_impl_ready
method is invoked. If all objects that the implementation offers were created through
C++ instantiation and activated using the obj_is_ready method, do not specify the
ImplementationDef_ptr.

An object implementation may offer only one object and may want to defer the
activation of that object until a client request is received. In these cases, the object
implementation does not need to first invoke the obj_is_ready method. Instead, it
may simply invoke this method, passing the ActivationImplDef pointer as its single
object.

Parameter Description

objPtr A pointer to the object whose reference data is to be returned.

Parameter Description

objPtr A pointer to the object whose implementation is to be changed.
env A pointer to the Environment object associated with this Principal.

Parameter Description

service_name The service name associated with the specified Activator
object.

activator The Activator to be used to activate the object
implementation

block If set to 1, indicates that this method should block the
caller. If set to zero, the method does not block. The
default behavior is to block.

Parameter Description

impl This pointer's true type is ActivationImplDef and provides the
interface name, object name, path name of the executable and
activation policy, along with other parameters.

8 VisiBroker C++ API Reference Guide

BOA

static CORBA::BOA_ptr _nil()

This static method returns a NULL BOA pointer that can be used for initialization
purposes.

void obj_is_ready(CORBA::Object_ptr obj, extension::ImplementationDef_ptr
impl_ptr = NULL)

This method notifies the BOA that the specified object is ready for use by clients.
There are two different ways to use this method:

– Objects that have been created using C++ instantiation should only specify a
pointer to the object and let the ImplementationDef_ptr default to NULL.

– Objects whose creation is to be deferred until the first client request is received
should specify a NULL Object_ptr and provide a pointer to an ActivationImplDef
object that has been initialized.

static void CORBA::release(CORBA::BOA_ptr boa)

This static method releases the specified BOA pointer. Once the object's reference
count reaches zero, the object is automatically deleted.

static RegistrationScope scope()

This static method returns the registration scope of the BOA. The registration scope
of an object can be SCOPE_GLOBAL or SCOPE_LOCAL. Only objects with a global scope
are registered with the osagent.

static void scope(RegistrationScope val)

This static method changes the registration scope of the BOA to the specified value.

void shutdown()

This method causes a previous invocation of the impl_is_ready method to return.
This method cannot be invoked in the context of an active request.

CORBA::Object_ptr string_to_object(const char * str)

This method converts a stringified object reference, created with the
object_to_string method described in “char *object_to_string(CORBA::Object_ptr
obj);”, back into an object reference that may be used to invoke methods on the
object.

Parameter Description

obj A pointer to the object to be activated.
impl_ptr A optional pointer to an ActivationImplDef object.

Parameter Description

boa A valid BOA pointer.

Parameter Description

val The scope for this BOA. Must be one of the following values:
LOCAL_SCOPE for transient objects. GLOBAL_SCOPE for objects
registered with the Smart Agent.

Parameter Description

str The string to be converted back to an object reference.

 2: Core interfaces and classes 9

Complet ionStatus

VisiBroker extensions to CORBA::BOA

CORBA::ULong connection_max()

This method returns the maximum number of connections allowed.

void connection_max(CORBA::ULong max_conn)

This method is used by servers to set the maximum number of connections allowed.

CORBA::ULong thread_max()

This method returns the maximum number of threads allowed if the TPool thread
policy has been selected.

void thread_max(CORBA::ULong max)

This method sets the maximum number of threads allowed when the TPool thread
policy has been selected. If the current number of threads exceeds this number, the
extra threads are destroyed one at a time as soon as they are no longer in use until
the number of threads is down to max.

CORBA::ULong thread_stack_size()

Returns the maximum thread stack size (in bytes) when TPool or TSession thread
policy is selected.

void thread_stack_size(CORBA::ULong size)

Sets the maximum thread stack size (in bytes) when TPool or TSession thread
policy is selected.

CompletionStatus

enum CompletionStatus

This enumeration represents how an operation request completed.

IDL Definition

enum CompletionStatus {
COMPLETED_YES;
COMPLETED_NO;
COMPLETED_MAYBE;};

Parameter Description

max_conn The maximum number of connections allowed.

Parameter Description

max The maximum number of threads to be allowed.

Parameter Description

size The new stack size to be set.

10 VisiBroker C++ API Reference Guide

Context

CompletionStatus members

Context

class CORBA::Context

The Context class contains information about a client application's environment that
is passed to a server as an implicit parameter during static or dynamic method
invocations. It can be used to communicate special information that needs to be
associated with a request, but is not part of the method's argument list.

The Context class consists of a list of properties, stored as name-value pairs, and
provides methods for setting and manipulating those properties. A Context contains
an NVList object and chains the name-value pairs together.

A Context_var class is also available and provides simpler memory management
semantics.

Include file

Include the corba.h file when you use this class.

Context methods

const char *context_name() const;

This method returns the name used to identify this context. If no name was provided
when this object was created, it returns a NULL value.

void create_child(const char * name, CORBA::Context_out context_ptr);

This method creates a child Context for this object.

void delete_values(const char *name);

This method deletes one or more properties from this object.

COMPLETED_YES = 0 Indicates the operation request completed successfully.

COMPLETED_NO = 1 Indicates the operation request was not completed, due
to some sort of exception or error.

COMPLETED_MAYBE =
2

Indicates that the operation request may have completed,
in spite of an exception or error.

Parameter Description

name The name of the new Context object.
context_ptr& A reference to newly created child Context.

Parameter Description

name The name of the property, or properties, to be deleted. To delete
all matching properties, the name may contain a trailing “*”
wildcard character. To delete all properties, specify a single
asterisk.

 2: Core interfaces and classes 11

Context

static CORBA::Context_ptr _duplicate(CORBA::Context_ptr ctx);

This method duplicates the specified object.

void get_values(const char *start_scope, CORBA::Flags flag, const char
*name, CORBA::NVList_out NVList_ptr);

This method searches the Context object hierarchy and retrieves one or more of the
name/value pairs specified by the name parameter. If the name parameter has a
trailing wildcard character (*), then all matching properties and their values are
returned. It then creates an NVList object and places the name/value pairs in the
NVList. If the name parameter is an empty string or a NULL string, the
BAD_PARAM standard system exception is raised. If the name parameter is not
found, the BAD_CONTEXT standard system exception is raised and no property list
is returned.

The start_scope parameter specifies the name of the context where the search
begins. If the property is not found, the search continues up the Context object
hierarchy until a match is found, or until there are no more Context objects to
search. If the start_scope parameter is omitted, the search begins with the
specified context object.

static CORBA::Context_ptr _nil();

This method returns a NULL Context_ptr suitable for initialization purposes.

CORBA::Context_ptr parent();

This method returns a pointer to the parent Context. If there is no parent Context, a
NULL value is returned.

static void _release(CORBA::Context_ptr ctx);

This static method releases the specified Context object. Once the object's
reference count reaches zero, the object is automatically deleted.

Parameter Description

ctx The object to be duplicated.

Parameter Description

start_sc
ope

The name of the Context object at which to start the search. If set
to CORBA::Context::_nil(), the search begins with the current
Context. To restrict the search scope can to just the current
Context, specify CORBA::CTX_RESTRICT_SCOPE.

flag An exception is raised if no matching context name is found.
name The property name to search for. A trailing “*” wildcard character

may be used to retrieve all properties that match name.
NVList_p
tr

A reference to the list of properties found.

Parameter Description

ctx The object to be released.

12 VisiBroker C++ API Reference Guide

PortableServer: :Current

void set_one_value(const char *name, const CORBA::Any& anAny);

This method adds a property to this object using the specified name and value.

void set_values(CORBA::NVList_ptr _list);

This method adds one or more properties to this object, using the name/value pairs
specified in the NVList. When you create the NVList object to be used as an input
parameter to this method, you must set the Flags field to zero and each Any object
added to the NVList must have its TypeCode set to TC_string. For more information
on the NVList class, see “NVList methods”.

PortableServer::Current

class PortableServer::Current : public CORBA::Current

This class provides methods with access to the identity of the object on which the
method was called. The Current class provides support for servants which
implement multiple objects but can be used within the context of POA-dispatched
method invocations on any servant.

IDL Definition

interface Current : CORBA::Current {
xception NoContext {};
OA get_POA() raises (NoContext);

};

PortableServer::Current methods

PortableServer::POA *get_POA();

This method returns a reference to the POA which implements the object in whose
context it is called. If this method is called from outside the context of a
POA-dispatched method, a NoContext exception is raised.

PortableServer::ObjectId get_object_id();

This method returns the ObjectId which identifies the object in whose context it was
called. If this method is called from outside the context of a POA-dispatched
method, a NoContext exception is raised.

Parameter Description

name The property's name.
anAny The property's value.

Parameter Description

_list A list of name/value pairs to be added to this object.

 2: Core interfaces and classes 13

Exception

Exception

class CORBA::Exception

The Exception class is the base class of the system exception and user exception
classes. For more information, see “SystemException”.

Include file

You should include the corba.h file when using this class.

Object

class CORBA::Object

All ORB objects are derived from the Object class, which provides methods for
binding clients to objects and manipulating object references as well as querying
and setting an object's state. Object class methods are implemented by the ORB.

VisiBroker for C++ provides extensions to the CORBA Object specification. These
are covered in “VisiBroker extensions to CORBA::Object”.

Include file

You should include the file corba.h when using this class.

CORBA::Object methods

void _create_request(CORBA::Context_ptr ctx, const char *operation,
CORBA::NVList_ptr arg_list, CORBA::NamedValue_ptr result,
CORBA::Request_out request, CORBA::Flags req_flags);

This method creates a Request for an object implementation that is suitable for
invocation with the Dynamic Invocation Interface.

Parameter Description

ctx The Context associated with this request. For more
information, see “CompletionStatus”.

operation The name of the operation to be performed on the object
implementation.

arg_list A list of arguments to pass to the object implementation. See
the Dynamic interfaces and classes, “NVList methods” for more
information.

result The result of the operation. See the Dynamic interfaces and
classes, “NamedValue methods” for more information.

request A pointer to the Request that is created. For more information,
see the Dynamic interfaces and classes, “Request methods” .

req_flags The OUT_LIST_MEMORY and IN_COPY_VALUE flags can be set as
flags in the req_flags parameter, but they are meaningless and
thus ignored because argument insertion and extraction are
done via the Any type.

14 VisiBroker C++ API Reference Guide

Object

void _create_request(CORBA::Context_ptr ctx, const char *operation,
CORBA::NVList_ptr arg_list, CORBA::NamedValue_ptr result,
CORBA::ExceptionList_ptr eList, CORBA::ContextList_ptr ctxList,
CORBA::Request_out request, CORBA::Flags req_flags);

This method creates a Request for an object implementation that is suitable for
invocation with the Dynamic Invocation Interface.

static CORBA::Object_ptr _duplicate(CORBA::Object_ptr obj);

This static method duplicates the specified Object_ptr and returns a pointer to the
object. The object's reference count is increased by one.

CORBA::InterfaceDef_ptr _get_interface();

This method returns a pointer to this object's interface definition. See the Interface
repository interfaces and classes, “InterfaceDef methods” for more information.

CORBA::ULong _hash(CORBA::ULong maximum);

This method returns a hash value for this object. This value does change for the
lifetime of this object, however the value is not necessarily unique. If two objects
return different hash values, then they are not identical. The upper bound of the
hash value may be specified. The lower bound is 0 (zero).

CORBA::Boolean _is_a(const char *logical_type_id);

This method returns TRUE if this object implements the interface associated with the
repository id. Otherwise, it returns FALSE.

Parameter Description

ctx The Context associated with this request. For more information,
see “CompletionStatus”.

operation The name of the operation to be performed on the object
implementation.

arg_list A list of arguments to pass to the object implementation. See the
Dynamic interfaces and classes, “NVList methods” for more
information.

result The result of the operation. See the Dynamic interfaces and
classes, “NamedValue methods” for more information.

eList A list of exceptions for this request.
ctxList A list of Context objects for this request.
request A pointer to the Request that is created. See the Dynamic

interfaces and classes, “Request methods” for more information.
req_flags This flag must be set to OUT_LIST_MEMORY if one or more of the

NamedValue items in arg_list are output arguments.

Parameter Description

obj The object pointer to be duplicated.

Parameter Description

maximum The upper bound of the hash value returned.

Parameter Description

logical_type_id The repository identifier to check.

 2: Core interfaces and classes 15

Object

CORBA::Boolean _is_equivalent(CORBA::Object_ptr other_object);

This method returns TRUE if the specified object pointer and this object point to the
same object implementation. Otherwise, it returns FALSE.

static CORBA::Object_ptr _nil();

This static method returns a NULL pointer suitable for initialization purposes.

CORBA::Boolean _non_existent();

This method returns TRUE if the object represented by this object reference no longer
exists.

CORBA::Request_ptr _request(const char* operation);

This method creates a Request suitable for invoking methods on this object. A
pointer to the Request object is returned. See the Dynamic interfaces and classes,
“Request methods” for more information.

CORBA::Object_ptr _resolve_reference(const char* id);

Your client application can invoke this method on an object reference to resolve the
server-side interface with the specified service identifier. This method causes the
ORB::_resolve_initial_references method to be invoked on the server-side to
resolve the specified service. This method returns an object reference which your
client can narrow to the appropriate server type.

This method is typically used by client applications that wish to manage a server's
attributes.

VisiBroker extensions to CORBA::Object

CORBA::BindOptions* _bind_options();

This method returns a pointer to the bind options that used for this object only. For
more information, see “BindOptions”.

void _bind_options(const CORBA::BindOptions& opt);

This method sets the bind options for this object only. The options that are set
remain in effect for the lifetime of the proxy object. Any changes to time-out values
will apply to all subsequent send and receive operations as well as any re-bind
operations. For more information, see “BindOptions”.

Parameter Description

other_object Pointer to an object that is to be compared to this object.

Parameter Description

operation The name of the object method to be invoked.

Parameter Description

id The name of the interface to be resolved on the
server-side.

Parameter Description

opt The new bind options for this object.

16 VisiBroker C++ API Reference Guide

Object

static CORBA::Object_ptr _bind_to_object(const char *rep_id, const char
*object_name=NULL, const char *host_name=NULL, const CORBA::BindOptions
*options=NULL, CORBA::ORB_ptr orb=NULL);

This method attempts to bind to the object with the specified repository_id and
object_name on the specified host using the specified BindOptions and ORB.

CORBA::BOA _boa() const;

This method returns a pointer to the Basic Object Adaptor with which this object is
registered.

Note

This method is deprecated in VisiBroker 4.0.

static CORBA::Object_ptr _clone(CORBA::Object_ptr obj, CORBA::Boolean
reset_connection = 1UL);

This method clones the specified object reference.

static const CORBA::BindOptions * _default_bind_options();

This method returns a pointer to the global, per client process BindOptions. For
more information, see “BindOptions”.

static void _default_bind_options(const CORBA::BindOptions& bindOptions);

This method sets the bind options to be used by default for all _bind invocations that
do not specify their own bind options. For more information, see “BindOptions”.

static const CORBA::TypeInfo *_desc();

Returns type information for this object.

const char *_interface_name() const;

This method returns this object's interface name.

CORBA::Boolean _is_bound() const;

If the client process has established a connection to an object implementation (is
bound), this method returns 1. If the object is not bound, this method returns 0 zero.

Parameter Description

rep_id The repository ID of the desired object.
object_name The name of the desired object.
host_name The name of the desired host where the object

implementation is executing.
options The bind options for this connection. See “struct

BindOptions” for more information.
orb The ORB to use.

Parameter Description

obj The object reference to be cloned.
reset_connection This parameter is not used.

 2: Core interfaces and classes 17

ORB

CORBA::Boolean _is_local() const;

This method returns TRUE if the object implementation resides within the same
process or address space as the client application.

CORBA::Boolean _is_persistent() const;

This method returns TRUE if this object is a persistent object. A FALSE value returned
is not an authoritative answer that the object is not persistent.

CORBA::Boolean _is_remote() const;

This method returns TRUE if the object implementation resides in a different process
or address space than the client application. The client and object implementation
may or may not reside on the same host.

const char *_object_name() const;

This method returns the object name associated with this object.

CORBA::Long _ref_count() const;

Returns the reference count for this object.

void _release();

Decrements this object's reference count and releases the object if the reference
count has reached 0.

const char *_repository_id() const;

This method returns this object's repository identifier.

ORB

class CORBA::ORB

The ORB class provides an interface to the Object Request Broker. It provides
methods to the client object, independent of the particular Object or Object Adaptor.

Borland VisiBroker provides extensions to the CORBA ORB that are discussed in
“VisiBroker extensions to CORBA::ORB”. These methods are provided for the
management of connections, threads, and the activation of services.

Include file

You should include the file corba.h when using this class.

CORBA::ORB methods

CORBA::Boolean work_pending();

This method returns true if the ORB has any work waiting to be processed.

18 VisiBroker C++ API Reference Guide

ORB

static CORBA::TypeCode_ptr create_alias_tc(const char *repository_id, const
char *type_name, CORBA::TypeCode_ptr original_type);

This static method dynamically creates a TypeCode for the alias with the specified
type and name.

static CORBA::TypeCode_ptr create_array_tc(CORBA::Ulong length,
TypeCode_ptr element_type);

This static method dynamically creates a TypeCode for an array.

static CORBA::TypeCode_ptr create_enum_tc(const char *repository_id, const
char *type_name, const CORBA::EnummemberSeq& members);

This static method dynamically creates a TypeCode for an enumeration with the
specified type and members.

void create_environment(CORBA::Environment_out env);

This method creates an Environment object.

static CORBA::TypeCode_ptr create_exception_tc(const char *repository_id,
const char *type_name, const CORBA::StructMemberSeq& members);

This static method dynamically creates a TypeCode for an exception with the
specified type and members.

Parameter Description

repository_id The identifier generated by the IDL compiler or
constructed dynamically.

type_name The name of the alias's type.
original_type The type of the original for which this alias is being

created.

Parameter Description

length The maximum number of array elements.

element_type The type of elements stored in this array.

Parameter Description

repository_id The identifier generated by the IDL compiler or constructed
dynamically.

type_name The name of the enumeration's type.
members A list of values for the enumeration's members.

Parameter Description

env The reference that will be set to point to the newly created
Environment.

Parameter Description

repository_id The identifier generated by the IDL compiler or
constructed dynamically.

type_name The name of the structure's type.
members A list of values for the structure members.

 2: Core interfaces and classes 19

ORB

static CORBA::TypeCode_ptr create_interface_tc(const char *repository_id,
const char *type_name);

This static method dynamically creates a TypeCode for the interface with the
specified type.

void create_list(CORBA::Long num, CORBA::NVList_out nvList);

This method creates an NVList with the specified number of elements and returns a
reference to the list.

void create_named_value(CORBA::NamedValue_out value);

This method creates a NamedValue object.

void create_operation_list(CORBA::OperationDef_ptr opDefPtr,
CORBA::NVList_out nvList);

This method creates an argument list for the specified OperationDef object.

static CORBA::TypeCode_ptr create_recursive_sequence_tc(CORBA::Ulong bound,
CORBA::Ulong offset);

This static method dynamically creates a TypeCode for a recursive sequence. The
result of this method can be used to create other types. The offset parameter
determines which enclosing TypeCode describes the elements of this sequence.

Note

This method is deprecated. Instead, use create_recursive_tc method.

static CORBA::TypeCode_ptr create_recursive_tc(const char* repId);

This method is used to create recursive typecode which serves as a place holder for
concrete typecode during the process of creating typecodes that contain recursion.

Parameter Description

repository
_id

The identifier generated by the IDL compiler or constructed dynamically.

type_name The name of the interface's type.

Parameter Description

num The number of elements in the list.

nvlist Initialized to point to the newly created list.

Parameter Description

bound The maximum number of sequence elements.

offset Position within the buffer where the type code for the current element was
previously generated.

Parameter Description

repld This specifies the repository id of the type for which this typecode is
serving as the place holder

20 VisiBroker C++ API Reference Guide

ORB

static CORBA::TypeCode_ptr create_sequence_tc(CORBA::Ulong bound,
CORBA::TypeCode_ptr element_type);

This static method dynamically creates a TypeCode for a sequence.

static CORBA::TypeCode_ptr create_string_tc(CORBA::Ulong bound);

This static method dynamically creates a TypeCode for a string.

static CORBA::TypeCode_ptr create_struct_tc(const char *repository_id,
const char *type_name, const ORBA::StructMemberSeq& members);

This static method dynamically creates a TypeCode for the structure with the
specified type and members.

static CORBA::TypeCode_ptr create_union_tc(const char *repository_id, const
char *type_name, CORBA::TypeCode_ptr discriminator_type, const
CORBA::UnionMemberSeq& members);

This static method dynamically creates a TypeCode for a union with the specified
type, discriminator and members.

CORBA::Status get_default_context(CORBA::Context_ptr& LcontextPtr);

This method returns the default per-process ContextL maintained by VisiBroker.
The default Context is often used in constructing DII requests. For more information,
see “Context”.

Parameter Description

bound The maximum number of sequence elements.

element_t
ype

The type of elements stored in this sequence.

Parameter Description

bound The maximum length of the string.

Parameter Description

repository
_id

The identifier generated by the IDL compiler or constructed dynamically.

type_name The name of the structure's type.

members A list of values for the structure members.

Parameter Description

repository_id The identifier generated by the IDL compiler or constructed dynamically.

type_name The name of the union's type.

discriminator
_typ

The discriminating type for the union.

members A list of values for the union members.

Parameter Description

contextP
tr&

The property's value.

 2: Core interfaces and classes 21

ORB

CORBA::Status get_next_response(CORBA::Request_out*& req);

This method blocks waiting for the response associated with a deferred request.
You can use the ORB::poll_next_response method to determine if there is a
response waiting to be received before you call this method.

ObjectIdList *list_initial_services();

This method returns a list of the names of any object services that are available to
your application. These services may include the Location Service, Interface
Repository, Name Service, or Event Service. You can use any of the returned
names with the ORB::resolve_initial_references method to obtain the top-level
object for that service.

char *object_to_string(CORBA::Object_ptr obj);

This method converts the specified object reference to a string, a process referred
to as “stringification” in the CORBA specification. Object references that have been
converted to strings can be stored in files, for example. This is an ORB method
because different ORB implementations may have different conventions for
representing object references as strings.

CORBA::BOA_ptr ORB::BOA_init(int& argc, char *const *argv, const char
*boa_identifier = (char *)NULL);

This ORB method returns a handle to the BOA and specifies optional networking
parameters. The argc and argv parameters are the same parameters passed to the
object implementation process when it is started.

Note

This method is deprecated since VisiBroker 4.0.

static CORBA::ORB_ptr ORB_init(int& argc, char *const *argv, const char
*orb_id = NULL);

This method initializes the ORB and is used by both clients and object
implementations. It returns a pointer to the ORB that can be used to invoke ORB
methods. The argc and argv parameters passed to the application's main function
can be passed directly to this method. Arguments accepted by this method take the
form of name-value pairs so that they can be distinguished from other command line
arguments.

Parameter Description

req Set to point to the request that has been received.

Parameter Description

argc The number of arguments passed.

argv An array of char pointers to the arguments. All but two of the arguments
take the form of a keyword and a value. This method ignores any keywords
that it does not recognize.

boa_identi
fier

Identifies the type of BOA to be used. Use TPool if multiple thread support
is desired. Use TSingle if the implementation does not use threads.

Parameter Description

argc The number of arguments passed.

22 VisiBroker C++ API Reference Guide

ORB

void perform_work();

This method instructs the ORB to perform some work.

CORBA::Boolean poll_next_response();

This method returns TRUE if a response to a deferred request was received,
otherwise FALSE is returned. This call does not block.

CORBA::Object_ptr resolve_initial_references(const char * identifier);

This method resolves one of the names returned by the
ORB::list_initial_services method, described in “ObjectIdList
*list_initial_services();”, to its corresponding implementation object. The resolved
object which is returned can then be narrowed to the appropriate server type. If the
specified service cannot be found, an InvalidName exception is raised.

void send_multiple_requests_deferred(const CORBA::RequestSeq& req);

This method sends all the client requests in the specified sequence as deferred
requests. The ORB will not wait for any responses from the object implementation.
The client application is responsible for retrieving the responses to each request
using the ORB::get_next_response method.

void send_multiple_requests_oneway(const CORBA::RequestSeq& req);

This method sends all the client requests in the specified sequence as one-way
requests. The ORB does not wait for a response from any of the requests because
one-way requests do not generate responses from the object implementation.

CORBA::Object_ptr string_to_object(const char *str);

This method converts a string representing an object into an object pointer. The
string must have been created using the ORB::object_to_string method.

argv An array of char pointers to the arguments. All but two of the arguments
take the form of a keyword and a value. This method ignores any keywords
that it does not recognize.

boa_identi
fier

Identifies the type of ORB to be used. The default is IIOP.

Parameter Description

identifi
er

The name of the service whose top-level object is to be returned. The identifier
is not the name of the object to be returned.

Parameter Description

req A sequence of deferred requests to be sent.

Parameter Description

req A sequence of one-way requests to be sent.

Parameter Description

str A pointer to a string representing an object.

Parameter Description

 2: Core interfaces and classes 23

ORB

static CORBA::ORB_ptr _duplicate(CORBA::ORB_ptr ptr);

This static method duplicates the specified ORB pointer and returns a pointer to the
duplicated ORB.

static CORBA::ORB_ptr _nil();

This static method returns a NULL ORB pointer suitable for initialization purposes.

void run();

This method causes the ORB to start processing work. This ORB receives requests
and dispatches them. This call blocks this process until the ORB is shut down.

static void shutdown(CORBA::Boolean wait_for_completion=0);

This method causes a previous invocation of the impl_is_ready method to return.
All object adapters are shut down and associated memory is freed. If the
wait_for_completion parameter is TRUE, this operation blocks until the shutdown is
complete. If an application does this in a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception is raised. If the
wait_for_completion parameter is FALSE, then shutdown may not have completed
upon return.

static void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. If destroy is called on an ORB that has not been shut down, it will start
the shut down process and block until the ORB has shut down before it destroys the
ORB. The behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a
thread that is currently servicing an invocation, the BAD_INV_ORDER system exception
is raised.

VisiBroker extensions to CORBA::ORB

CORBA::Object_ptr bind(const char *rep_id, const char *object_name = (const
char*)NULL, const char *host_name = (const char*)NULL, CORBA::BindOptions
opt = (CORBA::BindOptions)NULL);

This method allows you obtain a generic object reference to an object by specifying
the repository id of the object and optionally, its object name and host name where it
is implemented.

Parameter Description

ptr The ORB pointer to be duplicated.

Parameter Description

wait_for_compl
etion

Specifies whether shutdown will wait for completion or not

Parameter Description

rep_id The identifier generated by the IDL compiler or constructed dynamically for
the object.

object_n
ame

The name of the object. This is an optional parameter.

24 VisiBroker C++ API Reference Guide

PortableServer: :POA

CORBA::ULong connection_count()

This method is used by client applications to return the current number of active
connections.

void connection_max(CORBA::ULong max_conn)

Client applications use this method to set the maximum number of connections
allowed.

CORBA::ULong connection_max()

Client applications use this method to obtain the maximum number of connections
allowed.

static CORBA::TypeCode_ptr create_wstring_tc(CORBA::Ulong bound);

This static method dynamically creates a TypeCode for a Unicode string.

PortableServer::POA

class PortableServer::POA

Objects of the POA class manage the implementations of a collection of objects.
The POA supports a namespace for these objects which are identified by Object
Ids. A POA also provides a namespace for other POAs in that a POA must be
created as a child of an existing POA, which then forms a hierarchy starting with the
root POA.

A POA object must not be exported to other processes or be stringified. A MARSHAL
exception is raised if this is attempted.

PortableServer::POA methods

PortableServer::ObjectId* activate_object(PortableServer::Servant
_p_servant);

This method generates an object id and returns it. The object id and the specified
_p_servant are entered into the Active Object Map. If the UNIQUE_ID policy is
present with the POA and the specified _p_servant is already in the Active Object
Map, then a ServantAlreadyActive exception is raised.

host_nam
e

The host name where the object implementation is located. This may be
specified as an IP address or as a fully qualified host name. This is an
optional parameter.

opt Any bind options for the object. This is an optional parameter. Bind options
are described in “BindOptions”.

Parameter Description

max_conn The maximum number of connections to be allowed.

Parameter Description

bound The maximum length of the string.

Parameter Description

 2: Core interfaces and classes 25

PortableServer::POA

This method requires that the SYSTEM_ID and RETAIN policies be present with the
POA; otherwise, a WrongPolicy exception is raised.

void activate_object_with_id(const PortableServer::ObjectId& _oid,
PortableServer::Servant _p_servant);

This method attempts to activate the specified _oid and to associate it with the
specified _p_servant in the Active Object Map. If the _oid already has a servant
bound to it in the Active Object Map, then an ObjectAlreadyActive exception is
raised. If the POA has the UNIQUE_ID policy present and the _p_servant is already in
the Active Object map, then a ServantAlreadyActive exception is raised.

If the POA has the SYSTEM_ID policy present and it detects that the _oid was not
generated by the system or for the POA, then this method raises a BAD_PARAM
system exception.

This method requires that the RETAIN policy be present with the POA; otherwise, a
WrongPolicy exception is raised.

PortableServer::ImplicitActivationPolicy_ptr
create_implicit_activation_policy(PortableServer::ImplicitActivationPolicyV
alue _value);

This method returns a pointer to an ImplicitActivationPolicy object with the
specified _value. The application is responsible for calling the inherited destroy
method on the Policy object after the Policy object is no longer needed.

If no ImplicitActivationPolicy is specified at POA creation, then the default is
NO_IMPLICIT_ACTIVATION.

CORBA::Object_ptr create_reference(const char* _intf);

This method creates and returns an object reference that encapsulates a
POA-generated ObjectId and the specified _intf values. The _intf, which may be
null, becomes the type_id of the generated object reference. This method does not
cause an activation to take place. Undefined behavior results if the _intf value does
not identify the most derived interface of the object or one of its base interfaces. The
ObjectId may be obtained by invoking the POA::reference_to_id method on the
returned Object.

This method requires that the RETAIN policy be present with the POA; otherwise, a
WrongPolicy exception is raised.

Parameter Description

_p_serva
nt

The Servant to be entered into the Active Object
Map.

Parameter Description

_oid The ObjectId of the object to be activated.

_p_serva
nt

The Servant to be entered into the Active Object
Map.

Parameter Description

_value If set to IMPLICIT_ACTIVATION, the POA implicitly activates servants: also
requires SYSTEM_ID and RETAIN policies. If set to
NO_IMPLICIT_ACTIVATION, the POA will not implicitly activate servants.

Parameter Description

_intf The repository interface id of the class of the object to be created.

26 VisiBroker C++ API Reference Guide

PortableServer: :POA

CORBA::Object_ptr create_reference_with_id (const PortableServer::ObjectId&
_oid,const char* _intf);

This method creates and returns an object reference that encapsulates the specified
_oid and _intf values. The _intf, which may be a null string, becomes the type_id
of the generated object reference. An _intf value that does not identify the most
derived interface of the object or one of its base interfaces will result in undefined
behavior. This method does not cause an activation to take place. The returned
object reference may be passed to clients, so that subsequent requests on those
references will cause the object to be activated if necessary, or the default servant
used, depending on the applicable policies.

If the POA has the SYSTEM_ID policy present and it detects the ObjectId value was
not generated by the system or for the POA, this method may raise a BAD_PARAM
system exception.

PortableServer::IdAssignmentPolicy_ptr create_id_assignment_policy
(PortableServer::IdAssignmentPolicyValue _value);

This method returns a pointer to an IdAssignmentPolicy object with the specified
_value. The application is responsible for calling the inherited destroy method on
the Policy object after it is no longer needed.

If no IdAssignmentPolicy is specified at POA creation, then the default is
SYSTEM_ID.

PortableServer::IdUniquenessPolicy_ptr create_id_uniqueness_policy
(PortableServer::IdUniquenessPolicyValue _value);

This method returns a pointer to an IdUniquenessPolicy object with the specified
_value. The application is responsible for calling the inherited destroy method on
the Policy object after it is no longer needed.

If no IdUniquenessPolicy is specified at POA creation, then the default is
UNIQUE_ID.

PortableServer::LifespanPolicy_ptr create_lifespan_policy
(PortableServer::LifespanPolicyValue _value);

This method returns a pointer to a LifespanPolicy object with the specified _value.
The application is responsible for calling the inherited destroy method on the Policy
object after it is no longer needed.

Parameter Description

_oid The object id for which a reference is to be created.

_intf The repository interface id of the class of the object to be created.

Parameter Description

_value If set to USER_ID, then objects created by the POA are assigned object ids
only by the application. If set to SYSTEM_ID, then objects created by the POA
are assigned object ids only by the POA.

Parameter Description

_value If set to UNIQUE_ID, then servants which are activated with the POA support
exactly one object id. If set to MULTIPLE_ID, then a servant which is activated
with the POA may support one or more object ids.

 2: Core interfaces and classes 27

PortableServer::POA

If no LifespanPolicy is specified at POA creation, then the default is TRANSIENT.

PortableServer::POA_ptr create_POA(const char* _adapter_name,
PortableServer::POAManager_ptr _a_POAManager, const CORBA::PolicyList&
_policies);

This method creates a new POA with the specified _adapter_name. The new POA is
a child of the specified _a_POAManager. If a child POA with the same name already
exists for the parent POA, a PortableServer::AdapterAlreadyExists exception is
raised.

The specified _policies are associated with the new POA and are used to control
its behavior.

PortableServer::RequestProcessingPolicy_ptr
create_request_processing_policy
(PortableServer::RequestProcessingPolicyValue _value);

This method returns a pointer to a RequestProcessingPolicy object with the
specified _value. The application is responsible for calling the inherited destroy
method on the Policy object after it is no longer needed.

If no RequestProcessingPolicy is specified at POA creation, then the default is
USE_ACTIVE_OBJECT_MAP_ONLY.

Parameter Description

_value If set to TRANSIENT, then objects implemented in the POA cannot outlive the
POA instance in which they were first created. Once a transient POA is
deactivated, the use of any object references generated from it results in an
OBJECT_NOT_EXIST exception being raised. If set to PERSISTENT, then the
objects implemented in the POA can outlive any process in which they are first
created.

Parameter Description

_adapter_n
ame

The name which specifies the new POA.

_a_POAMana
ger

The parent POA object of the new POA.

_policies A list of policies which are to apply to the new POA. The policy objects are
effectively copied before this operation returns.

Parameter Description

_value If set to USE_ACTIVE_OBJECT_MAP_ONLY and the object id is not found in the
Active Object Map, then an OBJECT_NOT_EXIST exception is returned to the
client. (The RETAIN policy is also required.)If set to USE_DEFAULT_SERVANT
and the object id is not found in the Active Object Map or the NON_RETAIN
policy is present, and a default servant has been registered with the POA
using the set_servant method, then the request is dispatched to the default
servant. If no default servant has been registered, then an OBJ_ADAPTER
exception is returned to the client. (The MULTIPLE_ID policy is also
required.)If set to USE_SERVANT_MANAGER and the object id is not found in the
Active Object Map or the NON_RETAIN policy is present, and a servant
manager has been registered with the POA using the set_servant_manager
method, then the servant manager is given the opportunity to locate a servant
or raise an exception. If no servant manager has been registered, then an
OBJ_ADAPTER is returned to the client.

28 VisiBroker C++ API Reference Guide

PortableServer: :POA

PortableServer::ServantRetentionPolicy_ptr create_servant_retention_policy
(PortableServer::ServantRetentionPolicyValue _value);

This method returns a pointer to a ServantRetentionPolicy object with the
specified _value. The application is responsible for calling the inherited destroy
method on the Policy object after it is no longer needed.

If no ServantRetentionPolicy is specified at POA creation, then the default is
RETAIN.

PortableServer::ThreadPolicy_ptr
create_thread_policy(PortableServer::ThreadPolicyValue _value);

This method returns a pointer to a ThreadPolicy object with the specified _value.
The application is responsible for calling the inherited destroy method on the Policy
object after it is no longer needed.

If no ThreadPolicy is specified at POA creation, then the default is ORB_CTRL_MODEL.

void deactivate_object(const PortableServer::ObjectId& _oid);

This method causes the specified _oid to be deactivated. An ObjectId which has
been deactivated continues to process requests until there are no more active
requests for that ObjectId. An ObjectId is removed from the Active Object Map
when all requests executing for that ObjectId have completed.

If a ServantManager is associated with the POA, then the
ServantActivator::etherealize method is invoked with the ObjectId and the
associated servant after the ObjectId has been removed from the Active Object
map. Reactivization for the ObjectId blocks until etherealization, if necessary, has
completed. However, the method does not wait for requests or etherealization to
complete and always returns immediately after deactivating the specified _oid.

This method requires that the RETAIN policy be present with the POA; otherwise, a
WrongPolicy exception is raised.

Parameter Description

_value If set to RETAIN, then the POA will retain active servants in its Active Object
Map. If set to NON_RETAIN, then servants are not retained by the POA.

Parameter Description

_value If set to ORB_CTRL_MODEL, the ORB is responsible for assigning requests for
an ORB-controlled POA to threads. In a multi-threaded environment,
concurrent requests may be delivered using multiple threads. If set to
SINGLE_THREAD_MODEL, then requests to the POA are processed
sequentially. In a multi-threaded environment, all upcalls made by the POA to
servants and servant managers are made in a manner that is safe for code
that is multi-thread unaware.

Parameter Description

_oid The ObjectId of the object to be deactivated.

 2: Core interfaces and classes 29

PortableServer::POA

void destroy(CORBA::Boolean _etherealize_objects, CORBA::Boolean
_wait_for_completion);

This method destroys this POA object and all of its descendant POAs. First the
children are destroyed and finally the current container POA. If desired, later, a POA
with that same name in the same process can be created.

PortableServer::POA_ptr find_POA(const char* _adapter_name,CORBA::Boolean
_activate_it);

If the POA object on which this method is called is the parent of the POA with the
specified _adapter_name, the child POA is returned.

PortableServer::Servant get_servant();

This method returns the default Servant associated with the POA. If no Servant has
been associated with the POA, then a NoServant exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

PortableServer::ServantManager_ptr get_servant_manager();

This method returns a pointer to the ServantManager object associated with the
POA. The result is null if no ServantManager is associated with the POA.

This method requires that the USE_SERVANT_MANAGER policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

CORBA::Object_ptr id_to_reference(PortableServer::ObjectId& _oid);

This method returns an object reference if the specified _oid value is currently
active. If the _oid is not active, then an ObjectNotActive exception is raised.

This method requires that the RETAIN policy be present with the POA; otherwise, a
WrongPolicy exception is raised.

Parameter Description

_etherealize_ob
jects

If TRUE, the POA has the RETAIN policy, and a servant manager has
registered with the POA, then the etherealize method is called on
each active object in the Active Object Map. The apparent
destruction of the POA occurs before the etherealize method is
called, and thus any etherealize method which attempts to invoke
methods on the POA raises an OBJECT_NOT_EXIST exception.

_wait_for_compl
etion

If TRUE and the current thread is not in an invocation context
dispatched from some POA belonging to the same ORB as this POA,
the destroy method only returns after all active requests and all
invocations of etherealize have completed. IfFALSE and the current
thread is in an invocation context dispatched from some POA
belonging to the same ORB as this POA, the BAD_INV_ORDER
exception is raised and POA destruction does not occur.

Parameter Description

_adapter_n
ame

The name of the AdapterActivator associated with the POA.

activate
it

If set to TRUE and no child POA of the POA specified by _adapter_name
exists, then the POA's AdapterActivator, if not null, is invoked. If it
successfully activates the child POA, then that POA is returned. Otherwise
an AdapterNonExistent exception is raised.

Parameter Description

_oid The ObjectId of the object for which a reference is to be returned.

30 VisiBroker C++ API Reference Guide

PortableServer: :POA

PortableServer::Servant id_to_servant(PortableServer::ObjectId& _oid);

This method has three behaviors:

– If the POA has the RETAIN policy present and the specified _oid is in the Active
Object Map, then it returns the servant associated with that object in the Active
Object Map.

– If the POA has the USE_DEFAULT_SERVANT policy present and a default servant has
been registered with the POA, it returns the default servant.

– Otherwise, an ObjectNotActive exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy be present with the POA;
if neither policy is present, a WrongPolicy exception is raised.

PortableServer::Servant reference_to_servant(CORBA::Object_ptr _reference);

This method has three behaviors:

– If the POA has the RETAIN policy and the specified _reference is present in the
Active Object Map, then it returns the servant associated with that object in the
Active Object Map.

– If the POA has the USE_DEFAULT_SERVANT policy present and a default servant has
been registered with the POA, then it returns the default servant.

– Otherwise, it raises an ObjectNotActive exception.

This method requires that the RETAIN or USE_DEFAULT_SERVANT policies be present;
otherwise, a WrongPolicy exception is raised.

PortableServer::ObjectId* reference_to_id(CORBA::Object_ptr _reference);

This method returns theObjectId value encapsulated by the specified _reference.
The invocation is valid only if the _reference was created by the POA on which the
method is called. If the _reference was not created by the POA, a WrongAdapter
exception is raised. The object denoted by the _reference parameter does not have
to be active for this method to succeed.

Though the IDL specifies that a WrongPolicy exception may be raised by this
method, it is simply declared for possible future extension.

PortableServer::ObjectId* servant_to_id(PortableServer::Servant
_p_servant);

This method has four possible behaviors:

– If the POA has the UNIQUE_ID policy present and the specified _p_servant is
active, then the ObjectId associated with the _p_servant is returned.

– If the POA has the IMPLICIT_ACTIVATION policy present and either the POA has
the MULTIPLE_ID policy present or the specified _p_servant is not active, then the

Parameter Description

_oid The ObjectId of the object for which a servant is to be returned.

Parameter Description

_referen
ce

The object for which a servant is to be returned.

Parameter Description

_referen
ce

The object for which an ObjectId is to be returned.

 2: Core interfaces and classes 31

PortableServer::POA

_p_servant is activated using the POA-generated ObjectId and the repository
interface id associated with the _p_servant, and that ObjectId is returned.

– If the POA has the USE_DEFAULT_SERVANT policy present, the specified _p_servant
is the default servant, then the ObjectId associated with the current invocation is
returned.

– Otherwise, a ServantNotActive exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy or a combination of the
RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policies be present;
otherwise, a WrongPolicy exception is raised.

CORBA::Object_ptr servant_to_reference(PortableServer::Servant _p_servant);

This method has the following possible behaviors:

– If the POA has both the RETAIN and the UNIQUE_ID policies present and the
specified _p_servant is active, then an object reference encapsulating the
information used to activate the servant is returned.

– If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policies present
and either the POA has the MULTIPLE_ID policy or the specified _p_servant is not
active, then the _p_servant is activated using a POA-generated ObjectId and
repository interface id associated with the _p_servant, and a corresponding
object reference is returned.

– If this method was invoked in the context of executing a request on the specified
_p_servant, the reference associated with the current invocation is returned.

– Otherwise, a ServantNotActive exception is raised.

This method requires the presence of the RETAIN policy and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies if invoked outside the context of a method dispatched
by the POA. If this method is not invoked in the context of executing a request on
the specified _p_servant and one of these policies is not present, then a
WrongPolicy exception is raised.

void set_servant(PortableServer::Servant _p_servant);

This method sets the default Servant associated with the POA. The specified
Servant will be used for all requests for which no servant is found in the Active
Object Map.

This method requires that the USE_DEFAULT_SERVANT policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

Parameter Description

_p_serva
nt

The Servant for which the ObjectId to be returned is desired.

Parameter Description

_p_serva
nt

The Servant for which a reference is to be
returned.

Parameter Description

_p_serva
nt

The Servant to be used as the default associated with the
POA.

32 VisiBroker C++ API Reference Guide

PortableServer: :POAManager

void set_servant_manager(PortableServer::ServantManager_ptr _imagr);

This method sets the default ServantManager associated with the POA. This method
may only be invoked after a POA has been created. Attempting to set the
ServantManager after one has already been set raises a BAD_INV_ORDER exception.

This method requires that the USE_SERVANT_MANAGER policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

PortableServer::AdapterActivator_ptr the_activator();

This method returns the AdapterActivator associated with the POA. When a POA
is created, it does not have an AdapterActivator (i.e., the attribute is null). It is
system dependent whether a root POA has an activator and the application can
assign one as it wishes.

void the_activator(PortableServer::AdapterActivator_ptr _val);

This method sets the AdapterActivator object associated with the POA to the one
specified.

char* the_name();

This method returns the read-only attribute which identifies the POA relative to its
parent. This parent is assigned at POA creation. The name of the root POA is
system dependent and should not be relied upon by the application.

PortableServer::POA_ptr the_parent();

This method returns a pointer to the POA's parent POA. The parent of the root POA
is null.

Portableserver::POAManager_ptr the_POAManager();

This method returns the read-only attribute which is a pointer to the POAManager
associated with the POA.

PortableServer::POAManager
Each POA has an associated POA manager which in turn may be associated with one
or more POA objects. A POA manager encapsulates the processing state of the POAs
with which it is associated.

There are four possible states which a POA manager can be in:

– active
– inactive
– holding
– discarding

Parameter Description

_imagr The ServantManager to be used as the default used with the
POA.

Parameter Description

_val The ActivatorAdapter to be associated with the
POA.

 2: Core interfaces and classes 33

PortableServer: :POAManager

A POA manager is created in the holding state. The figure below illustrates the states
which a POA manager transitions to based on the method called.

Include file

You should include the file poa_c.hh when using this class.

PortableServer::POAManager methods

void activate();

This method changes the state of the POA manager to active, which enables the
associated POAs to process requests. If invoked while the POA manager is in the
inactive state, the AdapterInactive exception is raised.

void deactivate(CORBA::Boolean _etherealize_objects,CORBA::Boolean
_wait_for_completion);

This method changes the state of the POA manager to inactive, which causes the
associated POAs to reject requests that have not begun execution, as well as any
new requests. If invoked while the POA manager is in the inactive state, the
AdapterInactive exception is raised.

After the state changes, if the etherealize_objects parameter is

– TRUE—the POA manager causes all associated POAs that have the RETAIN and
USE_SERVANT_MANAGER policies to perform the etherealize operation on the
associated servant manager for all active objects.

– FALSE—the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example,
unrecoverable error) situation.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same VisiBroker ORB

34 VisiBroker C++ API Reference Guide

Principal

as this POA, this operation does not return until there are no actively executing
requests in any of the POAs associated with this POA manager (that is, all requests
that were started prior to the state change have completed) and, in the case of a
TRUE etherealize_objects parameter, all invocations of etherealize have
completed for POAs having the RETAIN and USE_SERVANT_MANAGER policies. If the
parameter is TRUE and the current thread is in an invocation context dispatched by
some POA belonging to the same VisiBroker ORB as this POA, the BAD_INV_ORDER
exception is raised and the state is not changed.

void discard_requests(CORBA::Boolean _wait_for_completion);

This method changes the state of the POA manager to discarding, which causes the
associated POAs to discard incoming requests. In addition, any requests that have
been queued but have not started executing are discarded. When a request is
discarded, a TRANSIENT system exception is returned to the client. If invoked while
the POA manager is in the inactive state, the AdapterInactive exception is raised.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same VisiBroker ORB
as this POA, this operation does not return until either there are no actively
executing requests in any of the POAs associated with this POA manager (that is,
all requests that were started prior to the state change have completed) or the state
of the POA manager is changed to a state other than discarding. If the parameter is
TRUE and the current thread is in an invocation context dispatched by some POA
belonging to the same VisiBroker ORB as this POA, the BAD_INV_ORDER exception is
raised and the state is not changed.

void hold_requests(CORBA::Boolean _wait_for_completion);

This method changes the state of the POA manager to holding, which causes the
associated POAs to queue incoming requests. Any requests that have been queued
but are not executing will continue to be queued while in the holding state. If invoked
while the POA manager is in the inactive state, the AdapterInactive exception is
raised.

If the wait_for_completion parameter is FALSE, this operation returns immediately
after changing the state. If the parameter is TRUE and the current thread is not in an
invocation context dispatched by some POA belonging to the same VisiBroker ORB
as this POA, this operation does not return until there are no actively executing
requests in any of the POAs associated with this POA manager (that is, all requests
that were started prior to the state change have completed) and, in the case of a
TRUE etherealize_objects parameter, all invocations of etherealize have
completed for POAs having the RETAIN and USE_SERVANT_MANAGER policies. If the
parameter is TRUE and the current thread is in an invocation context dispatched by
some POA belonging to the same VisiBroker ORB as this POA the BAD_INV_ORDER
exception is raised and the state is not changed.

Principal

typedef OctetSequence Principal

The Principal is used to represent the client application on whose behalf a request
is being made. An object implementation can accept or reject a bind request, based
on the contents of the client's Principal.

Note

This feature has been deprecated as of VisiBroker 4.0.

 2: Core interfaces and classes 35

PortableServer: :RefCountServantBase

Include file

You should include the file corba.h when using this typedef.

Principal methods

The BOA class provides the get_principal method, which returns a pointer to the
Principal associated with an object. The Object class also provides methods for
getting and setting the Principal.

PortableServer::RefCountServantBase

class RefCountServantBase : public ServantBase

This class can be used as a standard servant reference counting mix-in class, rather
than the PortableServer::ServantBase class which is to be used with inheritance
class. For more information, see “PortableServer::ServantBase”.

Include file

You should include the file poa_c.hh when using this class.

PortableServer::RefCountServantBase methods

void _add_ref();

This method increments the reference count by one. You can use this method from
the base class to provide true reference counting.

void _remove_ref();

This method decrements the reference count by one. You can override this method
from the base class to provide true reference counting.

PortableServer::ServantActivator

class PortableServer::ServantActivator : public
PortableServer::ServantManager

If the POA has the RETAIN policy present, then it uses servant managers that are
PortableServer::ServantActivator objects.

Include file

You should include the file poa_c.hh when using this class.

36 VisiBroker C++ API Reference Guide

PortableServer: :ServantBase

PortableServer::ServantActivator methods

void etherealize(PortableServer::ObjectId& oid,PortableServer::POA_ptr
adapter, PortableServer::Servant serv,CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations);

This method is called by the specified adapter whenever a servant for an object (the
specified oid) is deactivated, assuming that the RETAIN and USE_SERVANT_MANAGER
policies are present.

PortableServer::Servant incarnate(const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter);

This method is called by the POA whenever the POA receives a request for an
inactive object (the specified oid) assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

The user supplies a servant manager implementation which is responsible for
locating and creating an appropriate servant that corresponds to the specified oid
value. The method returns a servant, which is also entered into the Active Object
map. Any further requests for the active object are passed directly to the servant
associated with it without invoking the servant manager.

If this method returns a servant that is already active for a different object id and if
the POA also has the UNIQUE_ID policy present, then it raises the OBJ_ADAPTER
exception.

PortableServer::ServantBase

class PortableServer::ServantBase

The Portable::ServantBase class is the base class for your server application.

Include file

You should include the file poa_c.hh when using this class.

Parameter Description

oid The object id of the object whose servant is to be deactivated.

adapter The POA in whose scope the object was active.

serv The servant which is to be deactivated.

cleanup_in_progr
ess

If set to TRUE, the reason for the invocation of the method is either
that the deactivate or destroy method was called with the
etherealize_objects parameter set to TRUE; otherwise, the
method was called for other reasons.

remaining_activa
tions

If the specified serv is associated with other objects in the specified
adapter it is set to TRUE; otherwise it is FALSE.

Parameter Description

oid The object id of the object whose servant is to be activated.

adapter The POA in whose scope the object is to be activated.

 2: Core interfaces and classes 37

PortableServer: :ServantLocator

PortableServer::ServantBase methods

void _add_ref();

This method adds a reference count for this servant. It should be overridden to
provide reference counting functionality for classes derived from this class as the
default implementation does nothing.

PortableServer::POA_ptr _default_POA();

This method returns an Object reference to the root POA of the default VisiBroker
ORB in the current process, (i.e., the same return value as an invocation of
ORB::resolve_initial_references("RootPOA") on the default VisiBroker ORB.
Classes derived from the PortableServer::ServantBase class may override this
method to return the POA of their choice, if desired.

CORBA::InterfaceDef_ptr _get_interface();

This method returns a pointer to this object's interface definition. See the Interface
repository interfaces and classes, “InterfaceDef methods”, for more information.

CORBA::Boolean _is_a(const char *rep_id);

This method returns TRUE if this servant implements the interface associated with
the repository id. Otherwise, it returns FALSE.

void _remove_ref();

This method removes a reference count for this servant. It should be overridden to
provide reference counting functionality for classes derived from this class as the
default implementation does nothing.

PortableServer::ServantLocator

class PortableServer::ServantLocator : public
PortableServer::ServantManager

When the POA has the NON_RETAIN policy present, it uses servant managers which
are PortableServer::ServantLocator objects. The servant returned by the servant
manager will be used only for a single request.

Because the POA knows that the servant returned by the servant manager will be
used only for a single request, it can supply extra information for the servant
manager's methods and the servant manager's pair of methods may do something
different than a PortableServer::ServantLocator servant manager.

Include file

You should include the file poa_c.hh when using this class.

Parameter Description

rep_id The repository identifier against which to check.

38 VisiBroker C++ API Reference Guide

PortableServer: :ServantManager

PortableServer::ServantLocator methods

PortableServer::Servant preinvoke(const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,const char* operation, Cookie& the_cookie);

This method is called by the POA whenever the POA receives a request for an
object that is not currently active, assuming that the NON_RETAIN and
USE_SERVANT_MANAGER policies are present.

The user-supplied implementation of the servant manager is responsible for locating
or creating an appropriate servant that corresponds to the specified oid value if
possible.

void postinvoke(const PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter, const char* operation, Cookie the_cookie,
PortableServer::Servant the_servant)

If the POA has the NON_RETAIN and USE_SERVANT_MANAGER policies present, this
method is called whenever a servant completes a request. This method is
considered to be part of the request on an object, (i.e., if the method finishes
normally, but postinvoke raises a system exception, then the method's normal return
is overridden; and the request completes with the exception).

Destroying a servant that is known to a POA can lead to undefined results.

PortableServer::ServantManager

class PortableServer::ServantManager

Servant managers are associated with Portable Object Adapters (POAs). A servant
manager allows a POA to activate objects on demand when the POA receives a
request targeted for an inactive object.

The PortableServer::ServantManager class has no methods; rather it is the base
class for two other classes: the PortableServer::ServantActivator and the
Portableserver::ServantLocator classes. For more details, see
“PortableServer::ServantActivator” and “PortableServer::ServantLocator”. The use

Parameter Description

oid The ObjectId value that is associated with the incoming request.

adapter The POA in which the object is to be activated.

operatio
n

The name of the operation which will be called by the POA when the servant is
returned.

the_cook
ie

An opaque value which can be set by the servant manager to be used later in
the postinvoke method.

Parameter Description

oid The ObjectId value that is associated with the incoming request.

adapter The POA in which the object is to be activated.

operatio
n

The name of the operation which will be called by the POA when the servant
is returned.

the_cook
ie

An opaque value which can be set by the servant manager in the preinvoke
method for use in this method.

the_serv
ant

The servant associated with the object.

 2: Core interfaces and classes 39

SystemException

of these two classes depends on the POA's policies: RETAIN for the
PortableServer::ServantActivator and NON_RETAIN for the
Portableserver::ServantLocator.

Include file

You should include the file poa_c.hh when using this class.

SystemException

class CORBA::SystemException : public CORBA::Exception

The SystemException class is used to report standard system errors encountered
by the VisiBroker ORB or by the object implementation. This class is derived from
the Exception class, described in “Exception”, which provides methods for printing
the name and details of the exception to an output stream.

SystemException objects include a completion status which indicates if the
operation that caused the exception was completed. SystemException objects also
have a minor code that can be set and retrieved.

Include file

The corba.h file should be included when you use this class.

SystemException methods

CORBA::SystemException(CORBA::ULong minor = 0, CORBA::CompletionStatus
status = CORBA::COMPLETED_NO);

This method creates a SystemException object with the specified properties.

CORBA::CompletionStatus completed() const;

This method returns TRUE if this object's completion status is set to COMPLETED_YES.

void completed(CORBA::CompletionStatus status);

This method sets the completion status for this object.

CORBA::ULong minor() const;

This method returns this object's minor code.

Parameter Description

minor The minor code.

status The completion status, one of CORBA::COMPLETED_YES,
CORBA::COMPLETED_NO, or CORBA::COMPLETED_MAYBE.

Parameter Description

status The completion status, one of COMPLETED_YES, COMPLETED_NO, or
COMPLETED_MAYBE.

40 VisiBroker C++ API Reference Guide

SystemExcept ion

void minor(CORBA::ULong val);

This method sets the minor code for this object.

static CORBA::SystemException *_downcast(CORBA::Exception *exc);

This method attempts to downcast the specified Exception pointer to a
SystemException pointer. If the supplied pointer points to a SystemException object
or an object derived from SystemException, a pointer to the object is returned. If the
supplied pointer does not point to a SystemException object, a NULL pointer is
returned.

Note

The reference count for the Exception object is not incremented by this method.

Parameter Description

val The minor code.

Parameter Description

exc An Exception pointer to be down casted.

Exception name Description

BAD_INV_ORDE
R

Routine invocations out of order.

BAD_OPERATIO
N

Invalid operation.

BAD_CONTEXT Error processing context object.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERS
ION

Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

MARSHAL Error marshalling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSIO
N

No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

 2: Core inter faces and c lasses 41

OBJECT_NOT_E
XIST

Object is not available.

PERSIST_STOR
E

Persistent storage failure.

TRANSIENT Transient failure.

UNKNOWN Unknown exception.

Exception name Description

42 VisiBroker C++ API Reference Guide

 3: Dynamic interfaces and classes 43

Dynamic interfaces and classes
The CORBA::Any class is used to represent an IDL type so that its value may be passed
in a type-safe manner. Objects of this class have a pointer to a TypeCode that defines
the object's type and a pointer to the value associated with the object. Methods are
provided to construct, copy, and destroy an object as well as to initialize and query the
object's type and value. In addition, streaming operators are provided to read and write
the object to a stream.

The code sample below provides an example of how to create and use an Any.

// create an any object
CORBA::Any anObject;
// use the typecode operator to specify that
// 'anObject' object can store long
anObject <<= CORBA::_tc_long;

Include file

Include the CORBA.h file when you use this structure.

Any methods

CORBA::Any();

This is the default constructor. It creates an empty Any object.

CORBA::Any(const CORBA::Any& val);

This is a copy constructor; it creates an Any object that is a copy of the specified
target.

Parameter Description

val The object to be copied.

44 VisiBroker C++ API Reference Guide

Dynamic inter faces and classes

CORBA::Any(CORBA::TypeCode_ptr tc, void *value, CORBA::Boolean release = 0);

This constructor creates an Any object initialized with the specified value and
TypeCode.

static CORBA::Any-_ptr _duplicate(CORBA::Any_ptr ptr);

This static method increments the reference count for the specified object and then
returns a pointer to it.

static CORBA::Any_ptr _nil();

This static method returns a NULL pointer that can be used for initialization purposes.

static void _release(CORBA::Any_ptr *ptr);

This static method decrements the reference count for the specified object. When
the count reaches zero, all memory managed by the object is released and the
object is deleted.

Insertion operators

void operator<<=(CORBA::Short);
void operator<<=(CORBA::UShort);
void operator<<=(CORBA::Long);
void operator<<=(CORBA::ULong);
void operator<<=(CORBA::Float);
void operator<<=(CORBA::Double);
void operator<<=(const CORBA::Any&);
void operator<<=(const char *);
void operator<<=(CORBA::LongLong);
void operator<<=(CORBA::ULongLong);
void operator<<=(CORBA::LongDouble);

These operators initialize this object with the specified value, automatically setting
the appropriate TypeCode for the value. If this Any object was constructed with the
release flag set to TRUE, the value previously stored in this Any object is released
before the new value is assigned.

Paramete
r Description

tc The TypeCode of the value contained by this Any.
value The value contained by this Any.
release If set to TRUE, the memory associated with this Any object's value

is released when this Any object is destroyed.

Parameter Description

ptr The Any to be duplicated.

Parameter Description

ptr The Any to be released.

 3: Dynamic interfaces and classes 45

ContextList

void operator<<=(CORBA::TypeCode_ptr tc);

This method initializes this object with the specified TypeCode of the value.

Extraction operators

CORBA::Boolean operator>>=(CORBA::Short&) const;
CORBA::Boolean operator>>=(CORBA::UShort&) const;
CORBA::Boolean operator>>=(CORBA::Long&) const;
CORBA::Boolean operator>>=(CORBA::ULong&) const;
CORBA::Boolean operator>>=(CORBA::Float&) const;
CORBA::Boolean operator>>=(CORBA::Double&) const;
CORBA::Boolean operator>>=(CORBA::Any&) const;
CORBA::Boolean operator>>=(char *&) const;
CORBA::Boolean operator>>=(CORBA::LongLong&) const;
CORBA::Boolean operator>>=(CORBA::ULongLong&) const;
CORBA::Boolean operator>>=(CORBA::LongDouble&) const;

These operators store the value from this object into the specified target. If the
TypeCode of the target does not match the TypeCode of the stored value, FALSE is
returned and no value is extracted. Otherwise, the stored value is assigned to the
target and TRUE is returned.

CORBA::Boolean operator>>=(CORBA::TypeCode_ptr& tc) const;

This method extracts the TypeCode of the value stored in this object.

ContextList

class CORBA::ContextList

This class contains a list of contexts that may be associated with an operation
request. See “Request” for more information.

ContextList methods

CORBA::ContextList();

This method constructs an empty Context list.

~CORBA::ContextList();

This method is the default destructor.

Parameter Description

tc The TypeCode to set for this Any.

Parameter Description

tc The object where the TypeCode for this Any is to be
stored

46 VisiBroker C++ API Reference Guide

ContextL ist

void add(const char *ctx);

This method adds the specified context to this object's list.

void add_consume(char *ctx);

This method adds the specified context code to this object's list. ThisContextList
becomes the owner of the context specified by the argument. You should not
attempt to access or free this Context after you invoke this method.

CORBA::ULong count() const;

This method returns the number of items currently stored in the list.

const char *item(CORBA::Long index);

This method returns a pointer to the context that is stored in the list at the specified
index. If the index is invalid, a NULL pointer is returned. You should not attempt to
free the returned context. To remove a context, use the remove method instead.

void remove(CORBA::long index);

This method removes the context with the specified index from the list. If the index is
invalid, no removal will occur.

static CORBA::ContextList-_ptr _duplicate(CORBA::ContextList_ptr ptr);

This static method increments the reference count for the object and then returns a
pointer to it.

static CORBA::ContextList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization purposes.

Parameter Description

ctx The context to be added to the list.

Parameter Description

ctx The context to be added to the list.

Parameter Description

index The zero-based index of the context to be returned.

Parameter Description

index The zero-based index of the context to be removed.

Parameter Description

ptr The object to be duplicated.

 3: Dynamic interfaces and classes 47

DynamicImplementation

static void _release(CORBA::ContextList *ptr);

This static method decrements the reference count for this object. When the count
reaches zero, all memory managed by the object is released and the object is
deleted.

DynamicImplementation

class PortableServer::DynamicImplementation : public
PortableServer::ServantBase

This base class is used derive object implementations that use the Dynamic
Skeleton Interface instead of a skeleton class generated by the IDL compiler. You
must provide implementations of the invoke and _primary-interface() methods
when deriving from this class.

DynamicImplementation methods

virtual void invoke(CORBA::ServerRequest_ptr request) = 0;

This method is invoked by the POA whenever client operation requests are received
for your object implementation. You must provide an implementation of this method
which validates the ServerRequest object's contents, performs the necessary
processing to fulfill the request, and returns the results to the client. For more
information on the ServerRequest class, see “ServerRequest”.

virtual CORBA::RepositoryId _primary_interface(const PortableServer::ObjectId&
oid PortableServer::POA_ptr poa) const;

This method will be invoked as a callback by the POA. The servants that inherit from
the DynamicImplementation class must implement it. This method should be called
directly or unpredictable behavior will result. Invoking this method under other
circumstances may lead to unpredictable results. The _primary_interface method
receives an ObjectId value and a POA_ptr as input parameters and returns a valid
RepositoryId representing the most-derived interface for that oid.

DynAny

class DynamicAny::DynAny : public CORBA::Pseudo Object

A DynAny object is used by a client application or server to create and interpret data
types at runtime which were not defined at compile time. A DynAny may contain a
basic type (such as a boolean, int, or float) or a complex type (such as a struct or
union). The type contained by a DynAny is defined when it is created and may not be
changed during the lifetime of the object.

Parameter Description

ptr The object to be released.

Parameter Description

request The ServerRequest object that represents the client's operation
request.

48 VisiBroker C++ API Reference Guide

DynAny

A DynAny object may represent a data type as one or more components, each with its
own value. The next, seek, rewind, and current_component methods are provided to
help you navigate through the components.

A DynAnyFactory is created by calling
ORB::resolve_initial_references("DynAnyFactory"). The factory is then used to
create basic or complex types. The DynAnyFactory belongs to the DynamicAny module.

DynAny objects for basic types are created using the
DynAnyFactory::create_dyn_any_from_type_code method. A DynAny object may also be
created and initialized from an Any object using the DynAnyFactory::create_dyn_any
method.

The following interfaces are derived from DynAny and provide support for constructed
types that are managed dynamically.

Include file

The dynany.h file should be included when you use this class.

Important usage restrictions

DynAny objects cannot be used as parameters on operation requests or DII requests,
nor can they be externalized using the ORB::object_to_string method. However, you
may use the DynAny::to_any method to convert a DynAny object into an Any, which can be
used as a parameter.

DynAny methods

void assign(DynamicAny::DynAny_ptr dyn_any);

Initializes the value in this DynAny object from the specified DynAny.

A type mismatch exception is raised if the type contained in the Any does not match
the type contained by this object.

DynamicAny::DynAny_ptr copy();

Returns a copy of this object.

virtual CORBA::ULong component_count();

Returns the number of components for the complex type stored inside the DynAny as
an unsigned long.

virtual DynamicAny::DynAny_ptr current_component();

Returns the current component in this object.

Constructed type Interface

Array DynArray in “DynArray”.
Enumeration DynEnum in “DynEnum”.
Sequence DynSequence in “DynSequence”.
Structure DynStruct in “DynStruct”.
Union DynUnion in “DynUnion”.

 3: Dynamic interfaces and classes 49

DynAny

virtual void destroy();

Destroys this object.

virtual CORBA::Boolean equal(const DynamicAny::DynAny_ptr value);

Compares two DynAny values for equality. Returns TRUE if they are equal, FALSE
otherwise.

virtual void from_any(CORBA::Any& value);

Initializes the current component of this object from the specified Any object.

A type mismatch exception is raised if the TypeCode of value contained in the Any
does not match the TypeCode that was defined for this object when it was created.

If the value parameter passed is not legal, the operation raises an InvalidValue
exception.

virtual boolean next();

Advances to the next component, if one exists, and returns TRUE. If there are no
more components, this method returns FALSE.

virtual void rewind();

Sets the current component of this object to be the first component defined in this
DynAny.

If this object contains only one component, invoking this method has no effect.

virtual CORBA::Boolean seek(CORBA::Long index);

Makes the component with the specified index the current component. If there is no
component at the specified index, this method returns FALSE, otherwise it returns
TRUE.

virtual CORBA::Any* to_any();

Converts the DynAny object into an Any object and returns a pointer to the Any object.

CORBA::TypeCode_ptr type();

Returns the TypeCode of the value stored in the DynAny.

Extraction methods

The DynAny extraction methods return the type contained in this DynAny object's current
component. The list below shows the name of each of the extraction methods.

A TypeMismatch exception is raised if the value contained in this DynAny does not match
the expected return type for the extraction method used.

Parameter Description

value An Any object containing the value to set for
this object.

Parameter Description

index The zero-based index of the desired
component.

50 VisiBroker C++ API Reference Guide

DynAny

Extraction methods offered by the DynAny class are:

virtual CORBA::Any* get_any();
virtual CORBA::Boolean get_boolean();
virtual CORBA::Char get_char();
virtual CORBA::Double get_double();
virtual DynamicAny::DynAny* get_dyn_any();
virtual CORBA::Float get_float();
virtual CORBA::Long get_long();
virtual CORBA::Long get_longlong();
virtual CORBA::Octet get_octet();
virtual CORBA::Object_ptr get_reference();
virtual CORBA::Short get_short();
virtual char* get_string();
virtual CORBA::TypeCode_ptr get_typecode();
virtual CORBA::ULong get_ulong();
virtual CORBA::UlongLong get_ulonglong();
virtual CORBA::UShort get_ushort();
virtual CORBA::ValueBase* get_val();
virtual CORBA::WChar get_wchar();
virtual CORBA::WChar* get_wstring();

Solaris:

virtual CORBA::LongDouble get_longdouble();

Insertion methods

An insertion method copies a value of a particular type to this DynAny object's current
component. Following is the list of methods provided for inserting various types.

These methods raise an InvalidValue exception if the inserted object's type does not
match the DynAny object's type.

Insertion methods offered by the DynAny class are:

virtual void insert_any(const CORBA:Any& value);
virtual void insert_boolean(CORBA::Boolean value);
virtual void insert_char(CORBA::char value);
virtual void insert_double(CORBA::Double value);
virtual void insert_dyn_any (DynamicAny::DynAny_ph_value);
virtual void insert_float(CORBA::Float value);
virtual void insert_long(CORBA::Long value);
virtual void insert_longlong(CORBA::LongLong value);
virtual void insert_octet(CORBA::Octet value);
virtual void insert_reference(CORBA:Object_ptr value);
virtual void insert_short(CORBA::Short value);
virtual void insert_string(const char* value);
virtual void insert_typecode(CORBA:TypeCode_ptr value);
virtual void insert_ulong(CORBA::ULong value);
virtual void insert_ulonglong(CORBA::ULongLong value);
virtual void insert_ushort(CORBA::UShort value);
virtual void insert_val(count CORBA::ValueBase& value);virtual void

insert_wchar(CORBA::WChar value);
virtual void insert_wstring(const CORBA::WChar* value);

Solaris:

virtual void insert_longdouble(CORBA::LongDouble value); Solaris only

 3: Dynamic interfaces and classes 51

DynAnyFactory

DynAnyFactory

class DynamicAny::DynAnyFactory : public CORBA::PseudoObject

A DynAnyFactory object is used to create a new DynAny object. To obtain a reference
to the DynAnyFactory object, call ORB::resolve_initial_references("DynAnyFactory").

DynAnyFactory methods

DynAny_ptr create_dyn_any (const CORBA::Any& value);

Creates a DynAny object of the specified value

DynAny_ptr create_dyn_any_from_type_code (CORBA::TypeCode_ptr type);

Creates a DynAny object of the specified type.

DynArray

class DynamicAny::DynArray : public VISDynComplex

Objects of this class are used by a client application or server to create and interpret
array data types at runtime which were not defined at compile time. A DynArray may
consist of a sequence of basic types (such as a boolean, int, or float) or constructed
types (such as struct or union). The type contained by a DynArray is defined when it
is created and may not be changed during the lifetime of the object.

The next, rewind, seek, and current_component methods, inherited from DynAny, may
be used to navigate through the components.

The VISDynComplex class is a helper class that allows the VisiBroker ORB to manage
complex DynAny types.

Important usage restrictions

DynArray objects cannot be used as parameters on operation requests or DII requests,
nor can they be externalized using the ORB::object_to_string method. However, you
may use the DynAny::to_any method to convert a DynArray object to a sequence of Any
objects, which can be used as a parameter.

DynArray methods

virtual void destroy();

Destroys this object.

Parameter Description

value A new DynAny object of a specified
value.

Parameter Description

type The type of the new DynAny
object.

52 VisiBroker C++ API Reference Guide

DynEnum

CORBA::AnySeq* get_elements();

Returns a sequence of Any objects containing the values stored in this object.

void set_elements(CORBA::AnySeq& _value);

Assigns the elements in the DynArray to those in the sequence specified by the value
parameter.

DynamicAny::DynAnySeq* get_elements_as_dyn_any();

Returns the elements contained in the DynAny as a DynAny sequence.

void set_elements_as_dyn_any (const DynamicAny::DynAnySeq& value);

Sets the elements contained in the object from the specified DynAny sequence.

An InvalidValue exception is raised if the number of elements in value is not equal to
the number of elements in this DynArray. A type mismatch exception is raised if the
type of the Any values do not match the TypeCode of the DynAny.

DynEnum

class DynamicAny::DynEnum : public DynamicAny::DynAny

Objects of this class are used by a client application or server to create and interpret
enumeration values at runtime which were not defined at compile time.

Since objects of this type contains a single component, the DynAn::rewind and
DynAny::next methods of a DynEnum object always return FALSE.

Important usage restrictions

DynEnum objects cannot be used as parameters on operation requests or DII requests,
nor can they be externalized using the ORB::object_to_string method. However, you
may use the to_any method to convert a DynEnum object to an Any, which can be used as
a parameter.

DynEnum methods

void from_any(const CORBA::Any& value);

Initializes the value of this object using the specified Any object.

An Invalid exception is raised if the TypeCode of value contained in the Any does not
match the TypeCode defined for this object when it was create.

CORBA::Any* to_any();

Returns an Any object containing the value of the current component.

Parameter Description

_value An array of Any objects whose values will be set in this
DynArray.

Parameter Description

value An Any object.

 3: Dynamic interfaces and classes 53

DynSequence

>char* get_as_string();

Returns the DynEnum object's value as a string.

void set_as_string(const char* value_as_string);

Sets the value of this DynEnum to the specified string.

CORBA::ULong get_as_ulong()

Returns an unsigned longcontaining the DynEnum object's value.

void set_as_ulong(CORBA::ULong value_as_ulong)

Sets the value of this DynEnum to the specified CORBA::Ulong.

DynSequence

class DynamicAny::DynSequence : public DynamicAny::DynArray

Objects of this class are used by a client application or server to create and interpret
sequence data types at runtime which were not defined at compile time. A
DynSequence may contain a sequence of basic types (such as a boolean, int, or float)
or constructed types (such as a struct or union). The type contained by a
DynSequence is defined when it is created and may not be changed during the lifetime
of the object.

The next, rewind, seek, and current_component methods may be used to navigate
through the components.

Important usage restrictions

DynSequence objects cannot be used as parameters on operation requests or DII
requests nor can they be externalized using the ORB::object_to_string method.
However, you may use the to_any method to convert a DynSequence object to a
sequence of Any objects. You can use the sequence of Any objects as a parameter.

DynSequence methods

CORBA::ULong get_length();

Returns the number of elements contained in this DynSequence.

void set_length(CORBA::ULong length);

Sets the number of elements contained in this DynSequence.

Parameter Description

value_as_string A string that will be used to set the value in this DynEnum.

Parameter Description

value_as_ulong An integer that will be used to set the value in this DynEnum.

54 VisiBroker C++ API Reference Guide

DynStruct

If you specify a length that is less than the current number of elements, the
sequence is truncated.

CORBA::AnySeq * get_elements();

Returns a sequence of Any objects containing the value stored in this object.

void set_elements (const AnySeq& _value)

Sets the elements within this object with specified sequence of Any objects.

set _elements_as_dyn_any();

See “DynArray” for more details.

get_elements_as_dyn_any();

See “DynArray” for more details.

DynStruct

class DynamicAny::DynStruct :public VISDynComplex

Objects of this class are used by a client application or server to create and interpret
structures at runtime which were not defined at compile time.

The next, rewind, seek, and current_component methods may be used to navigate
through the structure members.

You create an DynStruct object by invoking the
DynAnyFactory::create_dyn_any_from_typecode method.

Important usage restrictions

DynStruct objects cannot be used as parameters on operation requests or DII requests,
nor can they be externalized using the ORB::object_to_string method. However, you
may use the to_any method to convert a DynStruct object to an Any object, which can be
used as a parameter.

DynStruct methods

void destroy();

Destroys this object.

CORBA::FieldName current_member_name();

Returns the member name of the current component.

CORBA::TCKind current_member_kind();

Returns the TypeCode associated with the current component.

Parameter Description

length The number of components to be contained in this
DynSequence.

 3: Dynamic interfaces and classes 55

DynUnion

DynamicAny::NameValuePairSeq get_members();

Returns the members of the structure as a sequence of NameValuePair objects.

void set_members(const DynamicAny::NameValuePairSeq& value);

Sets the structure members from the array of NameValuePair objects.

DynamicAny::Name DynAnyPairSeq get_members_as_dyn_any();

Returns the members of the structure as a NameDynAnyPair sequence.

void set_members_as_dyn_any(const DynamicAny::nameDynAnyPairSeq value);

Sets the structure members from NameDynAnyPair objects.

An InvalidValue exception is raised if the length of the value sequence is not equal
to the number of members of DynStruct, and a TypeMismatch exception is raised
when any of the element's typecode does not match that of the structure.

DynUnion

class DynamicAny::DynUnion : public VISDynComplex

This interface is used by a client application or server to create and interpret unions
at runtime which were not defined at compile time. The DynUnion contains a
sequence of two elements: the union discriminator and the actual member.

The next, rewind, seek, and current_component methods may be used to navigate
through the components.

You create a DynUnion object by invoking the
DynamicAny::DynAnyFactory::create_dyn_any_from_type_code method and passing a
union type code as an argument.

Important usage restrictions

DynUnion objects cannot be used as parameters on operation requests or DII requests
nor can they be externalized using the ORB::object_to_string method. However, you
may use the DynAny::to_any method to convert a DynUnion object to an Any object which
can be used as a parameter.

DynUnion methods

DynamicAny::DynAny_ptr get_discriminator();

Returns a DynAny object containing the discriminator for the union.

CORBA::TCKind discriminator_kind();

Returns the type code of the discriminator for the union.

DynamicAny::DynAny_ptr member();

Returns a DynAny object for the current component which represents a union
member.

56 VisiBroker C++ API Reference Guide

Environment

CORBA::TCKind member_kind();

Returns the type code for the current component, which represents a member in the
union.

CORBA::FieldName member_name();

Returns the member name of the current component.

void set_discriminator (DynamicAny::DynAny_ptr value);

Sets the discriminator of this DynUnion to the specified value.

void set_to_default_member();

Sets the discriminator to a value that is consistent with the value of the default case
of a union.

void set_to_no_active_member();

Sets the discriminator to a value that does not correspond to any of the union's case
labels.

boolean has_no_active_member();

Returns TRUE if the union has no active member (that is, the union's value consists
solely of its discriminator because the discriminator has a value that is not listed as
an explicit case label).

Environment

class CORBA::Environment

The Environment class is used for reporting and accessing both system and user
exceptions on platforms where C++ language exceptions are not supported. When
an interface specifies that user exceptions may be raised by the object's methods,
the Environment class becomes an explicit parameter of that method. If an interface
does not raise any exceptions, the Environment class is an implicit parameter and is
only used for reporting system exceptions. If an Environment object is not passed
from the client to a stub, the default of per-object Environment is used.

Multithreaded applications have a global Environment object for each thread that is
created. Applications that are not multithreaded have just one global Environment
object.

Include file

You should include the corba.h file when you use this class.

Environment methods

CORBA::Status ORB::create_environment(COBRA::Environment_ptr& ptr);

This method can be used to create a new Environment object.

 3: Dynamic interfaces and classes 57

ExceptionList

Note

This method is provided for CORBA compliance. You may find it easier to use the
constructor provided for this class or the C++ new operator.

Environment();

This method creates an Environment object. This is equivalent to calling the
ORB::create_environment method.

static COBRA::Environment& CORBA::current_environment();

This static method returns a reference to the global Environment object for the
application process. In multithreaded applications, it returns the global Environment
object for this thread.

void exception(COBRA::Exception *exp);

This method records the Exception object passed as an argument. The Exception
object must be dynamically allocated because the specified object will assume
ownership of the Exception object and will delete it when the Environment itself is
deleted. Passing a NULL pointer to this method is equivalent to invoking the clear
method on the Environment.

CORBA::Exception *exception() const;

This method returns a pointer to the Exception currently recorded in this Environment.
You must not invoke delete on the Exception pointer returned by this call. If no
Exception has been recorded, a NULL pointer is returned.

void clear();

This method deletes any Exception object that it holds. If this object holds no
exception, this method has no effect.

ExceptionList

class CORBA::ExceptionList

This class contains a list of type codes that represent exceptions that may be raised
by an operation request. See “Request”.

ExceptionList methods

CORBA::ExceptionList();

This method constructs an empty exception list.

Parameter Description

ptr The pointer will be set to point to the newly created object.

Parameter Description

exp A pointer to a dynamically allocated Exception object to be
recorded for this Environment.

58 VisiBroker C++ API Reference Guide

Except ionList

CORBA::ExceptionList(CORBA::ExceptionList& list);

This is a copy constructor.

~CORBA::ExceptionList();

This method is the default destructor.

void add(CORBA::TypeCode_ptr tc);

This method adds the specified exception type code to this object's list.

void add_consume(CORBA::TypeCode_ptr tc);

This method adds the specified exception type code to this object's list. Ownership
of the passed argument is assumed by this ExceptionList. You should not attempt to
access or free the argument after invoking this method.

CORBA::ULong count() const;

This method returns the number of items currently stored in the list.

CORBA::TypeCode_ptr item(CORBA::Long index);

This method returns a pointer to the TypeCode stored in the list at the specified index.
If the index is invalid, a NULL pointer is returned. You should not attempt to access or
free the argument after invoking this method. To remove a TypeCode from the list, use
the remove method.

void remove(CORBA::long index);

This method removes the TypeCode with the specified index from the list. If the index
is invalid, no removal occurs.

Parameter Description

list The list to be copied.

Parameter Description

tc The type code of an exception to be added to
the list.

Parameter Description

tc The type code of an exception to be added to the list.

Parameter Description

index The zero-based index of the type code to be returned.

Parameter Description

index The index of the type code to be removed. The index is
zero-based.

 3: Dynamic interfaces and classes 59

NamedValue

static CORBA::ExceptionList-_ptr _duplicate(CORBA::ExceptionList_ptr ptr);

This static method increments the reference count for the specified object and then
returns a pointer to that object.

static CORBA::ExceptionList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization purposes.

static void _release(CORBA::ExceptionList *ptr);

This static method decrements the reference count for the specified object. When
the count reaches zero, all memory managed by the object is released and the
object is deleted.

NamedValue

class CORBA::NamedValue

The NamedValue class is used to represent a name-value pair used as a parameter or
return value in a Dynamic Invocation Interface request. Objects of this class are
grouped into an NVList, described in “NVList”. The value of the name-value pair is
represented by using an Any object. The Request class is described in “Request”.

Include file

You should include the file corba.h when using this class.

NamedValue methods

CORBA::Flags flags() const;

This method returns the flag defining how this name-value pair is to be used. It
returns one of the following:

const char *name() const;

This method returns the name portion of this object's name-value pair. You should
never release the storage pointed to by the return argument.

Parameter Description

ptr The object to be duplicated.

Parameter Description

ptr The object to be released.

– ARG_IN The name-value pair is used as an input parameter.

– ARG_OUT The name-value pair is used as an output parameter.

– ARG_INOUT The name-value pair is used both as an input and an output
parameter.

– IN_COPY_VALUE When combined with the ARG_INOUT flag, this flag indicates that
the ORB copies the output parameter. This allows the ORB to
release memory associated with this parameter without
impacting the client application's memory.

60 VisiBroker C++ API Reference Guide

NVList

CORBA::Any *value() const;

This method returns the value portion of this object's name-value pair. You should
never release the storage pointed to by the return argument.

static CORBA::NamedValue-_ptr _duplicate(CORBA::NamedValue_ptr ptr);

This static method increments the reference count for the specified object and then
returns a pointer to it.

static CORBA::NamedValue_ptr _nil();

This static method returns a NULL pointer that can be used to initialize a
CORBA::NamedValue_ptr.

static void _release(CORBA::NamedValue *ptr);

This static method decrements the reference count for the specified object. When
the count reaches zero, all memory managed by the object is released and the
object is deleted.

NVList

class CORBA::NVList

The NVList class is used to contain a list of NamedValue objects, described in
“NamedValue”. It is used to pass parameters associated with a Dynamic Invocation
Interface request. The Request class is described in “Request”.

Several methods are provided for adding items to the list. You should never release
the storage pointed to by the return argument. Always use the remove method to
delete an item from the list.

Include file

You should include the file corba.h when using this class.

NVList methods

CORBA::NamedValue_ptr add(CORBA::Flags flags);

This method adds a NamedValue object to this list, initializing only the flags. Neither
the name or value of the added object are initialized. A pointer is returned which can
be used to initialize the name and value attributes of the NamedValue. You should
never release the storage associated with the return argument.

Parameter Description

ptr The object to be duplicated.

Parameter Description

ptr The object to be released.

Parameter Description

flags The flag indicating the intended use of the NamedValue object. It can
be one of ARG_IN, ARG_OUT, or ARG_INOUT.

 3: Dynamic interfaces and classes 61

NVList

CORBA::NamedValue_ptr add_item(const char *name, CORBA::Flags flag);

This method adds a NamedValue object to this list, initializing the object's flag and
name attributes. A pointer is returned which can be used to initialize the value
attribute of the NamedValue.

Caution

You should never release the storage associated with the return argument.

NamedValue_ptr add_item_consume(char *nm, CORBA::Flags flag);

This method is the same as the add_item method, except that the NVList takes over
the management of the storage pointed to by nm. You will not be able to access nm
after this method is called because the list may have copied and released it. When
this item is removed, the storage associated with it is automatically freed.

Caution

You should never release the memory associated with this method's return value.

CORBA::NamedValue_ptr add_value(const char *name, const CORBA::Any *value,
CORBA::Flags flag);

This method adds a NamedValue object to this list, initializing the name, value, and
flag. A pointer to the NamedValue object is returned.

Caution

You should never release the storage associated with the return argument.

NamedValue_ptr add_value_consume(char *nm, CORBA::Any *value, CORBA::Flags
flag);

This method is the same as the add_value method, except that the NVList takes over
the management of the storage pointed to by nm and value. You will not be able to
access nm or value after this method is called because the list may have copied and

Parameter Description

name The name.
flag The flag indicating the intended use of the NamedValue object. It can

be one of ARG_IN, ARG_OUT, or ARG_INOUT.

Parameter Description

name The name.
flag The flag indicating the intended use of the NamedValue object. It

must be one of ARG_IN, ARG_OUT, or ARG_INOUT.

Parameter Description

name The name.
value The value.
flag The flag indicating the intended use of the NamedValue object. It can

be one of ARG_IN, ARG_OUT, or ARG_INOUT.

62 VisiBroker C++ API Reference Guide

NVList

released them. When this list element is removed, the storage associated with it is
automatically freed.

CORBA::Long count() const;

This method returns the number of NamedValue objects in this list.

static CORBA::Boolean CORBA::is_nil(NVList_ptr obj);

This method returns TRUE if the specified NamedValue pointer is NULL.

NamedValue_ptr item(CORBA::Long index);

This method returns the NamedValue in the list with the specified index.

Caution

Never release the storage associated with the return argument.

static void CORBA::release(CORBA::NVList_ptr obj);

This static method releases the specified object.

Status remove(CORBA::Long index);

This method deletes the NamedValue object located at the specified index from this
list. Storage associated with items in the list that were added using the
add_item_consume or add_value_consume methods is released before the item is
removed.

Parameter Description

nm The name.
value The value.
flag The flag indicating the intended use of the NamedValue object. It

must be one of ARG_IN, ARG_OUT, or ARG_INOUT.

Parameter Description

obj The pointer to the object to be checked.

Parameter Description

index The zero-based index of the desired NamedValue object.

Parameter Description

obj The object to be released.

Parameter Description

index The index of the NamedValue object. Note that indexing is zero-
based.

 3: Dynamic interfaces and classes 63

Request

static CORBA::NVList-_ptr _duplicate(CORBA::NVList_ptr ptr);

This static method increments the reference count for the specified object and then
returns a pointer to that object.

static CORBA::NVList_ptr _nil();

This static method returns a NULL pointer that can be used to initialize an NV_List
pointer. For example, you might do something like this: CORBA::NV_List_ptr p =
CORBA::NVList::_nil();

static void _release(CORBA::NVList *ptr);

This static method decrements the reference count for the specified object. When
the count reaches zero, all memory managed by the object is released and the
object is deleted.

Request

class CORBA::Request

The Request class is used by client applications to invoke an operation on an ORB
object using the Dynamic Invocation Interface. A single ORB object is associated
with a given Request object. The Request represents an operation that is to be
performed on the ORB object. It includes the arguments to be passed, the Context,
and an Environment object, if any. Methods are provided for invoking the request,
receiving the response from the object implementation, and retrieving the result of
the operation.

You can create a Request object by using the Object::_create_request. For more
information, go to the Core interfaces and classes, CORBA::Object methods
section.

Note that a Request object retains ownership of all return parameters, so you should
never attempt to free them.

Include file

Include the corba.h file when you use this class.

Request methods

CORBA::Any& add_in_arg();

This method adds an unnamed input argument to this Request and returns a
reference to the Any object so that you can set its name, type, and value.

Parameter Description

ptr The object to be duplicated.

Parameter Description

ptr The object to be released.

64 VisiBroker C++ API Reference Guide

Request

CORBA::Any& add_in_arg(const char *name);

This method adds a named input argument to this Request and returns a reference to
the Any object so that you can set its type and value.

Caution

You should never release the memory associated with this method's return value.

CORBA::Any& add_inout_arg();

This method adds an unnamed inout argument to this Request and returns a
reference to the Any object so that you can set its name, type, and value.

CORBA::Any& add_inout_arg(const char *name);

This method adds a named inout argument to this Request and returns a reference
to the Any object so that you can set its type and value.

CORBA::Any& add_out_arg();

This method adds an unnamed output argument to this Request and returns a
reference to the Any object so that you can set its name, type, and value.

CORBA::Any& add_out_arg(const char *name);

This method adds a named output argument to this Request and returns a reference
to the Any object so that you can set its type and value.

CORBA::NVList_ptr arguments();

This method returns a pointer to an NVList object containing the arguments for this
request. The pointer can be used to set or retrieve the argument values. For more
information on NVList, see “NVList”.

Caution

You should never release the memory associated with this method's return value.

CORBA::ContextList_ptr contexts();

This method returns a pointer to a list of all the Context objects that are associated
with this Request. For more information on the Context class, see “Context”.

Caution

You should never release the memory associated with this method's return value.

Parameter Description

name The name of the input argument to be added.

Parameter Description

name The name of the inout argument to be added.

Parameter Description

name The name of the output argument to be added.

 3: Dynamic interfaces and classes 65

Request

CORBA::Context_ptr ctx() const;

This method returns a pointer to the Context associated with this request.

void ctx(CORBA::Context_ptr ctx);

This method sets the Context to be used with this request. For more information on
the Context class, see “Context”.

CORBA::Environment_ptr env();

This method returns a pointer to the Environment associated with this request. For
more information on the Environment class, see “Environment”.

CORBA::ExceptionList_ptr exceptions();

This method returns a pointer to a list of all the exceptions that this request may
raise.

Caution

You should never release the memory associated with this method's return value.

void get_response();

This method is used after the send_deferred method has been invoked to retrieve a
response from the object implementation. If there is no response available, this
method blocks the client application until a response is received.

void invoke();

This method invokes this Request on the ORB object associated with this request.
This method blocks the client until a response is received from the object
implementation. This Request should be initialized with the target object, operation
name and arguments before this method is invoked.

const char* operation() const;

This method returns the name of the operation that this request performs.

CORBA::Boolean poll_response();

This non-blocking method is invoked after the send_deferred method to determine if
a response has been received. This method returns TRUE if a response has been
received, otherwise it returns FALSE.

CORBA::NamedValue_ptr result();

This method returns a pointer to a NamedValue object where the return value for the
operation will be stored. The pointer can be used to retrieve the result value after the
request has been processed by the object implementation. For more information on
the NamedValue class, see “NamedValue”.

Parameter Description

ctx The Context object to be associated with this request.

66 VisiBroker C++ API Reference Guide

ServerRequest

CORBA::Any& return_value();

This method returns a reference to an Any object that represents the return value of
this Request object.

void set_return_type(CORBA::TypeCode_ptr tc);

This method sets the TypeCode of the return value that is expected. You must set the
return value's type before using the invoke method or one of the send methods.

void send_deferred();

Like the invoke method, this method sends this Request to the object implementation.
Unlike the invoke method, this method does not block waiting for a response. The
client application can retrieve the response using the get_response method.

void send_oneway();

This method invokes this Request as a oneway operation. Oneway operations do not
block and do not result in a response being sent from the object implementation to
the client application.

CORBA::Object_ptr target() const;

This method returns a reference to the target object on which this request will
operate.

static CORBA::Request-_ptr _duplicate(CORBA::Request_ptr ptr);

This static method increments the reference count for the specified object and then
returns a pointer to that object.

static CORBA::Request_ptr _nil();

This static method returns a NULL pointer that can be used to initialize a
CORBA::Request_ptr object.

static void _release(CORBA::Request *ptr);

This static method decrements the reference count for the specified object. When
the count reaches zero, all memory managed by the object is released and the
object is deleted.

ServerRequest
The ServerRequest class is used to represent an operation request received by an
object implementation that is using the Dynamic Skeleton Interface. When the POA

Parameter Description

tc The return value's type.

Parameter Description

ptr The object to be duplicated.

Parameter Description

ptr The object to be released.

 3: Dynamic interfaces and classes 67

ServerRequest

receives a client operation request, it invokes the object implementation's invoke
method and passes an object of this type.

This class provides the methods needed by the object implementation to determine the
operation being requested and the arguments. It also provides methods for setting the
return value and reflecting exceptions to the client application.

You should never attempt to free memory associated with any value returned by this
class.

Include file

The corba.h file should be included when you use this class.

ServerRequest methods

void arguments(CORBA::NVList_ptr param);

This method sets the parameter list for this request.

CORBA::Context_ptr ctx()

This method returns the Context object associated with the request.

Caution

You should never release the memory associated with this method's return value.

void exception(CORBA::Any_ptr exception);

This method is used to reflect the specified exception to the client application.

const char *operation() const;

Returns the name of the operation being requested.

const char* op_name() const

This method returns the name of the operation associated with the request. The
object implementation uses this name to determine if the request is valid, to perform
the appropriate processing to fulfill the request, and to return the appropriate value
to the client.

Parameter Description

params The parameter list to be filled in. You must initialize this list with the
appropriate number of Any objects and set their type and flag
values prior to invoking this method.

Parameter Description

exception The exception that was raised. If this pointer is NULL, a
CORBA::UnknownUserException is reflected.

68 VisiBroker C++ API Reference Guide

ServerRequest

void params(CORBA::NVList_ptr params);

This method accepts an NVList object initialized with the appropriate number of Any
objects. The method fills the NVList in with the parameters supplied by the client.

void result(CORBA::Any_ptr result);

This method sets the result that is to be reflected to the client application.

void set_exception(const CORBA::Any& a);

This method sets the exception that is to be reflected to the client application.

void set_result(const CORBA::Any& a);

This method sets the result that is to be reflected to the client application.

static CORBA::ServerRequest-_ptr _duplicate(CORBA::ServerRequest_ptr ptr);

This static method increments the reference count for the specified object and then
returns a pointer to the object.

static CORBA::ServerRequest_ptr _nil();

This static method returns a NULL pointer that can be used for initialization purposes.

static void _release(CORBA::ServerRequest *ptr);

This static method decrements the reference count for the specified object. When
the count reaches zero, all memory managed by the object is released and the
object is deleted.

Parameter Description

params The parameter list to be filled in. You must initialize this list with the
appropriate number of Any objects and set their type and flag
values prior to invoking this method.

Parameter Description

result An Any object representing the return value.

Parameter Description

a An Any object representing the exception.

Parameter Description

a An Any object representing the return value.

Parameter Description

ptr The object to be duplicated.

Parameter Description

ptr The object to be released.

 3: Dynamic interfaces and classes 69

TCKind

TCKind

enum TCKind

This enumeration describes the various types that a TypeCode object, described in
“TypeCode”, may represent.

The values are shown in the following table.

Name Meaning

tk_abstract_interface abstract interface
tk_alias alias
tk_any Any
tk_array array
tk_boolean boolean
tk_char char
tk_double double
tk_enum enum
tk_except exception
tk_fixed fixed type
tk_float float
tk_long long
tk_longdouble long double
tk_longlong long long
tk_native native type
tk_null NULL
tk_objref object reference
tk_octet octet string
tk_Principal Principal
tk_sequence sequence
tk_short short
tk_string string
tk_struct struct
tk_TypeCode TypeCode
tk_ulonglong unsigned long long
tk_union union
tk_ulong unsigned long
tk_ushort unsigned short
tk_value value
tk_value_box value box
tk_void void
tk_wchar Unicode character
tk_wstring Unicode string

70 VisiBroker C++ API Reference Guide

TypeCode

TypeCode

class CORBA::TypeCode

The TypeCode class represents the various types that can be defined in IDL. Type
codes are most often used to define the type of value being stored in an Any object,
described in “Any methods”. Type codes may also be passed as parameters to
method invocations.

TypeCode objects can be created using the various CORBA::ORB.create_<type>_tc
methods, whose description begins in the Core interfaces and classes, Object
section. You may also use the constructors listed here.

Include file

Include the corba.h file when you use this class.

TypeCode constructors

CORBA::TypeCode(CORBA::TCKind kind, CORBA::Boolean is_constant);

This method constructs a TypeCode object for types that do not require any additional
parameters. A BAD_PARAM exception is raised if kind is not a valid type for this
constructor.

TypeCode methods

CORBA::TypeCode_ptr content_type() const;

This method returns the TypeCode of the elements in a sequence or array. It also will
return the type of an alias. A BadKind exception is raised if this object's kind is not
CORBA::tk_sequence, CORBA::tk_array, or CORBA::tk_alias.

CORBA::Long default_index() const;

This method returns the default index of a TypeCode representing a union. If this
object's kind is not CORBA::tk_union, a BadKind exception is raised.

Parameter Description

kind Describes the type of object being represented. Must be
one of the following: CORBA::tk_null, CORBA::tk_void,
CORBA::tk_short, CORBA::tk_long, CORBA::tk_ushort,
CORBA::tk_ulong, CORBA::tk_float, CORBA::tk_double,
CORBA::tk_boolean, CORBA::tk_char, CORBA::tk_octet,
CORBA::tk_any, CORBA::tk_TypeCode, CORBA::tk_Principal,
CORBA::tk_longlong, CORBA::tk_ulonglong,
CORBA::tk_longdouble, or CORBA::tk_wchar, CORBA::tk_fixed,
CORBA::tk_value, CORBA::tk_value_box, CORBA::native,
CORBA::tk_abstract_interface.

is_constant If TRUE, the TypeCode object is to be considered a constant.
Otherwise, the TypeCode object is not a constant.

 3: Dynamic interfaces and classes 71

TypeCode

CORBA::TypeCode_ptr discriminator_type() const;

This method returns the discriminator type of a TypeCode representing a union. If this
object's kind is not CORBA::tk_union, a BadKind exception is raised.

>CORBA::Boolean equal(CORBA::TypeCode_ptr tc) const;

This method compares this object with the specified TypeCode. If they match in every
respect, TRUE is returned. Otherwise, FALSE is returned.

const char* id() const;

This method returns the repository identifier of the type being represented by this
object. If the type being represented does not have a repository identifier, a BadKind
exception is raised. Types that have a repository identifier include:

– CORBA::tk_struct
– CORBA::tk_union
– CORBA::tk_enum
– CORBA::tk_alias
– CORBA::tk_except
– CORBA::tk_objref

CORBA::TCKind kind() const

This method returns this object's kind.

CORBA::ULong length() const;

This method returns the length of the string, sequence, or array represented by this
object. The length of a string is the number of characters. The length of an array or
sequence is the number of elements. A BadKind exception is raised if this object's
kind is not CORBA::tk_string, CORBA::tk_sequence, or CORBA::tk_array.

CORBA::ULong member_count() const;

This method returns the member count of the type being represented by this
TypeCode object. If the type being represented does not have members, a BadKind
exception is raised. Types that have members include:

– CORBA::tk_struct
– CORBA::tk_union
– CORBA::tk_enum
– CORBA::tk_except

CORBA::Any_ptr member_label(CORBA::ULong index) const;

This method returns the label of the member with the specified index from a TypeCode
object for a union. If this object's kind is not CORBA::tk_union, a BadKind exception is
raised. If the index is invalid, a Bounds exception is raised.

Parameter Description

tc The object to be compared to this object.

Parameter Description

index The label of the union member whose type is to be returned. This
index is zero-based.

72 VisiBroker C++ API Reference Guide

TypeCode

const char *member_name(CORBA::ULong index) const;

This method returns the name of the member with the specified index from the type
being represented by this object. If the type being represented does not have
members, a BadKind exception is raised. If the index is invalid, a Bounds exception is
raised.

Types that have members include:

– CORBA::tk_struct
– CORBA::tk_union
– CORBA::tk_enum
– CORBA::tk_except

CORBA::TypeCode_ptr member_type(CORBA::ULong index) const;

This method returns the type of the member with the specified index from the type
being represented by this object. If the type being represented does not have
members with types, a BadKind exception is raised. If the index is invalid, a Bounds
exception is raised. Types that have members include:

– CORBA::tk_union
– CORBA::tk_except

const char *name() const;

This method returns the name of the type represented by this object. If the type
does not have a name, a BadKind exception is raised. Types that have a name
include:

– CORBA::tk_objref
– CORBA::tk_struct
– CORBA::tk_union
– CORBA::tk_enum
– CORBA::tk_alias
– CORBA::tk_except

static CORBA::TypeCode_ptr _duplicate(CORBA::TypeCode_ptr obj);

This static method duplicates the specified TypeCode object.

static CORBA::TypeCode_ptr _nil();

This static method returns a NULL TypeCode pointer that can be used for initialization
purposes.

Parameter Description

index The zero-based index of the member whose name is to be
returned.

Parameter Description

index The zero-based index of the member whose name is to be
returned.

Parameter Description

obj The object to be duplicated.

 3: Dynamic interfaces and classes 73

static void _release(CORBA::TypeCode_ptr obj);

This static method decrements the reference count to the specified object. When the
reference count is zero, it also frees all memory that it is managing and then deletes
the object.

CORBA::Boolean equivalent (CORBA_TypeCode_ptr tc) const;

The equivalent operation is used by the ORB when determining the type
equivalence for values stored in an IDL.

CORBA_TypeCode_ptr get_compact_typecode() const;

The get_compact_code operation strips out all optional name & member name fields,
but it leaves all alias typecodes intact.

virtual CORBA::Visibility member_visibility(CORBA::ULong index) const;

This method returns the Visibility of the valuetype member identified by index.

Note

The member_visibility operation can only be invoked on valuetype TypeCodes, not
on valueboxes (or boxed values).

virtual CORBA::ValueModifier type_modifier() const;

The type_modifier operations can only be invoked on non-boxed valuetype
TypeCodes. This method returns the ValueModifier that applies to the valuetype
represented by the target TypeCode.

virtual CORBA::TypeCode_ptr concrete_base_types()

The concrete_base_types operations can only be invoked on non-boxed valuetype
TypeCodes. If the value represented by the target TypeCode has a concrete base
valuetype, this method returns a TypeCode for the concrete base, otherwise it
returns a nil TypeCode reference.

Parameter Description

obj The object to be released.

74 VisiBroker C++ API Reference Guide

 4: Inter face reposi tory inter faces and c lasses 75

Interface repository interfaces and
classes
This section describes the classes and interfaces that you can use to access the
interface repository. The interface repository maintains information on modules and the
interfaces they contain as well as other types like operations, attributes, and constants.

AliasDef

class CORBA::AliasDef : public CORBA::TypedefDef

This class is derived from the TypedefDef class and represents an alias for a typedef
that is stored in the interface repository. This class provides methods for setting and
obtaining the IDLType of the original typedef.

For more information on the TypedefDef class, see “TypedefDef”. For more
information on the IDLType class, see “IDLType”.

AliasDef methods

CORBA::IDLType original_type_def();

This method returns the IDLType of the original typedef for which this object is an
alias.

void original_type_def(CORBA::IDLType_ptr val);

This method sets the IDLType of the original typedef for which this object is an alias.

Parameter Description

val The IDLType to set for this alias.

76 VisiBroker C++ API Reference Guide

ArrayDef

ArrayDef

class CORBA::ArrayDef : public CORBA::IDLType

This class is derived from the IDLType class and represents an array that is stored in
the interface repository. It provides methods for setting and obtaining the type of the
elements in the array as well as the length of the array.

ArrayDef methods

CORBA::TypeCode element_type();

This method returns the TypeCode of the array's elements.

CORBA::IDLType_ptr element_type_def();

This method returns the IDLType of the elements stored in this array.

void element_type_def(CORBA:IDLType_ptr element_type_def);

This method sets the IDLType of the elements stored in the array.

CORBA::ULong length();

This method returns the number of elements in the array.

void length(CORBA::ULong length);

This method sets the number of elements in the array.

AttributeDef

class CORBA::AttributeDef : public CORBA::Contained, public CORBA::Object

The class is used to represent an interface attribute that is stored in the interface
repository. It provides methods for setting and obtaining the attribute's mode,
typedef . A method is also provided for obtaining the attribute's type.

AttributeDef methods

CORBA::AttributeMode mode();

This method returns the mode of the attribute. The return value will be either
CORBA::AttributeMode ATTR_READONLY for read only attributes or CORBA::AttributeMode
ATTR_NORMAL for read-write ones. See “AttributeMode” for more information.

Parameter Description

element_type_def The IDLType of the elements in the array.

Parameter Description

length The number of elements in the array.

 4 : Interface reposi tory in terfaces and classes 77

Attr ibuteDescript ion

void mode(CORBA::AttributeMode _val);

This method sets the mode of the attribute.

CORBA::TypeCode_ptr type();

This method returns the TypeCode that represents the attribute's type.

CORBA::IDLType_ptr type_def();

This method returns this object's IDLType.

void type_def(CORBA::IDLType_ptr type_def);

This method sets the IDLType for which this object.

AttributeDescription

struct CORBA::AttributeDescription

The AttributeDescription structure describes an attribute that is stored in the
interface repository.

AttributeDescription members

CORBA::Identifier_var name

The name of the attribute.

CORBA::RepositoryId_var id

The repository id of the attribute.

CORBA::RepositoryId_var defined_in

The repository id of the interface in which this attribute is defined.

CORBA::String_var version

The attribute's version.

CORBA::TypeCode_var type

The attribute's IDL type.

CORBA::AttributeMode mode

The mode of this attribute.

Parameter Description

_val The mode to set.

Parameter Description

type_def The IDLType of this object.

78 VisiBroker C++ API Reference Guide

Att r ibuteMode

AttributeMode

enum CORBA::AttributeMode

The enumeration defines the values used to represent the mode of an attribute;
either read-only or normal (read-write).

AttributeMode values

ConstantDef

class CORBA::ConstantDef : public CORBA::Contained

The class is used to represent a constant definition that is stored in the interface
repository. This interface provides methods for setting and obtaining the constant's
type, value, and typedef.

ConstantDef methods

CORBA::TypeCode_ptr type();

This method returns the TypeCode representing the object's type.

CORBA::IDLType_ptr type_def();

This method returns this object's IDLType.

void type_def(CORBA::IDLType_ptr type_def);

This method sets the IDLType of the constant.

CORBA::Any *value();

This method returns a pointer to an Any object representing this object's value.

void value(CORBA::Any& _val);

This method sets the value of this constant.

Constant Represents

ATTR_NORMAL This is a read-write attribute.
ATTR_READONLY This is a read-only attribute.

Parameter Description

type_def The IDLType of this constant.

Parameter Description

_val An Any object that represents this object's value.

 4 : Interface reposi tory in terfaces and classes 79

ConstantDescr ipt ion

ConstantDescription

struct CORBA::ClassName

The ConstantDescription structure describes a constant that is stored in the interface
repository.

ConstantDescription members

CORBA::Identifier_var name

The name of the constant.

CORBA::RepositoryId_var id

The repository id of the constant.

CORBA::RepositoryId_var defined_in

The name of the module or interface in which this constant is defined.

CORBA::String_var version

The constant's version.

CORBA::TypeCode_var type

The constant's IDL type.

CORBA::Any value

The value of this constant.

Contained

class CORBA::Contained : public CORBA::IRObject, public CORBA::Object

The Contained class is used to derive all interface repository objects that are
themselves contained within another interface repository object. This class provides
methods for:

– Setting and retrieving the object's name and version.

– Determining the Container that contains this object.

– Obtaining the object's absolute name, containing repository, and description.

– Moving an object from one container to another.

80 VisiBroker C++ API Reference Guide

Contained

Include file

Include the files corba.h and ir_c.hh when you use this class.

interface Contained: IRObject {
 attribute RepositoryId id;
 attribute Identifier name;
 attribute String_var version;

 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_Repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };
 Description describe();
 void move(
 in Container new_Container,
 in Identifier new_name,
 in String_var new_version
);
};

Contained methods

CORBA::String_var absolute_name();

This method returns the absolute name, which is the name that uniquely identifies
this object within its containing Repository. If the object's defined_in attribute (set
when the object is created) references a Repository, then the absolute name is
simply the object's name preceded by the string “::”.

CORBA::Repository_ptr containing_repository();

Returns a pointer to the repository that contains this object.

CORBA::Container_ptr defined_in();

Returns a pointer to the Container where this object is defined.

Description* describe();

Returns this object's Description. See “Description” for more information on the
Description structure.

CORBA::String_var id();

Returns this object's repository identifier.

void id(const char *id);

Sets the repository identifier that uniquely identifies this object.

Parameter Description

id The repository identifier for this object.

 4 : Interface reposi tory in terfaces and classes 81

Container

CORBA::String_var name();

This method returns the name which uniquely identifies the object within the scope
of its container.

void name(const char * val);

This method sets the name of the contained object.

CORBA::String_var version();>

This method returns the object's version. The version distinguishes this object from
other objects that have the same name.

void version(CORBA::String_var& val);

This method sets this object's version.

void move(CORBA::Container_ptr new_container, const char *new_name,
CORBA::String_var& new_version);

Moves this object from its current Container to the new_container.

Container

class CORBA::Container : public CORBA::Container, public CORBA::Object

The Container class is used to create a containment hierarchy in the interface
repository. A Container object holds object definitions derived from the Contained
class. All object definitions derived from the Container class, with the exception of
the Repository class, also inherit from the Contained class.

The Container provides methods to create types of IDL types defined in orbtypes.h,
including InterfaceDef, ModuleDef and ConstantDef classes, but not the
ValueMemberDef class. The defined_in attribute of each definition that is created is
initialized to point to this object.

Parameter Description

name The object's name.

Parameter Description

val The object's version.

Parameter Description

new_container The Container to which this object is being moved.
new_name The new name for the object.
new_version The new version specification for the object.

82 VisiBroker C++ API Reference Guide

Container

Include file

The corba.h and ir_c.hh files should be included when you use this class.

interface Container: IRObject {

 Contained lookup(in ScopedName search_name);
 ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);
 ContainedSeq lookup_name(
 in Identifier search_name,
 in long levels_to_search,
 in CORBA::DefinitionKind limit_type,
 in boolean exclude_inherited
);
 struct Description {
 Contained Contained_object;
 DefinitionKind kind;
 any value;
 };
 typedef sequence<Description> DescriptionSeq;
 DescriptionSeq describe_contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

Container methods

CORBA::AbstractInterfaceDef_ptr create_abstract_interface(const char* _arg_id,
const char* _arg_name, const char* _arg_name, const char* _arg_version, const
CORBA_AbstractInterfaceDefSeq&_arg_base_interfaces)

This method creates an AbstractInterfaceDef object with the specified attributes in
the Container and returns a pointer to the newly created object.

CORBA::ContainedSeq * contents(CORBA::DefinitionKind limit_type, CORBA::Boolean
exclude_inherited);

This method returns the list of definitions of contained objects that are either directly
contained or inherited into the container. You can use this method to navigate
through the hierarchy of object definitions in the Repository. This method returns all

Parameter Description

id The interface id.
name The interface name.
version The interface version.
base_interfaces A list of all abstract interfaces from which this interface

inherits.

 4 : Interface reposi tory in terfaces and classes 83

Container

object definitions contained by modules in the Repository, followed by all object
definitions contained within each of those modules.

CORBA::AliasDef_ptr create_alias(const char * id, const char *name, const
CORBA::String_var& version, CORBA::IDLType_ptr original_type);

This method creates an AliasDef object with the specified attributes in this Container
and returns a pointer to the newly created object.

CORBA::ConstantDef_ptr create_constant(const char * id, const char *name,
const CORBA::String_var& version, CORBA::IDLType_ptr type, const
CORBA::Any& value);

This method creates a ConstantDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::EnumDef_ptr create_enum(const char * id, const char *name, const
CORBA::String_var& version, const CORBA::EnumMemberSeq& members);

This method creates an EnumDef object with the specified attributes in this Container
and returns a pointer to the newly created object.

Parameter Description

limit_type The interface object types to be returned. If you specify
dk_all, objects of all types are returned.

exclude_inherited If set to TRUE, inherited objects are not returned.

Parameter Description

id The alias's id.
name The alias's name.
version The alias's version.
original_type The type of the object for which this object is an alias.

Parameter Description

id The constant's id.
name The constant's name.
version The constant's version.
type The type of the value specified below.
value The constant's value.

Parameter Description

id The enumeration's id.
name The enumeration's name.
version The enumeration's version.
members A list of the enumeration's

fields.

84 VisiBroker C++ API Reference Guide

Container

CORBA::ExceptionDef_ptr create_exception(const char * id, const char *name,
const CORBA::String_var& version, const CORBA::StructMemberSeq& members);

This method creates an ExceptionDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::InterfaceDef_ptr create_interface(const char * id, const char *name,
const CORBA::String_var& version, const CORBA::InterfaceDefSeq&
base_interfaces);

This method creates an InterfaceDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::ModuleDef_ptr create_module(const char * id, const char *name,
 const CORBA::String_var& version);

This method creates a ModuleDef object with the specified attributes in this Container
and returns a pointer to the newly created object.

CORBA::StructDef_ptr create_struct(const char * id, const char *name, const
CORBA::String_var& version, const CORBA::StructMemberSeq& members);

This method creates a StructureDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

Parameter Description

id The exception's id.
name The exception's name.
version The exception's version.
members The sequence for the structure's fields, if any.

Parameter Description

id The interface's id.
name The interface's name.
version The interface's version.
base_interfaces A list of all interfaces that this interface inherits from.

Parameter Description

id The module's id.
name The module's name.
version The module's version.

Parameter Description

id The structure's id.
name The structure's name.
version The structure's version.
members The sequence for the structure's fields.

 4 : Interface reposi tory in terfaces and classes 85

Container

CORBA::UnionDef_ptr create_union(const char * id, const char *name, const
CORBA::String_var& version, CORBA::IDLType_ptr discriminator_type, const
CORBA::UnionMemberSeq& members);

This method creates a UnionDef object with the specified attributes in this Container
and returns a pointer to the newly created object.

CORBA::DescriptionSeq * describe_contents(CORBA::DefinitionKind limit_type,
CORBA::Boolean exclude_inherited, CORBA::Long max_returned_objs);

This method returns a description for all definitions directly contained by or inherited
into this container.

CORBA::Contained_ptr lookup(const char *search_name);

This method locates a definition relative to this container, given a scoped name. An
absolute scoped name, one beginning with “::”, may be specified to locate a
definition within the enclosing repository. If no object is found, a NULL value is
returned.

CORBA::ContainedSeq * lookup_name(const char *search_name, CORBA::Long
levels_to_search, CORBA::DefinitionKind limit_type, CORBA::Boolean
exclude_inherited);

This method locates an object by name within a particular object. The search can be
constrained by the number of levels in the hierarchy to be searched, the object type,
and whether inherited objects should be returned.

Parameter Description

id The Union's id.
name The Union's name.
version The Union's version.
discriminator_type The type of the Union's discriminant value.
members The sequence of each of the Union's fields.

Parameter Description

limit_type The interface object types whose descriptions are to be
returned. Specifying dk_all will return the descriptions
for objects of all types.

exclude_inherited If set to true, descriptions for inherited objects are not
returned.

max_returned_objs The maximum number of descriptions to be returned. If
you set this parameter to -1, all objects are returned.

Parameter Description

search_name The object's interface name.

Parameter Description

search_name The contained object's name.
levels_to_search The number of levels in the hierarchy to search. If you

set this parameter to a value of –1, all levels are
searched. If you set this parameter to 1, only this
object is searched.

86 VisiBroker C++ API Reference Guide

Def ini t ionKind

CORBA::ValueDef_ptr create_value(const char * id, const char *name, const char
version, CORBA::boolean is_custom, CORBA::boolean is_abstract, const
CORBA::ValueDef_ptr _base_value, CORBA::boolean is_truncatable, const
CORBA::ValueDefSeq& abstract_base_values, const CORBA::InterfaceDefSeq&
supported _interfaces, const CORBA.InitializerSeq& initializers)

This method creates a ValueDef object with the specified attributes in this Container
and returns a reference to the newly created object.

CORBA::ValueBoxDef_ptr create_value_box(const char* id, const char* name, const
char* version, CORBA::IDLType_ptr original_type)

This method creates a ValueBoxDef object in this Container with the specified
attributes and returns a reference to the newly created object.

DefinitionKind

enum CORBA::DefinitionKind

The constants in the DefinitionKind enumeration define the possible types of
interface repository objects.

limit_type The interface object types to be returned. Specifying
dk_all will return objects of all types.

exclude_inherited If set to true, inherited objects are not returned.

Parameter Description

id The structure's repository id.
name The structure's name.
version The structure's version.
is_custom If set to true, creates a custom valuetype.
is_abstract If set to true, creates and abstract valuetype.
base_values The list of supported base values.
is_truncatable If set to true, creates a truncatable valuetype.
abstract_base_values The list of supported abstract base values.
supported _interfaces The list of supported interfaces.
initializer The list of initializers this value type supports

Parameter Description

id The structure's repository id.
name The structure's name.
version The structure's version.
original_type The IDL type of the original object for which this is an alias.

Parameter Description

 4 : Interface reposi tory in terfaces and classes 87

Descript ion

DefinitionKind values

Description

struct CORBA::Container::Description

This structure provides a generic description for items in the interface repository that
are derived from the Contained class.

Description members

CORBA::Contained_var contained_object

The object contained in this struct.

CORBA::DefinitionKind kind

The object's kind.

CORBA::Any value

The object's value.

Constant Represents

dk_none Exclude all types (used in repository lookup methods)
dk_all All possible types (used in repository lookup methods)
dk_Alias Alias
dk_Array Array
dk_Attribute Alias
dk_Constant Constant
dk_Enum Enum
dk_Exception Exception
dk_Fixed Fixed
dk_Interface Interface
dk_Module Module
dk_Native Native
dk_Operation Interface Operation
dk_Primitive Primitive type (such as int or long)
dk_Repository Repository
dk_Sequence Sequence
dk_String String
dk_Struct Struct
dk_Typedef Typedef
dk_Union Union
dk_Value ValueType
dk_ValueBox ValueBox
dk_ValueMember ValueMember
dk_Wstring Unicode string

88 VisiBroker C++ API Reference Guide

EnumDef

EnumDef

class CORBA::EnumDef : public CORBA::TypedefDef, public CORBA::Object

The class is used to describe an enumeration stored in the interface repository. This
interface provides methods for setting and retrieving the enumeration's list of
members.

EnumDef methods

CORBA::EnumMemberSeq *members();

This method returns the enumeration's list of members.

void members(CORBA::EnumMemberSeq members);

This method sets the enumeration's list of members.

ExceptionDef

class ExceptionDef : public CORBA::Contained

The class is used to describe an exception that is stored in the interface repository.
This class provides methods for setting and retrieving the exception's list of
members as well as a method for retrieving the exception's TypeCode.

ExceptionDef methods

CORBA::StructMemberSeq *members();

This method returns this exception's list of members.

void members(CORBA:StructMemberSeq& members);

This method sets the exception's list of members.

CORBA::TypeCode_ptr type();

This method returns the TypeCode that represents this exception's type.

ExceptionDescription

struct CORBA::ExceptionDescription

This structure is used to describe an exception that is stored in the interface
repository.

Parameter Description

members The list of members.

Parameter Description

members The list of members.

 4 : Interface reposi tory in terfaces and classes 89

FixedDef

ExceptionDescription members

CORBA::String_var defined_in

The repository Id of the module or interface in which this exception is defined.

CORBA::String_var id

The repository id of the exception.

CORBA::String_var name

The name of the exception.

CORBA::TypeCode_var type

The exception's IDL type.

CORBA::String_var version

The exception's version.

FixedDef

CORBA::FixedDef public CORBA::IDLType, public CORBA::Object

This interface is used to describe a fixed definition that is stored in the Interface
Repository.

Methods

CORBA::UShort digits();

This method sets the number of digits for the fixed type.

void digits(CORBA::UShort _digits);

This method sets the attribute for fixed type.

CORBA::Short scale();

This method sets the scale for the fixed type.

void scale(CORBA::Short _scale);

This method sets the attribute for the fixed type.

FullInterfaceDescription

struct CORBA::FullInterfaceDescription

The FullInterfaceDescription structure describes an interface that is stored in the
interface repository.

90 VisiBroker C++ API Reference Guide

Ful lValueDescr ipt ion

FullInterfaceDescription members

CORBA::String_var Name

The name of the interface.

CORBA::String_var id

The repository id of the interface.

CORBA::String_var defined_in

The name of the module or interface in which this interface is defined.

CORBA::String_var version

The interface's version.

CORBA::OpDescriptionSeq operations

The list of operations supported by this interface.

CORBA::AttrDescriptionSeq attributes

The list of attributes contained in this interface.

CORBA::RepositoryIdSeq base_interfaces

The interfaces from which this interface inherits.

CORBA::RepositoryIdSeq derived_interfaces

The interfaces derived from this interface.

CORBA::TypeCode_var type

This interface's TypeCode.

CORBA::Boolean is_abstract

Indicates whether or not this interface is abstract.

FullValueDescription

struct CORBA::FullValueDescription

This structure is used to represent a full value definition that is stored in the Interface
Repository.

Variables

CORBA::String_var name

The name of the valuetype.

 4 : Interface reposi tory in terfaces and classes 91

Ful lValueDescr ipt ion

CORBA::String_var id

The repository id of the valuetype.

CORBA::Boolean is_abstract

If this variable is true, specifies an abstract valuetype.

CORBA::Boolean is_custom

If this variable is true, specifies custom marshalling for the valuetype.

CORBA::String_var defined_in

The repository Id of the module in which this valuetype is defined.

CORBA::String_var version

The valuetype's version.

CORBA::OpDescriptionSeq operations

The list of operations offered by the valuetype.

CORBA::AttrDescriptionSeq attributes

The valuetype's list of valuetype's member attributes.

CORBA::.ValueMemberSeq members

The array of value definitions.

CORBA::InitializerSeq initializers

The array of initializers.

CORBA::RepositoryIdSeq supported_interfaces;

The list of supported interfaces.

CORBA::RepositoryIdSeq abstract_base_values;

The list of abstract value types from which this valuetype inherits.

CORBA::Boolean is_truncatable;

If this variable is set to true, the value can be truncated to its base valuetype safely.

CORBA::String_var base_values;

The description of the value type from which this valuetype inherits.

CORBA::TypeCode_var type

The valuetype's IDL type code.

92 VisiBroker C++ API Reference Guide

IDLType

IDLType

class CORBA::IDLType : public CORBA::IRObject, public CORBA::Object

The IDLType class provides an abstract interface that is inherited by all interface
repository definitions that represent IDL types. This class provides a method for
returning an object's Typecode, which identifies the object's type. The IDLType is
unique; the Typecode is not.

Include file

You should include the files corba.h and ir_c.hh when using this class.

interface IDLType:IRObject {
readonly attribute TypeCode type;

};

IDLType methods

CORBA::Typecode_ptr type();

This method returns the typecode of the current IRObject.

InterfaceDef

class CORBA::InterfaceDef : public CORBA::Container, public CORBA::Contained,
public CORBA::IDLType

The InterfaceDef class is used to define an ORB object's interface that is stored in
the interface repository.

For more information, see “Container”, “Contained”, and “IDLType”.

Include file

You should include the files corba.h and ir_c.hh when you use this class.

interface InterfaceDef: Container, Contained, IDLType {

typedef sequence<RepositoryId> RepositoryIdSeq;
typedef sequence<OperationDescription> OpDescriptionSeq;
typedef sequence<AttributeDescription> AttrDescriptionSeq;
 attribute InterfaceDefSeq base_interfaces;
 attribute boolean is_abstract;
 readonly attribute InterfaceDefSeq
 derived_interfaces
boolean is_a(in RepositoryId interface_id);
 struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
String_var version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;

 4 : Interface reposi tory in terfaces and classes 93

InterfaceDef

 RepositoryIdSeq derived_interfaces;
TypeCode type;
 boolean is_abstract;
};
FullInterfaceDescription describe_interface();
 AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in String_var version,
 in IDLType type,
 in CORBA::AttributeMode mode
);
 OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in String_var version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);

 struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 String_var version;
 RepositoryIdSeq base_interfaces;
 boolean is_abstract;
 };
};

InterfaceDef methods

CORBA::InterfaceDefSeq *base_interfaces();

This method returns a list of interfaces from which this class inherits.

void base_interfaces(const CORBA::InterfaceDefSeq& val);

This method sets the list of the interfaces from which this class inherits.

Parameter Description

val The list of interfaces from which this interface inherits.

94 VisiBroker C++ API Reference Guide

InterfaceDescr ipt ion

CORBA::AttributeDef_ptr create_attribute(const char * id, const char * name,
const CORBA::String_var& version, CORBA::IDLType_ptr type, CORBA::AttributeMode
mode);

This method returns a pointer to a newly created AttributeDef that is contained in
this object. The id, name, version, type, and mode are set to the values specified.

CORBA::OperationDef_ptr create_operation(const char *id, const char *name,
CORBA::String_var& version, CORBA::IDLType_ptr result, CORBA::OperationMode mode,
const CORBA::ParDescriptionSeq& params, const CORBA::ExceptionDefSeq& exceptions,
const CORBA::ContextIdSeq& contexts);

This method creates a new OperationDef that is contained by this object using the
specified parameters. The defined_in attribute of the newly created OperationDef is
set to identify this InterfaceDef.

CORBA::InterfaceDef::FullInterfaceDescription *describe_interface();

This method returns the FullInterfaceDescription which describes this object's
interface.

CORBA::Boolean is_a(const char * interface_id);

This method returns true if this interface is identical to or inherits from the specified
interface directly or indirectly.

InterfaceDescription

struct:CORBA:: InterfaceDescription

This structure describes an object that is stored in the interface repository.

Parameter Description

id The interface id to use.
name The interface name to use.
version The interface version to use.
mode The interface mode. See “AttributeMode” for a list of possible

values.

Parameter Description

id The interface id for this operation.
name The name of this operation.
version The operation's version.
result The IDL type returned by the operation.
mode The mode of this operation—one-way or normal.
params The list of parameters to pass to this operation.
exceptions The list of exceptions raised by this operation.
contexts Context lists are names of values expected in context

and passed along with the request.

Parameter Description

interface_id The id of the interface to be checked against this
interface.

 4 : Interface reposi tory in terfaces and classes 95

InterfaceDescript ion

InterfaceDescription members

CORBA::String_var name

The name of the interface.

CORBA::String_var id

The interface's repository identifier.

CORBA::String_var defined_in

The name of the repository Id in which the interface is defined.

CORBA::String_var version

The interface's version.

CORBA::RepositoryIdSeq base_interfaces

A list of base interfaces for this interface.

CORBA::Boolean is_abstract

Indicates whether or not this interface is abstract.

96 VisiBroker C++ API Reference Guide

IRObject

IRObject

class IRObject : CORBA::Object

The IRObject class offers the most generic interface for interface repository objects.
The Container class, IDLType, Contained, and others are derived from this class.

Include file

You should include the files corba.h and ir_c.hh when you use this class.

interface IRObject {
 readonly attribute DefinitionKind def_kind;
 void destroy();
};

IRObject methods

CORBA::DefinitionKind def_kind();

This method returns the type of this interface repository object. See “DefinitionKind”
for a list of possible types.

void destroy();

This method deletes this object from the interface repository. If this object is a
Container, this method also deletes all of its contents. If the object is currently
contained by another object, it is removed. The destroy method returns the
Exception(CORBA::BAD_PARAM) when invoked on a PrimitiveDef or Repository object.
The Repository class is described in “Repository” .

ModuleDef

class ModuleDef : CORBA::Container,CORBA::Contained

The class is used to represent an IDL module in the interface repository.

ModuleDescription

struct ModuleDescription

The ModuleDescription structure describes a module that is stored in the interface
repository.

ModuleDescription members

CORBA::String_var name

The name of the module.

CORBA::String_var id

The repository id of the module.

 4 : Interface reposi tory in terfaces and classes 97

NativeDef

CORBA::String_var defined_in

The name of the repository Id in which this module is defined.

CORBA::String_var version

The module's version.

NativeDef

class CORBA::NativeDef

This interface is used to represent a native definition that is stored in the Interface
Repository.

OperationDef

class CORBA::OperationDef : public virtual CORBA::Contained, public
CORBA::Object

The OperationDef class contains information about an interface operation that is
stored in the interface repository. This class is derived from the Contained class,
which is described in “Contained”. The inherited describe method returns a
OperationDescription structure that provides complete information on the operation.

Include file

You should include the files corba.h and ir_c.hh when you use this class.

interface OperationDef: Contained {

 typedef sequence<ParameterDescription> ParDescriptionSeq;
 typedef Identifier ContextIdentifier;
 typedef sequence<ContextIdentifier> ContextIdSeq;
 typedef sequence<ExceptionDef> ExceptionDefSeq;
 typedef sequence<ExceptionDescription> ExcDescriptionSeq;
 readonly attribute TypeCode result;
 attribute IDLType result_def;
 attribute ParDescriptionSeq params;
 attribute CORBA::OperationMode mode;
 attribute ContextIdSeq contexts;
 attribute ExceptionDefSeq exceptions;

readonly attribute OperationKind bind;
};
struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 String_var version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;

98 VisiBroker C++ API Reference Guide

Operat ionDef

 ExcDescriptionSeq exceptions;
};

OperationDef methods

CORBA::ContextIdSeq * contexts();

This method returns the list of context identifiers that apply to the operation.

void context(const CORBA::ContextIdSeq& val);

This method sets the list of context identifiers that apply to this operation.

CORBA::ExceptionDefSeq * exceptions();

This method returns the list of the exception types that can be raised by this
operation.

void exceptions(const CORBA::ExceptionDefSeq& val);

This method sets the list of exception types that may be raised by this operation.

CORBA::OperationMode mode();

This method returns the mode of the operation represented by this OperationDef.
The mode may be normal or one-way. Operations that have a normal mode are
synchronous and return a value to the client application. One-way operations do not
block and no response is sent from the object implementation to the client.

void mode(CORBA::OperationMode val);

This method sets the mode of the operation.

CORBA::ParDescriptionSeq * params();

This method returns a pointer to a list of ParameterDescription structures that
describe the parameters to this OperationDef.

void params(const CORBA::ParDescriptionSeq& val);

This method sets the list of the ParameterDescription structures for this OperationDef.
The order of the structures is significant and should correspond to the order defined
in the IDL definition for the operation.

Parameter Description

val The list of context identifiers.

Parameter Description

val The list of exceptions that this operation may raise.

Parameter Description

val The desired mode of this operation, either OP_ONEWAY or OP_NORMAL.
Go to the OperationMode section for more information.

Parameter Description

val The list of ParameterDescription structures.

 4 : Interface reposi tory in terfaces and classes 99

OperationDescr ipt ion

CORBA::TypeCode_ptr result();

This method returns a pointer to a TypeCode representing the type of the value
returned by this Operation. The TypeCode is a read-only attribute.

CORBA::IDLType_ptr result_def();

This method returns a pointer to the definition of the IDL type returned by this
OperationDef.

void result_def(CORBA::IDLType_ptr val);

This method sets the definition of the type returned by this OperationDef.

OperationDescription

struct CORBA::OperationDescription

The OperationDescription structure describes an operation that is stored in the
interface repository.

OperationDescription members

CORBA::String_var name

The name the of the operation.

CORBA::String_var id

The repository id of the operation.

CORBA::String_var defined_in

The repository id of the interface or valuetype in which this operation is defined.

CORBA::String_var version

The operation's version.

CORBA::TypeCode_var result

The operation's result.

CORBA::OperationMode mode

The operation's mode.

CORBA::ContextIdSeq contexts

The operation's associated context list.

CORBA::ParameterDescriptionSeq parameters

The operation's parameters.

Parameter Description

val A pointer to the type definition to use.

100 VisiBroker C++ API Reference Guide

Operat ionMode

CORBA::ExceptionDescriptionSeq exceptions

The exceptions that this operation may raise.

OperationMode

enum CORBA:OperationMode

The enumeration defines the values used to represent the mode of an operation;
either one-way or normal. One-way operations are those for which the client
application does not expect a response. Normal requests involve a response being
sent to the client by the object implementation that contains the results of the
request.

OperationMode values

ParameterDescription

struct CORBA::ParameterDescription

The ParameterDescription structure describes a parameter for an operation that is
stored in the interface repository.

ParameterDescription members

CORBA::String_var name

The name of the parameter.

CORBA::TypeCode_var type

The parameter's typecode.

CORBA::IDLType_var type_def

The parameter's IDL type.

CORBA::ParameterMode mode

The parameter's mode.

ParameterMode

enum CORBA::ParameterMode

The values that represent the possible modes of parameters to operations.

Constant Represents

OP_NORMAL A normal operation request.
OP_ONEWAY A one-way operation request.

 4: Inter face reposi tory inter faces and c lasses 101

Primit iveDef

ParameterMode values

PrimitiveDef

class PrimitiveDef : public CORBA::IDLType, public CORBA::Object

The class is used to describe a primitive (such as an int or a long) that is stored in
the interface repository. It provides a method for retrieving what kind of primitive it is.

PrimitiveDef methods

CORBA::PrimitiveKind kind();

This method returns the kind of primitive represented by this object.

PrimitiveKind

enum CORBA::PrimitiveKind

The PrimitiveKind enumeration contains the constants that define the primitive
types of objects that may be stored in the interface repository.

PrimitiveKind values

Constant Represents

PARAM_IN Parameter is for input from the client to the server.
PARAM_OUT Parameter is for output of results from the server to the client.
PARAM_INOUT Parameter may be used for both input from the client and

output from the server.

Constant Represents

pk_null Null value
pk_void Void
pk_short Short
pk_long Long
pk_ushort Unsigned short
pk_ulong Unsigned long
pk_float Float
pk_double Double
pk_boolean Boolean
pk_char Character
pk_octet Octet
pk_any Any
pk_TypeCode TypeCode
pk_Principal Principal
pk_string String

102 VisiBroker C++ API Reference Guide

Reposi tory

Repository

class Repository : public CORBA::Container, public CORBA::Object

The Repository class provides access to the interface repository and is derived from
the Container class. See “Container” for more information.

Include file

You should include the files corba.h and ir_c.hh when using this class.

interface Repository: Container {
 Contained lookup_id(in RepositoryId search_id);
 PrimitiveDef get_primitive(in CORBA::PrimitiveKind kind);
 StringDef create_string(in unsigned long bound);
 WStringDef create_wstring(in unsigned long bound)
 SequenceDef create_sequence(
 in unsigned long bound,
 in IDLType element_type
 };
 ArrayDef create_array(
 in unsigned long length,
 n IDLType element_type
);
 FixedDef create_fixed(
 in unsigned short digits,
 in short scale
);
;

Repository methods

CORBA::ArrayDef_ptr create_array(CORBA::ULong length, CORBA::IDLType_ptr
element_type);

This method creates a new ArrayDef and returns a pointer to it.

pk_objref Object reference
pk_longlong Long long
pk_ulonglong Unsigned long long
pk_longdouble Long double
pk_wchar Unicode character
pk_wstring Unicode string

Constant Represents

Parameter Description

length The maximum number of elements in the array. This value
must be greater than zero.

element_type The IDLType of the elements in the array.

 4: Inter face reposi tory inter faces and c lasses 103

SequenceDef

CORBA::SequenceDef_ptr create_sequence(CORBA::ULong bound,
CORBA::IDLType_ptr element_type);

This method creates a new SequenceDef object and returns a pointer to it.

CORBA::StringDef_ptr create_string(CORBA::Ulong bound);

This method creates a new StringDef object and returns a pointer to it.

CORBA::WstringDef_ptr create_wstring(CORBA::Ulong bound);

This method creates a new WstringDef object and returns a pointer to it.

CORBA::PrimitiveDef_ptr get_primitive(CORBA::PrimitiveKind kind);

This method returns a reference to a PrimitiveKind.

CORBA::Contained_ptr lookup_id(const char * search_id);

This method searches for an object in the interface repository that matches the
specified search id. If no match is found, a NULL value is returned.

CORBA::FixedDef_ptr create_fixed(CORBA::UShort digits, CORBA::Short scale)

This method sets the number of digits and the scale for the fixed type.

SequenceDef

class SequenceDef : public CORBA::IDLType, public CORBA::Object

The class is used to represent a sequence that is stored in the interface repository.
This interface provides methods for setting and retrieving the sequence's bound and
element type.

Parameter Description

bound The maximum number of items in the sequence. This value
must be greater than zero.

element_type A pointer to the IDLType of the items in the sequence.

Parameter Description

bound The maximum length of the string. This value must be greater than
zero.

Parameter Description

bound The maximum length of the string. This value must be greater
than zero.

Parameter Description

kind The reference to be returned.

Parameter Description

search_id The identifier to use for the search.

Parameter Description

Ushort digits The number of digits for the fixed type.
short scale The scale of the fixed type.

104 VisiBroker C++ API Reference Guide

Str ingDef

SequenceDef methods

CORBA::ULong bound()

This method returns the bounds of the sequence.

void bound(CORBA::ULong bound)

This method sets the bound of the sequence.

CORBA::TypeCode_ptr element_type();

This method returns the TypeCode of the elements in this sequence.

CORBA::IDLType_ptr element_type_def();

This method returns the IDL type of the elements in this sequence.

void element_type_def(CORBA::IDLType_ptr element_type_def);

This method sets the IDL type of the elements in this sequence.

StringDef

class StringDef : public CORBA::IDLType, public CORBA::Object

The class is used to describe Strings stored in the interface repository. This
interface provides methods for setting and retrieving the bounds of the strings.

StringDef methods

CORBA::ULong bound();

This method returns the bounds of the String.

void bound(CORBA::ULong bound);

This method sets the bounds of the String.

StructDef

class StructDef : public CORBA::TypedefDef, public CORBA::Container, public
CORBA::Object

The class is used to represent a structure that is stored in the interface repository.

Parameter Description

members The list of members.

Parameter Description

element_type_def The IDL type to set elements to.

Parameter Description

bound The list of members.

 4: Inter face reposi tory inter faces and c lasses 105

StructMember

StructDef methods

CORBA::StructMemberSeq *members();

This method returns the structures's list of members.

void members(CORBA::StructMemberSeq& members);

This method sets the structure's list of members.

StructMember

struct CORBA::StructMember

This interface is used to define the member for the struct. It uses the name and type
variables in the definition.

StructMember methods

CORBA::String_var name

The name of the type.

CORBA::TypeCode_var type

The type's IDL type.

CORBA::IDLType_var type_def

The IDL type's IDL type definition.

TypedefDef

class TypedefDef : public CORBA::Contained, public CORBA::IDLType, public
CORBA::Object

This abstract base class represents a user-defined structure that is stored in the
interface repository. The following interfaces all inherit from this interface:

– AliasDef
– EnumDef
– ExceptionDef
– StructDef
– UnionDef
– WstringDef

Parameter Description

members The list of members.

106 VisiBroker C++ API Reference Guide

TypeDescr ipt ion

TypeDescription

structure TypeDescription

The TypeDescription structure contains the information that describes a type for an
operation stored in the interface repository.

TypeDescription members

CORBA::String_var name

The name of the type.

CORBA::String_var id

The repository id of the type.

CORBA::String_var defined_in

The name of the module or interface in which this type is defined.

CORBA::String_var version

The type's version.

CORBA::TypeCode_var type

The type's IDL type.

UnionDef

class UnionDef : public CORBA::TypedefDef, public CORBA::Container, public
CORBA::Object

This class is used to represent a Union that is stored in the interface repository. This
class provides methods for setting and retrieving the union's list of members and
discriminator type.

UnionDef methods

CORBA::TypeCode_ptr discriminator_type();

This method returns the TypeCode of the discriminator of the Union.

CORBA::IDLType_ptr discriminator_type_def();

This method returns the IDL type of the Union's discriminator.

void discriminator_type_def(CORBA::IDLType_ptr discriminator_type_def);

This method sets the IDL type of the Union's discriminator.

Parameter Description

discriminator_type_def The list of members.

 4: Inter face reposi tory inter faces and c lasses 107

UnionMember

CORBA::UnionMemberSeq *members();

This method returns the Union's list of members.

void members(CORBA::UnionMemberSeq& members);

This method sets the Union's list of members.

UnionMember

struct CORBA::UnionMember

The UnionMember struct contains information that describes a Union that is stored in
the interface repository.

UnionMember members

CORBA::String_var name

The name of the Union.

CORBA::Any label

The label of the Union.

CORBA::TypeCode_var type

The Union's typecode.

CORBA::IDLType_var type_def

The Union's IDL type.

ValueBoxDef

class ValueBoxDef public CORBA::Contained, public COBRA::IDLType, public
CORBA::Object

This interface is used as a simple valuetype that contains a single public member of
any IDL type. ValueBoxDef is a simplified version of ValueType:

public valuetype <IDLType> value;

This declaration is almost equal to valuetype boxed type <IDLType> but ValueBoxDef is
not the same as simple ValueTypeDef.

Methods

CORBA::IDLType_ptr original_type_def();

This method identifies the type being boxed.

Parameter Description

members The list of members.

108 VisiBroker C++ API Reference Guide

ValueDef

void original_type_def(CORBA::IDLType_ptr original_type_def);

This method sets the type being boxed.

ValueDef

class CORBA::ValueDef public CORBA::Container, public CORBA::Contained, public
CORBA::IDLType, public CORBA::Object

This interface describes the IDL value type called a construct. This interface is very
close to a class type. It represent a value definition that is stored in the Interface
Repository.

Methods

CORBA::InterfaceDefSeq supported_interfaces();

This method lists the interfaces which this value type supports.

void supported_interfaces(const CORBA::interfaceDefSeq& supported_interfaces);

This method sets the supported interfaces.

CORBA::InitializerSeq& initializers();

This method returns the list of initializers.

void initializers(const CORBA::InitializerSeq& initializers);

This method sets the initializers.

CORBA.ValueDef_ptr base_value();

This method describes the value types from which this value inherits.

void base_value(CORBA::ValueDef_ptr base_value);

This method sets the value types

CORBA.ValueDefSeq& abstract_base_values();

This method returns the list of the abstract value types from which this value
inherits.

void abstract_base_values(const CORBA::ValueDef[Seq& abstract_base_values);

This method defines the abstract value type's base value.

CORBA::Boolean is_abstract();

This method returns true if the value is an abstract value type.

void is_abstract(CORBA::Boolean is_abstract);

This method sets the valuetype to be an abstract value type.

 4: Inter face reposi tory inter faces and c lasses 109

ValueDef

CORBA::Boolean is_custom();

This method returns true if the value uses custom marshalling.

void is_custom(CORBA::Boolean is_custom);

This method sets the custom marshalling for the value.

CORBA::Boolean is_truncatable():

This method returns true if the value can be truncated from its base value safely.

void is_truncatable(CORBA::Boolean is_truncatable);

This method sets the truncated attribute for this value.

CORBA::Boolean is_a(const char* value_id);

This method returns true if the value on which it is invoked either is identical to or
inherits, directly or indirectly from the interface or value defined by the value_id
parameter. Otherwise it returns false.

CORBA::ValueDef _ptr FullValueDescription* describe_value();

This method returns a FullValueDescription describing the value including its
operations and attributes.

CORBA::ValueMemberDef_ptr create_value_member(const Char* id, const Char* name,
const Char* version, CORBA::IDLType_ptr type_def, CORBA::short access);

This method returns a new ValueMemberDef contained in the ValueDef on which it is
invoked.

CORBA::AttributeDef_ptr create_attribute(const Char* id, const Char* name, const
Char* version, CORBA::IDLType_ptr type, CORBA::AttributeMode mode);

This method creates a new attribute definition for this valuetype and returns a new
AttributeDef for it

CORBA::OperationDef_ptr create_operation(const Char* id, const Char* name, const
Char* version, CORBA::IDLType_ptr result, CORBA::OperationMode mode, const

Parameter Description

id The repository id for this type.
name The name of this type.
version The object's version.
type_def The value's IDL type.
short access The access value.

Parameter Description

id The repository id for this type.
name The name of this type.
version The object's version.
type The type's IDL type.
mode The object's mode.

110 VisiBroker C++ API Reference Guide

ValueDescr ipt ion

CORBA::ParDescriptionSeq& params, const CORBA::ExceptionDefSeq& exceptions, const
CORBA::ContextIDSeq& contexts);

This method creates a new Operation for this valuetype and returns an OperationDef
for it.

ValueDescription

struct CORBA::ValueDescription

This interface describes a value type that is stored in the Interface Repository.

Values

CORBA::String_var name

The name of the type.

CORBA::String_var id

The repository id of the type.

CORBA::Boolean is_abstract

If this variable is true, the value is an abstract value type.

CORBA::Boolean is_custom

If this variable is true, the valuetype is custom marshalled.

CORBA::String_var defined_in.

The repository Id of the module in which this type is defined.

CORBA::String_var version

The type's version.

CORBA::RepositoryIdSeq& supported_interfaces

The list of interfaces which this value type supports.

CORBA::RepositoryIdSeq& abstract_base_values

The list of abstract value types from which this value inherits.

Parameter Description

id The repository id for this type.
name The name of this type.
version The object's version.
result The IDL type of the operation.
mode The object's mode.
params The list of the operation's parameters.
exceptions The list of the operation's exceptions.
contexts The list of the operation's contexts.

 4: In terface reposi tory inter faces and classes 111

CORBA::Boolean is_truncatable

If this variable is true, the value type can be truncated to its base value type safely.

CORBA::String_var base_value

The value types from which this value inherits.

WstringDef

class WstringDef : public CORBA::IDLType, public CORBA::Object

This class is used to describe Unicode strings that are stored in the interface
repository. It provides methods for setting and retrieving the bounds of a Unicode
string.

WStringDef methods

CORBA::ULong bound();

This method returns the bounds of the Wstring.

void members(CORBA::ULong bound);

This method sets the bounds of the Wstring.

Parameter Description

members The list of members.

112 VisiBroker C++ API Reference Guide

 5 : Act ivat ion interfaces and classes 113

Activation interfaces and classes
This section describes the interfaces and classes used in the activation of object
implementations.

ImplementationStatus

struct ImplementationStatus

ImplementationStatus is used to track the activation state for a server that is
registered with the OAD.

module Activation
{
 ƒ
 struct ImplementationStatus {
 extension::CreationImplDef impl;
 ObjectStatusList status;
 };
 ƒ
};

Include file

Include the oad_c.hh file when you use this class.

ImplementationStatus members

CreationImplDef impl;

The CreationImplDef for the object implementation.

114 VisiBroker C++ API Reference Guide

OAD

ObjectStatusList status;

Represents a list of status information for each object offered by the server. See
“ObjectStatusList” for information on the ObjectStatusList class.

OAD
The OAD interface provides access to the OAD (Object Activation Daemon). It is used
by the administration tools for listing, registering, and unregistered objects. It can also
be used by client code for programmatic administration of the OAD.

The following code sample shows the OAD IDL:

interface OAD {
 extension::CreationImplDef create_CreationImplDef();

 Object reg_implementation(in extension::CreationImplDef impl)
 raises(DuplicateEntry, InvalidPath);

 extension::CreationImplDef get_implementation(
 in CORBA::RepositoryId repId,
 in COBRA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);

 void change_implementation(
 in extension::CreationImplDef old_info,
 in extension::CreationImplDef new_info)
 raises(NotRegistered, InvalidPath, IsActive);

 attribute boolean destroy_on_unregister;

 void unreg_implementation(
 in CORBA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);

 void unreg_interface(in CORBA::RepositoryId repId)
 raises(NotRegistered);

 void unregister_all();

 ImplementationStatus get_status(
 in CORBA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);

 ImplStatusList get_status_interface(
 in CORBA::RepositoryId repId)
 raises(NotRegistered);

 ImplStatusList get_status_all();

 Object lookup_interface(in CORBA::RepositoryId repId, in long
timeout)
 raises(NotRegistered, FailedToExecute,
 NotResponding, Busy);
 Object lookup_implementation(in CORBA::RepositoryId repId, in string
object_name, in long timeout)
 raises(NotRegistered, FailedToExecute,

 5: Act ivat ion inter faces and c lasses 115

OAD

 NotResponding, Busy);

 extension::CreationImplDef boa_activate_obj(
 in Object obj,
 in string repository_id,
 in long unique_id)
 raises(NotRegistered);

void boa_deactivate_obj(in Object obj,
 in string repository_id,
 in long unique_id)
 raises(NotRegistered);

string generated_command(in extension::CreationImplDef impl);

string generated_environment(in extension::CreationImplDef impl);

};

For a complete description of the IDL source codes, refer to the oad.idl file located in
the VisiBroker installation in the following directory:

<install_dir>\idl\

Include file

Include the oad_c.hh file when you use this class.

OAD methods

void change_implementation(const extension::CreationImplDef&_old_info, const
extension::CreationImplDef& _new_info);

This method changes an object's implementation dynamically. You can use this
method to change the registration's activation policy, path name, argument settings,
and environment settings.

Caution

You cannot change information for a currently active implementation. Be sure to
exercise caution when changing an object's implementation name and object name
with this method. Doing so will prevent client applications from locating the object
using the old name.

CreationImplDef_ptr create_CreationImplDef();

Returns an instance of a extension::CreationImplDef_ptr object. You can then set its
attributes.

Parameter Description

old_info The information you want to change.
new_info The information to replace the old info.

Exception Description

NotRegistered The object you specify is not registered. You must specify
a registered object.

IsActive The object implementation is currently running. Deactivate
the object and then try to change its information.

116 VisiBroker C++ API Reference Guide

OAD

void destroy_on_unregister(CORBA::Boolean val);

Sets the destroy_on_unregister attribute for the OAD.

Note

Currently, this attribute cannot be set programatically.

CORBA::Boolean destroy_on_unregister();

Returns the setting for the destroy_on_unregister attribute for an implementation. If
the attribute is set to TRUE, any active implementations are shut down when
unregistered.

Note

Currently, this attribute cannot be set programatically.

CORBA::CreationImplDef_ptr get_implementation(const char *repId, const char
*object_name);

This method retrieves information about implementations registered for the
specified repository identifier and object name. It returns a
extension::CreationImplDef_ptr object.

ImplementationStatus *get_status(const char *repId, const char *object_name);

This method retrieves the status information about implementations registered for
the specified repository identifier and object name.

ImplStatusList *get_status_all();

Returns an ImplStatusList containing the status information for all implementations.

ImplStatusList *get_status_interface(cost char *repId);

This method gets the status information about implementations registered for the
specified repository identifier.

Parameter Description

val If set to TRUE, any active implementations are shut down when they
are unregistered. Otherwise, they will not be shut down when
unregistered.

Parameter Description

repId The repository identifier.
object_name The object name.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

Parameter Description

repId The repository identifier.
object_name The object name.

Parameter Description

repId The repository identifier.

 5: Act ivat ion inter faces and c lasses 117

OAD

::CORBA::Object_ptr reg_implementation(const extension::CreationImplDef& _impl);

This method registers an implementation with the OAD and the VisiBroker Edition
directory service.

void unreg_implementation(const char *repId, const char *object_name);

This method unregisters implementations by repository identifier and object name. If
the destroy_on_unregister attribute is set to true, this method terminates all
processes currently implementing the repository identifier and object name that is
specified.

void unreg_interface(const char *repId);

This method unregisters all implementations for a repository identifier. If the
destroy_on_unregister attribute is set to true, this method terminates all processes
currently implementing the repository identifier specified.

void unregister_all();

This method unregisters all implementations. Unless the attribute
destroy_on_unregister is set to true, all active implementations continue to execute.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

Parameter Description

impl The instance of CreationImplDef.

Exception Description

DuplicateEntry The object you specify is a duplicate entry. You must
specify an unregistered object.

Parameter Description

repId The repository identifier.
object_name The object name.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

Parameter Description

repId The repository identifier.

Exception Description

NotRegistered The object you specify is not registered. You must
specify a registered object.

118 VisiBroker C++ API Reference Guide

ObjectStatus

ObjectStatus

struct ObjectStatus

This structure is used to store information about a particular object offered by an
object implementation that is registered with the OAD. This structure is returned by
the ObjectStatusList class, described in “ObjectStatusList”.

module Activation
{
 ƒ
 struct ObjectStatus {
 long unique_id;
 State activation_state;
 Object objRef;
 };
 ƒ
};

Include file

Include the oad_c.hh file when you use this class.

ObjectStatus members

CORBA::Long unique_id;

A unique identifier for the object.

State activation_state;

The object's current activation state; one of these values:

– ACTIVE
– INACTIVE
– WAITING_FOR_ACTIVATION

CORBA::Object objRef;

The object whose state is represented in the structure.

ObjectStatusList

class ObjectStatusList

This class implements a list of ObjectStatus structures and is used to represent
information about the objects offered by a server.

See also
– “ObjectStatus”

Include file

Include the oad_c.hh file when you use this class.

 5: Act ivat ion inter faces and c lasses 119

ObjectStatusList

ObjectStatusList methods

void length(CORBA::ULong len);

Sets the length of the list.

CORBA::ULong length() const;

Returns the length of the list.

CORBA::ULong maximum() const;

Returns the maximum length of the list.

ObjectStatus& operator[](CORBA::ULong index);

Returns the ObjectStatus structure with the specified index in the list.

Parameter Description

len The length of the list.

Parameter Description

index The zero-based index of the item in the list.

120 VisiBroker C++ API Reference Guide

 6 : Naming Service (Vis iNaming) interfaces and classes 121

Naming Service (VisiNaming)
interfaces and classes
This section describes the interfaces and classes for the VisiBroker Naming Service
(VisiNaming).

NamingContext

class _VISNMEXPORT NamingContext : public virtual CORBA_Object

This object is used to contain and manipulate a list of names that are bound to the
VisiBroker ORB objects or to other NamingContext objects. Client applications use
this interface to resolve or list all of the names within that context. Object
implementations use this object to bind names to object implementations or to bind
a name to a NamingContext object. The code sample below shows the IDL
specification for the NamingContext.

module CosNaming {
 interface NamingContext {
 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);
 Object resolve(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext new_context();
 NamingContext bind_new_context(in Name n)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void destroy()
 raises(NotEmpty);

122 VisiBroker C++ API Reference Guide

NamingContext

 void list(in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi);
 };
};

NamingContext methods

virtual void bind(const Name& -n, CORBA::Object _ptr _obj): raises(NotFound,
CannotProceed, InvalidName, AlreadyBound);

This method attempts to bind the specified Object to the specified Name by resolving
the context associated with the first NameComponent and then binding the object to the
new context using the following Name:

Name[NameComponent₂,...,NameComponent<sub>(n-1)</

sub>,NameComponent_n]

This recursive process of resolving and binding continues until the context
associated with the NameComponent (n–1) is resolved and the actual name-to-object
binding is stored. If parametern is a simple name, the obj will be bound to n within
this NamingContext.

This method may raise the following exceptions:.

virtual void rebind(const Name& _n, CORBA::Object _ptr _obj) raises(NotFound,
CannotProceed, InvalidName);

This method is exactly the same as the bind method, except that it never raises the
AlreadyBound exception. If the specified Name has already been bound to another
object, this method replaces that binding with the new binding.

Parameter Description

n A Name, initialized with the desired name for the object.
obj The object to be named.

Exception Description

NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation
from the returned naming context.

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has already been
bound to another object within the NamingContext.

Parameter Description

n A Name structure, initialized with the desired name for the object.
obj The object to be named.

 6: Naming Service (Vis iNaming) inter faces and c lasses 123

NamingContext

The following exceptions may be raised by this method.

virtual void bind_context(const Name& _n, NamingContext_ptr _nc) raises(NotFound,
CannotProceed, InvalidName, AlreadyBound);

This method is identical to the bind method, except that it associates the supplied
Name with a NamingContext, not an arbitrary VisiBroker ORB object.

The following exceptions may be raised by this method.

virtual void rebind_context(const Name& _n, NamingContext _ptr _nc)
raises(NotFound, CannotProceed, InvalidName);

This method is exactly the same as the bind_context method, except that this
method never raises the AlreadyBound exception. If the specified Name has already
been bound to another naming context, this method replaces that binding with the
new binding.

The following exceptions may be raised by this method.

Exception Description

NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation
from the returned naming context.

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

Parameter Description

n A Name structure initialized with the desired name for the naming
context. The first (n–1) NameComponent structures in the sequence
must resolve to a NamingContext.

nc The NamingContext object to be bound.

Exception Description

NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not

be resolved. The client may still be able to continue the
operation from the returned naming context.

InvalidName The specified Name has no name components or the id field
of one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has already
been bound to another object within the NamingContext.

Parameter Description

n A Name structure, initialized with the desired name for
the object.

nc The NamingContext object to be rebound.

Exception Description

NotFound The Name, or one of its components, could not be found.

124 VisiBroker C++ API Reference Guide

NamingContext

virtual CORBA::Object _ptr resolve(const Name& _n) raises(NotFound,
CannotProceed, InvalidName);

This method attempts to resolve the specified Name and return an object reference. If
parameter n is a simple name, it is resolved relative to this NamingContext.

If n is a complex name, it is resolved using the context associated with the first
NameComponent. Next, the new context to resolve the following Name:

Name[NameComponent₍₂₎,...,NameComponent<sub>(n-1)</

sub>,NameComponent_n]

This recursive process continues until the object associated with the nth
NameComponent is returned.

The following exceptions may be raised by this method.

virtual void unbind(const Name& _n) raises(NotFound, CannotProceed, InvalidName);

This method performs the inverse operation of the bind method, removing the
binding associated with the specified Name.

The following exceptions may be raised by this method.

CannotProce
ed

One of the NameComponent objects in the sequence could not be
resolved. The client may still be able to continue the operation
from the returned naming context.

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

Parameter Description

n A Name structure, initialized with the name for the desired object.

Exception Description

NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation
from the returned naming context.

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

Parameter Description

n A Name structure, initialized with the desired name to be unbound.

Exception Description

NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not

be resolved. The client may still be able to continue the
operation from the returned naming context.

InvalidName The specified Name has no name components or the id field
of one of its name components is an empty string.

Exception Description

 6: Naming Service (Vis iNaming) inter faces and c lasses 125

NamingContext

virtual NamingContext_ptr new_context();

This method creates a new naming context. The newly created context is
implemented within the same server as this object. The new context is initially not
bound to any Name.

virtual NamingContext_ptr bind_new_context(const Name& _n) raises(NotFound,
CannotProceed, InvalidName, AlreadyBound);

This method creates a new context and binds it to the specified Name within this
Context.

The following exceptions can be raised by this method.

virtual void destroy() raises(NotEmpty);

This method deactivates this naming context. Any subsequent attempt to invoke
operations on this object raises a CORBA::OBJECT_NOT_EXIST runtime exception.

Before using this method, all Name objects that have been bound relative to this
NamingContext should be unbound using the unbind method. Any attempt to destroy a
NamingContext that is not empty raises a NotEmpty exception.

virtual void list(CORBA::ULong _how_many, BindingList_out _bl,
BindingIterator_out _bi)

This method returns all of the bindings contained by this context. A maximum of
how_many Names are returned with the BindingList. Any left over bindings are
returned via the BindingIterator. The returned BindingList and BindingIterator are
described in detail in “Binding and BindingList” and can be used to navigate the list
of names.

Parameter Description

n A Name structure, initialized with the specified Name for the newly
created NamingContext object.

Exception Description

NotFound The Name or one of its components could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation
from the returned NamingContext.

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has already been
bound to another object within the NamingContext.

Parameter Description

how_many The maximum number of Names to be returned.
bl A list of Names returned to the caller. The number of names in the

list will not exceed how_many.
bi An iterator for use in traversing the rest of the Names.

126 VisiBroker C++ API Reference Guide

NamingContextExt

NamingContextExt

class _VISNMEXPORT NamingContextExt : public virtual NamingContext, public
virtual CORBA Object

The NamingContextExt interface, which extends NamingContext, provides the
operations required to use stringified names and URLs.

This code sample shows the IDL Specification for the NamingContextExt interface.

module CosNaming {
 interface NamingContextExt {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;
 StringName to_string(in Name n)
 raises(InvalidName);
 Name to_name(in StringName sn)
 raises(InvalidName);
 exception InvalidAddress {};
 URLString to_url(in Address addr, in StringName sn)
 raises(InvalidAddress, InvalidName);
 Object resolve_str(in StringName n)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
};

NamingContextExt methods

virtual char* to_string(const Name& _n) raises(InvalidName);

This operation returns the stringified representation of the specified Name.

The following exceptions can be raised by this method.

virtual Name* to_name(const char* _sn); raises(InvalidName);

This operation returns a Name object for the specified stringified name.

The following exceptions can be raised by this method.

Parameter Description

n A Name structure initialized with the desired name for object.

Exception Description

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

Parameter Description

_sn The stringified name of an object.

Exception Description

InvalidName The specified Name has no name components or the id field of
one of its name components is an empty string.

 6: Naming Service (Vis iNaming) inter faces and c lasses 127

Binding and BindingList

virtual char* to_url(const char* _addr, const char* _sn); raises(InvalidAddress,
InvalidName);

This operation returns a fully-formed string URL using the URL specified in _addr
and the stringified name in _sn.

The following exceptions can be raised by this method.

virtual CORBA::Object _ptr resolve_str(const char* _n);
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

This operation returns a Name object for the specified stringified name.

The following exceptions can be raised by this method.

Binding and BindingList
The Binding, BindingList, and BindingIterator interfaces are used to describe the
name-object bindings contained in a NamingContext. The Binding struct encapsulates
one such pair. The binding_name field represents the Name and the binding_type
indicates whether the Name is bound to a VisiBroker ORB object or a NamingContext
object.

The BindingList is a sequence of Binding structures contained by a NamingContext
object. An example program that uses the BindingList can be found in the Naming
Service section of the Borland VisiBroker Developer's Guide.

This code sample shows the IDL specification for the Binding structure.

module CosNaming {
 enum BindingType {
 nobject,
 ncontext
 }
 struct Binding {

Paramete
r Description

_addr A URL component of the form myhost.borland.com:800. If the
Address is empty, it is the local host.

_sn A stringified name of an object.

Exception Description

InvalidAddress The specified Address is malformed.
InvalidName The specified Name has no name components or the id field of

one of its name components is an empty string.

Parameter Description

_n A stringified name of an object.

Exception Description

NotFound The Name, or one of its components, could not be found.

CannotProceed One of the NameComponent objects in the sequence could not be resolved.
The client may still be able to continue the operation from the returned
NamingContext.

InvalidName The specified Name has no name components or the id field of one of its
name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has already been bound to
another object within the NamingContext.

128 VisiBroker C++ API Reference Guide

BindingIterator

 Name binding_name;
 BindingType binding_type;
 };
 typedef sequence<Binding> BindingList;
};

BindingIterator

class _VISNMEXPORT BindingIterator : public virtual CORBA_Object

This object allows a client application to walk through the unbounded collection of
bindings returned by the NamingContext operation list. An example program that
uses the BindingIterator can be found in Naming Service section of the Borland
VisiBroker Developer's Guide.

This code sample shows the IDL specification for the BindingIterator interface.

module CosNaming {
 interface BindingIterator {
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many, out BindingList b);
 void destroy();
 };
};

BindingIterator methods

virtual CORBA::Boolean next_one(Binding_out b_);

This method returns the next Binding from the collection. It returns CORBA::FALSE if
the list has been exhausted. Otherwise, it returns CORBA::TRUE.

virtual CORBA::Boolean next_n(CORBA::ULong _how_many, BindingList_out _b);

This method returns a BindingList containing the number of requested Binding
objects from the list. The number of bindings returned may be less than the
requested amount if the list is exhausted. CORBA::FALSE is returned when the list has
been exhausted. Otherwise, CORBA::TRUE is returned.

virtual void destroy();

This method destroys this object and releases the memory associated with the
object. Failure to call this method will result in increased memory usage.

Parameter Description

b_ The next Binding object from the list.

Parameter Description

_how_many The maximum number of Binding object desired.
_b A BindList containing no more than the requested number of

Binding objects.

 6: Naming Service (Vis iNaming) inter faces and c lasses 129

NamingContextFactory

NamingContextFactory

class _VISNMEXPORT NamingContextFactory : public virtual CORBA_Object

This interface is provided to instantiate an initial NamingContext. A client may bind to
an object of this type and use the create_context method to create an initial context.
Once the initial context has been created, the new_context method can be used to
create other contexts. An instance of this naming context factory is created when
the naming service is started, described in the Naming Service section of the
Borland Enterprise Server Developer's Guide.

To create an initial NamingContextFactory that automatically creates a single root
context, see “ExtendedNamingContextFactory”.

This code sample shows the IDL specification for the NamingContextFactory.

module CosNaming {
 interface NamingContextFactory {
 NamingContext create_context();
 oneway void shutdown();
 };
};

Methods

virtual CosNaming::NamingContextEXT_ptr create_context();

This method allows a client to create a naming context. Since the specification for
naming contexts states that they do not have any notion of a root context, simply
instantiating a NamingContextFactory does not create a naming context.

virtual ClusterManager_ptr get_cluster_manager();

This method returns the cluster.

virtual NamingContextList* list_all_roots (const char* _password);

This method returns the list of all root contexts.

virtual void remove_stale_contexts (const char* _password);

This method allows the client to remove members from the cluster during the
cluster's lifetime.

virtual void shutdown();

This method allows a client to gracefully shut the naming service down. If the
service is restarted with the same logfile, the factory is restored to the state it had
prior to being shut down.

ExtendedNamingContextFactory

class _VISNMEXPORT ExtendedNamingContextFactory : public virtual
NamingContextFactory, public virtual CORBA_Object

This interface extends the NamingContextFactory interface and allows the creation of
a default root within a factory when the extended naming service is started,

130 VisiBroker C++ API Reference Guide

ExtendedNamingContextFactory

described in the Naming Service section of the Borland Enterprise Server
Developer's Guide.

This code sample shows the IDL specification for the
ExtendedNamingContextFactory.

module CosNaming {
 interface ExtendedNamingContextFactory : NamingContextFactory{
 NamingContext root_context();
 };
};

Methods

virtual CosNaming::NamingContextExt_ptr root_context();

This method returns the root naming context that was created automatically when
this object was instantiated.

 7: Event service interfaces and classes 131

Event service interfaces and classes
This section describes the interfaces and classes for the VisiBroker for C++ Event
Service.

ConsumerAdmin

public interface ConsumerAdmin extends ConsumerAdminPOA

This interface is used by consumer applications to obtain a reference to a proxy
supplier object. This is the second step in connecting a consumer application to an
EventChannel.

IDL definition

module CosEventChannelAdmin {
 interface ConsumerAdmin {
 ProxyPushConsumer obtain_push_supplier();
 ProxyPullConsumer obtain_pull_supplier();
 };
};

ConsumerAdmin methods

public ProxyPushSupplier obtain_push_supplier();

The obtain_push_supplier method should be invoked if the calling consumer
application is implemented using the push model. If the application is implemented
using the pull model, the obtain_pull_supplier method should be invoked.

public ProxyPullSupplier obtain_pull_supplier();

The returned reference is used to invoke either the connect_push_consumer,
described in “ProxyPushConsumer”, or the connect_pull_consumer method,
described in “ProxyPullConsumer”.

132 VisiBroker C++ API Reference Guide

EventChannel

EventChannel

public interface EventChannel

The EventChannel provides the administrative operations for adding suppliers and
consumers to the channel and for destroying the channel. For information on
creating an event channel, see “EventChannelFactory”.

Suppliers and consumers both use the _bind method to obtain an EventChannel
reference. As with any _bind invocation, the caller can optionally specify the object
name of the desired EventChannel as well as any desired bind options. These
arguments can be passed to the supplier or consumer as initial parameters or they
may be obtained from the Naming Service, if it is available. If the object name is not
specified, VisiBroker locates a suitable EventChannel. Once a supplier or consumer is
connected to an EventChannel, it may invoke any of the EventChannel methods.

Methods

The following code sample shows the supplier binding to an EventChannel with the
object name “power”.

int main(int argc, char* const* argv)
{
 ƒ
 CosEventChannelAdmin::EventChannel_var my_channel =
 CosEventChannelAdmin::EventChannel::_bind("power");
 CosEventChannelAdmin::SupplierAdmin_var = channel-
>for_suppliers();
 ƒ
}

ConsumerAdmin for_consumers();

This method returns a ConsumerAdmin object that can be used to add consumers to
this EventChannel.

SupplierAdmin for_suppliers();

This method returns a SupplierAdmin object that can be used to add suppliers to this
EventChannel.

void destroy();

This method destroys this EventChannel.

EventChannelFactory

public interface EventChannelFactory

The EventChannelFactory provides methods for creating, locating, and destroying
event channels.

IDL definition

module CosEventChannelAdmin {
 interface EventCHannelFactory {

 7: Event service inter faces and c lasses 133

ProxyPul lConsumer

 exception AlreadyExists();
 exception ChannelsExist();
 EventChannel create();
 EventChannel create_by_name(in string name)
 raises(AlreadyExists);
 EventChannel lookup_by_name(in string name);
 void destroy()
 raises(ChannelsExist);
 };
};

EventChannelFactory methods

EventChannel create();

This method creates an anonymous, transient event channel.

EventChannel create_by_name(in string name) raises(AlreadyExists);

This method creates a named, persistent event channel. If an event channel with
the specified name has already been created, an AlreadyExists exception is raised.

EventChannel lookup_by_name(in string name);

This method attempts to return the EventChannel with the specified name. If no
channel with the specified name exists, a NULL value is returned.

void destroy();

This method destroys this event channel. The disconnect methods of all suppliers
and consumers connected to the channel are called before the channel is
destroyed. Once destroyed, if the channel was created by the create_by_name
method, it is no longer found by the lookup_by_name method.

ProxyPullConsumer

public interface ProxyPullConsumer

This interface is used by a pull supplier application and provides the
connect_pull_supplier method for connecting the supplier's PullSupplier-derived
object to the EventChannel. An AlreadyConnected exception is raised if an attempt is
made to connect the same proxy more than once.

IDL definition

module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPullConsumer : CosEventComm::PullConsumer {
 void connect_pull_supplier(in CosEventComm::PullSupplier
pull_supplier)
 raises(AlreadyConnected);
 };
};

134 VisiBroker C++ API Reference Guide

ProxyPushConsumer

ProxyPushConsumer

public interface ProxyPushConsumer

This interface is used by a push supplier application and provides the
connect_push_supplier method which is used to connect the supplier's PushSupplier-
derived object to the EventChannel. An AlreadyConnected exception is raised if an
attempt is made to connect the same proxy more than once.

IDL definition

module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPushConsumer : CosEventComm::PushConsumer {
 void connect_push_supplier(in CosEventComm::PushSupplier
push_supplier)
 raises(AlreadyConnected);
 };
};

ProxyPullSupplier

public interface ProxyPullSupplier

This interface is used by a pull consumer application and provides the
connect_pull_consumer method which is used for connecting the consumer's
PullConsumer-derived object to the EventChannel. An AlreadyConnected exception is
raised if an attempt is made to connect the same PullConsumer more than once.

IDL definition

module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPullSupplier : CosEventComm::PullSupplier {
 void connect_pull_consumer(in CosEventComm::PullConsumer
pull_consumer)
 raises(AlreadyConnected);
 };
};

ProxyPushSupplier

public interface ProxyPushSupplier

This interface is used by a push consumer application and provides the
connect_push_consumer method which is used to connect the consumer's
PushConsumer-derived object to the EventChannel. An AlreadyConnected exception is
raised if an attempt is made to connect the same PushConsumer more than once.

 7: Event service inter faces and c lasses 135

PullConsumer

IDL definition

module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPushSupplier : CosEventComm::PushSupplier {
 void connect_push_consumer(in CosEventComm::PushConsumer
push_consumer)
 raises(AlreadyConnected);
 };
};

PullConsumer

public interface PullConsumer

This interface is used to derive consumer objects that use the pull model of
communication. The pull method is called by a consumer whenever it wants data
from the supplier. A Disconnected exception is raised if the supplier has
disconnected.

The disconnect_push_consumer method is used to deactivate this consumer if the
channel is destroyed.

IDL definition

module CosEventChannelAdmin {
 exception Disconnected {};
 interface PushConsumer {
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };
};

PushConsumer

public interface PushConsumer

This interface is used to derive consumer objects that use the push model of
communication. The push method is used by a supplier whenever it has data for the
consumer. A Disconnected exception is raised if the consumer has disconnected.

IDL definition

module CosEventComm {
 exception Disconnected();
 interface PushConsumer {
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };
};

136 VisiBroker C++ API Reference Guide

Pul lSuppl ier

PullSupplier

public interface PullSupplier

This interface is used to derive supplier objects that use the pull model of
communication.

IDL definition

module CosEventComm {
 interface PullSupplier {
 any pull() raises(Disconnected);
 any try_pull(out boolean has_event) raises(Disconnected);
 void disconnect_pull_supplier();
 };
};

PullSupplier methods

any pull();

This method blocks until there is data available from the supplier. The data is
returned an Any type. If the consumer has disconnected, this method raises a
Disconnected exception.

any try_pull(out boolean has_event);

This non-blocking method attempts to retrieve data from the supplier. When this
method returns, has_event is set to the valuetrue and the data is returned as an Any
type if there was data available. If the value of has_event is false, then no data is
available and the return value is NULL.

void disconnect_pull_supplier();

This method deactivates this pull server if the channel is destroyed.

PushSupplier

public interface PushSupplier

This interface is used to derive supplier objects that use the push model of
communication. The disconnect_push_supplier method is used by the EventChannel
to disconnect supplier when it is destroyed.

IDL definition

module CosEventComm {
 exception AlreadyConnected();
 interface PushSupplier {
 void disconnect_push_supplier();
 };
};

 7: Event service inter faces and c lasses 137

Suppl ierAdmin

SupplierAdmin

public interface SupplierAdmin

This interface is used by supplier applications to obtain a reference to the proxy
consumer object. This is the second step in connecting a supplier application to an
EventChannel.

IDL definition

module CosEventChannelAdmin {
 interface SupplierAdmin {
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
 };
};

public ProxyPushConsumer obtain_push_consumer();

The obtain_push_consumer method should be invoked if the supplier application is
implemented using the push model. If the application is implemented using the pull
model, the obtain_pull_consumer method should be invoked.

public ProxyPullConsumer obtain_pull_consumer();

The returned reference is used to invoke either the connect_push_supplier.

138 VisiBroker C++ API Reference Guide

 8 : Server Manager Interfaces and Classes 139

Server Manager Interfaces and
Classes
This section describes the VisiBroker for C++ Server Manager interfaces and classes.
For additional information about the Server Manager, see “Using the VisiBroker Server
Manager” in the VisiBroker for C++ Developer's Guide.

The Container Interface
A container can hold properties, operations, and other containers. Each major ORB
component is represented as a container. The top-level container corresponds to the
ORB itself and includes a few ORB properties, the shutdown method, and a few other
commonly used containers like RootPOA and Agent.

The Container Interface

This section explains the C++ methods that can be executed on the container
interface. There are four categories:

– Methods related to property manipulation and queries

– Methods related to operations

– Methods related to children containers

– Methods related to storage

Methods related to property manipulation and queries

virtual CORBA::StringSequence* list_all_properties();

Returns the names of all the properties in the container as a StringSequence.

virtual PropertySequence* get_all_properties();

Returns the PropertySequence containing the names, values, and read-write status of
all the properties in the container.

140 VisiBroker C++ API Reference Guide

The Container Interface

virtual Property* get_property(const char * name);

Returns the value of the property name passed as an input parameter.

It throws NameInvalid exception if the parameter passed is not a valid property
name.

virtual void set_property(const char* name, CORBA::Any& value);

Sets the value of the property name to the requested value.

It throws NameInvalid, ValueInvalid or ValueNotSettable exception.

virtual void persist_properties(CORBA::Boolean recurse);

Causes the container to actually store its properties to the associated storage. If no
storage is associated with the container, a StorageException will be raised. When it is
invoked with the parameter recurse=true, the properties of the children containers
are also stored into the storage. It is up to the container to decide if it has to store all
the properties or only the changed properties.

It can throw StorageException exception.

virtual void restore_properties(CORBA::Boolean recurse);

Instructs the container to obtain its properties from the storage. A container knows
exactly what properties is manages and it attempts to read those properties from the
storage. The containers shipped with the ORB do not support restoring from the
storage. You must create containers that support this feature yourself.

It can throw StorageException exception.

Methods related to operations

virtual CORBA::StringSeqence* list_all_operations();

Returns the names of all the operations supported in the container.

Parameter Description

name The name of the
property.

Parameters Descriptions

name/td> The name of the property whose value is to
be set.

value The property value as Any type.

Parameter Description

recurse Indicates whether the sub-containers' persist_properties should be
called recursively.

Parameter Description

recurse Indicates whether the sub-containers' restore_properties should
be called recursively.

 8 : Server Manager Interfaces and Classes 141

The Container Interface

virtual OperationSequence* get_all_operations();

Returns all the operations along with the parameters and the type code of the
parameters so that the operation can be invoked with the appropriate parameters.

virtual Operation* get_operation(const char* name);

Returns the parameter information of the operation specified by name which can be
used to invoke the operation.

It can throw NameInvalid exception if the parameter specifies an operation which is
not supported.

CORBA::Any* do_operation(const Operation& op);

Invokes the method in the operation and returns the result.

It can throw NameInvalid, ValueInvalid or OperationFailed.

Methods related to children containers

virtual CORBA::StringSequence* list_all_containers();

Returns the names of all the children containers of the current container.

virtual NamedContainerSequence* get_all_containers();

Returns all the children containers.

virtual NamedContainer* get_container(const char * name) ;

Returns the child container identified by the name parameter.

If there is no child container with this name, a NameInvalid exception is raised.

virtual void add_container(const NamedContainer& container);

Adds the container as a child container of this container.

It can throw NameAlreadyPresent or ValueInvalid exceptions.

Parameter Description

name The name of the operation to get the parameter
information.

Parameter Description

op The operation which is to be performed on the
server.

Parameter Description

name The name of the container on which the children containers are to
be queried.

Parameter Description

containe
r

The name of the child container to be added into this
container.

142 VisiBroker C++ API Reference Guide

The Storage Interface

virtual void set_container (const char * name, Container_ptr value);

Modifies the child container identified by the name parameter to one in the value
parameter.

It can throw NameInvalid, ValueInvalid or ValueNotSettable exceptions.

Methods related to storage

virtual void set_storage(Storage_ptr s, CORBA::Boolean recurse);

Sets the storage of this container. If recurse=true, it also sets the storage for all its
children as well.

virtual Storage_ptr get_storage();

Returns the current storage of the container.

The Storage Interface
The Server Manager provides an abstract notion of storage that can be implemented in
any fashion. Individual containers may choose to store their properties in databases,
flat files, or some other means. The storage implementation included with the
VisiBroker ORB uses a flat-file-based approach.

Storage Interface Methods for C++

virtual void open();

Opens the storage and makes it ready for reading and writing the properties. For the
database-based implementation, logging into the database is performed in this
method.

It can throw StorageException if the storage could not be opened for any reasons.

virtual void close();

Closes the storage. This method also updates the storage with any properties that
have been changed since the last Container::persist_properties call. In database
implementations, this method closes the database connection.

It can throw StorageException if the closing fails for any reasons.

virtual Container::PropertySequence* read_properties();

Reads all the properties from the storage. It can throw StorageException if the
properties could not be read from the Storage.

Parameter Description

name The name of the container whose value is to be
replaced.

value The new child container.

Parameter Description

s The new storage to be set.
recurse Indicates whether to set the storage recursively for the children

containers.

 8 : Server Manager Interfaces and Classes 143

The Storage Inter face

virtual Container::Property* read_property(const char * propertyName);

Returns the property value for propertyName read from the storage.

It can throw StorageException or Container::NameInvalid.

virtual void write_properties(const Container::PropertySequence& p);

Saves the property sequence into the storage.

It can throw StorageException.

virtual void write_property(const Container::Property& p);

Saves the single property into the storage.

It can throw StorageException.

Parameter Description

propertyNa
me

The name of the property which is to be read from the Storage.

Parameter Description

p The sequence of properties which have been changed in the
session.

Parameter Description

p The property which is to be written to the persistent
storage.

144 VisiBroker C++ API Reference Guide

 9 : Transact ion Service interfaces and classes 145

Transaction Service interfaces and
classes
This section describes the following VisiBroker VisiTransact Transaction Service
modules, interfaces, and classes:

– CosTransactions and VISTransactions modules

– Current interface

– TransactionalObject interface

– TransactionFactory interface

– Control interface

– Terminator interface

– Coordinator interface

– RecoveryCoordinator interface

– Resource interface

– Synchronization interface

– VISTransactionService class

– VISSessionManager module

– ConnectionPool interface

– Connection interface

– The ITSDataConnection class

– Native handle acquisition interface

– Local transaction connection and completion interface

– Global transaction connection and completion interface

146 VisiBroker C++ API Reference Guide

CosTransact ions and VISTransact ions modules

CosTransactions and VISTransactions modules
This section introduces the CosTransactions and VisTransactions modules, and
describes the data types, structures, and exceptions for the CosTransactions module.

Looking at the CosTransactions module

The CosTransactions module is the Transaction Service IDL that conforms to the final
OMG Transaction Service document. This is the module to use to restrict yourself
strictly to CORBA-compliant methods. The IDL for this module is contained in the file
CosTransactions.idl.

You might also consider using the VISTransactions module, which contains the IDL for
some VisiBroker VisiTransact extensions to the standard. The IDL for the
VISTransactions module is contained in the file VISTransactions.idl. You can use
VISTransactions.idl in your code to obtain both the CosTransactions and
VISTransactions modules. For more information, see “Looking at the VISTransactions
module”.

Data types
The CosTransactions module defines the data types enum Status and enum Vote.

The definition for the enum Status data type is:

enum Status
{
 StatusActive,
 StatusMarkedRollback,
 StatusPrepared,
 StatusCommitted,
 StatusRolledBack,
 StatusUnknown,
 StatusNoTransaction
 StatusPreparing,
 StatusCommitting,
 StatusRollingBack,
};

For a description of each Status value, see “Status value definitions”.

The enum Vote data type is used only by implementations of the
CosTransactions::Resource interface. It is used to indicate the result of a Resource's
attempt to prepare a transaction.

The definition for the enum Vote data type is:

enum Vote
{
 VoteCommit,
 VoteRollback,
 VoteReadOnly
};

The Vote values are:

– VoteCommit. The Resource is able to write (or has already written) all the data needed
to commit the transaction to stable storage, as well as an indication that it has
prepared the transaction.

– VoteRollback. For any reason, the Resource could not vote to commit the transaction.
This includes not having any knowledge about the transaction (which might happen
after a crash).

 9: Transact ion Service inter faces and c lasses 147

CosTransact ions and VISTransact ions modules

– VoteReadOnly. No persistent data associated with the Resource has been modified by
the transaction.

Structures
The CosTransactions module defines these structures, which are used to save the
transaction context.

– otid_t contains an object transaction ID (or otid), which is a globally unique ID for a
transaction. The otid_t structure is a more efficient OMG IDL version of the X/Open-
defined transaction identifier (XID). The otid_t can be transformed to an X/Open XID
and vice versa.

– TransIdentity contains certain key information for a transaction: its Coordinator, its
Terminator (optionally), and its otid.

– PropagationContext contains a transaction's TransIdentity and its time-out. In
addition, it contains a TransIdentity for the parent and each ancestor transaction, up
to the top-level transaction, formatted as a sequence (or array). Because nested
transactions are not implemented in VisiTransact, every transaction is a top-level
transaction, and the parents sequence will always be empty.

For the most part, these structures are used behind the scenes; you won't reference
them directly.

struct otid_t
{
 long formatID;
 long bqual_length;
 sequence <octet> tid;
};
struct TransIdentity
{
 Coordinator coordinator;
 Terminator terminator;
 otid_t otid;
};
struct PropagationContext
{
 unsigned long timeout;
 TransIdentity current;
 sequence <TransIdentity> parents;
 any implementation_specific_data;
};

When the transaction context is passed from one object to another object, usually a
TransactionalObject, it is commonly passed as a PropagationContext. The
implementation_specific_data field is reserved for the VisiTransact Transaction
Service.

For the most part, these structures are used behind the scenes; you won't reference
them directly. Certain methods, however, work explicitly with PropagationContext.

– Coordinator::get_txcontext() extracts a PropagationContext.

– TransactionFactory::recreate() uses a PropagationContext to create a new Control
object.

The transaction context is always passed to a transactional object implicitly. In addition,
a program may be passed a transaction context explicitly, as a parameter. You can use
Coordinator::get_txcontext() to get the PropagationContext. For more information on
propagation of transaction context, see “TransactionalObject interface”.

Another method that obtains information from these structures is the
VISTransactions::Current::get_otid() method, which extracts the otid from the
PropagationContext.

148 VisiBroker C++ API Reference Guide

CosTransact ions and VISTransact ions modules

Exceptions
Exceptions are divided into three categories: Standard, Heuristic, and Method-specific.

Table 9.1

Exception When this exception is thrown ...

CORBA::INVALID_TRANSACTION The invoking thread has an invalid
transaction context.

CORBA::NO_PERMISSION The invoking thread does not have
permission to complete the transaction. For
example, only the transaction-originator
thread can call this method.

CORBA::TRANSACTION_REQUIRED The invoking thread does not have a
transaction context.

CORBA::TRANSACTION_ROLLEDBACK The transaction has been rolled back.
CORBA::WrongTransaction Raised by the ORB when returning the

response to a deferred synchronous
request. This exception is raised only if the
request was implicitly associated with a
different transaction than the thread
requesting the response through
Request::get_response() or
ORB::get_next_response(). See the VisiBroker
section on Dynamic Invocation Interface
(DII).

Table 9.2

Exception When this exception is thrown ...

CosTransactions::HeuristicCommit The rollback operation on a Resource
raises this exception to report that a
heuristic decision was made, and that all
relevant updates have been committed.

CosTransactions::HeuristicMixed A heuristic decision was made when
attempting to commit the transaction.
Some relevant updates have been
committed and others have been rolled
back.

CosTransactions::HeuristicHazard A heuristic decision may have been
made when attempting to commit the
transaction. The disposition of all
relevant updates is not known. For those
updates whose disposition is known,
either all have been committed or all
have been rolled back. (In other words,
the HeuristicMixed exception takes
priority over the HeuristicHazard
exception.)

CosTransactions::HeuristicRollback The commit operation on a Resource
raises this exception to report that a
heuristic decision was made and that all
relevant updates have been rolled back.

 9: Transact ion Service inter faces and c lasses 149

Current inter face

Looking at the VISTransactions module

Interfaces in the VISTransactions module inherit from and extend the CosTransactions
interfaces. The VISTransactions module defines no new data types, structures, or
exceptions over those in CosTransactions. For example, the Current interface includes
VisiBroker VisiTransact methods that make certain programming operations shorter
and more convenient. The IDL for this module is contained in the file
VISTransactions.idl.

For related information see “Choosing a Current interface” and “Obtaining a Current
object reference”.

Current interface
The Current interface defines methods to:

– Enable a program to manage transactions.

– Use implicit transaction propagation.

– Obtain information about the current transaction.

– Register Resources and Synchronization objects.

VisiBroker VisiTransact supports a number of extensions to the OMG Transaction
Service specification—additional methods for added convenience. VisiBroker
VisiTransact methods on the Current interface can simplify the use of the VisiTransact
Transaction Service for most programs. These methods are flagged by the icon
where described or cross-referenced.

Choosing a Current interface

The VisiTransact Transaction Service provides the Current interface in the following
IDL files:

Table 9.3

Exception When this exception is thrown

CosTransactions::Inactive The transaction has already been
prepared.

CosTransactions::InvalidControl The Control parameter passed to
resume is not valid in the current
execution environment.

CosTransactions::NotPrepared A commit has been issued but the
Resource has not been prepared.

CosTransactions::NoTransaction No transaction is associated with the
client thread.

CosTransactions::NotSubtransaction Not raised in VisiTransact.
CosTransactions::SubtransactionsUn
available

Because VisiBroker VisiTransact does
not support nested transactions, this
exception is raised if an attempt is
made to begin a transaction when a
transaction is already in progress for
this client thread.

CosTransactions::SynchronizationUn
available

Not raised in VisiTransact.

CosTransactions::Unavailable The requested object cannot be
provided. For example, the Control
object could not provide a Terminator.

150 VisiBroker C++ API Reference Guide

Current inter face

– CosTransactions.idl contains the Transaction Service IDL that conforms to the final
OMG Transaction Service document.

– VISTransactions.idl provides both the CosTransactions interface and the
VISTransactions interface, which inherits and extends the CosTransactions::Current
interface. This interface includes VisiBroker VisiTransact extensions such as
begin_with_name(), register_resource(), and others.

You should use one of these IDL files. To restrict yourself strictly to CORBA-compliant
methods, use the CosTransactions.idl. If you decide to use any of the VisiTransact
extensions, use VISTransactions.idl.

The following example shows the CosTransactions interface for Current.

ƒ
interface Current
{
 void begin()
 raises(SubtransactionsUnavailable);
 void commit(in boolean report_heuristics)
 raises (NoTransaction,
 HeuristicMixed,
 HeuristicHazard);
 void rollback()
 raises(NoTransaction);
 void rollback_only()
 raises(NoTransaction);
 Status get_status();
 string get_transaction_name();
 void set_timeout(in unsigned long seconds);
 Control get_control();
 Control suspend();
 void resume(in Control which)
 raises(InvalidControl);
};
ƒ

The next example shows the VISTransactions interface for Current.

interface Current : CosTransactions::Current
{
 void begin_with_name(in string user_transaction_name)
 raises(CosTransactions::SubtransactionsUnavailable);
 CosTransactions::RecoveryCoordinator
 register_resource(in CosTransactions::Resource resource)
 raises(CosTransactions::Inactive);
 void register_synchronization(in CosTransactions::Synchronization
synch)
 raises(CosTransactions::NoTransaction,
 CosTransactions::Inactive,
 CosTransactions::SynchronizationUnavailable
 CosTransactions::Unavailable);
 CosTransactions::otid_t get_otid();
 raises(CosTransactions::NoTransaction,
 CosTransactions::Unavailable);
 CosTransactions::PropagationContext get_txcontext()
 raises(CosTransactions::Unavailable,
 CosTransactions::NoTransaction);
 attribute string ots_name;
 attribute string ots_host;

 9: Transact ion Service inter faces and c lasses 151

Current inter face

 attribute string ots_factory;
};

Obtaining a Current object reference

To gain access to a VisiTransact-managed transaction, you must obtain an object
reference to the Current object. The Current object reference is valid throughout the
process.

The example below shows how a reference to the Current object is obtained using the
resolve_initial_references() method, and then how the object returned by that
method is narrowed to a CosTransactions::Current object.

int main(...)
{
 try
 {
 ƒ
 // ORB related initialization
 // get reference to a CosTransactions::Current instance
 CORBA::Object_var
 obj = orb->resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);
 ƒ
 }
 catch(...) { } // catch all exceptions or exceptions you care about,
}

VisiBroker VisiTransact offers extensions to the Current interface to simplify certain
operations. To take advantage of these extensions, narrow to a
VISTransactions::Current object.

VISTransactions::Current::_narrow(obj)

Using the Current object reference

The Current object reference is valid for the entire process under which you create it;
you can use it in any thread. You can either make multiple calls to obtain references to
the Current object or use just one reference throughout the entire process. Typically,
you would obtain one reference to avoid multiple invocations of
resolve_initial_references().

The C++ header files that you include must also correspond to your choice of
interfaces.

– For VISTransactions, use #include <VISTransactions_c.hh>.

– For CosTransactions, use #include <CosTransactions_c.hh>.

For more information, see the VisiTransact Guide.

Is your VisiTransact Transaction Service instance available?

You can issue begin() or begin_with_name() to determine if the instance of your
VisiTransact Transaction Service is available. The method will raise CORBA:NO_IMPLEMENT
exception if the instance is not available.

Calling get_status() when there is no available instance of the VisiTransact
Transaction Service will return the current transaction state, and cannot be used to
determine if the instance of the VisiTransact Transaction Service is available.

152 VisiBroker C++ API Reference Guide

Current inter face

Checked behavior

Checked behavior is supported by the VisiTransact Transaction Service to provide an
extra level of transaction integrity. Specifically, checked behavior is supported for
transactions originated with Current::begin(). The purpose of the checks is to ensure
that all transactional requests made by the application have completed their processing
before the transaction is committed. This guarantees that a commit will not succeed
unless all transactional objects involved in the transaction have completed the
processing of their transactional requests. For checks that are part of the commit
process, see commit(). For more information about checked behavior, see the
VisiTransact Guide.

Current methods

begin()
void begin()
raises SubtransactionsUnavailable;

This method creates a new transaction. Because nested transactions are not
supported in VisiBroker VisiTransact, this is always a top-level transaction.

The transaction context of the client thread is modified so that the thread is
associated with the new transaction. If the client thread is already associated with a
transaction, the SubtransactionsUnavailable exception is raised.

Included in the Current interface in CosTransactions.idl

The following exceptions may be raised when calling this method.

Related methods:

– begin_with_name()
– commit()
– get_terminator() in Control interface
– rollback()
– rollback_only()

For more information, see the VisiTransact Guide.

begin_with_name()

void begin_with_name(in string user_transaction_name)
raises(CosTransactions::SubtransactionsUnavailable);

This VisiBroker VisiTransact method is a begin() method that enables its caller to
pass a user-defined informational transaction name. For example, this helps with
diagnostics because the user-defined transaction name is included in the value
returned by the get_transaction_name() method. The name also helps with
administration, because the Console will report the name in the detailed information
about an outstanding transaction.

To use this method, narrow the object returned from resolve_initial_references()
to VISTransactions::Current. For more information, see “Obtaining a Current object
reference”.

Included in the Current interface in VISTransactions.idl

Exception When thrown

CosTransactions::SubtransactionsUnavailable Because VisiBroker VisiTransact does not
support nested transactions, this exception is
raised if a transaction is already in progress
for this client thread.

 9: Transact ion Service inter faces and c lasses 153

Current inter face

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– begin()
– commit()
– get_terminator() in Control interface
– rollback()
– rollback_only()

commit()

void commit(in boolean report_heuristics)
raises(NoTransaction,
 HeuristicMixed,
 HeuristicHazard
);

This method commits the transaction associated with the client thread. The effect of
this method is equivalent to calling the commit() method on the corresponding
Terminator object.

If this transaction has been marked for rollback, or any Resource votes for rollback,
this call raises CORBA::TRANSACTION_ROLLEDBACK. If there is no current transaction, a
CosTransactions::NoTransaction exception is raised. If the caller is not the
transaction originator, commit() raises the exception CORBA::NO_PERMISSION.

Checks are made to ensure checked behavior. See the VisiBroker VisiTransact
Guide for more information.

On return from this method, the client thread is no longer associated with a
transaction. Any attempt to use Current, as if there were a transaction, will raise an
exception, such as NoTransaction or CORBA::TRANSACTION_REQUIRED, or will return a null
object reference.

This method does not return until the transaction is complete, and all related
Synchronization objects have been notified.

Included in the Current interface in CosTransactions.idl

Table 9.4

Parameter Description

user_transaction_n
ame

This user-defined informational transaction name can be
used to trace transactions and debug programs.

Table 9.5

Exception When thrown

CosTransactions::SubtransactionsUnav
ailable

This exception is thrown if the thread
already has a transaction context.

154 VisiBroker C++ API Reference Guide

Current inter face

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– begin()
– begin_with_name()
– commit() in Terminator interface
– get_terminator() in Control interface
– resume()
– rollback()

For more information on the heuristic log, see the VisiTransact Guide.

get_control()

Control get_control();

This method returns a Control object reference that represents the transaction
context currently associated with the client thread.

If the client thread is not associated with a transaction, a null object reference is
returned.

Table 9.6

Parameter Description

in boolean
report_heuristics

true—Requests that the program be notified when
heuristic decisions are made.
false—Requests that the heuristic information is not
returned to the program.

Table 9.7

Exception When thrown

CosTransactions::NoTransact
ion

No transaction is associated with the client
thread.

CosTransactions::HeuristicM
ixed

A heuristic decision was made and
report_heuristics is true. Some relevant updates
have been committed and others have been
rolled back.

CosTransactions::HeuristicH
azard

A heuristic decision may have been made and
report_heuristics is true. The disposition of all
relevant updates is not known. For those
updates whose disposition is known, either all
have been committed or all have been rolled
back. If the known updates are a mixture of
commits and rollbacks, then the HeuristicMixed
exception is raised.

CORBA::NO_PERMISSION Only the transaction-originator thread can call
this method.

CORBA::OBJECT_NOT_EXIST It is unknown whether the transaction was
committed or rolled back because a different
thread or process could have terminated the
transaction already. For example, the
transaction has already timed out.

CORBA::TRANSACTION_ROLLEDBA
CK

The transaction was rolled back.

 9: Transact ion Service inter faces and c lasses 155

Current inter face

Caution

See the VisiBroker VisiTransact Guide for details on checked behavior and the
implications of using this method.

Included in the Current interface in CosTransactions.idl.

No user exceptions are raised.

Related methods:

– resume()
– suspend()

For related material, see “Control interface” and “Terminator interface”. For more
information see “VisiTransact basics” in the VisiTransact Guide.

get_otid()

CosTransactions::otid_t get_otid()
raises(CosTransactions::NoTransaction,
 CosTransactions::Unavailable);

Most applications will not normally call this method.

This VISTransactions::Current method provides the object transaction ID (otid)
through the Current interface as a convenience. This avoids going to the
Coordinator and looking through a PropagationContext. The otid is used to identify a
transaction to a recoverable object. This method raises
CosTransactions::NoTransaction if no transaction is associated with the client thread.

To use this method, narrow the object returned from resolve_initial_references()
to VISTransactions::Current. For more information, see “Obtaining a Current object
reference”.

Included in the Current interface in VISTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– get_txcontext()
– get_txcontext() in Coordinator interface
– get_control()

For related material, see “Coordinator interface” and “Terminator interface”.

get_status()

Status get_status();

This method returns an enumerated value (enum Status) that represents the status of
the transaction associated with the client thread.

Table 9.8

Exception When thrown

CosTransactions::NoTransaction No transaction is associated with the client
thread.

CosTransactions::Unavailable This exception is thrown if the VisiTransact
Transaction Service chooses to restrict the
availability of the PropagationContext.

156 VisiBroker C++ API Reference Guide

Current inter face

Calling this method is equivalent to calling the get_status() method on the
corresponding Coordinator object. If there is no transaction associated with the
current thread, then the method returns CosTransactions::StatusNoTransaction.

The possible return values are:

– StatusActive
– StatusMarkedRollback
– StatusPrepared
– StatusCommitted
– StatusRolledBack
– StatusUnknown
– StatusNoTransaction
– StatusPreparing
– StatusCommitting
– StatusRollingBack

Included in the Current interface in CosTransactions.idl.

No user exceptions are raised.

Status value definitions

Some implications of the enum Status values are:

– StatusActive—A transaction is associated with the target object and it is in the
active state. The VisiTransact Transaction Service returns this status after a
transaction has been started and prior to a Coordinator issuing any prepare
statements—unless the transaction has been marked for rollback or timed out.

– StatusMarkedRollback—A transaction is associated with the target object and has
been marked for rollback, perhaps as the result of the rollback_only() method.

– StatusPrepared—A transaction is associated with the target object and has been
prepared.

– StatusCommitted—A transaction is associated with the target object and has been
committed. It is likely that heuristics exist, otherwise the transaction would have
been quickly destroyed and StatusNoTransaction returned.

– StatusRolledBack—A transaction is associated with the target object and the
outcome has been determined as rollback. It is likely that heuristics exist,
otherwise the transaction would have been quickly destroyed and
StatusNoTransaction returned.

– StatusUnknown—A transaction is associated with the target object, but the
VisiTransact Transaction Service cannot determine its current status. This is a
transient condition, and a subsequent invocation will ultimately return a different
status.

– StatusNoTransaction—No transaction is currently associated with the target object.
This will occur after a transaction has completed.

– StatusPreparing—A transaction is associated with the target object and it is in the
process of preparing. The VisiTransact Transaction Service returns this status if
the transaction has started preparing, but has not yet completed the process—
perhaps because it is waiting for responses to prepare from one or more
Resources.

– StatusCommitting—A transaction is associated with the target object and is in the
process of committing. The VisiTransact Transaction Service returns this status if
the transaction has begun to commit, but has not yet completed the process—
perhaps because it is waiting for responses from one or more Resources.

– StatusRollingBack—A transaction is associated with the target object and it is in
the process of rolling back. The VisiTransact Transaction Service returns this
status if the transaction is being rolled back, but has not yet completed the

 9: Transact ion Service inter faces and c lasses 157

Current inter face

process—perhaps because it is waiting for responses from one or more
Resources.

Related methods:

– get_status() in Coordinator interface

get_transaction_name()

string get_transaction_name();

This method returns a printable string that is a descriptive name for the transaction.
This method is intended to assist in diagnostics and debugging. If the transaction
was created by the begin_with_name() method, the returned string is the user-
defined name assigned to the transaction, rather than the VisiTransact Transaction
Service-generated name.

The effect of this method is equivalent to calling the get_transaction_name() method
on the corresponding Coordinator object. If there is no transaction associated with
the client thread, an empty string is returned.

Included in the Current interface in CosTransactions.idl.

No user exceptions are raised.

Related methods:

– begin_with_name()
– create_with_name() in TransactionFactory interface
– get_transaction_name() in Coordinator interface

get_txcontext()

CosTransactions::PropagationContext get_txcontext()
raises(CosTransactions::Unavailable,
 CosTransactions::NoTransaction);

Most applications will not normally call this method.

This VISTransactions::Current method returns a PropagationContext, which can be
used by one VisiTransact Transaction Service domain to export a transaction to a
new VisiTransact Transaction Service domain.

To use this method, narrow the object returned from resolve_initial_references()
to VISTransactions::Current. For more information, see “Obtaining a Current object
reference”.

Included in the Current interface in VISTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– get_txcontext() in Coordinator interface
– Coordinator interface

Table 9.9

Exception When thrown

CosTransactions::Unavailable This exception is thrown if the VisiTransact
Transaction Service chooses to restrict the
availability of the PropagationContext.

CosTransactions::NoTransaction No transaction is associated with the client
thread.

158 VisiBroker C++ API Reference Guide

Current inter face

For related material, see “Coordinator interface” and “Terminator interface”.

ots_factory

attribute string ots_factory;

If you are using VISTransactions.idl, you can control the instance of the
VisiTransact Transaction Service used to create a transaction by setting this
attribute before you call VISTransactions::Current::begin(). Subsequent calls to the
begin() method create transactions on the specified VisiTransact Transaction
Service. This attribute applies to all the threads in your program. When the attribute
is set, it retains its value until set again.

This attribute specifies the VisiTransact Transaction Service instance by IOR.
VisiTransact uses the specified IOR (CosTransactions::TransactionFactory) to locate
the desired instance of a VisiTransact Transaction Service instance on the network.
This argument enables VisiTransact to operate without the use of a Smart Agent
(osagent).

If you specify the IOR with either the Host Name or VisiTransact Transaction
Service Name attributes, the Smart Agent will find the VisiTransact Transaction
Service instance by IOR only—it ignores the other attributes. If you leave all three
attributes null, the ORB chooses a VisiTransact Transaction Service instance using
the VisiBroker Smart Agent.

Included in the Current interface in VISTransactions.idl.

To set this attribute, use the appropriate method generated automatically for the
language you are using.

Related attributes:

– ots_host
– ots_name

For more information, see the VisiBroker VisiTransact Guide.

ots_host

attribute string ots_host;

If you are using VISTransactions.idl, you can control the instance of the
VisiTransact Transaction Service used to create a transaction by setting this
attribute before you call VISTransactions::Current::begin(). Subsequent calls to the
begin() method create transactions on the specified VisiTransact Transaction
Service. This attribute applies to all the threads in your program. When the attribute
is set, it retains its value until set again. To return this attribute to the default
VisiTransact instance, set it to an empty or null string.

This attribute specifies the VisiTransact Transaction Service instance by host name.
The Smart Agent will find any available VisiTransact Transaction Service instance
that is located on the specified host.

If you specify a combination of Host Name and VisiTransact Transaction Service
Name attributes, the Smart Agent will find the named VisiTransact Transaction
Service instance on the named host. If you leave all three attributes null, the ORB
chooses a VisiTransact Transaction Service instance using the VisiBroker Smart
Agent.

Included in the Current interface in VISTransactions.idl.

To set this attribute, use the appropriate method generated automatically for the
language you are using.

Related attributes:

 9: Transact ion Service inter faces and c lasses 159

Current inter face

– ots_factory
– ots_name

For more information, see the VisiBroker VisiTransact Guide.

ots_name

attribute string ots_name;

If you are using VISTransactions.idl, you can control the instance of the
VisiTransact Transaction Service used to create a transaction by setting this
attribute before you call VISTransactions::Current::begin(). Subsequent calls to the
begin() method create transactions on the specified VisiTransact Transaction
Service. This attribute applies to all the threads in your program. When the attribute
is set, it retains its value until set again. To return this attribute to the default
VisiTransact instance, set it to an empty or null string.

This attribute specifies the VisiTransact Transaction Service instance by name. The
Smart Agent will find the named VisiTransact Transaction Service instance
anywhere on the network.

If you specify a combination of Host Name and VisiTransact Transaction Service
Name attributes, the Smart Agent will find the named VisiTransact Transaction
Service instance on the named host. If you leave all three attributes null, the ORB
chooses a VisiTransact Transaction Service instance using the VisiBroker Smart
Agent.

Included in the Current interface in VISTransactions.idl.

To set this attribute, use the appropriate method generated automatically for the
language you are using.

Related attributes:

– ots_factory
– ots_host

For more information, see the VisiBroker VisiTransact Guide.

register_resource()

CosTransactions::RecoveryCoordinator
 register_resource(in CosTransactions::Resource resource)
raises(CosTransactions::Inactive);

Most applications will not normally call this method.

This VISTransactions::Current method registers a Resource for a recoverable
object. This method is a shortcut for using the Control and Coordinator objects to
register a Resource for a recoverable object. It returns a Recovery Coordinator
object that can be used to help coordinate recovery. If this method is invoked when
there is no transaction associated with the client thread, the
CORBA::TRANSACTION_REQUIRED exception is thrown.

To use this method, narrow the object returned from resolve_initial_references()
to VISTransactions::Current. For more information, see “Obtaining a Current object
reference”.

Included in the Current interface in VISTransactions.idl.

160 VisiBroker C++ API Reference Guide

Current inter face

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– register_resource() in Coordinator interface
– get_control()

For related material, see “Coordinator interface”.

register_synchronization()

void register_synchronization(in CosTransactions::Synchronization synch)
raises(CosTransactions::NoTransaction,
 CosTransactions::Inactive,
 CosTransactions::SynchronizationUnavailable
 CosTransactions::Unavailable);

This VISTransactions::Current method registers a Synchronization object. This
method is a short-cut for using the Control and Coordinator object to register a
Synchronization object. To use this method, narrow the object returned from
resolve_initial_references() to VISTransactions::Current. For more information,
see “Obtaining a Current object reference”.

Included in the Current interface in VISTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Table 9.10

Parameter Description

in CosTransactions::Resource
resource

The Resource object for the recoverable
object.

Table 9.11

Exception When thrown

CosTransactions::Inactive The transaction has already been prepared.
CORBA::TRANSACTION_ROLLED
BACK

The transaction has been marked for rollback.

Parameter Description

in CosTransactions::Synchronization
synch

The Synchronization object to
register.

Table 9.12

Exception When thrown

CosTransactions::NoTransaction No transaction is associated with the
client thread.

CosTransactions::Inactive The transaction has already been
prepared.

 9: Transact ion Service inter faces and c lasses 161

Current inter face

Related methods:

– register_synchronization() in Coordinator interface

For more information, see the VisiTransact Guide.

resume()

void resume(in Control which)
raises(InvalidControl);

Associates the client thread with the specified transaction. Typically, this is used to
either

– Associate a transaction context with a thread for use in implicit transaction
propagation, or

– Resume a transaction that was previously suspended by a suspend() method.

The client thread becomes associated with the specified transaction. If the client
thread was already associated with a transaction, the previous transaction context is
forgotten. If resume() is invoked with a NULL control, no transaction is associated
with the current thread, and the transaction context is forgotten.

Caution

Any transaction context you set via resume() is propagated back to the invoking
object.

Included in the Current interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– get_control()
– suspend()

For more information, see the VisiBroker VisiTransact Guide.

CosTransactions::SynchronizationUnav
ailable

This exception is not raised by
VisiBroker VisiTransact.

CosTransactions::Unavailable Raised if the VisiTransact Transaction
Service restricts the availability of the
PropagationContext.

Table 9.13

Parameter Description

in Control which A Control object used to set the thread's transaction
context.

Table 9.14

Exception When thrown

CosTransactions::InvalidControl The Control parameter passed to resume is
not valid in the current execution
environment.

Table 9.12

Exception When thrown

162 VisiBroker C++ API Reference Guide

Current inter face

rollback()

void rollback()
raises(NoTransaction);

Rolls back the transaction associated with the client thread. This is equivalent to
calling the rollback() method on the corresponding Terminator object. This method
does not return until the transaction is complete, and all related Synchronization
objects have been notified. On return from this method, the client thread is no longer
associated with a transaction. Any attempt to use Current, as if there were a
transaction, will raise an exception, such as CosTransactions::NoTransaction or
CORBA::TRANSACTION_REQUIRED, or return a null object reference. If a heuristic occurs,
this method will not throw a heuristic-related exception.

If the caller is not the transaction originator, rollback() raises the exception
CORBA::NO_PERMISSION.

Included in the Current interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– commit()
– rollback() in Terminator interface
– rollback_only()

For more information, see the VisiBroker VisiTransact Guide.

rollback_only()

void rollback_only()
raises(NoTransaction);

The method modifies the transaction associated with the client thread so that
rollback is the only possible transaction outcome. The effect of this request is
equivalent to calling the rollback_only() method on the corresponding Coordinator
object. A client that is restricted from performing the rollback() operation, can
nonetheless call rollback_only().

Included in the Current interface in CosTransactions.idl.

Exceptions

The following exceptions may be raised when calling this method.

Related methods:

Exception When thrown

CosTransactions::NoTransaction No transaction is associated with the current
client thread.

CORBA::NO_PERMISSION Only the transaction-originator thread can call
this method.

CORBA::OBJECT_NOT_EXIST It is unknown whether the transaction was
committed or rolled back because a different
thread or process could have terminated the
transaction already. For example, the
transaction has already timed out.

Exception When thrown

CosTransactions::NoTransaction No transaction is associated with the current
client thread.

 9: Transact ion Service inter faces and c lasses 163

Current inter face

– rollback()
– rollback_only() of Coordinator interface

For more information, see the VisiBroker VisiTransact Guide.

set_timeout()

void set_timeout(in unsigned long seconds);

This method establishes a new timeout for transactions started by subsequent calls
to the Current::begin() method in all threads within this program.

To establish a new timeout, use these values of the seconds parameter:

– = 0—Sets any subsequent transaction that is begun to the default transaction
timeout for the VisiTransact Transaction Service instance that it uses.

– > 0—Sets the new timeout to the specified number of seconds. If the seconds
parameter exceeds the maximum timeout valid for a VisiTransact Transaction
Service instance being used, then the new timeout is set to that maximum, to
bring it in range.

Note

When a transaction, created by a subsequent call to begin() in any thread in the
process, takes longer to start transaction completion than the established timeout, it
will be rolled back. If the timeout occurs before the transaction enters the completion
stage (begins two-phase or one-phase processing) the transaction will be rolled
back. Otherwise, the timeout is ignored.

Included in the Current interface in CosTransactions.idl.

The following parameters are used by this method.

No user exceptions are raised.

Related methods:

For other methods that affect transaction timeout, see:

– create() in TransactionFactory interface
– create_with_name() in TransactionFactory interface

For more information see the description of set_timeout() in the VisiTransact Guide.

suspend()

Control suspend();

This method suspends the transaction currently associated with the client thread
and returns a Control object for that transaction. If the client thread is not associated
with a transaction, a null object reference is returned.

The Control object can be passed to the resume() method to reestablish this context
in the same thread or a different thread.

After the call to suspend(), no transaction is associated with the client thread. Any
attempt to use Current, as if there were a transaction, will raise an exception, such
as CosTransactions::NoTransaction or CORBA::TRANSACTION_REQUIRED, or return a null
object reference.

Included in the Current interface in CosTransactions.idl.

Parameter Description

in unsigned long seconds Numbers of seconds before timeout will occur on
subsequent begin() operations.

164 VisiBroker C++ API Reference Guide

Transact ionalObject interface

No user exceptions are raised.

Related methods:

– get_control()
– resume()

TransactionalObject interface
The TransactionalObject interface provides for the automatic propagation of
transaction context on method calls of transactional objects. The TransactionalObject
interface defines no methods.

Methods that work on transactions must have access to the transaction context. The
transaction context can be made available to such methods in two ways:

– Explicit propagation. A method receives and passes the transaction context as a
Terminator, Control, Coordinator, or PropagationContext structure. For further
information, see the VisiBroker VisiTransact Guide.

– Implicit propagation. The transaction context is passed automatically (and
implicitly) on method calls. For further information, see the VisiBroker VisiTransact
Guide.

Implicit propagation is the typical, and easiest, way. This is the capability that the
TransactionalObject interface provides to your transactional objects.

For information about the details of what information is in the transaction context, see
“Structures”.

An instance of TransactionalObject can participate in implicit propagation. Implicit
propagation is where the transaction context associated with the client thread is
automatically propagated to TransactionalObject instances through method calls.

To use VisiTransact-managed transactions, all of your transactional objects must
inherit from TransactionalObject. By using VisiTransact-managed transactions, you
benefit from checked behavior.

The following example shows the TransactionalObject interface in the
CosTransactions.idl file.

interface TransactionalObject
{
};

The transaction context is always passed implicitly to an object that inherits from
CosTransactions::TransactionalObject. In addition, a program may be passed a
transaction context explicitly, as a parameter.

TransactionFactory interface
As described in “Current interface” the Current interface enables a program to initiate
VisiTransact-managed transactions. This section, by contrast, describes the
TransactionFactory interface, which defines methods that enable a program to initiate
non-VisiTransact-managed transactions. The TransactionFactory interface gives
programs direct control over the propagation of transaction context.

In the CosTransactions module, the TransactionFactory interface provides three
methods:

– create()—Begins a transaction.

– create_with_name()—Available if you are using the VISTransactions IDL interface
(with the VisiBroker VisiTransact extensions).

– recreate()—Creates a new representation of a transaction.

For further information about using different IDL files, see “Choosing a Current
interface”.

 9: Transact ion Service inter faces and c lasses 165

Transact ionFactory interface

Note

You acquire a TransactionFactory object the way you do any CORBA object; for
example, by binding.

Methods that are VisiBroker VisiTransact extensions are flagged by the icon where
described or cross-referenced.

The following example shows the CosTransactions IDL for TransactionFactory.

ƒ
interface TransactionFactory
{
 Control create(in unsigned long time_out);
 Control recreate(in PropagationContext ctx);
};
ƒ

The next example shows the VISTransactions IDL for TransactionFactory.

ƒ
interface TransactionFactory : CosTransactions::TransactionFactory
{
 CosTransactions::Control
 create_with_name(in unsigned long time_out,
 in string user_transaction_name);
};...
ƒ

TransactionFactory methods

create()

CosTransactions::Control create(in unsigned long time_out);

This method accepts a timeout parameter (time_out) and creates a new transaction.
It returns a Control object. The Control object can be used to manage or to control
participation in the new transaction. The Control object can be used by any thread
and passed around explicitly, just like any other CORBA object.

Note

Checked behavior cannot be provided for transactions that use this method.

Included in the TransactionFactory interface in CosTransactions.idl.

The following parameters are used by this method.

To establish a new timeout, use the following values of the time_out parameter.

– = 0—Sets any subsequent transaction that is begun to the default transaction
timeout for the VisiTransact Transaction Service instance that it uses.

– > 0—Sets the new timeout to the specified number of seconds. If the seconds
parameter exceeds the maximum timeout valid for a VisiTransact Transaction
Service instance being used, then the new timeout is set to that maximum.

Parameter Description

in unsigned long time_out A timeout, in seconds, that applies to this
invocation only.

166 VisiBroker C++ API Reference Guide

Transact ionFactory inter face

Note

If a transaction does not start transaction completion (begin two-phase or one-
phase processing) before the timeout expires, it will be rolled back.

The new timeout applies only to the transaction created on this call.

See the description of set_timeout() in the VisiBroker VisiTransact Guide.

No user exceptions are raised.

Related methods:

– create_with_name()
– get_terminator() in Control interface
– get_coordinator() in Control interface

create_with_name()

CosTransactions::Control
create_with_name(in unsigned long time_out,
 in string user_transaction_name);

This VISTransactions method extends the CosTransactions::TransactionFactory::
create() method by enabling you to create a new transaction and assign it an
informational transaction name that can be used for debugging and error reporting.
The user-defined transaction name is included in the value returned by
get_transaction_name().

Note

Checked behavior cannot be provided for transactions that use this method.

This method returns a Control object. The Control object can be used to manage or
to control participation in the new transaction. The Control object can be used by
any thread and passed around explicitly, just like any other CORBA object.

Included in the TransactionFactory interface in VISTransactions.idl.

The following parameters are used by this method.

To establish a new timeout, use these values of the time_out parameter:

– = 0—Sets any subsequent transaction that is begun to the default transaction
timeout for the VisiTransact Transaction Service instance that it uses.

– > 0—Sets the new timeout to the specified number of seconds. If the seconds
parameter exceeds the maximum timeout valid for VisiTransact Transaction
Service instance being used, then the new timeout is set to that maximum.

Note

If a transaction does not start transaction completion (begin two-phase or one-
phase processing) before the timeout expires, it will be rolled back.

The new timeout applies only to the transaction created on this call.

See the description of set_timeout() in the VisiBroker VisiTransact Guide.

No user exceptions are raised.

Parameter Description

in unsigned long time_out A timeout, in seconds, for this transaction.
in string
user_transaction_name

This user-defined informational transaction name
can be used to trace transactions and debug
applications.

 9: Transact ion Service inter faces and c lasses 167

Contro l inter face

Related methods:

– create()
– get_terminator() in Control interface
– get_coordinator() in Control interface

For more information, see the VisiBroker VisiTransact Guide.

recreate()

Control recreate(in PropagationContext context);

Most applications will not normally call this method.

This method creates a new Control object using its PropagationContext parameter.
The Control object can be used to manage or to control participation in the
transaction.

To get a transaction's PropagationContext, invoke the get_txcontext() method on the
transaction's Coordinator object.

Included in the TransactionFactory interface in CosTransactions.idl.

The following parameters are used by this method.

No user exceptions are raised.

The following example shows the way get_txcontext() and recreate() work together
to recreate a transaction.

ƒ
CosTransactions::Coordinator_var coord;
CosTransactions::TransactionFactory_var newDomainFactory;
ƒ
propxtxt = coord->get_txcontext();
CosTransactions::Control_var control = newDomainFactory->recreate(propctxt);
ƒ

Related methods:

– get_txcontext() in Current interface
– get_txcontext() in Coordinator interface

Control interface
The Control interface enables a program to explicitly manage or propagate a
transaction context. A Control object is implicitly associated with one specific
transaction.

The Control interface defines two methods:

– get_coordinator()

– get_terminator()

The get_coordinator() method returns a Coordinator object, which supports methods
used by participants in the transaction. The get_terminator() method returns a
Terminator object, which supports methods to complete the transaction. The
Terminator and Coordinator objects support methods that are typically performed by
different parties. Providing two objects enables each set of methods to be made
available only to the parties that require those methods.

Parameter Description

in PropagationContext context Context of the transaction to import.

168 VisiBroker C++ API Reference Guide

Contro l inter face

The example below contains the IDL for the Control interface, an excerpt from the
CosTransactions.idl file.

ƒ
interface Control
{
 Terminator get_terminator()
 raises(Unavailable);
 Coordinator get_coordinator()
 raises(Unavailable);
};
ƒ

You can obtain a Control object by using one of the methods of the TransactionFactory.
See “TransactionFactory interface”. You can also obtain a Control object for the current
transaction (associated with a thread) through methods of the Current object. See
get_control() or suspend() in Current interface.

Control methods

get_coordinator()

Coordinator get_coordinator()
raises(Unavailable);

This method returns a Coordinator object. The Coordinator provides methods that
are called by participants in a transaction. These participants are typically either
recoverable objects or agents of recoverable objects.

Included in the Control interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– get_control() in Current interface

For more information, see “Coordinator interface” for details on methods you can
use once you obtain the Coordinator object.

get_terminator()

Terminator get_terminator()
raises(Unavailable);

This method returns a Terminator object. The Terminator can be used to rollback or
commit the transaction associated with the Control. The Unavailable exception is
raised if the Control cannot provide the requested object due to the inability of the
Terminator object to be transmitted to or be used in other execution environments.

Included in the Control interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Exception When thrown

CosTransactions::Unavailable The Control object cannot provide the
requested Coordinator object.

Exception When thrown

CosTransactions::Unavailable The Control object cannot provide the
requested Terminator object.

 9: Transact ion Service inter faces and c lasses 169

Terminator interface

Related methods:

– get_control() in Current interface
– get_coordinator()

For more information, see the VisiBroker VisiTransact Guide.

Terminator interface
The Terminator interface supports methods to commit or rollback a transaction.
Typically, these methods are used by the transaction originator, but any program that
has access to a Terminator object for that transaction can commit or rollback the
transaction.

The following example contains the IDL for the Terminator interface, an excerpt from
the CosTransactions.idl file.

ƒ
interface Terminator
{
 void commit(in boolean report_heuristics)
 raises (HeuristicMixed,
 HeuristicHazard);
 void rollback();
};
ƒ

Terminator methods

commit()

void commit(in boolean report_heuristics)
raises(HeuristicMixed,
 HeuristicHazard);

Before committing the transaction, this method performs some checks. If the
transaction has not been marked rollback only, and all of the participants in the
transaction agree to commit, the transaction is committed and the operation
terminates normally. Otherwise, the transaction is rolled back and the
CORBA::TRANSACTION_ROLLEDBACK standard exception is raised.

If the report_heuristics parameter is true, the VisiTransact Transaction Service will
report inconsistent or possibly inconsistent outcomes using the
CosTransactions::HeuristicMixed and CosTransactions::HeuristicHazard exceptions
when appropriate. Information about the Resources involved in a heuristic outcome
will be written to a heuristic log file corresponding to the instance of the VisiTransact
Transaction Service. For more information on heuristics, see the VisiTransact
Guide.

When a transaction is committed, all changes to recoverable objects made in the
scope of this transaction are made permanent and visible to other transactions or
clients.

Included in the Terminator interface in CosTransactions.idl.

170 VisiBroker C++ API Reference Guide

Terminator inter face

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

The example below shows how to use the commit() method with and without
heuristics.

// Using commit() without heuristics.
try
{
 terminator->commit(0);
}
catch(CORBA::TRANSACTION_ROLLEDBACK&)
{
 cerr << "Transaction failed" << endl;
}
ƒ
// Using commit() with heuristics.
try
{
 terminator->commit(1);
}
catch(CORBA::TRANSACTION_ROLLEDBACK&)
{
 cerr << "Transaction failed" << endl;
}
catch(CosTransactions::HeuristicMixed&)
{
 cerr << "HeuristicMixed exception was raised" << endl;
}
catch(CosTransactions::HeuristicHazard&)

Parameter Description

report_heuristics true—Requests that the HeuristicMixed or
HeuristicHazard exceptions be raised, when appropriate.
false—Requests that the heuristic information is not
returned to the program.

Exception When thrown

CosTransactions::HeuristicMixed A heuristic decision was made. Some
relevant updates have been committed,
and others have been rolled back.

CosTransactions::HeuristicHazard A heuristic decision may have been
made, the disposition of all relevant
updates is not known. For those updates
whose disposition is known, either all
have been committed or all have been
rolled back. If the known updates are a
mixture of commits and rollbacks, then the
HeuristicMixed exception is raised.

CORBA::TRANSACTION_ROLLEDBACK The transaction has been marked for
rollback.

CORBA::OBJECT_NOT_EXIST It is unknown whether the transaction was
committed or rolled back because a
different thread or process could have
terminated the transaction already. For
example, the transaction has already
timed out.

 9: Transact ion Service inter faces and c lasses 171

Coordinator interface

{
 cerr << "HeuristicHazard exception was raised" << endl;
}
catch(CORBA::OBJECT_NOT_EXIST&)
{
 cerr << "Transaction no longer exists" << endl;
}

Related methods:

– commit() in Current interface
– rollback()

For more information, see the VisiBroker VisiTransact Guide.

rollback()

void rollback();

This method rolls back the transaction. When a transaction is rolled back, all
changes to recoverable objects made in the scope of this transaction are rolled
back. All Resources locked by the transaction are made available to other
transactions as appropriate to the degree of isolation enforced by the Resources.

This method does not return until the transaction is complete and all related
Synchronization objects have been notified. Any heuristic outcome that may occur
will be provided through the Console.

Included in the Terminator interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– commit()
– rollback() in Current interface
– rollback_only() in Coordinator interface

For more information, see the VisiTransact Guide.

Coordinator interface
The Coordinator interface provides methods that are used by participants in a
transaction. These participants are typically either recoverable objects or agents of
recoverable objects. Each Coordinator is implicitly associated with a single transaction.

The following example shows the CosTransactions IDL for the Coordinator interface.

ƒ
interface Coordinator
{
 Status get_status();
 Status get_parent_status();

Exception When thrown

CORBA::NO_PERMISSION Only the transaction-originator thread can call this
method.

CORBA::OBJECT_NOT_EXIST It is unknown whether the transaction was
committed or rolled back because a different
thread or process could have terminated the
transaction already. For example, the transaction
has already timed out.

172 VisiBroker C++ API Reference Guide

Coordinator interface

 Status get_top_level_status();

 boolean is_same_transaction(in Coordinator coord);
 boolean is_related_transaction(in Coordinator coord);
 boolean is_ancestor_transaction(in Coordinator coord);
 boolean is_descendant_transaction(in Coordinator coord);
 boolean is_top_level_transaction();

 unsigned long hash_transaction();
 unsigned long hash_top_level_tran();

 RecoveryCoordinator register_resource(in Resource resource)
 raises(Inactive);

 void register_synchronization(in Synchronization synch)
 raises(Inactive, SynchronizationUnavailable);

 void register_subtran_aware(in SubtransactionAwareResource resource)
 raises(Inactive, NotSubtransaction);

 void rollback_only()
 raises(Inactive);

 string get_transaction_name();

 Control create_subtransaction()
 raises(SubtransactionsUnavailable, Inactive);

 PropagationContext get_txcontext()
 raises(Unavailable);
};

Because VisiTransact does not support nested transactions, several of the Coordinator
methods have become equivalent—that is, they return the same result. More
information is provided later in the section with the method descriptions.

The following methods are equivalent:

– get_status()
– get_top_level_status()
– get_parent_status()

Similarly, certain methods return true only when the target object and the parameter
refer to the same Coordinator object. Therefore, the following methods are also
equivalent:

– is_same_transaction()
– is_related_transaction()
– is_ancestor_transaction()
– is_descendant_transaction()

And, the following methods are equivalent:

– hash_transaction()
– hash_top_level_tran()

Finally, without nested transactions, the create_subtransaction() method is not useful
and is therefore excluded from this version of VisiTransact (and this documentation),
although it is described in the OMG specification.

 9: Transact ion Service inter faces and c lasses 173

Coordinator interface

Coordinator methods

get_parent_status()

Status get_parent_status();

Because VisiTransact does not support nested transactions, every transaction is
top-level, and get_parent_status() of a top-level transaction is equivalent to
get_status(), by OMG definition. For further information, see get_status().

Included in the Coordinator interface in CosTransactions.idl.

Related methods:

– get_status()

get_status()

Status get_status();

This method returns the status of the transaction associated with the target object,
as an enumerated value (enum Status). If there is no transaction associated with the
target object, then the method returns the value StatusNoTransaction.

The following are the possible return values, as defined in CosTransactions.idl:

– StatusActive
– StatusMarkedRollback
– StatusPrepared
– StatusCommitted
– StatusRolledBack
– StatusUnknown
– StatusNoTransaction
– StatusPreparing
– StatusCommitting
– StatusRollingBack

For information about each Status value, see “Status value definitions”.

Included in the Coordinator interface in CosTransactions.idl.

Related methods:

– get_parent_status()
– get_status() in Current interface
– get_top_level_status()

For more information, see the VisiTransact Guide.

get_top_level_status()

Status get_top_level_status();

Because VisiTransact does not support nested transactions, every transaction is
top-level. Therefore, this method is equivalent to the get_status() method. See
get_status().

Included in the Coordinator interface in CosTransactions.idl.

Related methods:

– get_status()

174 VisiBroker C++ API Reference Guide

Coordinator interface

get_transaction_name()

string get_transaction_name();

This method returns a printable string that is a descriptive name for the transaction.
This method is intended to assist with diagnostics and debugging. If the transaction
was created by the VISTransactions::TransactionFactory::create_with_name()
method, the return string is the user-defined descriptive transaction name rather
than the VisiTransact Transaction Service-generated name. If there is no
transaction associated with the client thread, an empty string is returned.

Included in the Coordinator interface in CosTransactions.idl.

Related methods:

– begin_with_name() in Current interface
– create_with_name() in TransactionFactory interface
– get_transaction_name() in Current interface

For more information, see the VisiTransact Guide.

get_txcontext()L

PropagationContext get_txcontext()
raises(Unavailable);

Most applications will not normally call this method.

The get_txcontext() method returns a PropagationContext, which can be used by
one VisiTransact Transaction Service domain to export a transaction to a new
VisiTransact Transaction Service domain.

Included in the Coordinator interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– get_control() in Current interface
– create_with_name() in TransactionFactory interface
– recreate() in TransactionFactory interface

hash_top_level_tran()

unsigned long hash_top_level_tran();

Most applications will not normally call this method.

Because VisiTransact does not support nested transactions, every transaction is a
top-level transaction. Therefore, this method is equivalent to the hash_transaction()
method.

This method returns a hash code for the transaction associated with the target
object. Each transaction has a single hash code. The hash code can be used to
efficiently compare Coordinators for inequality against the hash codes of other
transactions. If the hash codes of two Coordinators are not equal, then they
represent different transactions. If two hash codes are equal, then
Coordinator::is_same_transaction() must be used to guarantee equality or

Exception When thrown

CosTransactions::Unavai
lable

The VisiTransact Transaction Service restricts the
availability of the PropagationContext.

 9: Transact ion Service inter faces and c lasses 175

Coordinator interface

inequality, because two Coordinators might have the same hash code but, in fact,
represent two different transactions.

Included in the Coordinator interface in CosTransactions.idl.

Related methods:

– hash_transaction()

For more information, see the VisiTransact Guide.

hash_transaction()

unsigned long hash_transaction();

Most applications will not normally call this method.

This method returns a hash code for the transaction associated with the target
object. Each transaction has a single hash code. The hash code can be used to
efficiently compare Coordinators for inequality against the hash codes of other
transactions. If the hash codes of two Coordinators are not equal, then they
represent different transactions. If two hash codes are equal, then
Coordinator::is_same_transaction() must be used to guarantee equality or
inequality, because two Coordinators might have the same hash code but, in fact,
represent two different transactions.

Included in the Coordinator interface in CosTransactions.idl.

The example below shows a method that uses hash_transaction() to efficiently
reject unequal Coordinators.

CORBA::Boolean are_same(Coord1, Coord2)
{
 CORBA::ULong hash1 = Coord1->hash_transaction();
 CORBA::ULong hash2 = Coord2->hash_transaction();
 if(hash1 != hash2)
 {
 return 0;
 }
 else
 {
 return Coord1->is_same_transaction(Coord2);
 }
}

Related methods:

– hash_top_level_tran()
– is_same_transaction()

For more information, see the VisiTransact Guide.

is_ancestor_transaction()

boolean is_ancestor_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method returns
true if, and only if, the target object and the parameter object refer to the same
transaction.

Included in the Coordinator interface in CosTransactions.idl.

176 VisiBroker C++ API Reference Guide

Coordinator interface

The following parameters are used by this method.

Related methods:

– is_same_transaction()

is_descendant_transaction()

boolean is_descendant_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method returns
true if, and only if, the target object and the parameter object refer to the same
transaction.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

Related methods:

– is_same_transaction()

is_related_transaction()

boolean is_related_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method returns
true if, and only if, the target object and the parameter object refer to the same
transaction.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

Related methods:

– is_same_transaction()

is_same_transaction()

boolean is_same_transaction(in Coordinator coord);

This method returns true if, and only if, the target object and the parameter object
both refer to the same transaction.

Included in the Coordinator interface in CosTransactions.idl.

Parameter Description

coord The Coordinator with which the target Coordinator is compared.

Parameter Description

coord The Coordinator with which the target Coordinator is compared.

Parameter Description

coord The Coordinator with which the target Coordinator is
compared.

 9: Transact ion Service inter faces and c lasses 177

Coordinator interface

The following parameters are used by this method.

For more information, see the VisiTransact Guide.

is_top_level_transaction()

boolean is_top_level_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method always
returns true.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

For more information, see the VisiTransact Guide.

register_resource()

RecoveryCoordinator register_resource(in Resource resource)
raises(Inactive);

This method registers the specified Resource as a participant in the transaction
associated with the target object. When the transaction is terminated, the Resource
will receive requests to prepare, commit, or rollback the updates performed as part
of the transaction. For information on Resource methods, see “Resource interface”.

This method returns a RecoveryCoordinator that can be used by this Resource
during recovery.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– register_resource() in Current interface

For more information, see “RecoveryCoordinator interface” and “Resource
interface”.

Parameter Description

coord The Coordinator with which the target Coordinator is
compared.

Parameter Description

coord The Coordinator with which the target Coordinator is compared.

Parameter Description

resource The Resource object to register.

Exception When thrown

CosTransactions::Inactiv
e

This exception is thrown if the transaction has
already been prepared.

CORBA::TRANSACTION_ROLLE
DBACK

This exception is thrown if the transaction has
been marked for rollback.

178 VisiBroker C++ API Reference Guide

Coordinator interface

register_synchronization()

void register_synchronization(in Synchronization synch)
raises(Inactive, SynchronizationUnavailable);

This method registers the specified Synchronization object so that it will be notified
to perform the necessary processing before and after completion of the transaction.
Such methods are described in the description of the Synchronization interface; see
“Synchronization interface”.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– register_synchronization() in Current interface

For more information, see “Resource interface”, “Synchronization interface”, and
see “VisiTransact basics” in the VisiTransact Guide.

register_subtran_aware()

void register_subtran_aware(in SubtransactionAwareResource resource)
raises(Inactive, SubtransactionsUnavailable);

Because VisiTransact does not support nested transactions, this method always
raises CosTransactions::SubtransactionsUnavailable.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Parameter Description

synch The Synchronization object to register.

Exception When thrown

CosTransactions::Inactive This exception is thrown if the
transaction has already been
prepared.

CosTransactions::SynchronizationUnav
ailable

This exception is never raised.

CORBA::TRANSACTION_ROLLEDBACK This exception is thrown if the
transaction has been marked for
rollback.

Parameter Description

resource The Resource to be registered with the subtransaction.

Exception When thrown

CosTransactions::Inactive This exception is never thrown.
CosTransactions::SubtransactionsUnav
ailable

This exception is thrown whenever this
method is invoked.

 9: Transact ion Service inter faces and c lasses 179

RecoveryCoordinator inter face

Related methods:

– register_resource()

rollback_only()

void rollback_only()
raises (Inactive);

This method modifies the transaction associated with the Coordinator so that
rollback is the only possible transaction outcome.

Included in the Coordinator interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Related methods:

– get_coordinator() in Control interface
– rollback_only() in Current interface

For more information about invoking rollback_only(), see the VisiTransact Guide.

RecoveryCoordinator interface
When a Resource is registered with the Coordinator, a RecoveryCoordinator is
returned. The RecoveryCoordinator is implicitly associated with a single Resource
registration request and can only be used by that Resource. In case recovery is
necessary, the Resource can use the RecoveryCoordinator during the recovery
process.

Also, the Resource can use the RecoveryCoordinator if it needs to know the current
status of the transaction. For example, the Resource can set its own timeout, and if
commit or rollback does not occur within the timeout, the Resource can invoke
replay_completion() to determine the status of the transaction.

The following example shows the RecoveryCoordinator interface in the
CosTransactions.idl file.

ƒ
interface RecoveryCoordinator
{
 Status replay_completion(in Resource resource)
 raises(NotPrepared);
};
ƒ

RecoveryCoordinator methods

replay_completion()

Status replay_completion(Resource resource)
raises(NotPrepared);

This method notifies the VisiTransact Transaction Service that the Resource is
available. This method is typically used during recovery, and can be used by the
Resource to determine the status of the transaction.

Exception When thrown

CosTransactions::Inactive This exception is thrown if the transaction has
already been prepared.

180 VisiBroker C++ API Reference Guide

Resource inter face

Note

This method does not initiate completion.

Included in the RecoveryCoordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Related methods:

– commit() in Resource interface
– register_resource() in Current interface
– register_resource() in Coordinator interface
– rollback() in Resource interface

For more information on Status values, see “Status value definitions” in “Current
interface”.

Resource interface
VisiBroker VisiTransact uses a two-phase commit protocol to complete a top-level
transaction with each Resource registered with it—that is, with each Resource that
might change during the transaction. The Resource interface defines the methods
invoked by the VisiTransact Transaction Service on each Resource. Each object
supporting the Resource interface is implicitly associated with a single top-level
transaction.

The following example shows the Resource interface in the CosTransactions.idl file.

ƒ
interface Resource
{
 Vote prepare()
 raises(
 HeuristicMixed,
 HeuristicHazard
);
 void rollback()
 raises(
 HeuristicCommit,
 HeuristicMixed,
 HeuristicHazard
);
 void commit()
 raises(
 NotPrepared,
 HeuristicRollback,
 HeuristicMixed,

Parameter Description

resource The Resource for which the recovery is being
undertaken.

Exception When thrown

CosTransactions::NotPre
pared

This exception is thrown if replay_completion() is
called for a Resource that has not yet been
prepared.

 9: Transact ion Service inter faces and c lasses 181

Resource inter face

 HeuristicHazard
);
 void commit_one_phase()
 raises(
 HeuristicHazard
);
 void forget();
};
ƒ

VisiBroker VisiTransact provides this interface, but you must provide the
implementation in your Resource. A typical application does not implement a
Resource.

Resource methods

commit()

void commit()
raises(NotPrepared
 HeuristicRollback
 HeuristicMixed
 HeuristicHazard
);

This method attempts to commit all changes associated with the Resource. If a
heuristic outcome exception is raised, the Resource must keep the heuristic
decision in persistent storage until the forget() method is performed so that it can
return the same outcome in case commit() is invoked again during recovery.
Otherwise, the Resource can immediately forget all knowledge of the transaction.

Included in the Resource interface in CosTransactions.idl.

The following exceptions may be thrown when calling this method.

Related methods:

– commit_one_phase()
– rollback()

Exception When thrown

CosTransactions::NotPrepared The commit() method was called before
the prepare() method was called.

CosTransactions::HeuristicRollback A heuristic decision was made and all
relevant updates have been rolled
back.

CosTransactions::HeuristicMixed A heuristic decision was made. Some
relevant updates have been committed
and others have been rolled back.

CosTransactions::HeuristicHazard A heuristic decision may have been
made, the disposition of all relevant
updates is not known. For those
updates whose disposition is known,
either all have been committed or all
have been rolled back. If the known
updates are a mixture of commits and
rollbacks, then the HeuristicMixed
exception is raised.

182 VisiBroker C++ API Reference Guide

Resource inter face

For more information, see the VisiTransact Guide.

commit_one_phase()

void commit_one_phase()
raises (HeuristicHazard);

The commit_one_phase() method requests the Resource to commit all changes made
as part of the transaction. This method is an optimization for use when a transaction
has only one participating Resource. The commit_one_phase() method can be called
on the Resource, instead of first calling prepare() and then commit() or rollback().

If a heuristic outcome exception is raised, the Resource must keep the heuristic
decision in persistent storage until the forget() method is performed. This enables
the Resource to return the same outcome in case commit_one_phase() is performed
again during recovery. Otherwise, the Resource immediately forgets all knowledge
of the transaction.

Included in the Resource interface in CosTransactions.idl.

If a failure occurs during commit_one_phase(), it is called again when the failure is
repaired. Since there is only a single Resource, the HeuristicHazard exception is
used to report heuristic decisions related to that Resource.

The following exceptions may be thrown when calling this method.

Related methods:

– commit()
– forget()
– prepare()
– rollback()

For more information, see the VisiTransact Guide.

forget()

void forget();

When VisiBroker VisiTransact receives a heuristic exception, it records the
exception. The VisiTransact Transaction Service will ultimately call forget() on the
Resource. This means that the Resource can discard all information about the
transaction that raised the heuristic exception. This method is called only if a
heuristic exception was raised from rollback(), commit(), or commit_one_phase().

Included in the Resource interface in CosTransactions.idl.

Related methods:

– commit()
– commit_one_phase()

Exception When thrown

CosTransactions::HeuristicHazard A heuristic decision may have been
made, the disposition of all relevant
updates is not known. For those updates
whose disposition is known, either all
have been committed or all have been
rolled back.

CORBA::TRANSACTION_ROLLEDBACK The commit_one_phase() method cannot
commit all changes made as part of the
transaction.

 9: Transact ion Service inter faces and c lasses 183

Resource inter face

– rollback()

For more information, see the VisiTransact Guide.

prepare()

Vote prepare()
raises(HeuristicMixed
 HeuristicHazard
);

This method performs the prepare operation—the first step in the two-phase commit
protocol for a Resource object. When finished, the method returns one of these Vote
values.

– VoteReadOnly—No persistent data associated with the Resource has been
modified by the transaction.

– VoteCommit—The following data has been saved to persistent storage:

1 All data changed as part of the transaction
2 A reference to the RecoveryCoordinator object
3 An indication that the Resource has been prepared

– VoteRollback—Some circumstance has caused the Resource to call for a rollback,
such as inability to save the relevant data, inconsistent outcomes, or no
knowledge of the transaction (which might happen after a crash).

After returning VoteReadOnly or VoteRollback, the Resource can forget all
knowledge of the transaction.

If a heuristic outcome exception is raised, the Resource must save the heuristic
decision in persistent storage until the forget() method is called so that it can return
the same outcome in case prepare() is called again.

Included in the Resource interface in CosTransactions.idl.

The following exceptions may be thrown when calling this method.

Related methods:

– commit_one_phase()
– register_resource() in Current interface
– register_resource() in Coordinator interface

For more information, see the VisiTransact Guide.

rollback()

Exception When thrown

CosTransactions::HeuristicMixed A heuristic decision has been made.
Some relevant updates have been
committed and others have been rolled
back.

CosTransactions::HeuristicHazard A heuristic decision may have been made,
the disposition of all relevant updates is
not known. For those updates whose
disposition is known, either all have been
committed or all have been rolled back. If
the known updates are a mixture of
commits and rollbacks, then the
HeuristicMixed exception is raised.

184 VisiBroker C++ API Reference Guide

Synchronizat ion interface

void rollback()
raises(HeuristicCommit
 HeuristicMixed
 HeuristicHazard
);

This method rolls back all updates associated with the Resource object.

If a heuristic outcome exception is raised, the Resource must save the heuristic
decision in persistent storage until the forget() method is invoked. This enables the
Resource to return the same outcome in case rollback() is called again during
recovery. Otherwise, the Resource immediately forgets all knowledge of the
transaction.

Included in the Resource interface in CosTransactions.idl.

The following exceptions that may be raised when calling this method.

Related methods:

– commit()
– commit_one_phase()
– forget()

For more information, see the VisiTransact Guide.

Synchronization interface
The Synchronization interface defines methods that enable a transactional object to be
notified before the start of the two and one-phase commit protocol, and after its
completion, as described in the VisiTransact Guide.

In the CosTransactions module, the Synchronization interface provides two methods:

– before_completion()—Ensures that before_completion() is invoked before starting to
commit a transaction.

– after_completion()—Ensures a transactional object is notified after the transaction
has been completed. This applies to all transactions whether they were committed or
rolled back.

Here are two limitations you should be aware of:

– If the VisiTransact Transaction Service cannot contact your Synchronization object
while trying to call before_completion(), then the transaction will be rolled back. If a
Synchronization object is unavailable after completion, it will be ignored.

– When the VisiTransact Transaction Service instance recovers from a failure, it does
not remember Synchronization objects, and will only replay completion and not

Exception When thrown

CosTransactions::HeuristicC
ommit

A heuristic decision was made and all relevant
updates have been committed.

CosTransactions::HeuristicM
ixed

A heuristic decision was made and some
relevant updates have been committed, and
others have been rolled back.

CosTransactions::HeuristicH
azard

A heuristic decision may have been made, the
disposition of all relevant updates is not known.
For those updates whose disposition is known,
either all have been committed or all have been
rolled back. If the known updates are a mixture
of commits and rollbacks, then the
HeuristicMixed exception is raised.

 9: Transact ion Service inter faces and c lasses 185

Synchronizat ion inter face

Synchronization objects. If a failure occurs, the Synchronization object will not be
notified of how the transaction was completed by the VisiTransact Transaction
Service.

Note

In certain cases, after_completion() is called when before_completion() was not called.
before_completion() is called only if a transaction is still continuing towards a commit at
the outset of completion. after_completion() is always called (unless the VisiTransact
Transaction Service crashes before the transaction completes).

Synchronization objects are not recoverable. If an instance of a VisiTransact
Transaction Service fails, any transactions that are completed will not involve
Synchronization objects.

Note

Although the signatures of these methods are fixed by the Synchronization interface,
their implementations are user-defined. This enables an application to do custom
processing at key points in a transaction—before and after transaction completion.

The following example shows the CosTransactions IDL for the Synchronization interface.

ƒ
interface Synchronization : TransactionalObject
 {
 void before_completion();
 void after_completion(in Status status);
 };
ƒ

Synchronization methods

after_completion()

void after_completion(in Status status);

This is a method that you write that performs customized processing after the
completion of the transaction. It is essentially a callback.

Note

The after_completion() method is always invoked during normal processing.

As shown above, IDL for the Synchronization interface inherits from the
TransactionalObject interface. As a programmer, you are responsible for writing the
implementation of an after_completion() method that conforms to the IDL.

If after_completion() is to be called in processing a particular transaction, the
following actions must be taken:

– A Synchronization object must be created—by the transaction originator or some
other transaction participant.

– The Synchronization object must be registered—by getting the transaction's
Coordinator, and calling the register_synchronization() method in Coordinator
and Current. See register_synchronization() in Coordinator interface. Registration
must be done after the transaction is created and before the start of the two-
phase commit.

Multiple Synchronization objects can be created and registered for a single
transaction.

The VisiTransact Transaction Service calls this method after the two-phase commit
protocol completes. As an example of its use, after_completion() can be used by a
transactional object to discover the outcome of the transaction. This is particularly

186 VisiBroker C++ API Reference Guide

Synchronizat ion interface

useful for transactional objects that are not also recoverable objects, and so are not
automatically notified of the outcome.

You can call get_status() to see whether or not the transaction has been marked for
rollback.

Notice that because Synchronization inherits from TransactionalObject, the
transaction context will be available through the Current object.

Included in the Synchronization interface in CosTransactions.idl.

The following parameters are used by this method.

All exceptions will be ignored.

Related methods:

– before_completion()
– get_status() in Current interface
– commit() in Terminator interface
– register_synchronization() in Current interface
– register_synchronization() in Coordinator interface
– rollback_only() in Current interface
– rollback_only() in Coordinator interface

For more information see the VisiTransact Guide.

before_completion()

void before_completion();

This is a method that you write to perform customized processing at the onset of the
completion of a transaction. It is called only if the transaction is still continuing
towards successful completion. It is essentially a callback.

Note

The before_completion() method is invoked after the application invokes commit(),
but before the VisiTransact Transaction Service begins transaction completion. The
before_completion() method is not invoked for a rollback request.

As shown in the beginning of this section the IDL for the Synchronization interface
inherits from the TransactionalObject interface. As a programmer, you are
responsible for writing the implementation of a before_completion() method that
conforms to the IDL.

If before_completion() is to be called when processing a particular transaction, the
Synchronization object must be registered using the register_synchronization()
method in the Coordinator interface. Register the Synchronization object from your
transactional object or recoverable server. See register_synchronization() in
Coordinator interface. Registration must be done after the transaction is created and
before the start of the two-phase commit.

Multiple Synchronization objects can be created and registered for a single
transaction.

The VisiTransact Transaction Service calls this method after the transaction work
has been done but before the two-phase commit protocol starts; that is, before
prepare() is called on the participating Resource. VisiBroker VisiTransact calls

Parameter Description

status A Status value passed by the Terminator to the Synchronization
object once the outcome of the transaction has been determined.
See “Status value definitions” in “Current interface”for a list of
possible Status values.

 9: Transact ion Service inter faces and c lasses 187

VISTransact ionService class

before_completion() only if a transaction is still continuing towards a commit at the
outset of completion. This means that Terminator->commit() was called and the
transaction has not been marked for rollback. If Terminator->rollback() was called,
or the first of several Synchronization objects marked the transaction for rollback, or
the transaction was already marked for rollback, before_completion() calls will not
be called again for this transaction.

Within this method, you can ensure the transaction will be rolled back by calling the
rollback_only() method. You can also call get_status() to see whether or not the
transaction has been marked for rollback. At the time the method is called, however,
you cannot rely upon the status to indicate whether or not the transaction will
actually be committed.

Notice that because the Synchronization interface inherits from TransactionalObject,
the transaction context will be available through the Current object. This means that
before_completion() can use all objects on the Current object, such as get_status()
and get_control().

Included in the Synchronization interface in CosTransactions.idl.

All CORBA exceptions raised by your Synchronization objects will result in the
transaction being rolled back.

Related methods:

– after_completion()
– get_status() in Current interface
– commit() in Terminator interface
– register_synchronization() in Current interface
– register_synchronization() in Coordinator interface
– rollback_only() in Current interface
– rollback_only() in Coordinator interface

For more information see the VisiTransact Guide.

VISTransactionService class
The VISTransactionService class is provided to help you link an instance of the
VisiTransact Transaction Service with your application process.

Its methods, in the visits.h file, include:

– init()

– terminate()

The following section documents these methods.

VISTransactionService methods

init()

static void init(int &argc, char* const* argv);

This method initializes all the instances of the VisiTransact Transaction Service that
are linked in your application process. It must be invoked to activate an instance of
the VisiTransact Transaction Service that you have linked into your process by
adding the ots_r library and the otsinit object file to the link line.

If you want to initialize the embedded instance of the VisiTransact Transaction
Service, the init() method must be called. After ORB_init() has been invoked, all
the recognized VisiTransact arguments will be stripped from the original parameter
list so that they will not interfere with any other argument processing that your client
program requires.

188 VisiBroker C++ API Reference Guide

VISSessionManager module

Caution

If the in-process VisiTransact Transaction Service instance has been de-activated
using terminate(), vshutdown, or the Console, do not invoke init() again.

Included in the VISTransactionService interface in visits.h.

The following parameters are used by this method.

Note

The argc and argv parameters should be argc and argv from the main function.

For more information, see the VisiTransact Guide.

terminate()

static void terminate();

This method will cleanup all the instances of the VisiTransact Transaction Service
that have been initialized by a call to init(). This method will not bring down your
application process unless the command line option OTSexit_on_shutdown is set to 1.

If this option is either not set, or set to 0, it will deactivate the VisiTransact
Transaction Service objects registered with the Smart Agent but will NOT bring
down your application process.

Included in the VISTransactionService interface in visits.h.

For more information, see the VisiTransact Guide.

VISSessionManager module
This section introduces the VISSessionManager module and describes its classes, data
types, structures and methods.

Looking at the module

The Session Manager is a component that allows an application to obtain
pre-configured database connections. The Session Manager insulates applications
from the database-specific requirements for connection handles and thread
management. Once a connection is obtained using the Session Manager, the
transaction is coordinated automatically by the VisiTransact Transaction Service. The
application developer is free from creating code to incorporate the database's
participation in the transaction—the application code only needs to address issues
concerning the data it requires from the database.

The Session Manager and its associated Resources provide complete transactional
access to the DBMS. Full two-phase commit capability is supported by the XA
implementation of the Session Manager along with its Resource implementation (the
XA Resource Director). For distributed transactions, the Session Manager, in
conjunction with the VisiTransact Transaction Service, performs the XA interface calls
to include the application's work on that database.

Alternatively, the DirectConnect version of the Session Manager provides optimized
transactional access using an integrated Resource, but requires a more restrictive
programming model.

Your applications can use the following interfaces from the Session Manager module:

– Connection—Represents a database connection with transaction support.

Parameter Description

argc The number of arguments being passed to the init() method.
argv The actual arguments being passed to the init() method.

 9: Transact ion Service inter faces and c lasses 189

VISSessionManager module

– ConnectionPool—A factory interface that allocates connections to clients.

These interfaces are pseudo IDL, not true IDL, because the Connection and
ConnectionPool objects must be available locally in the process. Access to the
ConnectionPool is obtained using the resolve_initial_references() call.

Currently, only C++ Session Manager interfaces are available.

The following code sample is the IDL for the VISSessionManager module.

#ifndef _vissessionmanager_idl_
#define _vissessionmanager_idl_
#include <CosTransactions.idl>
#pragma prefix "visigenic.com"

module VISSessionManager
{
 struct Attribute
 {
 string name;
 string value;
 };
 typedef sequence<Attribute> Attributes;

 struct ErrorInfo
 {
 string reason;
 string subsystem;
 unsigned long code;
 };
 typedef sequence<ErrorInfo> ErrorInfos;

 exception Error
 {
 ErrorInfos info;
 };

 interface Connection
 {
 enum ReleaseType
 {
 MarkSuccess,
 MarkForRollback
 };

 typedef unsigned long long NativeConnectionHandle;

 NativeConnectionHandle getNativeConnectionHandle()
 raises(Error);

 Attributes getAttributes()
 raises(Error);

 string getInfo(in string info_type)
 raises(Error);

190 VisiBroker C++ API Reference Guide

VISSessionManager module

 boolean isSupported(in string support_type)
 raises(Error);

 void hold(in unsigned long timeout)
 raises(Error);

 void resume()
 raises(Error);

 void release(in ReleaseType type)
 raises(Error);
 void releaseAndDisconnect()
 raises(Error);
 }; // Connection

 interface ConnectionPool
 {
 exception ProfileError
 {
 string reason;
 unsigned long code;
 };

 Connection getConnection(in string profile_name)
 raises(ProfileError, Error);

 Connection getConnectionWithCoordinator(in string profile_name,
 in CosTransactions::Coordinator coord)
 raises(ProfileError, Error);

 Attributes getProfileAttributes(in string profile_name)
 raises(ProfileError);

 }; // interface ConnectionPool
}; // module VISSessionManager

#pragma prefix ""
#endif // _vissessionmanager_idl_

Structures
The VISSessionManager module defines as data types the following structures:

– ErrorInfo—This structure is used in exceptions.

– Attribute—This structure describes a connection attribute. Attribute values are
always represented as strings in the Attribute structure.

The following code sample shows the ErrorInfo structure in the VISSessionManager
module.

struct ErrorInfo
{
 string reason;
 string subsystem;
 unsigned long code;
};

 9: Transact ion Service inter faces and c lasses 191

VISSessionManager module

The following table defines the members of the ErrorInfo structure.

Currently, the subsystems that may generate errors for the Session Manager are:

– "Session Manager"—The basic body of the Session Manager module.

– "XA Native"—The error originated in an XA call made to the database.

– "Oracle"—The error occurred in a direct call to Oracle APIs.

The following code sample shows the Attribute structure in the VISSessionManager
module.

struct Attribute
{
 string name;
 string value;
};

The following table defines the members of the Attribute structure.

The following attributes exist for all the Resource Managers and will be specified in all
connection profiles.

Connection Profile Attibutes

Exceptions
If a Session Manager method is going to get an exception, most likely it will be this one.
However, it can also get a standard CORBA exception.

The following code sample shows the Error exception in the VISSessionManager
module.

exception Error
{
 ErrorInfos info;
};

ErrorInfos is a sequence of structures (representing an error stack) returned to the
application. The application can query the sequence about how many errors are in the
sequence and can see in what layer the error occurred. Then it can access the
information about an error one at a time. The structure provides the following
information:

Member Description

reason A string that contains an explanation of the error.
subsystem The basic component which generated the error.
code An error code number.

Member Description

name A string that indicates the type of attribute.
value A value for the named attribute.

Attribute
Default
setting Description

database_name None A character string representing the database
name.

userid None A character string representing the user
identification to be used when getting the
connection.

password None A character string representing the database's
password.

192 VisiBroker C++ API Reference Guide

VISSessionManager module

– Reason for the error

– Subsystem (module) where the error occurred

– Error code for this particular error

The following code sample shows an example of error iterating.

ƒ
try
{
 // Ask the pool for a database connection
 // Use the database profile "quickstart"
 conn = _pool->getConnection("quickstart");

 // get a connection handle to use for native OCI calls
 lda_ptr = (Lda_Def*) conn->getNativeConnectionHandle();
}
catch(const VISSessionManager::Error& ex)
{
 cerr << "Session Manager error:\n";
 // print out all the error messages
 for(CORBA::ULong i = 0; i < ex.info.length(); i++)
 {
 cerr << " " << ex.info[i].subsystem
 << "-" << ex.info[i].code
 << ": " << ex.info[i].reason
 << endl;
 }
 throw ApplicationException();
 // This would be something an application would define.
}
ƒ

ConnectionPool interface

The ConnectionPool interface provides access to the Session Manager's pool of
database connections. There is one logical ConnectionPool per process, regardless of
what type(s) of connections it will manage. The ConnectionPool uses a specified
connection profile to allocate connections. When the application requests a connection,
the ConnectionPool object attempts to find one already open in the pool that it can use.
If the ConnectionPool object can not find an appropriate connection, it will open a new
one.

The ConnectionPool interface also provides a method that enables the application to
find out the configuration profile's attributes without allocating a connection to the
database. The application can query from the connection pool using
getProfileAttributes() and the profile's attributes will be returned.

The C++ header files that you include must also correspond to your choice of
interfaces. VISSessionManager_c.hh is the client header file generated from
VISSessionManager.idl.

Note

Do not generate your own client stub header file. You must use the supplied client
header files to ensure compatibility with the Session Manager object libraries.

Obtaining a ConnectionPool object reference
The following steps describe the general process for obtaining a reference to a
ConnectionPool object, and are followed by a code example.

 9: Transact ion Service inter faces and c lasses 193

VISSessionManager module

1 Call the ORB resolve_initial_references() method, passing the object type
VISSessionManager::ConnectionPool.

2 Narrow the returned object to a VISSessionManager::ConnectionPool.

The following code sample is an example of obtaining a ConnectionPool object
reference in C++.

ƒ
{
 CORBA::ORB_var orb = CORBA::ORB_init();
 CORBA::Object_var object =
 orb-
>resolve_initial_references("VISSessionManager::ConnectionPool");
 VISSessionManager::ConnectionPool_var pool =
 VISSessionManager::ConnectionPool::_narrow(object);
 ƒ
}

Using ConnectionPool object references
The ConnectionPool object reference is valid for the entire process under which you
create it; you can use it in any thread. You can either make multiple calls to obtain
references to the ConnectionPool object or use just one reference throughout the entire
process, saving the overhead of numerous resolve_initial_references() calls.

Exceptions
When an error occurs having to do with the profile, an operation on ConnectionPool may
throw a ConnectionPool::ProfileError exception.

The following code sample shows the ProfileError exception in the ConnectionPool
interface.

exception ProfileError
{
 string reason;
 unsigned long code
};

For more information about Error, see “Exceptions”.

Methods
The methods in the ConnectionPool interface include:

– getConnection()

– getConnectionWithCoordinator()

– getProfileAttributes()

The following sections document these methods.

getConnection()
This VisiBroker-only method allocates a database connection, transparently associates
the connection with a transaction, and returns a Connection object to the application.

Before a thread can call getConnection(), it must have an active transaction context.
The method getConnectionWithCoordinator() may be used to get connections for an
explicitly-specified transaction.

If this method raises an Error exception, see “Error codes” in the VisiTranstact Guide
for information.

Interface

ConnectionPool in VISSessionManager.idl

194 VisiBroker C++ API Reference Guide

VISSessionManager module

Signature

Connection getConnection(in string profile_name)
raises(VISSessionManager::ConnectionPool::ProfileError,
 VISSessionManager::Error);

Parameters

The following parameters are used by this method.

Example

The following code sample is an example of using the getConnection() method.

ƒ
VISSessionManager::ConnectionPool_var pool;
// Ask the pool for a database connection
VISSessionManager::Connection_var conn = pool-
>getConnection("quickstart");
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide for information about connection pooling.

See also
– “ConnectionPool interface”

getConnectionWithCoordinator()
This VisiBroker-only method allocates a connection using an explicitly-specified
transaction Coordinator, and returns a Connection object to the application. The
connection is transparently associated with the transaction. If this method raises an
Error exception, see “Error codes” in th VisiTransact Guide for information.

To allocate a connection for an implicit transaction context, use getConnection().

Interface

ConnectionPool in VISSessionManager.idl

Signature

Connection getConnectionWithCoordinator(in string profile_name,
 in CosTransactions::Coordinator coord)
raises(VISSessionManager::ConnectionPool::ProfileError,
 VISSessionManager::Error);

Parameters

The following parameters are used by this method.

Example

The following code sample is an example of using the getConnectionWithCoordinator()
method.

ƒ
VISSessionManager::ConnectionPool_var pool;

Parameter Description

profile_name The name of the profile which describes the attributes for the
requested connection.

Parameter Description

profile_name The name of the connection for which a connection will be
obtained.

coord The Coordinator object reference representing the transaction
which should be associated with this connection.

 9: Transact ion Service inter faces and c lasses 195

VISSessionManager module

// Ask the pool for a database connection
// Use the database profile "quickstart"
conn = pool->getConnectionWithCoordinator("quickstart", coordinator);
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide for information about connection pooling.

getProfileAttributes()
This VisiBroker-only method may be used to query attributes in a profile without
allocating a connection. The application passes in the name of a connection profile with
this method and the ConnectionPool object returns the connection profile's attributes to
the application.

Note

You can also view attributes of a connection that is currently open, using
getAttributes().

The Session Manager returns a reference to an Attributes object in response to this
method call. Applications should use an object of the following type to hold this object
and ensure proper memory management:

VISSessionManager::Attributes_var

Interface

ConnectionPool in VISSessionManager.idl

Signature

Attributes getProfileAttributes(in string profile_name)
raises(VISSessionManager::ConnectionPool::ProfileError);

For a listing of connection profile attributes, see the table “Connection Profile
Attibutes”.

Parameters

The following parameters are used by this interface.

Example

The following code sample is an example of using getProfileAttributes().

ƒ
VISSessionManager::ConnectionPool pool;
VISSessionManager::Attributes_var attrs;
attrs = pool->getProfileAttributes("quickstart");
CORBA::ULong len = attrs->length();
for (CORBA::ULong i=0; i<len; i++)
{
 cout << "Attribute " << i << ": " << attrs[i].name
 << " = " << attrs[i].value << endl;
}
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide and “ConnectionPool interface”.

Parameter Description

profile_name The name of the connection profile whose attribute values are
returned.

196 VisiBroker C++ API Reference Guide

VISSessionManager module

Connection interface

The Connection interface gives the application access to transaction-configured
database connections.

Instead of creating a Connection object directly, you obtain a reference to a Connection
object from the ConnectionPool using getConnection() or
getConnectionWithCoordinator(). If the ConnectionPool returns one of these objects, it
has allocated the database connection and associated it with a transaction.

Once you have invoked its release() or releaseAndDisconnect() method, any
subsequent operations on that connection will result in an exception.

The Connection interface offers a method to obtain your native database handle, as
well as several methods that allow you to programmatically view information about the
connection.

The C++ header files that you include must also correspond to your choice of
interfaces. VISSessionManager_c.hh is the client header file generated from
VISSessionManager.idl.

Data types
The Connection interface defines the data type ReleaseType. For more information about
ReleaseType, see “release()”.

Methods
The methods in the Connection interface include:

– getAttributes()
– getInfo()
– getNativeConnectionHandle()
– hold()
– isSupported()
– release()
– releaseAndDisconnect()
– resume()

The following sections document these methods.

getAttributes()
This VisiBroker-only method is used to return the values of configuration profile
attributes for a connection that is currently allocated. The Session Manager allocates
an Attributes object and returns a reference to that object. Applications should use an
object of the following type to hold this object and ensure proper memory management.

VISSessionManager::Attributes_var

Interface

Connection in VISSessionManager.idl

Signature

Attributes getAttributes()
raises (VISSessionManager::Error);

For a listing of connection profile attributes, see the table “Connection Profile
Attibutes”.

Parameters

None.

Example

The following code sample is an example of using getAttributes().

ƒ
VISSessionManager::Connection_var conn;

 9: Transact ion Service inter faces and c lasses 197

VISSessionManager module

VISSessionManager::Attributes_var attrs;
attrs = conn->getAttributes();
CORBA::ULong len = attrs->length();
for (CORBA::ULong i=0; i<len; i++)
{
 cout << "Attribute " << i << ": " << attrs[i].name
 << " = " << attrs[i].value << endl;
}
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide.

getInfo()
This exclusive VisiBroker method is used to query the characteristics of a Session
Manager implementation for a particular Resource Manager. For example, an
application can query for the version of the Session Manager. Applications should use
an object of the following type to hold the returned value and ensure proper memory
management.

CORBA::String_var

Interface

Connection in VISSessionManager.idl

Signature

string getInfo(in string info_type)
raises (VISSessionManager::Error);

Parameters

The following parameters are used by this method.

A list of information types for a particular type of Session Manager, if any, can be found
in the VisiBroker Integrated Transaction Service Data Access Guide.

These information types are available for all types of Session Managers:

– "version"—Returns the version number of the generic Session Manager. The
version number is returned in a 5-field string which is standard in the VisiBroker utility
vbver. This information is to be used for informational purposes.

– "version_rm"—Returns the version number of the Resource Manager-specific
component of the Session Manager. This information is to be used for informational
purposes.

The following code sample is an example of using getInfo().

ƒ
VISSessionManager::Connection_var conn;
CORBA::String_var info = conn->getInfo("version");
ƒ

For more information see “Data access using the Session Manager” in the VisiTransact
Guide.

getNativeConnectionHandle()
This VisiBroker-exclusive method is used to return the native connection handle to a
Resource Manager (generally, a database), for the database connection represented
by the Connection object. Applications can use the native handle to make calls to the
Resource Manager's native API. Applications should not disconnect using Resource

Parameter Description

info_type The information type to be returned.

198 VisiBroker C++ API Reference Guide

VISSessionManager module

Manager API calls on this handle but instead use the release() or
releaseAndDisconnect() methods to release the connection.

This is a low overhead operation that can be invoked as often as necessary to obtain
the native connection handle.

Note

This method does not allocate connections. See “getConnection()” or
“getConnectionWithCoordinator()” for more information.

Interface

Connection in VISSessionManager.idl

Signature

NativeConnectionHandle getNativeConnectionHandle()
raises(VISSessionManager::Error);

Parameters

None.

Example

The following code sample is an example of using the getNativeConnectionHandle()
method.

ƒ
VISSessionManager::Connection_var conn;
//get a connection handle
lda = (Lda_Def *) conn->getNativeConnectionHandle();
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide for information about connection pooling.

hold()

Caution

Using hold() monopolizes the connection and affects performance. Use hold() only
when it is necessary.

This VisiBroker-exclusive method notifies the Session Manager that the thread of
control is leaving the current process and intends to return. The application guarantees
it will not use this connection handle until resume() has been invoked.

The Session Manager requires that it be notified if no thread in the current process is
active with respect to this connection. The main reason for this requirement is that if the
requester fails or is otherwise unable to return to this process to release its Resources,
the Session Manager must be able to clean up any Resources used for this connection
including database locks and resources. If the Session Manager does not have
knowledge of whether or not the application is still actively using the connection, it
cannot dissociate the transaction and proceed with cleanup.

The timeout parameter specifies the time in seconds that the Session Manager should
wait before timing out the connection and cleaning up its Resources. As part of the
cleanup process, the connection is returned to the ConnectionPool and the transaction
is marked for rollback.

Your application can send multiple hold() requests with no intervening resume() calls. If
hold() is called twice, the timer is reset with the new value at each call. For example, if
you send hold(60) at 8:42:30, it would expire at 8:43:30. However, if you subsequently
invoke hold(45) at 8:42:50, the timer would expire at 8:43:35 because it had been reset
by the second hold() call.

Note

Some database Session Manager implementations may not support this method. Your
application can use isSupported() to query whether the Session Manager supports the

 9: Transact ion Service inter faces and c lasses 199

VISSessionManager module

hold() method or not. You can find more information about this in the VisiBroker
Integrated Transaction Service Data Access Guide.

Before the Connection object or the corresponding database connection handle can be
used again, resume() must be called on the Connection object.

Interface

Connection in VISSessionManager.idl

Signature

void hold(in unsigned long timeout)
raises(VISSessionManager::Error);

Parameters

The following parameters are used by this method.

Example

ƒ
VISSessionManager::Connection_var conn;
conn->hold(60);
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide and “ConnectionPool interface”.

isSupported()
This VisiBroker-exclusive method is used to query the supported types of a Session
Manager implementation for a particular Resource Manager. For example, an
application can query whether the Session Manager supports the hold() method or not.

Interface

Connection in VISSessionManager.idl

Signature

boolean isSupported(in string support_type)
raises (VISSessionManager::Error);

Parameters

The following parameters are used by this method.

The following support types are available for all types of Session Managers.

– "hold"—Returns true if the hold() method is supported; otherwise, returns false.

– "thread_portable"—Returns true if the connections may be used in other threads
than the one that made the connection; otherwise, returns false.

 ƒ
 VISSessionManager::Connection_var conn;
 CORBA::Boolean isPortable = conn->isSupported("thread-portable");
 ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide and “ConnectionPool interface”.

Parameter Description

timeout The time in seconds for which the Session Manager should wait
before releasing the connection back to the pool and marking the
transaction for rollback. If you pass in zero, an exception is raised.

Parameter Description

support_type The support type to be returned.

200 VisiBroker C++ API Reference Guide

VISSessionManager module

release()
This VisiBroker-exclusive method releases a connection back to the ConnectionPool
and marks the transaction for commit or rollback. If you do not call this method, the
transaction is marked for rollback when the Connection object destructs.

When the application invokes release(), the state in the Connection is cleaned out.
Any further calls on that Connection will raise CORBA::BAD_OPERATION.

You can reacquire the connection later to perform further work on the same
transaction.

Note

The release() call does not release the Connection object in the sense of the CORBA
_release() method. It indicates to the ConnectionPool that the underlying database
connection will no longer be needed by the application. The application will still need to
de-allocate the Connection object. The easiest way to accomplish this is to hold the
Connection object in a Connection_var object.

Interface

Connection in VISSessionManager.idl

Signature

void release(in ReleaseType type)
raises(VISSessionManager::Error);

ReleaseType

The definition for the ReleaseType is:

enum ReleaseType
{
 MarkSuccess,
 MarkForRollback
};

The descriptions for the ReleaseType values are shown in the Parameters table.

Parameters

The following parameters are used by this interface for release(), and values for the
ReleaseType.

Example

The following code sample is an example of using the release() method.

ƒ
VISSessionManager::Connection_var conn;
conn->release(VISSessionManager::Connection::MarkSuccess);
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide.

Parameter Description

type The flag to indicate whether this portion of the transaction was
successful or not. If MarkSuccess is passed then the transaction
proceeds normally. Otherwise, if MarkForRollback is passed then the
transaction is marked for rollback.

MarkSuccess This portion of the transaction was successful. The transaction
proceeds normally.

MarkForRollback The transaction is marked for rollback. Since the rollback must come
from the VisiTransact Transaction Service, there may be some delay
between calling release(MarkForRollback) and the work actually rolling
back.

 9: Transact ion Service inter faces and c lasses 201

VISSessionManager module

releaseAndDisconnect()
This VisiBroker-exclusive method forces the database connection to close completely
and marks the transaction for rollback. The connection is not returned to the
ConnectionPool for re-use. This method is used if the application detects something
wrong with the connection and wants to make sure the connection will not be reused.

When the application invokes releaseAndDisconnect(), the state in the connection is
cleaned out. Any further calls on that Connection will raise CORBA::BAD_OPERATION.

Interface

Connection in VISSessionManager.idl

Signature

void releaseAndDisconnect()
raises(VISSessionManager::Error);

Parameters

None.

Example

The following is an example of using the releaseConnection() method.

ƒ
VISSessionManager::Connection_var conn;
cerr << "Profile error: " << ex.code << ex.reason << endl;
conn->releaseAndDisconnect();
return balance;
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide and “ConnectionPool interface”.

resume()
This VisiBroker-exclusive method is used after a hold() to indicate to the Session
Manager that the thread of control for this Connection is now back in process. This
cancels the timeout associated with the hold() and guarantees that the Session
Manager will not modify the underlying connection in any way that would cause
conflicts with an active application. Calling resume() when the Connection has not been
placed in the hold state results in an Error exception, but does not modify the
transaction or connection state.

Note

Between the hold() and resume() calls, the application is not allowed to make any other
calls on the Connection object or its associated native database handle. If the hold() call
timeout expires in this interval, the Session Manager has the right to release the
connection and mark the transaction for rollback. This is to ensure that resources held
in the application server by that transaction are not left forever if a client dies or never
calls again.

Interface

Connection in VISSessionManager.idl

Signature

void resume()
raises(VISSessionManager::Error)

Parameters

None.

Example

The following is an example of using the resume() method.

202 VisiBroker C++ API Reference Guide

The ITSDataConnect ion class

ƒ
VISSessionManager::Connection_var conn;
conn->resume();
ƒ

For more information, see “Data access using the Session Manager” in the
VisiTransact Guide..

The ITSDataConnection class
The Pluggable Resource Interface is a component that implements a set of predefined
interfaces to allow transactional applications to use databases as their persistent
storage in transactions managed by Borland VisiTransact. More information see
“Pluggable Database Resource Module for VisiTransact” in the VisiTransact Guide.

This class is defined below.

class ITSDataConnection
{
 public:
 virtual void connect() = 0;
 virtual void disconnect() = 0;
 virtual void rollback() = 0;
 virtual void commit() = 0;
 virtual xa_switch_t* xa_switch() { return 0; }
 virtual const char* xa_open_string() { return 0; }
 virtual const char* xa_close_string() { return 0; }
 virtual void* native_handle() { return 0; }
};

The methods in ITSDataConnection class can be divided into three groups:

– native handle acquisition interface
– local transaction connection and completion interface
– global transaction connection and completion interface

Native handle acquisition interface
void* native_handle();

This function is used to get access to the native APIs for a database supported by the
module. The return value is a void pointer, allowing the implementation to return
anything necessary to manipulate data in the database. A transactional application can
obtain this pointer through getNativeConnectionHandle(), in which the Session
Manager Connection Manager will call the native_handle() and return the pointer back
to the application.

Any pluggable module must implement this function.

Local transaction connection and completion interface

Pluggable modules that support the local transaction must implement these functions.

These four methods is used by Session Manager Connection Manager to inform the
database of the start and completion of local transactions.

void connect();
When it is called, it establishes the connection to the database and tells the database
that a local transaction begins.

 9 : Transact ion Service interfaces and classes 203

void disconnect();
When it is called, it means the connection, if established, is no longer needed. So the
connection can be closed.

void rollback();
It tells the database to commit the transaction.

void commit();
It tells the database to rollback the transaction.

Global transaction connection and completion interface

Pluggable modules that support global transactions must implement the functions.

The session manager uses X-open's XA interface to talk to a XA conformable
database.

xa_switch_t* xa_switch();
All the Session Manager Connection Manager need from the pluggable module is a
pointer to a xa_switch_t data structure which contains all the XA APIs as defined in the
xa.h. The xa_switch() function is just for this purpose. Whenever being called, it must
returns a valid pointer to this data.

Usually the specific database implements and exposes the xa_switch_t to its clients.
The name of that data struct varies from database to database. For example, Oracle9i
implements its xa_switch_t as a global variable named xaosw.

This function is also used by Session Manager Connection Manager to judge the type
of a connection. If the function returns zero, the session manager will treat the
connection as DC type, otherwise it takes the connection as XA type.

Pluggable modules that support global transactions must implement the function and
must not return zero.

const char* xa_open_string();
When called, it returns a string used as argument to xa_open() call.

const char* xa_close_string();
When called, it returns a string used as argument to xa_close() call.

The two methods are called by the session manager to get database specific
parameters to open or close a XA connection to a database. The returned string from
the xa_open_string() call will be used in the call on xa_open() and the returned string
from the xa_close_string() is used in xa_close().

Once called for an XA connection, the session manager will keep the returned values
for later use. The implementation does not need to keep the validity of the returned
pointer all the time.

204 VisiBroker C++ API Reference Guide

 10: Nat ive Messaging Inter faces and Classes 205

Native Messaging Interfaces and
Classes
This section describes the interfaces and classes associated with the Native
Messaging.

RequestAgent

class NativeMessaging::RequestAgent : public virtual CORBA_Object

The Request Agent interface defines operations of the Native Messaging Request
Agent.

Include File

Include the NativeMessaging_c.hh file when you use this class.

IDL definition

module NativeMessaging {
 interface RequestAgent {
 exception DuplicatedRequestTag {};
 exception PollingGroupIsEmpty {};
 exception RequestNotExist {};

 Request create_request(
 in RequestDesc desc) raises (DuplicatedRequestTag);
 RequestTagSeq poll(
 in string polling_group,
 in unsigned long timeout,
 in boolean unmask) raises
(PollingGroupIsEmpty);
 void destroy_request(
 in Request req) raises (RequestNotExist);

206 VisiBroker C++ API Reference Guide

RequestAgent

 };
};

RequestAgent Methods

create_request

virtual ::CORBA::Object_ptr create_request(const NativeMessaging::RequestDesc&

_desc);

This method creates and returns an asynchronous method invocation request object
in the Request Agent.

The method throws DuplicatedRequestTag exception.

poll

virtual NativeMessaging::RequestTagSeq* poll(const char* _polling_group,
 ::CORBA::Ulong _timeout,
 ::CORBA::Boolean _umask);

The method returns the sequence of request tags whose replies are ready.

This method throws PollingGroupIsEmpty exception.

Parameter Description

_desc The RequestDesc structure containing information about the
target object and async request.

Parameter Description

_polling_group The name of the polling group
_timeout The timeout interval in “milliseconds” to wait if the

polling group has no readily available replies. The
values have following meanings:
■ timeout > 0 poll will block for that much time. If after

the timeout, there are still no replies available, an
empty sequence of request tags is returned.

■ timeout=0 poll will not block. If there are any replies
available, their tags will be returned to the caller. If
there are no replies available, an empty sequence is
returned.

■ timeout < 0 (or timeout=2^(32–1)) poll will block until
a reply is available.

_unmask If this flag is false, subsequent calls to poll on the same
polling group will also return the request tags returned
in the previous polls, until those request get destroyed
either as a result of manual or automatic trash. If this
flag is true, once a request tag is returned in the poll, it
will not appear in subsequent polls.

 10: Nat ive Messaging Interfaces and Classes 207

RequestDesc

destroy_request

virtual void destroy_request(::CORBA::Object_ptr _req);

This method destroys an async request.

This method throws RequestNotExist exception.

RequestDesc

struct NativeMessaging::RequestDesc;

A descriptor structure containing all the information needed to service a async
request.

Include File

Include the NativeMessaging_c.hh file when you use this struct.

IDL Definition

module NativeMessaging {
 typedef Object Request;
 typedef sequence<octet> OctetSeq;
 typedef OctetSeq RequestTag;
 typedef sequence<RequestTag> RequestTagSeq;
 typedef OctetSeq Cookie;

 struct RequestDesc {
 Object target;
 string repository_id;
 ReplyRecipient reply_recipient;
 Cookie the_cookie;
 string polling_group;
 RequestTag request_tag;
 PropertySeq properties;
 };
};

Parameter Description

_req The async request object reference to be destroyed.

208 VisiBroker C++ API Reference Guide

ReplyRecipient

RequestDesc Fields

ReplyRecipient

class NativeMessaging::ReplyRecipient : public virtual CORBA_Object

Defines the interface for callback reply recipient.

Include File

Include the NativeMessaging_c.hh file when you use this class.

module NativeMessaging {
interface ReplyRecipient {
 void reply_available(
 in Request reply_holder,
 in string operation,
 in Cookie the_Cookie);
 };
};

Field Description

target Reference of the target object, on which client wish to
invoke an operation. CORBA::BAD_PARAM exception will
result if a null value is passed.

repository_id Repository id of the target object. If this is an empty string,
request agent will try to extract the rep id from the target
object reference. If rep id empty here and also null or
empty in the target IOR reference, a CORBA::BAD_PARAM
exception is thrown. Clients can also use a repository id of
*. This acts as a wild card and is_a operation on the
request object returns true for any repository id.

reply_recipient The reference of the reply recipient (or reply handler) when
using callback model. If this reference is not null then the
Request Agent will call its reply_available method when a
reply is ready.

the_cookie A user specified sequence of octets. It will be sent to the
reply_recipient when reply_available is called. The
information inside the cookie is user defined.

polling_group A user assigned polling group name. The group name is
scoped inside the Request Agent. Group names are not
uniquely used. If a non-empty group name string is
assigned and the Request Agent doesn't have a polling
group with the same name, a new group with that name
will be implicitly created. However, if a group already
exists, the created request object is inserted into that
group.

request_tag User assigned. If non-empty, it uniquely identifies the
request in the group. If another request in the group has
the same tag, create_request method throws
DuplicatedRequestTag exception.

properties Sequence of Property structure. Currently only one
Property value is defined (see Property structure)

 10: Nat ive Messaging Interfaces and Classes 209

REPLY_NOT_AVAILABLE

ReplyRecipient methods

reply_available

virtual void reply_available(::CORBA::Object_ptr _reply_holder, const char*

_operation, const NativeMessaging::OctetSeq& _the_Cookie);

REPLY_NOT_AVAILABLE
This constant defines the CORBA::NO_RESPONSE exception minor code value thrown by the
RequestAgent to the polling client when the reply for a request is not available.

Include File

Include the NativeMessaging_c.hh file when you use this constant.

IDL definition

module NativeMessaging {
const unsigned long REPLY_NOT_AVAILABLE = 100;
};

Property

struct NativeMessaging::Property;

Holds a symbolic property name and its value inside an CORBA::Any.

Include File

Include the NativeMessaging_c.hh file when you use this struct.

IDL definition

module NativeMessaging {
 struct Property {
 string name;
 any value;
 };
};

Parameter Description

_reply_holder async request for which reply is received.
_operation operation invoked by the client.
_the_Cookie cookie passed by the client when creating the

request.

210 VisiBroker C++ API Reference Guide

PropertySeq

Property Fields

PropertySeq

class NativeMessaging::PropertySeq : private VISResource

A Sequence of Property that is passed inside RequestDesc while creating async
Request.

Include File

Include the NativeMessaging_c.hh file when you use this class.

OctetSeq

class NativeMessaging::OctetSeq : private VISResource

This class represents a sequence of octets. Similar to CORBA::OctetSeq but defined
here to make the NativeMessaging.idl independent of any other IDL.

Include File

Include the NativeMessaging_c.hh file when you use this class.

RequestTag

typedef OctetSeq RequestTag;

An octet sequence identifying a request inside a polling group.

Include File

Include the NativeMessaging_c.hh file when you use this class.

RequestTagSeq

class NativeMessaging::RequestTagSeq : private VISResource

Instances of this class are returned by the RequestAgent's poll method when group
polling is performed. Each element in the sequence is a RequestTag; the octet
sequence identifying a request inside the polling group.

Field Description

name The name of the property. Currently only one name is recognized:
RequestManualTrash

value The value of the property. The RequestManualTrash has a value of type
boolean: If set to true, the request is destroyed manually by calling
destroy_request method. If set to false, the request is destroyed
automatically once the reply is read (default).

 10: Nat ive Messaging Interfaces and Classes 211

Cookie

Include File

Include the NativeMessaging_c.hh file when you use this class.

Cookie

typedef OctetSeq Cookie

An octet sequence that is passed inside RequestDesc while creating async Request.
The contents inside the Cookie are user defined. The Request Agent passes this
Cookie to ReplyRecipient's reply_available method when callback occurs.

Include File

Include the NativeMessaging_c.hh file when you use this type.

DuplicatedRequestTag

class DuplicatedRequestTag : public CORBA_UserException

This class defines a UserException that is raised if the async request is created with
a polling group name specified and the there is another request in the polling group
with the same request tag.

Include File

Include the NativeMessaging_c.hh file when you use this class.

PollingGroupIsEmpty

class PollingGroupIsEmpty : public CORBA_UserException

This class defines a UserException that is raised if poll method is called on the
RequestAgent and:

– There is no group with the specified name.

– The polling group exists but contains no requests that are waiting for replies.

Include File

Include the NativeMessaging_c.hh file when you use this class.

RequestNotExist

class RequestNotExist : public CORBA_UserException

This class defines a UserException that is raised if the destroy_request method is
called on RequestAgent and the specified request could not be found or is already
destroyed.

212 VisiBroker C++ API Reference Guide

Include File

Include the NativeMessaging_c.hh file when you use this class.

 11: Portable Interceptor inter faces and classes 213

Portable Interceptor interfaces and
classes
This section describes the BES VisiBroker implementation of Portable Interceptors
interfaces and classes defined by the OMG Specification. For a complete description of
these interfaces and classes, refer to OMG Final Adopted Specification,
ptc/2001–04–03, Portable Interceptors.

Note

See “Using Portable Interceptors” in the VisiBroker for C++ Developer's Guide before
using these interfaces.

About Interceptors
The VisiBroker ORB provides a set of APIs known as interceptors which provide a way
to plug in additional VisiBroker ORB behavior such as support for transactions and
security. Interceptors are hooked into the VisiBroker ORB through which VisiBroker
ORB services can intercept the normal flow of execution of the VisiBroker ORB. The
following table lists the types of interceptor that VisiBroker supports.

For more information about using portable interceptors, see “Using Portable
Interceptors” in the VisiBroker for C++ Developer's Guide.

For more information about using interceptors, see “5.x Interceptor and object wrapper
interfaces and classes”, and “Using Portable Interceptors” in the VisiBroker for C++
Developer's Guide.

Interceptor Type Description

Portable
Interceptor

Portable Interceptors is an OMG standardized feature that
allows you to write portable code for interceptors and use it
with different vendor ORBs.

Interceptors Interceptors are Borland Enterprise Server proprietary
interceptors defined in VisiBroker.

214 VisiBroker C++ API Reference Guide

Cl ientRequestInfo

The following table lists the two types of portable interceptor.

For more information about using portable interceptors, see “Using Portable
Interceptors” in the VisiBroker for C++ Developer's Guide.

ClientRequestInfo

class PortableInterceptor::ClientRequestInfo : public virtual RequestInfo

This class is derived from RequestInfo. It is passed to client side interceptors point.

Some methods on ClientRequestInfo are not valid at all interception points. The
following table shows the validity of each attribute or method. If an attribute is not
valid, attempting to access it results in a BAD_INV_ORDER being raised with a standard
minor code of 14.

Interceptor Type Description

Request
Interceptor

Use to enable VisiBroker ORB services to transfer context
information between clients and servers. Request
Interceptors are further divided into Client Request
Interceptors and Server Request Interceptors.

IOR Interceptors Use to enable a VisiBroker ORB service to add information,
in an IOR, describing the server's or object's ORB service
related capabilities. For example, a security service (like
SSL) can add its tagged component into the IOR so that
clients recognizing that component can establish the
connection with the server based on the information in the
component.

Table 11.1ClientRequestInfo validity

send_request send_poll receive_reply receive_exception receive_other

request_id yes yes yes yes yes
operation yes yes yes yes yes
arguments yes1 no yes no no
exception yes no yes yes yes
contexts yes no yes yes yes
operation_context yes no yes yes yes
result no no yes no no
response_expected yes yes yes yes yes
sync_scope yes no yes yes yes
reply_status no no yes yes yes
forward_reference no no no no yes2

get_slot yes yes yes yes yes
get_request_service_context yes no yes yes yes
get_reply_service_context no no yes yes yes
target yes yes yes yes yes
effective_target yes yes yes yes yes
effective_profile yes yes yes yes yes
received_exception no no no yes no
received_exception_id no no no yes no
get_effective_component yes no yes yes yes
get_effective_components yes no yes yes yes

 11: Portable Interceptor inter faces and classes 215

ClientRequestInfo

1When ClientRequestInfo is passed to send_request(), there is an entry in the list for every argument, whether in,
inout, or out. But only the in and inout arguments will be available.

2If the reply_status() does not return LOCATION_FORWARD, accessing this attribute raises BAD_INV_ORDER with a
standard minor code of 14.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

ClientRequestInfo methods

virtual CORBA::Object_ptr target() = 0;

This method returns the object which the client called to perform the operation. See
effective_target() below.

virtual CORBA::Object_ptr effective_target() = 0;

This method returns the actual object on which the operation will be invoked. If the
reply_status() returns LOCATION_FORWARD, then on subsequent requests,
effective_target() will contain the forwarded IOR, while target will remain
unchanged.

virtual IOP::TaggedProfile* effective_profile() = 0;

This method returns the profile, in the form of IOP::TaggedProfile, that will be used
to send the request. If a location forward has occurred for this operation's object and
that object's profile changed accordingly, then this profile will be that located profile.

virtual CORBA::Any* received_exception() = 0;

This method returns the data, in the form of CORBA::Any, that contains the exception
to be returned to the client.

If the exception is a user exception which cannot be inserted into a CORBA::Any (for
example, it is unknown or the bindings don't provide the TypeCode), then this attribute
will be a CORBA::Any containing the system exception UNKNOWN with a standard minor
code of 1. However, the RepositoryId of the exception is available in the
received_exception_id attribute.

virtual char* received_exception_id() = 0;

This method returns the ID of the received_exception to be returned to the client.

virtual IOP::TaggedComponent* get_effective_component(CORBA::ULong _id) = 0;

This methods returns the IOP::TaggedComponent with the given ID from the profile
selected for this request.

If there is more than one component for a given component ID, it is undefined which
component this operation returns. If there is more than one component for a given
component ID, get_effective_components() will be called instead.

get_request_policy yes no yes yes yes
add_request_service_context yes no no no no

Table 11.1ClientRequestInfo validity

send_request send_poll receive_reply receive_exception receive_other

216 VisiBroker C++ API Reference Guide

Cl ientRequestInterceptor

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

virtual IOP::TaggedComponentSeq* get_effective_components(CORBA::ULong _id) = 0;

This method returns all the tagged components with the given ID from the profile
selected for this request. This sequence is in the form of an
IOP::TaggedComponentSeq.

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

virtual CORBA::Policy_ptr get_request_policy(CORBA::ULong _type) = 0;

This method returns the given policy in effect for this operation.

If the policy type is not valid, either because the specified type is not supported by
this ORB or because a policy object of that type is not associated with this Object,
INV_POLICY with a standard minor code of 2 is raised.

virtual void add_request_service_context(const IOP::ServiceContext&
_service_context, CORBA::Boolean _replace) = 0;

This method allows interceptors to add service contexts to the request.

There is no declaration of the order of the service contexts. They may or may not
appear in the order in which they are added.

ClientRequestInterceptor

class PortableInterceptor::ClientRequestInterceptor : public virtual Interceptor

This ClientRequestInterceptor class is used to derive user-defined client side
interceptor. A ClientRequestInterceptor instance is registered with the VisiBroker
ORB (see “ORBInitializer” for more information).

Parameter Description

_id ID of the component which is to be returned.

Parameter Description

_id ID of the components which are to be returned.

Parameter Description

_type Type of policy which specifies the policy to be returned.

Parameter Description

_service_cont
ext

IOP::ServiceContext to be added to the request.

_replace Indicates the behavior of this method when a service context
already exists with the given ID. If false, then BAD_INV_ORDER
with a standard minor code of 15 is raised. If true, then the
existing service context is replaced by the new one.

 11: Portable Interceptor inter faces and classes 217

ClientRequestInterceptor

Include file

Include the PortableInterceptor_c.hh file when you use this class.

ClientRequestInterceptor methods

virtual void send_request(ClientRequestInfo_ptr _ri) = 0;

This send_request() interception point allows an interceptor to query request
information and modify the service context before the request is sent to the server.

This interception point may raise a system exception. If it does, no other
interceptors' send_request() interception points are called. Those interceptors on the
Flow Stack are popped and their receive_exception() interception points are called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest” for more information). If an Interception raises this exception, no
other interceptors' send_request methods are called. The remaining interceptors in
the Flow Stack are popped and have their receive_other() interception point called.

virtual void send_poll(ClientRequestInfo_ptr _ri) = 0;

This send_poll() interception point allows an interceptor to query information during
a Time-Independent Invocation (TII) polling get reply sequence.

However, as the VisiBroker ORB does not support TII, this send_poll() interception
point will never be called.

virtual void receive_reply(ClientRequestInfo_ptr _ri) = 0;

This receive_reply() interception point allows an interceptor to query the information
on a reply after it is returned from the server and before control is returned to the
client.

This interception point may raise a system exception. If it does, no other
interceptors' receive_reply() methods are called. The remaining interceptors in the
Flow Stack will have their receive_exception() interception point called.

virtual void receive_exception(ClientRequestInfo_ptr _ri) = 0;

This receive_exception() interception point is called when an exception occurs. It
allows an interceptor to query the exception's information before it is raised to the
client.

This interception point may raise a system exception. This has the effect of
changing the exception which successive interceptors popped from the Flow Stack
receive on their calls to receive_exception(). The exception raised to the client will
be the last exception raised by an interceptor, or the original exception if no
interceptor changes the exception.

Parameter Description

_ri ClientRequestInfo instance to be used by interceptor.

Parameter Description

_ri ClientRequestInfo instance to be used by interceptor.

Parameter Description

_ri ClientRequestInfo instance to be used by interceptor.

218 VisiBroker C++ API Reference Guide

Codec

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest” for more information). If an interceptor raises this exception, no
other interceptors' receive_exception() interception points are called. The remaining
interceptors in the Flow Stack are popped and have their receive_other()
interception point called.

virtual void receive_other(ClientRequestInfo_ptr _ri) = 0;

This receive_other() interception point allows an interceptor to query the information
available when a request results in something other than a normal reply or an
exception. For example, a request could result in a retry (for example, a GIOP Reply
with a LOCATION_FORWARD status was received), or on asynchronous calls, the reply
does not immediately follow the request, but control will return to the client and an
ending interception point will be called.

For retries, depending on the policies in effect, a new request may or may not follow
when a retry has been indicated. If a new request does follow, while this request is a
new request, with respect to interceptors, there is one point of correlation between
the original request and the retry: because control has not returned to the client, the
request scoped PortableInterceptor::Current for both the original request and the
retrying request is the same (see “Current” for more information).

This interception point may raise a system exception. If it does, no other
interceptors' receive_other() interception points are called. The remaining
interceptors in the Flow Stack are popped and have their receive_exception()
interception point called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest” for more information). If an interceptor raises this exception,
successive interceptors' receive_other() methods are called with the new
information provided by the ForwardRequest exception.

Codec

class IOP::Codec

The formats of IOR components and service context data used by ORB services are
often defined as CDR encapsulations encoding instances of IDL defined data types.
Codec provides a mechanism to transfer these components between their IDL data
types and their CDR encapsulation representations.

A Codec is obtained from the CodecFactory. The CodecFactory is obtained through a
call to ORB::resolve_initial_references("CodecFactory").

Include file

Include the IOP_c.hh file when you use this class.

Parameter Description

_ri ClientRequestInfo instance to be used by interceptor.

Parameter Description

_ri ClientRequestInfo instance to be used by interceptor.

 11: Portable Interceptor inter faces and classes 219

Codec

Codec Member Classes

class Codec::InvalidTypeForEncoding : public CORBA_UserException

This exception is raised by encode() or encode_value() when an invalid type is
specified for the encoding.

class Codec::FormatMismatch : public CORBA_UserException

This exception is raised by decode() or decode_value() when the data in the octet
sequence cannot be decoded into a CORBA::Any.

class Codec::TypeMismatch : public CORBA_UserException

This exception is raised by decode_value() when the given TypeCode does not match
the given octet sequence.

Codec Methods

virtual CORBA::OctetSequence* encode(const CORBA::Any& _data) = 0;

This method converts the given data in the form of a CORBA::Any into an octet
sequence based on the encoding format effective for this Codec. This octet sequence
contains both the TypeCode and the data of the type.

This operation may raise InvalidTypeForEncoding.

virtual CORBA::Any* decode(const CORBA::OctetSequence& _data) = 0;

This method decodes the given octet sequence into a CORBA::Any object based on
the encoding format effective for this Codec.

This method raises FormatMismatch if the octet sequence cannot be decoded into a
CORBA::Any.

virtual CORBA::OctetSequence* encode_value(const CORBA::Any& _data) = 0;

This method converts the given CORBA::Any object into an octet sequence based on
the encoding format effective for this Codec. Only the data from the CORBA::Any is
encoded, not the TypeCode.

This operation may raise InvalidTypeForEncoding.

Parameter Description

_data Data, in the form of a CORBA::Any, to be encoded into an octet
sequence.

Parameter Description

_data Data, in the form of an octet sequence, to be decoded into a
CORBA::Any.

Parameter Description

_data Octet sequence containing the data from the encoded CORBA::Any.

220 VisiBroker C++ API Reference Guide

CodecFactory

virtual CORBA::Any* decode_value(const CORBA::OctetSequence& _data,
CORBA::TypeCode_ptr _tc) = 0;

This method decodes the given octet sequence into a CORBA::Any based on the given
TypeCode and the encoding format effective for this Codec.

This method raises FormatMismatch if the octet sequence cannot be decoded into a
CORBA::Any.

CodecFactory

class IOP::CodecFactory

This class is used to obtained a Codec. The CodecFactory is obtained through a call to
ORB::resolve_initial_references("CodecFactory").

Include file

Include the IOP_c.hh file when you use this class.

CodecFactory Member

class CodecFactory::UnknownEncoding : public CORBA_UserException

This exception is raised if CodecFactory cannot create a Codec. See create_codec()
function below.

CodecFactory Method

virtual Codec_ptr create_codec(const Encoding& _enc) = 0;

This create_codec() method creates a Codec of the given encoding.

This method raises UnknownEncoding if this factory cannot create a Codec of the given
encoding.

Current

class PortableInterceptor::Current: public virtual CORBA::Current, public virtual
CORBA_Object

The Current class is merely a slot table, the slots of which are used by each service
to transfer their context data between their context and the request's or reply's
service context.

Parameter Description

_data Data, in the form of an octet sequence, to be decoded into a
CORBA::Any.

_tc TypeCode to be used to decode the data.

Parameter Description

_enc Specifies the encoding to be used for creating a Codec.

 11: Portable Interceptor inter faces and classes 221

Encoding

Each service which wishes to use Current reserves a slot or slots at initialization
time (see “virtual CORBA::ULong allocate_slot_id() = 0;” for more information) and
uses those slots during the processing of requests and replies.

Before an invocation is made, Current is obtained by way of a call to
ORB::resolve_initial_references("PICurrent").

From within the interception points, the data on Current that has moved from the
thread scope to the request scope is available by way of the get_slot() method on
the RequestInfo object. A Current can still be obtained by way of
resolve_initial_references(), but that is the interceptor's thread scope Current.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

Current Methods

virtual CORBA::Any* get_slot(CORBA::ULong _id);

A service can get the slot data it sets in PICurrent by way of the get_slot() method.
The data is in the form of a CORBA::Any object.

If the given slot has not been set, a CORBA::Any containing a type code with a TCKind
value of tk_null, no value is returned.

If get_slot() is called on a slot that has not been allocated, InvalidSlot is raised.

If get_slot() is called from within an ORB initializer (see “ORBInitializer” for more
information), BAD_INV_ORDER with a minor code of 14 is raised.

virtual void set_slot(CORBA::ULong _id, const CORBA::Any& _data);

A service sets data in a slot with set_slot(). The data is in the form of a CORBA::Any
object.

If data already exists in that slot, it is overridden.

If set_slot() is called on a slot that has not been allocated, InvalidSlot is raised.

If set_slot() is called from within an ORB initializer (see“ORBInitializer” for more
information) BAD_INV_ORDER with a minor code of 14 is raised.

Encoding

struct IOP::Encoding

This structure defines the encoding format of a Codec. It details the encoding format,
such as CDR Encapsulation encoding, and the major and minor versions of that
format.

Parameter Description

_id SlotId of the slot from which the data will be returned.

Parameter Description

_id SlotId of the slot from which the data will be set.
_data data, in the form of a CORBA::Any object, which will be set to the

identified slot.

222 VisiBroker C++ API Reference Guide

Except ionList

The supported encodings are:

– ENCODING_CDR_ENCAPS, version 1.0;
– ENCODING_CDR_ENCAPS, version 1.1;
– ENCODING_CDR_ENCAPS, version 1.2;
– ENCODING_CDR_ENCAPS for all future versions of GIOP as they arise.

Include file

Include the IOP_c.hh file when you use this struct.

Members

CORBA::Short format;

This member holds the encoding format for a Codec.

CORBA::Octet major_version;

This member holds the major version number for a Codec.

CORBA::Octet minor_version;

This member holds minor version number for a Codec.

ExceptionList

class Dynamic::ExceptionList

Use this class to hold exceptions information returned from the method exceptions()
in the class RequestInfo. It is an implementation of variable-length array of type
CORBA::TypeCode. The length of ExceptionList is available at run time.

For more information, see “virtual Dynamic::ExceptionList* exceptions() = 0;”.

Include file

Include the Dynamic_c.hh file when you use this class.

ForwardRequest

class PortableInterceptor::ForwardRequest : public CORBA_UserException

The ForwardRequest exception is the means by which an interceptor can indicate to
the ORB that a retry of the request should occur with the new object given in the
exception. This behavior of causing a retry only occurs if the ORB receives a
ForwardRequest from an interceptor. If ForwardRequest is raised anywhere else, it is
passed through the ORB as is normal for a user exception.

If an interceptor raises a ForwardRequest exception in response to a call of an
interceptor, no other interceptors are called for that interception point. The
remaining interceptors in the Flow Stack will have their appropriate ending
interception point called: receive_other() on the client, or send_other() on the
server. The reply_status() in the receive_other() or send_other() will return
LOCATION_FORWARD.

 11: Portable Interceptor inter faces and classes 223

Interceptor

Include file

Include the PortableInterceptor_c.hh file when you use this class.

Interceptor

class PortableInterceptor::Interceptor

This is the base class from which all interceptors are derived.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

Interceptor methods

virtual char* name() = 0;

This method returns the name of the interceptor. Each interceptor may have a name
which can be used to order the lists of interceptors. Only one interceptor of a given
name can be registered with the VisiBroker ORB for each interceptor type. An
interceptor may be anonymous, such as it has an empty string as the name attribute.
Any number of anonymous interceptors may be registered with the VisiBroker ORB.

virtual void destroy() = 0;

This method is called during ORB::destroy(). When ORB::destroy() is called by an
application, the VisiBroker ORB:

1 waits for all requests in progress to complete

2 calls the Interceptor::destroy() method for each interceptor

3 completes destruction of the ORB

Method invocations from within Interceptor::destroy() on object references for
objects implemented on the ORB being destroyed result in undefined behavior.
However, method invocations on objects implemented on VisiBroker ORB, other
than the one being destroyed, are permitted. (This means that the VisiBroker ORB
being destroyed is still capable of acting as a client, but not as a server.)

IORInfo

class PortableInterceptor::IORInfo

The IORInfo interface provides the server side ORB service with access to the
applicable policies during IOR construction and the ability to add components. The
ORB passes an instance of its implementation of this interface as a parameter to
IORInterceptor::establish_components().

224 VisiBroker C++ API Reference Guide

IORInfo

The table below defines the validity of each attribute or method in IORInfo in the
methods defined in the IORInterceptor.

If an illegal call is made to an attribute or method in IORInfo, the BAD_INV_ORDER
system exception is raised with a standard minor code value of 14.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

IORInfo Methods

virtual CORBA::Policy_ptr get_effective_policy(CORBA::ULong _type) = 0;

An ORB service implementation may determine what server side policy of a
particular type is in effect for an IOR being constructed by calling the
get_effective_policy() method. When the IOR being constructed is for an object
implemented using a POA, all Policy objects passed to the
PortableServer::POA::create_POA() call that created that POA are accessible via
get_effective_policy.

If a policy for the given type is not known to the ORB, then this method will raise
INV_POLICY with a standard minor code of 3.

virtual void add_ior_component(const IOP::TaggedComponent& _a_component) = 0;

This method is called from establish_components() to add a tagged component to
the set which will be included when constructing IORs. The components in this set
will be included in all profiles.

Any number of components may exist with the same component ID.

virtual void add_ior_component_to_profile(const IOP::TaggedComponent&
_a_component, CORBA::ULong _profile_id) = 0;

This method is called from establish_components() to add a tagged component to
the set which will be included when constructing IORs. The components in this set
will be included in the specified profile.

Any number of components may exist with the same component ID.

Table 11.2 IORInfo validity

establish_components components_established

get_effective_policy yes yes
add_component yes no
add_component_to_profile yes no
manager_id yes yes
state yes yes
adapter_template no yes
current_factory no yes

Parameter Description

_type CORBA::PolicyType specifying the type of policy to return.

Parameter Description

_a_component IOP::TaggedComponent to be added.

 11: Portable Interceptor inter faces and classes 225

IORInfoExt

If the given profile ID does not define a known profile or it is impossible to add
components to that profile, BAD_PARAM is raised with a standard minor code of 29.

virtual CORBA::Long manager_id() = 0;

This method returns the attribute that provides an opaque handle to the manager of
the adapter. This is used for reporting state changes in adapters managed by the
same adapter manager.

virtual CORBA::Short state() = 0;

This method returns the current state of the adapter. This must be one of HOLDING,
ACTIVE, DISCARDING, INACTIVE, NON_EXISTENT.

virtual ObjectReferenceTemplate_ptr adapter_template() = 0;

This method returns the attribute that provides a means to obtain an object
reference template whenever an IOR interceptor is invoked. There is no standard
way to directly create an object reference template. The value of adapter_template()
returns is the template created for the adapter policies and IOR interceptor calls to
add_component() and add_component_to_profile(). The value of the
adapter_template() returns is never changed for the lifetime of the object adapter.

virtual ObjectReferenceFactory_ptr current_factory() = 0;

This method returns the attribute that provides access to the factory that will be used
by the adapter to create object references. current_factory() initially has the same
value as the adapter_template attribute, but this can be changed by setting
current_factory to another factory. All object references created by the object
adapter must be created by calling the make_object() method on current_factory.

virtual void current_factory(ObjectReferenceFactory_ptr _current_factory) = 0;

This method sets the current_factory attribute. The value of the current_factory
attribute that is used by the adapter can only be set during the call to the
components_established method.

IORInfoExt

class IORInfoExt: public PortableInterceptor::IORInfo

This is the VisiBroker extensions to Portable Interceptors to allow installing of a POA
scoped Server Request Interceptor. This IORInfoExt interface is inherited from
IORInfo interface and has additional methods to support POA scoped Server
Request Interceptor.

Parameter Description

_a_component IOP::TaggedComponent to be added.
_profile_id IOP::ProfileId of the profile to which this component will be

added.

Parameter Description

_current_factory current_factory object which is to be set.

226 VisiBroker C++ API Reference Guide

IORInterceptor

Include file

Include the PortableInterceptorExt_c.hh file when you use this class.

IORInfoExt Methods

virtual void add_server_request_interceptor (ServerRequestInterceptor_ptr

_interceptor) = 0;

This method is used to add a POA-scoped (not an ORB-scoped) server side request
interceptor to a service.

virtual char* full_poa_name();

This method return the full POA name.

IORInterceptor

class PortableInterceptor::IORInterceptor : public virtual Interceptor

In some cases, a portable ORB service implementation may need to add
information describing the server's or object's ORB service related capabilities to
object references in order to enable the ORB service implementation in the client to
function properly.

This is supported through the IORInterceptor and IORInfo interfaces.

The IOR Interceptor is used to establish tagged components in the profiles within an
IOR.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

IORInterceptor Methods

virtual void establish_components(IORInfo_ptr _info) = 0;

A server side ORB calls the establish_components() method on all registered
IORInterceptor instances when it is assembling the list of components that will be
included in the profile(s) of an object reference. This method is not necessarily
called for each individual object reference. In the case of the POA, these calls are
made each time POA::create_POA() is called. In other adapters, these calls would
typically be made when the adapter is initialized. The adapter template is not
available at this stage since information (the components) needed in the adapter
template is being constructed.

Parameter Description

_interceptor ServerRequestInterceptor to be added.

Parameter Description

_info IORInfo instance used by the ORB service to query applicable
policies and add components to be included in the generated
IORs.

 11: Portable Interceptor inter faces and classes 227

ORBInit ial izer

virtual void components_established(IORInfo_ptr _info) = 0;

After all of the establish_components() methods have been called, the
components_established() methods are invoked on all registered IOR interceptors.
The adapter template is available at this stage. The current_factory attribute may
be get or set at this stage.

Any exception that occurs in components_established() is returned to the caller of
components_established(). In the case of the POA, this causes the create_POA call to
fail, and an OBJ_ADAPTER exception with a standard minor code of 6 is returned to the
invoker of create_POA().

virtual void adapter_manager_state_changed(CORBA::Long _id, CORBA::Short
_state) = 0;

Any time the state of an adapter manager changes, the
adapter_manager_state_changed() method is invoked on all registered IOR
interceptors.

If a state change is reported through adapter_manager_state_changed(), it is not
reported through adapter_state_changed().

virtual void adapter_state_changed(const ObjectReferenceTemplateSeq&
_templates, CORBA::Short _state) = 0;

Object adapter state changes are reported to this method any time the state of one
or more adapters changes for reasons unrelated to adapter manager state changes.
The templates argument identifies the object adapters that have changed state by
the template ID information. The sequence contains the adapter templates for all
object adapters that have made the state transition being reported.

ORBInitializer

class PortableInterceptor::ORBInitializer

An interceptor is registered by registering an associated ORBInitializer object which
implements the ORBInitializer class. When an ORB is initializing, it calls each
registered ORBInitializer, passing it an ORBInitInfo object which is used to register
its interceptor.

Parameter Description

_info IORInfo instance used by the ORB service to access applicable
policies.

Parameter Description

_id IORInfo instance used by the ORB service to access applicable
policies.

_state new state of the object adapter.

Parameter Description

_templates identifies the object adapters that have changed state by the
template ID information.

_state new state of the object adapter.

228 VisiBroker C++ API Reference Guide

ORBIni t Info

Include file

Include the PortableInterceptor_c.hh file when you use this class.

ORBInitializer Methods

virtual void pre_init(ORBInitInfo_ptr _info) = 0;

This method is called during ORB initialization. If it is expected that initial services
registered by an interceptor will be used by other interceptors, then those initial
services are registered at this point via calls to
ORBInitInfo::register_initial_reference().

virtual void post_init(ORBInitInfo_ptr _info) = 0;

This method is called during ORB initialization. If a service must resolve initial
references as part of its initialization, it can assume that all initial references will be
available at this point.

Calling the post_init() methods is not the final task of ORB initialization. The final
task, following the post_init() calls, is attaching the lists of registered interceptors
to the ORB. Therefore, the ORB does not contain the interceptors during calls to
post_init(). If an ORB-mediated call is made from within post_init(), no request
interceptors will be invoked on that call. Likewise, if a method is performed which
causes an IOR to be created, no IOR interceptors will be invoked.

ORBInitInfo

class PortableInterceptor::ORBInitInfo

This ORBInitInfo class is passed to ORBInitializer object for registering
interceptors.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

ORBInitInfo Member Classes

class DuplicateName : public CORBA_UserException;

Only one interceptor of a given name can be registered with the ORB for each
interceptor type. If an attempt is made to register a second interceptor with the same
name, DuplicateName is raised.

Parameter Description

_info an object that provides initialization attributes and methods by
which interceptors can be registered.

Parameter Description

_info An object that provides initialization attributes and methods by
which interceptors can be registered.

 11: Portable Interceptor inter faces and classes 229

ORBInit Info

An interceptor may be anonymous, such as it has an empty string as the name
attribute. Any number of anonymous interceptors may be registered with the ORB,
so if the interceptor being registered is anonymous, the registration operation will
not raise DuplicateName.

class InvalidName: public CORBA_UserException

This exception is raised by register_initial_reference() and
resolve_initial_references().

register_initial_reference() raises InvalidName if:

This method is called with an empty string id; or

This method is called with an id that is already registered, including the default
names defined by OMG.

resolve_initial_references() raises InvalidName if the name to be resolved is
invalid.

ORBInitInfo Methods

virtual CORBA::StringSequence* arguments() = 0;

This method returns the arguments passed to ORB_init(). They may or may not
contain the ORB's arguments.

virtual char* orb_id() = 0;

This method returns the ID of the ORB being initialized.

virtual IOP::CodecFactory_ptr codec_factory() = 0;

This method returns the IOP::CodecFactory. The CodecFactory is normally obtained
via a call to ORB::resolve_initial_references("CodecFactory"), but since the ORB is
not yet available and interceptors, particularly when processing service contexts, will
require a Codec, a means of obtaining a Codec is necessary during ORB initialization.

virtual void register_initial_reference(const char* _id, CORBA::Object_ptr
_obj) = 0;

If this method is called with an id, “Y”, and an object, YY, then a subsequent call to
register_initial_reference() will return object YY.

This method is identical to ORB::register_initial_reference(). This same
functionality exists here because the ORB, not yet fully initialized, is not yet
available but initial references may need to be registered as part of Interceptor
registration. The only difference is that the version of this method on the ORB uses
PIDL (CORBA::ORB::ObjectId and CORBA::ORB::InvalidName) whereas the version in
this interface uses IDL defined in this interface; the semantics are identical.

register_initial_reference() raises InvalidName if

This method is called with an empty string id; or

230 VisiBroker C++ API Reference Guide

ORBIni t Info

This method is called with an id that is already registered, including the default
names defined by OMG.

virtual CORBA::Object_ptr resolve_initial_references(const char* _id) = 0;

This method is only valid during post_init(). It is identical to
ORB::resolve_initial_references(). This same functionality exists here because the
ORB, not yet fully initialized, is not yet available but initial references may be
required from the ORB as part of Interceptor registration.

If the name to be resolved is invalid, resolve_initial_references() will raise
InvalidName.

virtual void add_client_request_interceptor(ClientRequestInterceptor_ptr
_interceptor) = 0;

This method is used to add a client side request interceptor to the list of client side
request interceptors.

If a client side request interceptor has already been registered with this interceptor's
name, DuplicateName will be raised.

virtual void add_server_request_interceptor(ServerRequestInterceptor_ptr
_interceptor) = 0;

This method is used to add a server side request interceptor to the list of server side
request interceptors.

If a server side request interceptor has already been registered with this
interceptor's name, DuplicateName is raised.

virtual void add_ior_interceptor(IORInterceptor_ptr _interceptor) = 0;

This method is used to add an IOR interceptor to the list of IOR interceptors.

If an IOR interceptor has already been registered with this interceptor's name,
DuplicateName is raised.

Parameter Description

_id ID by which the initial reference will be known.
_obj The initial reference itself.

Parameter Description

_id ID by which the initial reference will be known.

Parameter Description

_interceptor ClientRequestInterceptor to be added.

Parameter Description

_interceptor ServerRequestInterceptor to be added.

Parameter Description

_interceptor IORInterceptor to be added.

 11: Portable Interceptor inter faces and classes 231

Parameter

virtual CORBA::ULong allocate_slot_id() = 0;

Returns the index to the slot which has been allocated.

A service calls allocate_slot_id to allocate a slot on PortableInterceptor::Current.

Note

While slot id's can be allocated within an ORB initializer, the slots themselves
cannot be initialized. Calling set_slot() or get_slot() on the Current (see “Current”
for more information) within an ORB initializer will raise a BAD_INV_ORDER with a minor
code of 14.

virtual void register_policy_factory(CORBA::ULong _type, PolicyFactory_ptr
_policy_factory) = 0;

This method registers a PolicyFactory for the given PolicyType.

If a PolicyFactory already exists for the given PolicyType, BAD_INV_ORDER is raised
with a standard minor code of 16.

Parameter

struct Dynamic::Parameter

This structure holds the parameter information. This structure is the element used in
ParameterList (see “ParameterList” for more information).

Include file

Include the Dynamic_c.hh file when you use this struct.

Members

CORBA::Any argument;

This member stores the parameter data in the form of CORBA::Any.

CORBA::ParameterMode mode;

This member specifies the mode of a parameter. Its value can be one of the enum
values: PARAM_IN, PARAM_OUT or PARAM_INOUT.

ParameterList

class Dynamic::ParameterList

This class is used to pass parameters information returned from the method
arguments() in the class RequestInfo. It is an implementation of variable-length array
of type Parameter. The length of ParameterList is available at run-time.

For more information, see “virtual Dynamic::ParameterList* arguments() = 0;”.

Parameter Description

_type CORBA::PolicyType that the given PolicyFactory serves.
_policy_factory factory for the given CORBA::PolicyType.

232 VisiBroker C++ API Reference Guide

Pol icyFactory

Include file

Include the Dynamic_c.hh file when you use this class.

PolicyFactory

class PortableInterface::PolicyFactory

A portable ORB service implementation registers an instance of the PolicyFactory
interface during ORB initialization. The POA is required to preserve any policy which
is registered with ORBInitInfo in this manner.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

PolicyFactory Method

virtual CORBA::Policy_ptr create_policy(CORBA::ULong _type, const CORBA::Any&
_value) = 0;

The ORB calls create_policy() on a registered PolicyFactory instance when
CORBA::ORB::create_policy() is called for the PolicyType under which the
PolicyFactory has been registered. The create_policy() method then returns an
instance of the appropriate interface derived from CORBA::Policy whose value
corresponds to the specified CORBA::Any. If it cannot, it will raise an exception as
described for CORBA::ORB::create_policy().

RequestInfo

class PortableInterceptor::RequestInfo

This is the base class from which ClientRequestInfo and ServerRequestInfo are
derived. Each interception point is given an object through which the Interceptor can
access request information. client side and server side interception points are
concerned with different information, so there are two information objects:
ClientRequestInfo is passed to the client side interception points and
ServerRequestInfo is passed to the server side interception points. But there is
information that is common to both, so they both inherit from this common interface:
RequestInfo.

Include file

Include the PortableInterceptor_c.hh file when you use this class.

Parameter Description

_type A CORBA::PolicyType specifying the type of policy being created.
_value An CORBA::Any containing data with which to construct the

CORBA::Policy.

 11: Portable Interceptor inter faces and classes 233

RequestInfo

RequestInfo methods

virtual CORBA::ULong request_id() = 0;

This method returns the ID which uniquely identifies an active request / reply
sequence. Once a request / reply sequence is concluded this ID may be reused.

Note

This ID is not the same as the GIOP request_id. If GIOP is the transport mechanism
used, then these IDs may very well be the same, but this is not guaranteed nor
required.

virtual char* operation() = 0;

This method returns name of the operation being invoked.

virtual Dynamic::ParameterList* arguments() = 0;

This method returns a Dynamic::ParameterList containing the arguments on the
operation being invoked. If there are no arguments, this attribute will be a zero
length sequence.

virtual Dynamic::ExceptionList* exceptions() = 0;

This method returns a Dynamic::ExceptionList describing the TypeCodes of the user
exceptions that this operation invocation may raise. If there are no user exceptions,
this attribute will be a zero length sequence.

virtual CORBA::StringSequence* contexts() = 0;

This method returns a CORBA::StringSequence describing the contexts that may be
passed on this operation invocation. If there are no contexts, this attribute will be a
zero length sequence.

virtual CORBA::StringSequence* operation_context() = 0;

This method returns a CORBA::StringSequence containing the contexts being sent on
the request.

virtual CORBA::Any* result() = 0;

This method returns the data, in the form of CORBA::Any, that contains the result of
the operation invocation. If the operation return type is void, this attribute will be a
CORBA::Any containing a type code with a TCKind value of tk_void and no value.

virtual CORBA::Boolean response_expected() = 0;

This method returns a boolean value which indicates whether a response is
expected.

On the client, a reply is not returned when response_expected() is false, so
receive_reply() cannot be called. receive_other() is called unless an exception
occurs, in which case receive_exception() is called.

virtual CORBA::Short sync_scope() = 0;

This method returns an attribute, defined in the Messaging specification, is pertinent
only when response_expected() is false. If response_expected() is true, the value of

234 VisiBroker C++ API Reference Guide

RequestInfo

sync_scope() is undefined. It defines how far the request will progress before control
is returned to the client. This attribute may have one of the following values:

– Messaging::SYNC_NONE
– Messaging::SYNC_WITH_TRANSPORT
– Messaging::SYNC_WITH_SERVER
– Messaging::SYNC_WITH_TARGET

On the server, for all scopes a reply will be created from the return of the target
operation call, but the reply will not return to the client. Although it does not return to
the client, it does occur, so the normal server side interception points are followed
(for example, receive_request_service_contexts(), receive_request(), send_reply()
or send_exception()).

For SYNC_WITH_SERVER and SYNC_WITH_TARGET, the server does send an empty reply
back to the client before the target is invoked. This reply is not intercepted by server
side Interceptors.

virtual CORBA::Short reply_status() = 0;

This method returns an attribute which describes the state of the result of the
operation invocation. Its value can be one of the following:

– PortableInterceptor::SUCCESSFUL = 0
– PortableInterceptor::SYSTEM_EXCEPTION = 1
– PortableInterceptor::USER_EXCEPTION = 2
– PortableInterceptor::LOCATION_FORWARD = 3
– PortableInterceptor::TRANSPORT_RETRY = 4

On the client:

– Within the receive_reply interception point, this attribute will only be SUCCESSFUL.

– Within the receive_exception interception point, this attribute will be either
SYSTEM_EXCEPTION or USER_EXCEPTION.

– Within the receive_other interception point, this attribute will be any of: SUCCESSFUL,
LOCATION_FORWARD, or TRANSPORT_RETRY. SUCCESSFUL means an asynchronous
request returned successfully. LOCATION_FORWARD means that a reply came back
with LOCATION_FORWARD as its status. TRANSPORT_RETRY means that the transport
mechanism indicated a retry—a GIOP reply with a status of
NEEDS_ADDRESSING_MODE, for instance.

On the server:

– Within the send_reply interception point, this attribute will only be SUCCESSFUL.

– Within the send_exception interception point, this attribute will be either
SYSTEM_EXCEPTION or USER_EXCEPTION.

– Within the send_other interception point, this attribute will be any of: SUCCESSFUL, or
LOCATION_FORWARD. SUCCESSFUL means an asynchronous request returned
successfully. LOCATION_FORWARD means that a reply came back with
LOCATION_FORWARD as its status.

virtual CORBA::Object_ptr forward_reference() = 0;

If the reply_status() returns LOCATION_FORWARD, then this method returns an object to
which the request will be forwarded. It is indeterminate whether a forwarded request
will actually occur.

virtual CORBA::Any* get_slot(CORBA::ULong _id) = 0;

This method returns the data, in the form of a CORBA::Any, from the given slot of the
PortableInterceptor::Current that is in the scope of the request.

 11: Portable Interceptor inter faces and classes 235

ServerRequestInfo

If the given slot has not been set, then a CORBA::Any containing a type code with a
TCKind value of tk_null is returned.

If the ID does not define an allocated slot, InvalidSlot is raised.

See “Current” for an explanation of slots and the PortableInterceptor::Current.

virtual IOP::ServiceContext* get_request_service_context(CORBA::ULong _id) = 0;

This method returns a copy of the service context with the given ID that is
associated with the request.

If the request's service context does not contain an entry for that ID, BAD_PARAM with a
standard minor code of 26 is raised.

virtual IOP::ServiceContext* get_reply_service_context(CORBA::ULong _id) = 0;

This method returns a copy of the service context with the given ID that is
associated with the reply.

If the request's service context does not contain an entry for that ID, BAD_PARAM with a
standard minor code of 26 is raised.

ServerRequestInfo

class PortableInterceptor::ServerRequestInfo : public virtual RequestInfo

This class is derived from RequestInfo. It is passed to server side interception points.

Some methods on ServerRequestInfo are not valid at all interception points. The
table below shows the validity of each attribute or method. If it is not valid,
attempting to access it will result in a BAD_INV_ORDER being raised with a standard
minor code of 14.

Parameter Description

_id SlotId of the slot which is to be returned.

Parameter Description

_id IOP::ServiceContext of the slot which is to be returned.

Parameter Description

_id IOP::ServiceContext of the slot which is to be returned.

receive_request_
service_contexts receive_request send_reply send_exception send_other

request_id yes yes yes yes yes
operation yes yes yes yes yes
arguments no yes1 yes no2 no2

exception no yes yes yes yes
contexts no yes yes yes yes
operation_context no yes yes no no
result no no yes no no
response_expected yes yes yes yes yes
sync_scope yes yes yes yes yes
reply_status no no yes yes yes

236 VisiBroker C++ API Reference Guide

ServerRequest Info

1 When ServerRequestInfo is passed to receive_request(), there is an entry in the list for every argument,
whether in, inout, or out. But only the in and inout arguments will be available.

2 If the reply_status() does not returns LOCATION_FORWARD, accessing this attribute will raise BAD_INV_ORDER
with a standard minor code of 14

3 If the servant locator caused a location forward, or raised an exception, this attribute / method may not
be available in this interception point. NO_RESOURCES with a standard minor code of 1 will be raised if it is
not available.

4 The method is not available in this interception point because the necessary information requires
access to the target object's servant, which may no longer be available to the ORB. For example, if
the object's adapter is a POA that uses a ServantLocator, then the ORB invokes the interception point
after it calls ServantLocator::postinvoke().

Include file

Include the PortableInterceptor_c.hh file when you use this class.

ServerRequestInfo methods

virtual CORBA::Any* sending_exception() = 0;

This method returns data, in the form CORBA::Any, that contains the exception to be
returned to the client.

If the exception is a user exception which cannot be inserted into a CORBA::Any (e.g.,
it is unknown or the bindings don't provide the TypeCode), then this attribute will be an
CORBA::Any containing the system exception UNKNOWN with a standard minor code of 1.

virtual char* server_id() = 0;

This method returns the value that was passed into the ORB::init call using the
-ORBServerId argument when the ORB was created.

forward_reference no no no no yes2

get_slot yes yes yes yes yes
get_request_service_contex
t

yes yes yes yes yes

get_reply_service_context no no yes yes yes
sending_exception no no no yes no
object_id no yes yes yes3 yes3

adapter_id no yes yes yes3 yes3

server_id no yes yes yes yes
orb_id no yes yes yes yes
adapter_name no yes yes yes yes
target_most_derived_interf
ace

no yes no4 no4 no4

get_server_policy yes yes yes yes yes
set_slot yes yes yes yes yes
target_is_a no yes no4 no4 no4

add_reply_service_context yes yes yes yes

receive_request_
service_contexts receive_request send_reply send_exception send_other

 11: Portable Interceptor inter faces and classes 237

ServerRequestInfo

virtual char* orb_id() = 0;

The method returns the value that was passed into the ORB::init() call.

In Java, this is accomplished using the -ORBid argument in the ORB.init call that
created the ORB containing the object adapter that created this template. What
happens if the same ORBid is used on multiple ORB::init() calls in the same server is
currently undefined.

virtual CORBA::StringSequence* adapter_name() = 0;

The method returns the name for the object adapter, in the form of
CORBA::StringSequence, that services requests for the invoked object. In the case
of the POA, the adapter_name is the sequence of names from the root POA to the
POA that services the request. The root POA is not named in this sequence.

virtual CORBA::OctetSequence* object_id() = 0;

This method returns the opaque object_id, in the form of CORBA::OctetSequence, that
describes the target of the operation invocation.

virtual CORBA::OctetSequence* adapter_id() = 0;

This method returns opaque identifier for the object adapter, in the form of
CORBA::OctetSequence.

virtual char* target_most_derived_interface() = 0;

This method returns the RepositoryID for the most derived interface of the servant.

virtual CORBA::Policy_ptr get_server_policy(CORBA::ULong _type) = 0;

This method returns the policy in effect for this operation for the given policy type.
The returned CORBA::Policy object will only be a policy whose type was registered
via register_policy_factory().

If a policy for the given type was not registered via register_policy_factory, this
method will raise INV_POLICY with a standard minor code of 3.

virtual void set_slot(CORBA::ULong _id, const CORBA::Any& _data) = 0;

This method allows an Interceptor to set a slot in the PortableInterceptor::Current
that is in the scope of the request. If data already exists in that slot, it will be
overwritten.

If the ID does not define an allocated slot, InvalidSlot is raised.

See “Current” for an explanation of slots and PortableInterceptor::Current.

Parameter Description

_type The CORBA::PolicyType which specifies the policy to be returned.

Parameter Description

_id The SlotId of the slot.
_data The data, in the form of a CORBA::Any, to store in that slot.

238 VisiBroker C++ API Reference Guide

ServerRequest Interceptor

virtual CORBA::Boolean target_is_a(const char* _id) = 0;

This method returns true if the servant is the given RepositoryId, false if it is not.

virtual void add_reply_service_context(const IOP::ServiceContext&
_service_context, CORBA::Boolean _replace) = 0;

This method allows Interceptors to add service contexts to the request.

There is no declaration of the order of the service contexts. They may or may not
appear in the order that they are added.

ServerRequestInterceptor

class PortableInterceptor::ServerRequestInterceptor : public virtual Interceptor

This ServerRequestInterceptor class is used to derive user-defined server side
interceptor. A ServerRequestInterceptor instance is registered with the ORB (see
“ORBInitializer” for more information).

Include file

Include the PortableInterceptor_c.hh file when you use this class.

ServerRequestInterceptor methods

virtual void receive_request_service_contexts(ServerRequestInfo_ptr _ri) = 0;

At this receive_request_service_contexts() interception point, Interceptors must get
their service context information from the incoming request and transfer it to
PortableInterceptor::Current's slots.

This interception point is called before the servant manager is called. Operation
parameters are not yet available at this point. This interception point may or may not
execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_request_service_contexts() interception points are called.
Those Interceptors on the Flow Stack are popped and their send_exception()
interception points are called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest” for more information). If an Interceptor raises this exception, no
other Interceptors' receive_request_service_contexts() methods are called. Those

Parameter Description

_id The caller wants to know if the servant is this
CORBA::RepositoryId.

Parameter Description

_service_context The IOP::ServiceContext to add to the reply.
_replace Indicates the behavior of this method when a service

context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 15 is raised. If
true, then the existing service context is replaced by the
new one.

 11: Portable Interceptor inter faces and classes 239

ServerRequestInterceptor

Interceptors on the Flow Stack are popped and their send_other interception points
are called.

virtual void receive_request(ServerRequestInfo_ptr _ri) = 0;

This receive_request() interception point allows an Interceptor to query request
information after all the information, including method parameters, are available.
This interception point will execute in the same thread as the target invocation.

In the DSI model, since the parameters are first available when the user code calls
arguments(), receive_request() is called from within arguments(). It is possible that
arguments() is not called in the DSI model. The target may call set_exception()
before calling arguments(). The ORB will guarantee that receive_request() is called
once, either through arguments() or through set_exception(). If it is called through
set_exception(), requesting the arguments() will result in NO_RESOURCES being raised
with a standard minor code of 1.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_request() methods are called. Those Interceptors on the Flow
Stack are popped and their send_exception interception points are called.

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest” for more information). If an Interceptor raises this exception, no
other Interceptors' receive_request() methods are called. Those Interceptors on the
Flow Stack are popped and their send_other() interception points are called.

virtual void send_reply(ServerRequestInfo_ptr _ri) = 0;

This send_reply() interception point allows an Interceptor to query reply information
and modify the reply service context after the target operation has been invoked and
before the reply is returned to the client. This interception point will execute in the
same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' send_reply() interception points are called. The remaining Interceptors
in the Flow Stack will have their send_exception() interception point called.

virtual void send_exception(ServerRequestInfo_ptr _ri) = 0;

This send_exception() interception point is called when an exception occurs. It
allows an Interceptor to query the exception information and modify the reply service
context before the exception is raised to the client. This interception point will
execute in the same thread as the target invocation.

This interception point may raise a system exception. This has the effect of
changing the exception which successive Interceptors popped from the Flow Stack
receive on their calls to send_exception. The exception raised to the client will be the
last exception raised by an Interceptor, or the original exception if no Interceptor
changes the exception.

Parameter Description

_ri This is the ServerRequestInfo instance to be used by Interceptor.

Parameter Description

_ri This is the ServerRequestInfo instance to be used by Interceptor.

Parameter Description

_ri This is the ServerRequestInfo instance to be used by Interceptor.

240 VisiBroker C++ API Reference Guide

ServerRequest Interceptor

This interception point may also raise a ForwardRequest exception (see
“ForwardRequest” for more information). If an Interceptor raises this exception, no
other Interceptors' send_exception() interception points are called. The remaining
Interceptors in the Flow Stack will have their send_other interception points called.

virtual void send_other(ServerRequestInfo_ptr _ri) = 0;

This send_other() interception point allows an Interceptor to query the information
available when a request results in something other than a normal reply or an
exception. For example, a request could result in a retry (e.g., a GIOP Reply with a
LOCATION_FORWARD status was received). This interception point will execute in the
same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' send_other() methods are called. The remaining Interceptors in the
Flow Stack will have their send_exception interception points called.

This interception point may also raise a ForwardRequest exception.

 12: 5.x Interceptor and object wrapper interfaces and classes 241

5.x Interceptor and object wrapper
interfaces and classes
This section describes the interfaces and classes that you can use with 5.x interceptors
and object wrappers.

For more information, see “Using VisiBroker Interceptors” and “Using Object
Wrappers” in the VisiBroker for C++ Developer's Guide.

Introduction
5.x Interceptors are interceptors that are defined and implemented in VisiBroker
version 5.x. Similar to Portable Interceptor, 5.x interceptors offer the VisiBroker ORB
services a mechanism to intercept normal flow of execution of the ORB. The table
below lists the three forms of 5.x interceptor.

InterceptorManagers
Interceptors are installed and managed via interceptor managers. The
InterceptorManager interface is the generic interceptor manager from which all
interceptor-specific managers inherit. An InterceptorManager type is associated with
each interceptor type. An InterceptorManager holds a list or chain of a particular kind of
interceptors, all of which have the same scope and need to start at the same time.
Therefore, global interceptors, such as POALifeCycle and Bind have global
InterceptorManagers while scoped interceptors, per-POA and per-object, have an
InterceptorManager for each scope. Each scope, either global, POAs, or objects, may
hold multiple types of interceptors. You get the right kind of manager for a particular
interceptor from an InterceptorManagerControl.

Interceptor Type Description

Client Interceptor System level interceptors which can be used to hook ORB services such
as transactions and security into the client ORB processing.

Server Interceptor System level interceptors which can be used to hook ORB services such
as transactions and security into the server ORB processing.

Object Wrappers User level interceptors which provide a simple mechanism for users to
intercept calls to stubs and skeletons. These allow for simple tracing and
data caching among other things.

242 VisiBroker C++ API Reference Guide

IOR templates

Global interceptors may be handed additional interceptor managers to install localized
interceptors, for example, per-POA interceptors use the POAInterceptorManager.

To obtain an instance of the global interceptor manager, InterceptorManager, call
ORB.resolve_initial_references and pass the String InterceptorManager as an
argument. This value is only available when the ORB is in administrative mode, that is,
during ORB initialization. It can only be used to install global interceptors such as,
POALifeCycle interceptors or Bind interceptors.

The POA interceptor manager is a per-POA manager and is only available to
POALifeCycleInterceptors during their create call. POALifeCycleInterceptors may set up
all other server side interceptors during the call to create. The Bind Interceptor Manager
is a per-object manager and is only available to Bind interceptors during their
bind_succeeded() call. Bind interceptors may set up ClientRequest interceptors during
the bind_succeeded call.

IOR templates
In addition to the interceptor, the Interoperable Object Reference (IOR) template may
be modified directly on the POAIntercptorManager interface during the call to
POALifeCycleInterceptor::create(). The IOR template is a full IOR value with the
type_id not set, and all GIOP::ProfileBodyValueshave incomplete object keys. The POA
sets the type_id and fills in the object keys of the template before calling the
IORCreationInterceptors.

InterceptorManager

class Interceptor::InterceptorManager

This is the base class from which all interceptor managers are derived. Interceptor
managers are interfaces which are used to manage the installation and removal of
interceptors from the system.

InterceptorManagerControl

class Interceptor::InterceptorManagerControl public CORBA::PseudoObject

This is the class that is responsible for controlling a set of related interceptor
managers. It holds all available managers identified by a string that corresponds to
the type of interceptors to be managed. There is one InterceptorManagerControl per
scope.

Include file

Include the interceptor_c.hh file when you use this class.

InterceptorManagerInterceptor method

InterceptorManager_ptr get_manager(const char name);

This method returns an instance of the InterceptorManager which returns a string
identifying the manager.

Parameter Description

name The name of the interceptor.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 243

BindInterceptor

BindInterceptor

class Interceptor::BindInterceptor public VISPseudoInterface

You can use this class to derive your own interceptor for handling bind and rebind
events for a client or server application. The Bind Interceptors are global
interceptors invoked on the client side before and after binds.

If an exception is thrown during a bind, the remaining interceptors in the chain are
not called and the chain is truncated to only those interceptors already called.
Exceptions thrown during bind_succeeded or bind_failed are ignored.

Include file

You should include the interceptor_c.hh file when you use this class.

BindInterceptor methods

virtual IOP::IORValue_ptr bind(IOP::IORValue_ptr ior, CORBA::Object_ptr
objCORBA::Boolean rebind, VISClosure& closure);

This method is called during all ORB bind operations.

virtual IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr ior, CORBA::Object_ptr
obj, VISClosure& closure);

This method is called if a bind operation failed.

Parameter Description

ior The Interoperable Object Reference (IOR) for the server object to
which the client is binding.

obj The client object which is being bound to the server. The object will
not be properly initialized at this time, so do not attempt an
operation on it. However, it may be stored in a data structure and
used after the bind has completed.

rebind An attempt to rebind to the server. After a bind() has failed,
depending on the current quality of service, a rebind may be
attempted.

closure A new closure object for the bind operation. The closure will be
used in corresponding calls to either bind_failure or
bind_succeeded.

return Returns a new IOR, if the bind operation is to be continued using
this new IOR. Otherwise, it returns a null value and the bind will
proceed using the original IOR.
Returning the same IOR as the parameter passed in is incorrect
and generates an exception at bind time.

Parameter Description

ior The IOR of the server object on which the bind operation failed.
obj The client object which is being bound to the server.
closure The closure object previously given in the bind call.
return Returns a new IOR if a rebind is to be attempted against this IOR.

Otherwise, it returns null, and a rebind is not attempted.

244 VisiBroker C++ API Reference Guide

BindInterceptorManager

virtual void bind_succeeded(IOP::IORValue_ptr ior, CORBA::Object_ptr obj,
CORBA::Long profileIndex, InterceptorManagerControl_ptr interceptorControl,
VISClosure& closure);

This method is called if a bind operation succeeded.

BindInterceptorManager

class Interceptor::BindInterceptorManager public InterceptorManager, public
VISPseudoInterface

This is the class that manages all the global bind interceptors. It only has one public
method, which allows you to register interceptors.

The BindInterceptorManager must always be used at ORB_init(). It has no effect
after the orb is initialized. Therefore, it only needs to be used in the context of a
loader class that inherits from VISinit.

To obtain a BindInterceptorManager from the InterceptorManagerControl, use
InterceptorManagerControl::get_manager() with the identification string Bind.

Include file

You should include the interceptor_c.hh file when you use this class.

BindInterceptorManager method

void add (BindInterceptor _ptr interceptor)

This method is used to add a BindInterceptor to the list of interceptors to be started
at bind time.

ClientRequestInterceptor

class Interceptor::ClientRequestInterceptor public VISPseudoInterface

You use this class to derive your own client side interceptor. The Client Request
interceptors may be installed during the bind_succeeded call of a bind interceptor and
remain active for the duration of the connection. The methods defined in your
derived class will be invoked by the ORB during the preparation or sending of an
operation request, during the receipt of a reply message, or if an exception is raised.

Parameter Description

ior The IOR of the server object on which the bind
operation succeeded.

obj The client object which is being bound to the
server.

profileIndex Identifies the connection protocol.
interceptorControl This Manager provides a list of the types of

Managers.
closure The closure object previously given in the bind call.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 245

ClientRequestInterceptor

Include file

Include the interceptor_c.hh file when you use this class.

ClientRequestInterceptor methods

virtual void preinvoke_premarshal (CORBA::Object_ptr target, const char*
operation, IOP::ServiceContextList& service_contexts, VisClosure& closure);

This method is invoked by the ORB on every request, before the request has been
marshalled. An exception thrown from this interceptor results in the request being
completed immediately. In this case, the chain is shortened to only those
interceptors that have already fired, the request will not be sent, and
exception_occurred() is called on all interceptors still in the chain.

virtual void preinvoke_postmarshal(CORBA::Object_ptr target,
CORBA_MarshallOutBuffet& payload, VISClosure& closure);

This method is invoked after every request has been marshaled, but before it was
sent.

If an exception is thrown in this method:

– the rest of the chain is not invoked,
– the request is not sent to the server, and
– exception_occurred() is called on the whole interceptor chain.

virtual void postinvoke(CORBA::Object_ptr target, const IOP::ServiceContextList&
Service_contexts, CORBA_MarshallInBuffet& payload, CORBA::Environment_ptr env,
VISClosure& closure);

This method is invoked after a request completes correctly or by throwing an
exception. It is called after the ServantLocator has been invoked. Should an
interceptor in the chain throw an exception, that interceptor also calls
exceptionoccurred()and all remaining interceptors in the chain call
exception()instead of calling postinvoke().

Parameter Description

target The client object which is being bound to the server.
operation The name of the operation being invoked.
service_context The services assigned by the ORB. These services are

identified by a tag registered with the OMG.
closure The closure object previously given in the bind call.

Parameter Description

target The client object which is being bound to the
server.

payload Marshalled buffer.
closure The closure object previously given in the

bind call.

246 VisiBroker C++ API Reference Guide

Cl ientRequestInterceptorManager

The CORBA::Environment parameter is changed to reflect this exception, even when a
two-way call had already written an exception in that argument.

virtual void exception_occurred(CORBA::Object_ptr target,
CORBA::Environment_ptr env, VISClosure& closure);

This method is invoked by the ORB when an exception is thrown before the
invocation. All exceptions thrown after the invocation are gathered in the
environment parameter of the postinvoke method.

ClientRequestInterceptorManager

class Interceptor::ClientRequestInterceptorManager:public InterceptorManager,
public VISPseudoInterface

This is the class that holds the chain of ClientRequestInterceptors for the current
object.

A ClientRequestInterceptorManager should be used inside of the
BindInterceptor::bind_succeeded() method within the scope set by the
InteceptorManagerControl passed as an argument to bind_succeeded().

Include file

Include the interceptor_c.hh when you use this class.

ClientRequestInterceptorManager methods

virtual void add (ClientRequestInterceptor_ptr interceptor);

This method may be invoked to add a ClientRequestInterceptor to the local chain.

virtual void remove (ClientRequestInterceptor_ptr interceptor);

This method removes a ClientRequestInterceptorManager.

Parameter Description

target The client object which is being bound to the server.
service_cont
ext

The client object which is being bound to the server. Service
context length is 0 for one-way calls and during exception.

payload Marshalled buffer.
env Contains information on the exception that was raised.
closure The closure object previously given in the bind call.

Parameter Description

target The client object which is being bound to the server.
env Contains information on the exception that was raised.
closure The closure object previously given in the bind call.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 247

POALifeCycle Interceptor

POALifeCycle Interceptor

class InterceptorManager::POALifeCycletInterceptor public VISPseudoInterface

The POALifeCycleInterceptor is a global interceptor which is invoked every time a
POA is created or destroyed. All other server side interceptors may be installed
either as global interceptors or for specific POAs. You install the
POALifeCycleInterceptor through the POALifeCycleInterceptorManager interface. See
“POALifeCycleInterceptorManager” for more information. The
POALifeCycleInterceptor is called during POA creation and destruction.

Include file

Include the PortableServerExt_c.hh file when you use this class.

POALifeCycleInterceptor methods

virtual void create(PortableServer::POA_ptr poa, CORBA::PolicyList&
policiesIOP::IORValue*& iorTemplate, interceptor::InterceptorManagerControl_ptr
poaAdmin);

This method is invoked when a new POA is created either explicitly through a call to
create_POA or via AdapterActivator. With AdapterActivator, the interceptor is called
only after the unknown_adapter method successfully returns from the
AdapterActivator. The create method is passed as a reference to the recently
created POA and as a reference to that POA instance's POAInterceptorManager.

virtual void destroy(PortalServer::POA_ptr poa);

This method is called before a POA is destroyed and all of its objects have been
etherealized. It guarantees that destroy will be called on all interceptors before
create will be called again for a POA with the same name. If the destroy operation
throws a system exception, the exception is ignored, and the remaining interceptors
are called.

POALifeCycleInterceptorManager

class InterceptorExt::POALifeCycleInterceptorManager public
interceptor::InterceptorManager, public VISPseudoInterface

This class manages all POALifeCycle global interceptors. There is a single instance
of the POALifeCycleInterceptorManager defined in an ORB.

Parameter Description

poa The ID associated with the current POA being created.
policies The policies for the POA being created.
iorTempla
te

The IOR template is a full IOR value with the type_id not set, and
all GIOP::ProfileBodyValues will have incomplete object keys.

poaAdmin The control for the POA being created. See
“InterceptorManagerControl” for more information.

Parameter Description

poa Portable Object Adapter (POA) being destroyed.

248 VisiBroker C++ API Reference Guide

Act iveObjectLi feCycleInterceptor

Then scope of this interface is global, per-ORB. This class is only active during
ORB_init() time.

Include file

Include the PortalServerExt_c.hh file when you use this class.

POALifeCycleInterceptorManager method

virtual void add(POALifeCycleInterceptor_ptr interceptor);

This method may be invoked to add a POALifeCycleInterceptor to the global chain of
POALifeCycle interceptors.

ActiveObjectLifeCycleInterceptor

class PortableServerExt::ActiveObjectLifeCycleInterceptor public
VISPseudoInterface

The ActiveObjectLifeCycleInterceptor interceptor is called when objects are added
and removed from the active object map. Only used when POA has RETAIN policy.
This class is a POA-scoped interceptor which may be installed by a
POALifeCycleInterceptor when the POA is created.

Include file

Include the PortableServerExt_c.hh file when you use this class.

ActiveObjectLifeCycleInterceptor methods

virtual void create(const PortableServer::ObjectId& oid,
PortableServer::ServantBase* servant, PortableServer::POA_ptr adapter);

This method is invoked after an object has been added to the Active Object Map,
either through explicit or implicit activation, using either direct APIs or a
ServantActivator. The object reference and the POA of the new active object are
passed as parameters.

Parameter Description

interceptor The interceptor to be added.

Parameter Description

oid Object ID for the object currently activated.
servant Associated servant
adapter The Portable Object Adapter (POA) being created or destroyed.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 249

ServerRequestInterceptor

virtual void destroy(const PortableServer::ObjectId& oid,
PortableServer::ServantBase* servant, PortableServer::POA_ptr adapter);

This method is called after an object has been deactivated and etherealized. The
object reference and the POA of the object are passed as parameters.

ActiveObjectLifeCycleInterceptorManager

class PortableServerExt::ActiveObjectLifeCycleInterceptorManager public
interceptor::InterceptorManager, public VISPseudoInterface

This is the class that manages all ActiveObjectLifeCycleInterceptors registered in
its scope. Each POA has one single ActiveObjectLifeCycleInterceptorManager.

Include file

Include the PortableServer_c.hh file when you use this class.

ActiveObjectLifeCycleInterceptorManager method

virtual void add(ActiveObjectLifeCycleInterceptor interceptor_ptr interceptor);

This method may be invoked to add an ActiveObjectLifeCycleInterceptor to the
chain.

ServerRequestInterceptor

class Interceptor::ServerRequestInterceptor public VISPseudoInterface

The ServerRequestInterceptor class is a POA-scoped interceptor which may be
installed by a POALifeCycleInterceptor at POA creation time. This class may be used
to perform access control, to examine and insert service contexts, and to change
the reply status of a request.

Include file

Include the interceptor_c.hh file when you use this class.

ServerRequestInterceptor methods

virtual void preinvoke(CORBA::Object_ptr _target, const char* operation, const
IOP::ServiceContextList& service_contexts, CORBA::MarshalInBuffer& payload,
VISClosure& closure) raises (ForwardRequestException);

This method is invoked by the ORB on every request, before the request is
demarshaled. An exception thrown from this interceptor results in the request being
completed immediately. This method is called before any ServantLocators are

Parameter Description

oid Object ID for the object currently activated
servant Associated servant
adapter The Portable Object Adapter (POA) being created or destroyed.

250 VisiBroker C++ API Reference Guide

ServerRequest Interceptor

invoked. The result may be that the servant may not be available while this method
is running.

virtual void postinvoke_premarshal(CORBA::Object_ptr target,
IOP::ServiceContextList& ServiceContextList,CORBA::Environment_ptr env,
VISClosure& closure);

This method is invoked after an upcall to the servant but before marshalling the
reply. An exception here is handled by interrupting the chain: the request is not sent
to the server and exceptionoccurred() is called on all interceptors in the chain

virtual void postinvoke_postmarshal(CORBA::Object_ptr _target,
CORBA::MarshalOutBuffer& _payload, VISClosure& _closure);

This method is invoked after marshalling the reply but before sending the reply to
the client. Exceptions thrown here are ignored. The entire chain is guaranteed to be
called.

virtual void exception_occurred(CORBA::Object_ptr _target,
CORBA::Environment_ptr _env, VISClosure& _closure);

This method is invoked by the ORB when an exceptionoccurred interceptor is called
on all remaining interceptors in the chain after an exception occurred in one of the
prepare_reply interceptors. An exception thrown during this call replaces the existing
exception in the environment

Parameter Description

target The client object which is being bound to the server.
operation Identifies the name of the operation being invoked.
service_contexts Identifies the services assigned by the Orb. These services

are registered with the OMG.
payload Marshalled buffer.
closure May contain data saved by one interceptor method that can

be retrieved later by another interceptor method.

Parameter Description

target The client object which is being bound to the server.
ServiceContextList Identifies the services assigned by the Orb. These

services are registered with the OMG.
env Contains information on the exception that was raised.
closure May contain data saved by one interceptor method that

can be retrieved later by another interceptor method.

Parameter Description

target The object to which that application was attempting to bind.
payload Marshalled buffer.
closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

Parameter Description

target The client object which is being bound to the server.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 251

ServerRequestInterceptorManager

ServerRequestInterceptorManager

class Interceptor::ServerRequestInterceptorManager public InterceptorManager,
public VISPseudoInterface

This is the class that manages all ServerRequestInterceptors registered in its scope.
Each POA has one single ServerRequestInterceptorManager.

Include file

Include the interceptor_c.hh file when you use this class.

ServerRequestInterceptorManager method

virtual void add(ServerRequestInterceptor_ptr interceptor);

Invoke this method to add a ServerRequestInterceptor to the chain.

IORCreationInterceptor

class PortableServerExt::IORInterceptor public VISPseudoInterface

The IORCreationInterceptor is a per-POA interceptor which may be installed by a
POALifeCycleInterceptor at POA creation time. The interceptor may be used to
modify IORs by adding additional profiles or components. This class is typically
used to support services such as transactions or firewall.

This kind of interceptor is used to automatically change the IOR templates on
certain classes of POAs whose names and identities may not be known at
development time. This may be the case with services such as Transaction and
Firewall.

Note

To change all the IORs created by a POA, simply modify the IORTemplate for that
POA. The change will apply only to newly created IORs and not to any existing
ones.

Making radical changes to the IOR is not recommended.

Include file

Include the PortableServerExt_c.hh file when you use this class.

env Contains information on the exception that was raised.
closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

Parameter Description

252 VisiBroker C++ API Reference Guide

IORCreat ionInterceptorManager

IORInterceptor method

virtual void create(PortableServer::POA poa, IOP::IORValue*& ior);

The method is called whenever the POA needs to create an object reference. It
takes the POA and the IORValue for the reference as arguments. The interceptor
may modify the IORValue by adding additional profiles or components, or changing
the existing profiles or components.

IORCreationInterceptorManager

class PortableServerExt::IORCreationInterceptorManager public
interceptor::InterceptorManager, public VISPseudoInterface

This is the class that is used to manage (add) IOR interceptors to the local chain.
Each POA has one single IORInterceptorManager.

Include file

Include the PortableServerExt_c.hh file when you use this class.

IORCreationInterceptorManager method

virtual void add(IORCreationInterceptor_ptr _interceptor);

This method may be invoked to add an IORInterceptor to the local chain.

Closure

public interface Closure extends Object

Closure objects are created by the ORB at the beginning of certain sequences of
interceptor calls. The same Closure object is used for all calls in that particular
sequence. The Closure object contains a single public data field, object, of type
java.lang.Object which may be set by the interceptor to keep state information. The
sequences for which Closure objects are created vary depending on the interceptor
type.

This code sample shows the closure class.

class Closure {
 java.lang.Object object;
};

ExtendedClosure

public interface ExtendedClosure extends Closure (
 public RequestInfo reqInfo;

Parameter Description

poa The ID associated with the current PAO being created.
ior The IOR for the server object to which the client is binding.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 253

VISClosure

 public InputStream payload;
}

This interface is a derived class of Closure and contains a RequestInfo for read only
attribute.

This code sample shows the RequestInfo IDL.

struct RequestInfo {
 boolean response_expected;
 unsigned long request_id;
};

You can cast the Closure object passed to the ServerRequestInterceptor and
ClientRequestInterceptor to its subclass, ExtendedClosure. ExtendedClosure can be
used to extract the RequestInfo, from which you can extract the request_id and
response_expected. The request_id is the unique id assigned to the request. The
response_expected flag indicates whether the request is a one-way call.

int my_response_expected =
((ExtendedClosure)closure).reqInfo.response_expected;
int my_request_id = ((ExtendedClosure)closure).reqInfo.request_id;

For more information, please see the example in examples/interceptor/
client_server.

VISClosure

struct VISClosure

This structure is used to store data so that it can be shared between different
invocations of interceptor methods. The data that is stored is un-typed and can
represent state information related to an operation request or a bind or locate
request. It is used in conjunction with the VISClosureData class.

Include file

Include the vinter.h file when you use this class.

VISClosure members

CORBA::ULong id

You can use this data member to uniquely identify this object if you are using more
than one VISClosure object.

void *data

This data member points to the un-typed data that may be stored or accessed by an
interceptor method.

VISClosureData *managedData

This data member points to the VISClosureData class that represents the actual data.
You may cast your managed data to this type.

254 VisiBroker C++ API Reference Guide

VISClosureData

VISClosureData

class VISClosureData

This class represents managed data that can be shared between different
invocations of interceptor methods.

VISClosureData methods

virtual void _VisClosureData();

This is the default destructor.

virtual void _release();

Releases this object and decrements the reference count. When the reference
count reaches 0, the object is deleted.

ChainUntypedObjectWrapperFactory

class VISObjectWrapper::ChainUntypedObjectWrapperFactory:public
UntypedObjectWrapperFactory

This interface is used by a client or server application to add or remove an
UntypedObjectWrapperFactory object. An UntypedObjectWrapperFactory is used to
create an UntypedObjectWrapper for each object a client application binds to or for
each object implementation created by a server application.

Refer to using object wrappers section in the Borland VisiBroker Developer's Guide
for more information about how to use the object wrappers. ##Same problem as
above. See above comments.##

Include file

Include the vobjwrap.h file when you use this class.

ChainUntypedObjectWrapperFactory methods

void add(UntypedObjectWrapperFactory_ptr factory,Location loc);

This method adds the specified un-typed object wrapper factory for a client
application, server application, or collocated application.

If your application is acting as both a client application and a server application, that
is, a collocated application, you can install an un-typed object wrapper factory. If you
do so, the wrapper's methods are invoked for both invocations on bound objects and
operation requests received by object implementations. In other words, they are
invoked on both the client and server portions of the application.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 255

ChainUntypedObjectWrapperFactory

Note

On the client side, un-typed object wrapper factories must be defined before any
objects are bound. On the server side, un-typed object wrapper factories must be
defined before an invocation for an object implementation is received.

void remove(UntypedObjectWrapperFactory_ptr factory, Location loc);

This method removes the specified un-typed object wrapper factory from the
specified location.

If your application is acting as both a client and a server, you can remove the object
wrapper factories for either the client side objects, server side implementations, or
both.

Note

Removing one or more object wrapper factories from a client does not affect objects
of that class which are already bound by the client. Only subsequently bound
objects will be affected.

Removing object wrapper factories from a server does not affect object
implementations that have already serviced requests. Only subsequently created
object implementations will be affected.

static CORBA::ULong count(Location loc);

This static method returns the number of un-typed object wrapper factories installed
for the specified location.

Parameter Description

factory A pointer to the factory to be registered.
loc The location of the factory being added, which should be one of

the following values:
VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

Parameter Description

factory A pointer to the factory to be registered.
loc The location of the factory being removed; one of the following

values:
VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

Parameter Description

loc The location of the factories:
VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

256 VisiBroker C++ API Reference Guide

UntypedObjectWrapper

UntypedObjectWrapper

class VISObjectWrapper::UntypedObjectWrapper : public VISResource

You use this class to derive and implement an un-typed object wrapper for a client
application, a server application, or co-located application. When you derive an
un-typed object wrapper from this class, you define a pre_method method that is
invoked before a request is issued by a client application or before it is processed by
an object implementation on the server side. You also define a post_method method
that will be invoked after an operation request is processed by an object
implementation on the server side or after a reply has been received by a client
application.

You must also derive a factory class that will create your un-typed wrapper objects.
Derive it from the UntypedObjectWrapperFactory class, described in the
“UntypedObjectWrapperFactory”.

Refer to the Borland VisiBroker Developer's Guide for more information about how
to use the object wrappers. ##See above comments.##

Include file

Include the vobjwrap.h file when you use this class.

UntypedObjectWrapper methods

virtual void pre_method(const char* operation, CORBA::Object_ptr target,
VISClosure& closure);

This method is invoked before an operation request is sent on the client side or
before it is processed by an object implementation on the server side.

virtual void post_method(const char* operation, CORBA::Object_ptr target,
CORBA::Environment& env, VISClosure& closure);

This method is invoked after an operation request has been processed by the object
implementation on the server side or before the reply message is processed by the
stub on the client side.

Parameter Description

operation The name of the operation being requested.
target The object that is the target of the request.
closure The Closure object can be used to pass data between object

wrapper methods.

Parameter Description

operation The name of the operation being requested.
target The object that is the target of the request.
env An Environment object that is used to reflect exceptions that might

have occurred in the processing of the operation request.
closure The Closure object can be used to pass data between object

wrapper methods.

 12: 5.x Interceptor and object wrapper inter faces and c lasses 257

UntypedObjectWrapperFactory

UntypedObjectWrapperFactory

class VISObjectWrapper::UntypedObjectWrapperFactory

You use this interface to derive your own un-typed object wrapper factories. Your
factory will be used to create an instance of your un-typed object wrapper for an
application whenever a new object is bound to or an object implementation services
a request.

Include file

Include the vobjwrap.h file when you use this class.

UntypedObjectWrapperFactory constructor

UntypedObjectWrapperFactory(Location loc, CORBA::Boolean doAdd=1);

Creates an un-typed object wrapper factory for the specified location and by default
registers it with the ChainUntypedObjectWrapperFactory. If your application is acting as
both a client application and a server application, you can install an un-typed object
wrapper factory so the wrapper's methods will be invoked for both invocations on
bound objects and operation requests received by object implementations.

If you don't want to use the default parameter, you can specify that the doAdd not be
performed. However, to create an untyped object wrapper, you will have to call
ChainUntypedObjectWrapper::add.

UntypedObjectWrapperFactory methods

virtual UntypedObjectWrapper_ptr create(CORBA::Object_ptr target, Location loc);

This method is called to create an instance of your type of UntypedObjectWrapper.
Your implementation of this method can examine the type of bound object or object
implementation to determine whether or not it wants to create an object wrapper for
that object. With the loc parameter, you specify whether the create request is called
to wrap a client object or a server implementation.

Parameter Description

loc The location of the factory being added; one of the following
values:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

doAdd A flag specifying whether or not the factory is to be registered.

Parameter Description

target The object being bound by a client application for which the un-
typed object wrapper is being created. If this method is being
invoked on the server side, this represents the object
implementation that is being created.

loc The location of the factory being added.

258 VisiBroker C++ API Reference Guide

 13: Qual i ty of Service interfaces and classes 259

Quality of Service interfaces and
classes
This section describes the VisiBroker for C++ implementation of the Quality of Service
APIs. See the Core interfaces and classes, “PortableServer::POA”, for information
about creating policies.

CORBA::PolicyManager

class CORBA::PolicyManager

This class is used to set and access policy overrides at the VisiBroker ORB level.
Policies defined at the VisiBroker ORB level override any system defaults. The
instance belonging to the manager thread is accessible by using
resolve_initial_reference("PolicyManager")and narrowing down to PolicyManager.

IDL definition

module CORBA {
 interface PolicyManager {
 PolicyList get_policy_overrides(in PolicyTypeSeq ts);
 void set_policy_overrides(in PolicyList policies, in

SetOverrideType set_add)
 raises (InvalidPolicies);

};
};

Methods

PolicyList get_policy_overrides (PolicyTypeSeq ts);

This method returns a policy list containing the policies of the requested policy
types. If the specified sequence is empty (that is, if the length of the list is zero), all

260 VisiBroker C++ API Reference Guide

CORBA::Object

policies at this scope are returned. If none of the requested policy types is set at the
target PolicyManager, an empty sequence is returned.

void set_policy_overrides (PolicyList policies, CORBA::SetOverrideType set_add)

This method updates the current set of policies with the requested list of policy
overrides. To remove all overrides from a PolicyManager, invoke
set_policy_overrides with an empty sequence of policies and a mode of
SET_OVERRIDE.

Only certain policies that pertain to the invocation of an operation at the client end
can be overridden using this operation. An attempt to override any other policy
results in the raising of the CORBA::NO_PERMISSION exception. If the request would put
the set of overriding policies for the target PolicyManager in an inconsistent state,
no policies are changed or added, and the exception InvalidPolicies is raised.
There is no evaluation of compatibility with policies set within other PolicyManagers.

CORBA::Object

class CORBA::Object

The VisiBroker implementation of the Quality of Service API allows policies to be
assigned to objects, threads, and VisiBroker ORBs. Policies assigned to Objects
override all other policies.

IDL definition

#pragma prefix "omg.org"
module CORBA {
 interface Object {
 Policy get_client_policy(in PolicyType type);
 Policy get_policy(in PolicyType type);
 PolicyList get_policy_overrides(in PolicyTypeSeq types);
 Object set_policy_overrides(in PolicyList policies,in SetOverrideType
 set_add)
 raises (InvalidPolicies);
 boolean validate_connection(out PolicyList inconsistent_policies);
 };
};

Methods

CORBA::Policy_ptr get_client_policy(CORBA::PolicyType type);

Returns the effective overriding Policy for the object reference. The effective
override is obtained by first checking for an override of the specified PolicyType at
the Object scope, then at the Current scope, and finally at the VisiBroker ORB
scope. If no override is present for the requested PolicyType, the system-dependent

Parameter Description

policies A sequence of references to Policy objects.
set_add Indicates whether these policies should be added (ADD_OVERRIDE) to

any other overrides that already exist in the PolicyManager or added
to a clean PolicyManager free of any other overrides (SET_OVERRIDE).

 13: Qual i ty of Service interfaces and classes 261

CORBA::Object

default value for that PolicyType is used. Portable applications are expected to set
the desired “defaults” at the VisiBroker ORB scope since default Policy values are
not specified.

CORBA::Policy_ptr get_policy(CORBA::PolicyType type);

Returns the effective Policy for the object reference. The effective Policy is the one
that would be used if a request were made. This Policy is determined first by
obtaining the effective override for the PolicyType as returned by get_client_policy.

The effective override is then compared with the Policy as specified in the IOR. The
effective Policy is the intersection of the values allowed by the effective override and
the IOR-specified Policy. If the intersection is empty, the system exception
INV_POLICY is raised. Otherwise, a Policy with a value legally within the intersection is
returned as the effective Policy. The absence of a Policy value in the IOR implies
that any legal value may be used. To ensure the accuracy of the returned effective
Policy, invoke non_existent or validate_connection on an object reference prior to
get_policy. If get_policy is invoked prior to the object reference being bound, the
returned effective Policy is implementation-dependent. In that situation, a compliant
implementation may do any of the following: raise the exception
CORBA::BAD_INV_ORDER, return some value for that PolicyType which may be subject to
change once a binding is performed, or attempt a binding and then return the
effective Policy. Note that if the RebindPolicy has a value of TRANSPARENT, the
effective Policy may change from invocation to invocation due to transparent
rebinding.

Note

In the VisiBroker implementation, this method gets the Policy assigned to an Object,
thread or the VisiBroker ORB.

CORBA::Object set_policy_overrides(const PolicyList& _policies,
CORBA::SetOverrideType _set_add);

This method works as does the PolicyManager method of the same name. However,
this method updates the current set of policies of an Object, thread or the VisiBroker
ORB with the requested list of Policy overrides. In addition, this method returns a
CORBA::Object whereas other methods of the same name return void.

CORBA::Boolean validate_connection(PolicyList inconsistent_policies);

Returns the value TRUE if the current effective policies for the Object will allow an
invocation to be made. If the object reference is not yet bound, a binding will occur
as part of this operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid, a
rebind will be attempted regardless of the setting of any RebindPolicy override. The
validate_connection operation is the only way to force such a rebind when implicit
rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or
rebind may involve processing GIOP LocateRequests by the VisiBroker ORB.

This method returns the value FALSE if the current effective policies would cause an
invocation to raise the system exception INV_POLICY. If the current effective policies
are incompatible, the out parameter inconsistent_policies contains those policies
causing the incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy overrides, the
appropriate system exception is raised.

262 VisiBroker C++ API Reference Guide

Messaging: :RebindPol icy

Messaging::RebindPolicy

class Messaging::RebindPolicy

The VisiBroker implementation of RebindPolicy is a complete implementation of
RebindPolicy as defined in the Messaging Specification with enhancements to
support failover.

The RebindPolicy of the VisiBroker ORB determines how it handles GIOP location-
forward messages and object failures. The VisiBroker ORB handles fail-over/rebind
by looking at the effective policy at the CORBA::Object instance.

The OMG implementation, derived from CORBA::Policy, determines whether the
VisiBroker ORB may transparently rebind once it is successfully bound to a target
server. The extended implementation determines whether the VisiBroker ORB may
transparently failover once it is successfully bound to a target Object, thread, or
VisiBroker ORB.

IDL definition

#pragma prefix "omg.org"
module Messaging {
 typedef short RebindMode;
 const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
 interface RebindPolicy CORBA::Policy {
 readonly attribute RebindMode rebind_mode;
 };
}

Policy values

Note

Policies are enforced only after a successful bind.

The OMG Policy values that can be set as the Rebind Policy are:

Policy Value Description

TRANSPARENT This policy allows the VisiBroker ORB to silently handle object-
forwarding and necessary reconnection when making a remote
request. This is the least restrictive OMG policy value.

NO_REBIND This policy allows the VisiBroker ORB to silently handle
reopening of closed connections while making a remote
request, but prevents any transparent object-forwarding that
would cause a change in the client-side effective QoS policies.

NO_RECONNECT This policy prevents the VisiBroker ORB from silently handling
object-forwards or the reopening of closed connections. This is
the most restrictive OMG policy value.

 13: Qual i ty of Service interfaces and classes 263

QoSExt: :DeferBindPol icy

The VisiBroker-specific values that can be set as the Rebind Policy are:

QoSExt::DeferBindPolicy

class QoSExt::DeferBindPolicy

By default, the VisiBroker ORB connects to the (remote) object when it receives a
bind() call.

If set to TRUE, this policy changes this behavior; it causes the VisiBroker ORB to
delay contacting the Object until the first invocation.

IDL definition

#pragma prefix "inprise.com"
module QoSExt {
 interface DeferBindPolicy :CORBA::Policy {
 readonly attribute boolean value; };
};

QoSExt::RelativeConnectionTimeoutPolicy

class QoSExt::RelativeConnectionTimoutPolicy

The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The policy
value of unsigned longlong type specifies the timeout in 100s of nanoseconds. It is
applied to every endpoint that the VisiBroker ORB tries to connect to. Therefore, if
multiple connection attempts are made, the elapsed time will be a multiple of the
configured timeout. The default value of 0 sets the timeout value to that of the
operating system default timeout.

Note

This policy is not enforced in local IPC or in-process communication. By default,
in-process and local IPC have higher precedence than other communication,
therefore you should turn off in-process and local IPC if you need to ensure this

Policy Value Description

VB_TRANSPARENT This policy extends TRANSPARENT behavior to failover
conditions in the object, the thread and the VisiBroker ORB.
This is the default policy. If this policy is set, if a remote
invocation fails because the server object goes down, then
the VisiBroker ORB tries to reconnect to another server
using the osagent. The VisiBroker ORB masks the
communication failure and does not throw an exception to
the client.

VB_NOTIFY_REBIND VB_NOTIFY_REBIND behaves as does VB_TRANSPARENT but throws
an exception when the communication failure is detected. It
will try to transparently reconnect to another object if the
invocation is re-attempted.

VB_NO_REBIND VB_NO_REBIND does no failover. It only allows the client
VisiBroker ORB to reopen a closed GIOP re-connection to
the same server; it does not allow object forwarding of any
kind.

264 VisiBroker C++ API Reference Guide

Messaging: :Relat iveRequestTimeoutPol icy

policy works. Turn off local IPC if timeout policies are required to ensure their
interoperability with the Java and C++ VisiBroker ORBs or with other ORB vendors.

IDL definition

module QoSExt {
 const CORBA::PolicyType RELATIVE_CONN_TIMEOUT_POLICY_TYPE = 0x56495304;
 interface RelativeConnectionTimeoutPolicy :CORBA::Policy {
 readonly attribute TimeBase::TimeT relative_expiry;
 };
};

Messaging::RelativeRequestTimeoutPolicy

class Messaging::RelativeRequestTimoutPolicy

The RelativeRequestTimeoutPolicy specifies the maximum time that a client is to
block waiting to send an operation request. If the request times out, CORBA::TIMEOUT
exception is raised and the connection to the server is destroyed.

 14: IOP and I IOP interfaces and classes 265

IOP and IIOP interfaces and classes
This section describes the VisiBroker for C++ implementation of the key General
Inter-ORB Protocol interfaces and other structures defined by the CORBA
specification. For a complete description of these interfaces, refer to the OMG CORBA/
IIOP Specification.

GIOP::MessageHeader

struct MessageHeader

This structure is used to represent information about a GIOP message.

MessageHeader members

CORBA::Char magic[4]

This string should always contain GIOP.

Version GIOP_version

Indicates the version of the protocol being used. This structure contains a major and
minor version number, as shown. The major version should be set to 1 and the
minor version should be set to 2, unless you are using an older version; for example,
VisiBroker 3.x, in which case the minor version should be set to 0.

struct Version {
CORBA::Octet major;
CORBA::Octet minor;

};

CORBA::Boolean byte_order

Set to TRUE to indicate that little-endian byte ordering is used in the message. If set to
FALSE, big-endian byte ordering is used in the message.

266 VisiBroker C++ API Reference Guide

GIOP::CancelRequestHeader

CORBA::Octet message_type

Indicates the type of message that follows the header. This should be one of the
following values:

 enum MsgType {
 Request,
 Reply,
 CancelRequest,
 LocateRequest,
 LocateReply,
 CloseConnection,
 MessageError,
 Fragment
 };

CORBA::ULong message_size

Indicates the length of the message that follows this header.

GIOP::CancelRequestHeader

struct CancelRequestHeader

This structure is used to represent information about a cancel request message
header.

CancelRequestHeader members

CORBA::ULong request_id

This data member represents the request identifier that is being canceled.

GIOP::LocateReplyHeader

struct LocateReplyHeader

This structure is used to represent a message that is sent in reply to a locate request
message. Additional data follows this header if the locate_status is set to
OBJECT_FORWARD.

LocateReplyHeader members

CORBA::ULong request_id

The request identifier of the original request.

 14: IOP and I IOP inter faces and classes 267

GIOP::LocateRequestHeader

LocateStatusType locate_status

Indicates the disposition of the locate request as one of the following values:

GIOP::LocateRequestHeader

structure LocateRequestHeader

This structure represents a message containing a request to locate an object.

LocateRequestHeader members

CORBA::ULong request_id

The request identifier for this message. It is used to distinguish between multiple
outstanding messages.

GIOP::TargetAddress target

The object to be located. The target is a union of three different things: object key,
profile, and IOR.

GIOP::ReplyHeader

struct ReplyHeader

This structure represents the reply header of a reply message that is sent to a client
in response to a request message.

Value Description

UNKNOWN_OBJECT Indicates the requested object could not be
found. No other data is associated with this
message.

OBJECT_HERE Indicates the object is implemented by this
server. No other data is associated with this
message.

OBJECT_FORWARD Indicates that the reply contains an object
reference (IOR) that may be used as the target
for requests to the object specified in the
LocateRequest message. The object is
implemented by another server and a IOR for that
server follows this header.

OBJECT_FORWARD_PERM Indicates that the reply contains an object
reference (IOR) that may be used as the target
for requests to the object specified in the
LocateRequest message.

LOC_SYSTEM_EXCEPTION Indicates that the exception contains a
marshaled GIOP::System ExceptionReplyBody.

LOC_NEEDS_ADDRESSING_
MODE

Indicates that the requested addressing mode
will be used when the LocateRequest is re-sent.

268 VisiBroker C++ API Reference Guide

GIOP::RequestHeader

Include file

The GIOP_c.hh file should be included when you use this structure. This file is already
included in corba.h in the installation/include directory.

ReplyHeader members

CORBA::ULong request_id

Should be set to the same request_id as the request message with which this reply
is associated.

ReplyStatusType reply_status

Indicates the status of the reply and should be set to one of the following enum
values:

– NO_EXCEPTION
– USER_EXCEPTION
– SYSTEM_EXCEPTION
– LOCATION_FORWARD
– LOCATION_FORWARD_PERM
– NEEDS_ADDRESSING_MODE

IOP::ServiceContextList service_info

A list of service context information that may be passed from the server to the client.

GIOP::RequestHeader

struct RequestHeader

This structure represents the request header of a request message that is sent to an
object implementation.

Include file

The GIOP_c.hh file should be included when you use this structure. This file is already
included in corba.h in the installation/include directory.

RequestHeader members

CORBA::ULong request_id

A unique identifier used to associate a reply message with a particular request
message.

CORBA::Boolean response_expected

This member is FALSE if the request is a oneway operation for which a reply is not
expected. This member is TRUE for operation requests and other requests that
expect a reply.

 14: IOP and I IOP inter faces and classes 269

IIOP::Profi leBody

GIOP::TargetAddress _target

The object that is the target of the request. The target is a union of the following:
object key, profile, and IOR. Object keys are stored in a vendor-specific format and
are generated when an IOR is created.

CORBA::String_var oper

Identifies the operation being requested on the target object. This member is the
same as the operator member, except that it is a managed type.

const char *operation

Identifies the operation being requested on the target object. This member is the
same as the oper member, except that it is not a managed type.

IOP::ServiceContextList service_context

A list of service context information that may be passed from the client to the server.

IIOP::ProfileBody

struct ProfileBody

This structure contains information about the protocol supported by an object.

module IIOP {
 ƒ
 struct ProfileBody {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence<octet> object_key;
 sequence<IOP::taggedComponent> components;
 };
};

ProfileBody members

Version iiop_version

The version of IIOP supported.

CORBA::String_var host

The name of the host where the server hosting the object is running.

CORBA::UShort port

The port number to use for establishing a connection to the server hosting the
object.

CORBA::OctetSequence object_key

Object keys are stored in a vendor-specific format and are generated when an IOR is
created.

270 VisiBroker C++ API Reference Guide

IOP:: IOR

IIOP::MultiComponentProfile components

A sequence of TaggedComponents which contain information about the protocols that
are supported.

IOP::IOR

struct IOR

This structure represents an Interoperable Object Reference and is used to provide
important information about object references. Your client application can create a
stringified IOR by invoking the ORB::object_to_string method.

Include file

The IOP_c.hh file should be included when you use this structure.

IOR members

CORBA::String_var type_id

This data member describes the type of object reference that is represented by this
IOR.

TaggedProfileSequence profiles

This data member represents a sequence of one or more TaggedProfile structures
which contain information about the protocols that are supported.

IOP::TaggedProfile

struct TaggedProfile

This structure represents a particular protocol that is supported by an Interoperable
Object Reference (IOR).

TaggedProfile members

ProfileID tag

The contents of the profile data. Its value should be one of the following:

Value Description

TAG_INTERNET_IOP Indicates the protocol is standard IIOP.
TAG_MULTIPLE_COMPO
NENTS

Indicates the profile data contains a list of
VisiBroker ORB services available using the
protocol.

TAG_VB_LOCATOR Indicates that the IOR is an interim, pseudo-object
that is used until the real IOR is received by the
osagent.

TAG_VSGN_LIOP Indicates the protocol is IOP over a local IPC
mechanism.

 14: IOP and I IOP interfaces and classes 271

CORBA_OctetSequence profile_data

This data member encapsulates all the protocol information needed to invoke an
operation on an IOR.

272 VisiBroker C++ API Reference Guide

 15: Marshal buf fer interfaces and classes 273

Marshal buffer interfaces and classes
This section describes the buffer class used for marshalling data to a buffer when
creating an operation request or a reply message. It also describes the buffer class
used for extracting data from a received operation request or reply message.

CORBA::MarshalInBuffer

class CORBA::MarshalInBuffer : public VISistream

This class represents a stream buffer that allows IDL types to be read from a buffer.
Interceptor methods that you implement may used this class. See “Portable
Interceptor interfaces and classes” for more information on the interceptor
interfaces.

The CORBA::MarshalInBuffer class is used on the client side to extract the data
associated with a reply message. It is used on the server side to extract the data
associated with an operation request. This class provides a wide range of methods
for retrieving various types of data from the buffer.

This class also provides several static methods for testing and manipulating
CORBA::MarshalInBuffer pointers.

A CORBA::MarshalInBuffer_var class is also offered. It provides a wrapper that
automatically manages the contained object.

Include file

The mbuf.h file should be included when you use this class. This file gets included in
corba.h. So, you don't have to include mbuf.h separately.

274 VisiBroker C++ API Reference Guide

CORBA::Marshal InBuffer

CORBA::MarshalInBuffer constructors/destructors

CORBA::MarshalInBuffer(char *read_buffer, CORBA::ULong length, CORBA::Boolean
release_flag=0, CORBA::ULong start_offset=0, CORBA::Boolean byte_order =
CORBA::ByteOrder);

This is the default constructor.

virtual ~CORBA::MarshalInBuffer();

This is the default destructor. The buffer memory associated with this object is
released if the release_flag is set to TRUE. The release_flag may be set when the
object is created or by invoking the release_flag method, described in “void
release_flag(CORBA::Boolean val);”.

CORBA::MarshalInBuffer methods

char *buffer() const;

Returns a pointer to the buffer associated with this object.

void byte_order(CORBA::Boolean val) const;

Sets the byte ordering for this message buffer.

CORBA::Boolean byte_order() const;

Returns TRUE if the buffer uses little-endian byte ordering. FALSE is returned if big-
endian byte ordering is used.

CORBA::ULong curoff() const;

Returns the current offset within the buffer associated with this object.

Parameter Description

read_buffer The buffer where the marshalled data will actually be
stored.

length The maximum number of bytes that may be stored in
read_buffer.

release_flag If set to TRUE, the memory associated with read_buffer is
freed when this object is destroyed. The default value is
FALSE.

start_offset The starting offset wherein data is written in the
read_buffer. The default value is 0.

byte_order Set this to TRUE to indicate that little-endian byte ordering
is being used. Set to FALSE to indicate that big-endian
byte ordering is being used.

Parameter Description

val Set this to TRUE to indicate that little-endian byte ordering is
being used. Set to FALSE to indicate that big-endian byte
ordering is being used.

 15: Marshal buffer interfaces and classes 275

CORBA::Marshal InBuffer

virtual VISistream& get(char& data); virtual VISistream& get(unsigned char&
data);

These methods allow you to retrieve a single character from the buffer at the current
location.

This method returns a pointer to the location within the buffer immediately following
the end of the data that was just retrieved.

virtual VISistream& get(<data_type> data, unsigned size);

These methods allow you to retrieve a sequence of data from the buffer at the
current location. There is a separate method for each of the listed target data types.

This method returns a pointer to the location within the buffer immediately following
the end of the data that was just retrieved.

virtual VISistreThe supported target data types are:am& getCString(char* data,
unsigned maxlen);

This method allows you to retrieve a character string from the buffer at the current
location. It returns a pointer to the location within the buffer immediately following
the end of the data that was just retrieved.

Parameter Description

data The location where the retrieved char or unsigned char is to
be stored.

Parameter Description

data The location where the retrieved data is to
be stored.
The supported target data types are:

char* unsigned long*

unsigned char* float*

short* double*

unsigned short* long double*

int* VISLongLong*

unsigned int* VISULongLong*

long* wchar_t*

size The number of the specified data types to
be retrieved.

Parameter Description

data The location where the retrieved character string
is to be stored.

maxlen The maximum number of characters to be
retrieved.

276 VisiBroker C++ API Reference Guide

CORBA::Marshal InBuffer

virtual int is_available(unsigned long size);

Returns 1 if the specified size is less than or equal to the size of the buffer
associated with this object.

virtual CORBA::ULong length() const;

Returns the total number of bytes in this object's buffer.

virtual void new_encapsulation() const;

Resets the starting offset within the buffer to 0.

void release_flag(CORBA::Boolean val);

Enables or disables the automatic freeing of buffer memory when this object is
destroyed.

CORBA::Boolean release_flag() const;

Returns TRUE if the automatic freeing of this object's buffer memory is enabled,
otherwise FALSE is returned.

void reset();

Resets the starting offset, current offset and seek position to zero.

void rewind();

Resets the seek position to zero.

CORBA::ULong seekpos(CORBA::ULong pos);

Sets the current offset to the value contained in pos. If pos specifies an offset that is
greater than the size of the buffer, a CORBA::BAD_PARAM exception is raised.

static CORBA::MarshalInBuffer *_duplicate(CORBA::MarshalInBuffer_ptr ptr);

Returns a duplicate pointer to the object pointed to by ptr and increments this
object's reference count.

static CORBA::MarshalInBuffer *_nil();

Returns a NULL pointer of type CORBA::MarshalInBuffer.

Parameter Description

size Number of bytes that need to fit within
this buffer.

Parameter Description

val If val is set to TRUE, the buffer memory for this object will be
freed when this object is destroyed. If val is set to FALSE, the
buffer will not be freed when this object is destroyed.

 15: Marshal buffer interfaces and classes 277

CORBA::MarshalOutBuffer

static void _release(CORBA::MarshalInBuffer_ptr ptr);

Reduces the reference count of the object pointed to by ptr. When the reference
count reaches 0, the object is destroyed. If the object's release_flag was set to TRUE
when the object was constructed, the buffer associated with the object is freed.

CORBA::MarshalInBuffer operators

virtual VISistream&operator>>(<data_type> data);

This stream operator allows you retrieve a sequence of data of the specified source
data_type at the current location.

This method returns a pointer to the location within the buffer immediately following
the end of the data that was just written.

CORBA::MarshalOutBuffer

class CORBA::MarshalOutBuffer : public VISostream

This class represents a stream buffer that allows IDL types to be written to a buffer
and may be used by interceptor methods that you implement. See “Portable
Interceptor interfaces and classes” for more information on the interceptor
interfaces.

The CORBA::MarshalOutBuffer class is used on the client side to marshal the data
associated with an operation request. It is used on the server side to marshal the
data associated with a reply message. This class provides a wide range of methods
for adding various types of data to the buffer or for retrieving what was written from
the buffer.

This class provides several static methods for testing and manipulating
CORBA::MarshalOutBuffer pointers.

A CORBA::MarshalOutBuffer_var class is also offered. It provides a wrapper that
automatically manages the contained object.

Include file

The mbuf.h file should be included when you use this class. This file gets included in
corba.h. So, you don't have to separately include mbuf.h.

Parameter Description

data The data to be written to the buffer.

The supported source data types are:

char*& long&

char& unsigned long&

unsigned char& float&

short& double&

unsigned short& long double&

int& wchar_t*&

unsigned int& wchar_t&

278 VisiBroker C++ API Reference Guide

CORBA::MarshalOutBuffer

CORBA::MarshalOutBuffer constructors/destructors

CORBA::MarshalOutBuffer(CORBA::ULong initial_size = 255, CORBA::Boolean
release_flag = 0);

Creates a marshalOutBuffer of size initial_size. The MarshalOutBuffers are
capable of resizing themselves during a put operation. When there is not enough
space in the buffer to hold all the data written to it, the size of the buffer doubles.

CORBA::MarshalOutBuffer(char *read_buffer, CORBA::ULong len, CORBA::Boolean
release_flag=0);

Creates an object with the specified buffer, buffer length and release flag value.

virtual ~CORBA::MarshalOutBuffer();

This is the default destructor. The buffer memory associated with this object is
released if the release_flag is set to TRUE. The release_flag may be set when the
object is created or by invoking the release_flag method, described in
“CORBA::Boolean release_flag() const;”.

CORBA::MarshalOutBuffer methods

char *buffer() const;

Returns a pointer to the buffer associated with this object.

CORBA::ULong curoff() const;

Returns the current offset within the buffer associated with this object.

virtual CORBA::ULong length() const;

Returns the total number of bytes in this object's buffer.

virtual void new_encapsulation() const;

Resets the starting offset within the buffer to zero.

Parameter Description

initial_si
ze

The initial size of the buffer associated with this object. The
default size is 255 bytes.

release_fl
ag

If set to TRUE, the memory associated with read_buffer is
freed when this object is destroyed. The default value is
FALSE.

Parameter Description

read_buffe
r

The buffer where the marshalled data will actually be
stored.

length The maximum number of bytes that may be stored in
read_buffer.

release_fl
ag

If set to TRUE, the memory associated with read_buffer is
freed when this object is destroyed. The default value is
FALSE.

 15: Marshal buffer interfaces and classes 279

CORBA::MarshalOutBuffer

virtual VISostream& put(char data);

Adds a single character to the buffer at the current location.

This method returns a pointer to the location within the buffer immediately following
the end of the data that was just added.

virtual VISostream& put(const <data_type> data, unsigned size);

These methods allow you to store a sequence of data in the buffer at the current
location.

This method returns a pointer to the location within the buffer immediately following
the end of the data that was just added.

virtual VISostream& putCString(const char* data);

This method allows you to store a character string into the buffer at the current
location. It returns a pointer to the location within the buffer immediately following
the end of the data that was just added.

void release_flag(CORBA::Boolean val);

Enables or disables the automatic freeing of buffer memory when this object is
destroyed.

CORBA::Boolean release_flag() const;

Returns TRUE if the automatic freeing of this object's buffer memory is enabled,
otherwise returns FALSE.

Parameter Description

data The char to be stored.

Parameter Description

data The data is to be stored.
The supported source data types are:

char* unsigned long*

unsigned char* float*

short* double*

unsigned short* long double*

int* VISLongLong*

unsigned int* VISULongLong*

long* wchar_t*

size The number of the specified data types
to be stored.

Parameter Description

data The character string to be stored.

Parameter Description

val If val is set to TRUE, the buffer memory for this object will be
freed when this object is destroyed. If val is set to FALSE, the
buffer will not be freed when this object is destroyed

280 VisiBroker C++ API Reference Guide

CORBA::MarshalOutBuffer

void reset();

Resets the starting offset, current offset and seek position to zero.

void rewind();

Resets the seek position to zero.

CORBA::ULong seekpos(CORBA::ULong pos);

Sets the current offset to the value contained in pos. If pos specifies an offset that is
greater than the size of the buffer, a CORBA::BAD_PARAM exception is raised.

static CORBA::MarshalOutBuffer *_duplicate(CORBA::MarshalOutBuffer_ptr ptr);

Returns a duplicate pointer to this object pointed to by ptr and increments this
object's reference count.

static CORBA::MarshalOutBuffer *_nil();

Returns a NULL pointer of type CORBA::MarshalOutBuffer.

static void _release(CORBA::MarshalOutBuffer_ptr ptr);

Reduces the reference count of the object pointed to by ptr. If the reference count is
then zero, the object is destroyed. If the object's release_flag was set to TRUE when it
was constructed, the buffer associated with the object is freed.

CORBA::MarshalOutBuffer operators

virtual VISostream& operator<<(<data_type> data);

This stream operator allows you to add data of the specified data_type to the buffer
at the current location.

This method returns a pointer to the location within the buffer immediately following
the end of the data that was just written.

Parameter Description

data The data to be obtained to the buffer.

The supported data types are:

const char* unsigned long

char float

unsigned char double

short long double

unsigned short VISLongLong

int VISULongLong

unsigned int wchar_t*

long wchar_t

 16: Locat ion service interfaces and classes 281

Location service interfaces and
classes
This section describes the interfaces you can use to locate object instances on a
network of Smart Agents. For more information on the Location Service, go to the
VisiBroker for C++ Developer's Guide, Using the Location Service section.

Agent

class Agent : public CORBA::Object

This class provides methods that enable you to locate all instances of a particular
object on a network of Smart Agents. The methods offered by this class are divided
into two categories: those that query a Smart Agent for data about objects and those
that deal with triggers.

Your client application can obtain object information based on an interface
repository ID alone or in combination with an instance name.

Triggers allow your client application to be notified of changes in the availability of
one or more object instances.

282 VisiBroker C++ API Reference Guide

Agent

IDL definition

interface Agent {
 HostnameSeq all_agent_locations()
 raises (Fail);
 RepositoryIdSeq all_repository_ids()
 raises (Fail);
 ObjSeqSeq all_available()
 raises (Fail);
 ObjSeq all_instances (in string repository_id)
 raises (Fail);
 ObjSeq all_replica (in string repository_id, in string instance_name)
 raises (Fail);
 DescSeqSeq all_available_descs()
 raises (Fail);
 DescSeq all_instances_descs (in string repository_id)
 raises (Fail);
 DescSeq all_replica_descs (in string repository_id, in string
instance_name)
 raises (Fail);
 void reg_trigger(in TriggerDesc desc, in TriggerHandler handler)
 raises (Fail);
 void unreg_trigger(in TriggerDesc desc, in TriggerHandler handler)
 raises (Fail);
 attribute boolean willRefreshOADs;
};

Include file

You should include the locate_c.hh file when you use this class.

Agent methods

ObjLocation::HostnameSeq_ptr all_agent_locations();

Returns a sequence of host names representing the hosts on which osagent
processes are currently executing.

This method throws the following exceptions:

See also:
– “<type>Seq”

ObjLocation::ObjSeqSeq all_available();

Returns a sequence of object references for all objects currently registered with
some Smart Agent on the network.

Exception Description

Fail The FailReason values that may be presented
include:NO_AGENT_AVAILABLE, NO_SUCH_TRIGGER, AGENT_ERROR. For more
information on the Fail class, see “Fail”.

 16: Locat ion service inter faces and c lasses 283

Agent

This method throws the following exceptions:

See also:
– “<type>Seq”

ObjLocation::DescSeqSeq_ptr all_available_descs();

Returns descriptions for all objects currently registered with a Smart Agent on the
network. The description information returned is organized by repository id.

This method throws the following exceptions:

See also:
– “<type>Seq”

ObjLocation::ObjSeq_ptr all_instances(const char *repository_id);

Returns a sequence of object references to all instances with the specified
repository_id.

This method throws the following exceptions:

See also:
– “<type>Seq”

ObjLocation::DescSeq_ptr all_instances_descs(const char *repository_id);

Returns description information for all object instances with the specified
repository_id.

Exception Description

Fail The FailReason values that may be presented include:
NO_AGENT_AVAILABLE, NO_SUCH_TRIGGER, AGENT_ERROR. For more
information on the Fail class, see “Fail”.

Exception Description

Fail The FailReason values that may be presented include:
NO_AGENT_AVAILABLE, NO_SUCH_TRIGGER, AGENT_ERROR. For more
information on the Fail class, see “Fail”.

Parameter Description

repository_
id

The repository ID of the object references to be
retrieved.

Exception Description

Fail Any of the FailReason values, other than NO_SUCH_TRIGGER, may be
presented. For more information on the Fail class, see “Fail”.

Parameter Description

repository_
id

The repository ID of the object descriptions to be
retrieved.

284 VisiBroker C++ API Reference Guide

Agent

This method throws the following exceptions:

See also:
– “<type>Seq”

ObjLocation::ObjSeq_ptr all_replica(const char *repository_id, const char
*instance_name);

Returns a sequence of object references for objects with the specified repository_id
and instance_name.

This method throws the following exceptions:

See also:
– “<type>Seq”

ObjLocation::DescSeq_ptr all_replica_descs(const char *repository_id,const char
*instance_name);

Returns a sequence of description information for all object instances with the
specified repository_id and instance_name.

This method throws the following exceptions:

See also
– “<type>Seq”

Exception Description

Fail Any of the FailReason values, other than NO_SUCH_TRIGGER, may be
presented. For more information on the Fail class, see “Fail”.

Parameter Description

repository_
id

The repository ID of the object references to be
retrieved.

instance_na
me

The instance name of the object references to be
returned.

Exception Description

Fail Any of the FailReason values, other than NO_SUCH_TRIGGER, may be
presented. For more information on the Fail class, see “Fail”.

Parameter Description

repository_
id

The repository ID of the object descriptions to be
retrieved.

instance_na
me

The instance name of the object descriptions to be
retrieved.

Exception Description

Fail Any of the FailReason values, other than NO_SUCH_TRIGGER, may be
presented. For more information on the Fail class, see “Fail”.

 16: Locat ion service inter faces and c lasses 285

Agent

CORBA::StringSequence* all_repository_ids();

This method retrieves all interfaces known to any osagent. This method throws the
following exception:

void reg_trigger(const ObjLocation::TriggerDesc& desc,
ObjLocation::TriggerHandler_ptr hdlr);

Registers the trigger handler hdlr for object instances that match the description
information specified in desc.

Note

A TriggerHandler is invoked every time an object that satisfies the trigger's
description becomes available. If you are only interested in learning when the first
instance of the object becomes available, you should use the unreg_trigger method
to remove the trigger after the first notification is received.

This method throws the following exceptions:

void unreg_trigger(const ObjLocation::TriggerDesc& desc,
ObjLocation::TriggerHandler_ptr hdlr);

Unregisters the trigger handler hdlr for object instances that match the description
information specified in desc.

This method throws the following exceptions:

CORBA::Boolean willRefreshOADs();

Returns TRUE if the set of Object Activation Daemon is updated each time a method
offered by this class is invoked, otherwise returns FALSE. If the cache is not refreshed
on each invocation, the following conditions may occur:

Exception Description

Fail The repository id is invalid.

Parameter Description

desc The object instance description information, which can contain
combinations of the following information: repository ID, instance
name, hostname. You can provide more or less information to narrow
or widen the object instances to be monitored.

hdlr The trigger handler object being registered.

Exception Description

Fail Any of the FailReason values, other than NO_SUCH_TRIGGER, may be
presented. For more information on the Fail class, see “Fail”.

Parameter Description

desc The object description information.
hdlr The trigger handler object being

unregistered.

Exception Description

Fail The only FailReason value possible is NO_SUCH_TRIGGER. For more
information on the Fail class, see “Fail”.

286 VisiBroker C++ API Reference Guide

Desc

– All objects are still reported, but their descriptor's activable flag may be incorrect.

– Any attempt to verify the existence of an object registered with an OAD that has
been started since the last refresh of the OAD cache causes those objects to be
activated by the OAD.

void willRefreshOADs(CORBA::Boolean val);

This class maintains a set of Object Activation Daemons. This method enables or
disables the automatic refreshing of the OADs contained in this set.

Desc

struct Desc

This structure contains information you use to describe the characteristics of an
object. You pass this structure as an argument to several of the Location Service
methods described in the chapter. The Desc structure, or a sequence of them, is
returned by some of the Location Service methods.

See also
– “<type>Seq”

IDL definition

module ObjLocation {
 struct Desc {
 Object ref;
 IIOP::ProfileBody iiop_locator;
 string repository_id;
 string instance_name;
 boolean activable;
 string agent_hostname;
 };
ƒ
};

Desc members

Object ref

A reference to the object being described.

IIOP::ProfileBody iiop_locator

Represents profile data for the object, described in “IIOP::ProfileBody”.

CORBA::String_var repository_id

The object's repository identifier.

Parameter Description

val If TRUE, the OAD set will be refreshed whenever a method offered
by this class is invoked.

 16: Locat ion service inter faces and c lasses 287

Fail

CORBA::String_var instance_name

The object's instance name.

CORBA::Boolean activable

Set to TRUE to indicate that this object is registered with the Object Activation
Daemon. It is set to FALSE to indicate that the object was started manually and is
registered with the osagent.

CORBA::String_var agent_hostname

The name of the host running the Smart Agent with which this object is registered.

Fail

class Fail : public CORBA::UserException

This exception class may be thrown by the Agent class to indicate various errors.
The data member FailReason is used to indicate the nature of the failure.

Fail members

FailReason reason

Set to one of the following values to indicate the nature of the failure:

 enum FailReason {
 NO_AGENT_AVAILABLE,
 INVALID_REPOSITORY_ID,
 INVALID_OBJECT_NAME,
 NO_SUCH_TRIGGER,
 AGENT_ERROR
 };

TriggerDesc

struct TriggerDesc

This structure contains information you use to describe the characteristics of one or
more objects for which you wish to register a TriggerHandler, described in
“TriggerHandler”.

The host_name and instance_name members may be set to NULL to monitor the widest
possible set of objects. The more information specified, the smaller the set of
objects is.

IDL definition

module ObjLocation {
 ƒ
 struct TriggerDesc {
 string repository_id;
 string instance_name;
 string host_name;

288 VisiBroker C++ API Reference Guide

TriggerHandler

 };
 ƒ
};

TriggerDesc members

CORBA::String_var repository_id

The repository identifiers of the objects to be monitored by the TriggerHandler.

CORBA::String_var instance_name

The instance name of the object to be monitored by the TriggerHandler. May be set
to NULL to include all possible instance names.

CORBA::String_var host_name;

The host name where the object or objects monitored by the TriggerHandler are
located. May be set to NULL to include all hosts in the network.

TriggerHandler
You use this base class to derive your own callback object to be invoked every time an
object becomes available or unavailable. You specify the criteria for the object or
objects in which you are interested. You register your TriggerHandler object using the
Agent::reg_trigger method, described in the “void reg_trigger(const
ObjLocation::TriggerDesc& desc, ObjLocation::TriggerHandler_ptr hdlr);”.

You must provide implementations for the impl_is_ready and impl_is_down methods.

IDL definition

interface TriggerHandler {
 void impl_is_ready(in Desc desc);
 void impl_is_down(in Desc desc);
};

Include file

You should include the locate_c.hh file when you use this class.

TriggerHandler methods

virtual void impl_is_ready(const Desc& desc);

This method is invoked by the Location Service when an object instance matching
the criteria specified in desc becomes accessible.

Parameter Description

desc The object description
information.

 16: Locat ion service inter faces and c lasses 289

<type>Seq

virtual void impl_is_down(const Desc& desc);

This method is invoked by the Location Service when an object instance matching
the criteria specified in desc is no longer accessible.

<type>Seq
This is a generalized class description for the following sequence classes used by the
Location Service:

Each class represents a particular sequence of <type>. The Location Service returns
lists of information to your client application in the form of sequences which are
mapped to one of these classes.

Each class offers operators for indexing items in the sequence just as you would a C++
array. Each class also offers methods for setting and obtaining the length of the array.

The code sample below shows the correct way to index a HostnameSeq returned from
the Agent::all_agent_locations method.

ƒ
ObjLocation::HostnameSeq_var hostnames(myAgent->all_agent_locations());
for (CORBA::ULong i=0; i < hostnames->length(); i++) {
 cout << "Agent host #" << i+1 << ": " << hostnames[i] << endl;
}
ƒ

See also
– “<type>SeqSeq”

<type>Seq methods

<type>& operator[](CORBA::ULong index) const;

Returns a reference to the element in the sequence identified by index.

Caution

You must use a CORBA::ULong type for the index. Using an int type may lead to
unpredictable results.

Parameter Description

desc The object description information.

Class Description

DescSeq A sequence of Desc structures.
HostnameSeq A sequence of host names.
ObjSeq A sequence of object references.
RepositoryId
Seq

A sequence of repository identifiers.

Parameter Description

index The zero-based index of the element to be
returned.

290 VisiBroker C++ API Reference Guide

<type>SeqSeq

This method throws the following exception:

CORBA::ULong length() const;

Returns the number of elements in the sequence.

void length(CORBA::ULong len);

Sets the maximum length of the sequence to the value contained in len.

<type>SeqSeq
This is a generalized class description for the following classes used by the Location
Service:

Each class represents a particular sequence of <type>Seq. Some Location Service
methods return lists of information to your client application in the form of sequences of
sequences which are mapped to one of these classes.

Each class offers operators for indexing items in the sequence just as you would a C++
array. The class also offer methods for setting and obtaining the length of the array.

See also
– “<type>Seq”

<type>SeqSeq methods

<type>Seq& operator[](CORBA::ULong index) const;

Returns a reference to the element in the sequence identified by index. The
reference is to a one dimensional sequence, described in “<type>Seq”.

Caution

You must use a CORBA::ULong type for the index. Using an int type may lead to
unpredictable results.

Exception Description

CORBA::BAD_PA
RAM

The index specified is less than zero or greater that the size of
the sequence.

Parameter Description

len The new length for the sequence.

Class Description

DescSeqS
eq

A sequence of DescSeq objects.

ObjSeqSe
q

A sequence of ObjSeq objects.

Parameter Description

index The zero-based index of the element to be returned.

 16: Locat ion service interfaces and classes 291

This method throws the following exceptions:

CORBA::ULong length() const;

Returns the number of elements in the sequence.

void length(CORBA::ULong len);

Sets the maximum length of the sequence to the value contained in len.

Exception Description

CORBA::BAD_PA
RAM

The index specified is less than zero or greater that the size of
the sequence.

Parameter Description

len The new length for the sequence.

292 VisiBroker C++ API Reference Guide

 17: In i t ia l izat ion interfaces and classes 293

Initialization interfaces and classes
This section describes the interfaces and classes that are provided for statically
initializing VisiBroker ORB services such as interceptors.

VISInit

class VISInit

This abstract base class provides for the static initialization of service classes after
the VisiBroker ORB and BOA have been initialized. By deriving your service class
from VISInit and declaring it statically, you ensure that your service class instance
will be properly initialized.

The VisiBroker ORB invokes the VISInit::ORB_init and VISInit::BOA_init whenever
the application calls CORBA::ORB_init or BOA_init methods. By providing your own
implementations of these methods, you may add any needed initialization that must
be performed for your service.

Include file

Include the vinit.h file when you use this class.

VISInit constructors/destructors

VISInit();

This is the default constructor.

VISInit(CORBA::Long init_priority);

This constructor creates a VISInit-derived object with the specified priority, which
determines when it will be initialized relative to other VISInit-derived objects.

Internal VisiBroker classes which need to be initialized before user-defined classes
have a negative priority value. The lowest priority value currently used by VisiBroker
internal classes is –10.

294 VisiBroker C++ API Reference Guide

VISIni t

Note

You should set a priority value less than -10 if your class must be initialized before
the VisiBroker internal classes.

If no priority value is specified, the default value is 0, which means that the class will
be initialized after the internal VisiBroker classes.

virtual ~VISInit();

This is the default destructor.

VISInit methods

virtual void ORB_init(int& argc, char * const *argv, CORBA::ORB_ptr orb);

This method will be called during VisiBroker ORB initialization. Your implementation
should provide for the initialization of the client-side interceptor factory that you wish
to use.

virtual void ORB_initialized(CORBA::ORB_ptr orb);

This method will be called after the VisiBroker ORB is initialized. Your
implementation should provide for the initialization of the client-side interceptor
factory that you wish to use.

virtual void BOA_init(int& argc, char * const *argv, CORBA::BOA_ptr boa);

This method will be called when the BOA is initialized. Your implementation should
provide for the initialization of the server-side interceptor factory that you wish to
use.

virtual void ORB_shutdown()

This method will be called when the VisiBroker ORB is shut down.

Parameter Description

init_priority The initialization priority for this object. A negative priority value causes
this class to be initialized earlier. A positive priority value causes this
class to be initialized later.

Parameter Description

argc The count of arguments.

argv An array of argument pointers.

orb The VisiBroker ORB being initialized.

Parameter Description

orb The VisiBroker ORB being initialized.

Parameter Description

argc The count of arguments.

argv An array of argument pointers.

boa The BOA being initialized.

 18: Real-Time CORBA interfaces and classes 295

Real-Time CORBA interfaces and
classes
This section describes the Real-Time CORBA interfaces and classes supported by
VisiBroker for C++.

Note

Before using these interfaces, read ““Real-Time CORBA Extensions” in the VisiBroker
for C++ Developer's Guide for descriptions and usage information on the supported
extensions.

Introduction
Real-Time CORBA provides a set of APIs that support the development of predictable
CORBA-based systems, through the control of the number and priority of threads
involved in the execution of CORBA invocations.

The majority of the Real-Time CORBA API is specified in IDL, and is mapped to C++
according to the rules of the CORBA C++ language mapping. The Real-Time CORBA
IDL is scoped within module RTCORBA, and hence the C++ class names are all
prefixed RTCORBA::.

The following Real-Time CORBA interfaces and classes are described in the sections
that follow :

– RTCORBA::Current
– RTCORBA::Mutex
– RTCORBA::NativePriority
– RTCORBA::Priority
– RTCORBA::PriorityMapping
– RTCORBA::PriorityModel
– RTCORBA::PriorityModelPolicy
– RTCORBA::RTORB
– RTCORBA::ThreadpoolId
– RTCORBA::ThreadpoolPolicy

296 VisiBroker C++ API Reference Guide

RTCORBA::Current

Include file

To use any of the Real-Time CORBA features described in this chapter, the application
should include the file rtcorba.h, which is one of the include files supplied with
VisiBroker for C++.

RTCORBA::Current

class RTCORBA::Current : public CORBA::Object
typedef RTCORBA::Current* Current_ptr
class RTCORBA::Current_var

The class RTCORBA::Current provides methods that allow a Real-Time CORBA
Priority value to be associated with the current thread of execution, and the reading
of the Real-Time CORBA Priority value presently associated with the current thread.

When a Real-Time CORBA Priority value is associated with the current thread, that
value is immediately used to set the Native Priority of the underlying thread. The
Native Priority value to apply to the thread is obtained by means of the currently
installed Priority Mapping.

Where the Client Propagated Priority Model is in use, the Priority associated with a
thread also determines the priority of CORBA invocations made from that thread.
For details, see “Real-Time CORBA Priority Models” in the VisiBroker for C++
Developer's Guide.

RTCORBA::Current is defined in IDL, as a locality constrained interface. Hence
applications handle RTCORBA::Current by means of CORBA Object References,
using the C++ classes RTCORBA::Current_ptr and RTCORBA::Current_var.

See “RTCORBA::Priority” for more information.

RTCORBA::Current Creation and Destruction

RTCORBA::Current is a special interface. Applications need not be concerned with which
instance of it they are dealing. A reference to RTCORBA::Current is obtained through the
resolve_initial_references method of RTCORBA::RTORB, and is released in the normal
way when it is no longer required. For details see “Real-Time CORBA Current” in the
VisiBroker for C++ Developer's Guide.

IDL definition

//Locality Constrained Object

interface Current {

 attribute Priority base_priority;

};

RTCORBA::Current methods

void base_priority(Priority _val);

Associates the RTCORBA::Priority value _val with the current thread of execution.

Parameter Description

_val The Priority value to associate with the thread

 18: Real-Time CORBA inter faces and c lasses 297

RTCORBA::Mutex

Priority base_priority();

Gets the RTCORBA::Priority value associated with the current thread of execution.

RTCORBA::Mutex

class RTCORBA::Mutex : public CORBA::Object
typedef RTCORBA::Mutex* RTCORBA::Mutex_ptr
class RTCORBA::Mutex_var
class TimeBase {
 typedef unsigned long long TimeT;

};

The interface RTCORBA::Mutex provides applications with a mutex synchronization
primitive that is guaranteed to have the same priority inheritance properties as
mutexes used internally by VisiBroker to protect ORB resources. For details, see
“Real-Time CORBA Mutex API” in the VisiBroker for C++ Developer's Guide.

RTCORBA::Mutex is defined in IDL, as a locality constrained interface. Hence
applications handle RTCORBA::Mutex instances by means of CORBA Object
References, using the C++ classes RTCORBA::Mutex_ptr and RTCORBA::Mutex_var.

See “RTCORBA::RTORB” for more information.

Mutex Creation and Destruction

A new RTCORBA::Mutex is obtained using the create_mutex operation of the
RTCORBA::RTORB interface. The new RTCORBA::Mutex is created in an unlocked state.

When the RTCORBA::Mutex is no longer needed, it is destroyed using the destroy_mutex
operation of RTCORBA::RTORB. See “RTCORBA::RTORB” for details.

Note that if the RTCORBA::Mutex_var type is used in place of the RTCORBA::Mutex_ptr type,
the reference is automatically released when the _var instance goes out of scope, but
the RTCORBA::Mutex instance it refers to is not automatically destroyed. The
RTCORBA::Mutex instance must still be destroyed with a call to destroy_mutex.

IDL definition

// Locality Constrained Object
interface Mutex {
 void lock();
 void unlock();
 boolean try_lock (in TimeBase::TimeT max_wait);
};

interface RTORB {
 ƒ
 Mutex create_mutex();
 void destroy_mutex(in Mutex the_mutex);
 ƒ
};

// defined in TimeBase.idl
module TimeBase {
 typedef unsigned long long TimeT;
};

298 VisiBroker C++ API Reference Guide

RTCORBA::Nat ivePrior i ty

RTCORBA::Mutex Methods

void lock();

Locks the RTCORBA::Mutex. When the RTCORBA::Mutex object is in the unlocked state,
the first thread to call the lock() operation causes the Mutex object to change to the
locked state. Subsequent threads that call the lock() operation while the Mutex
object is still in the locked state will block until the owner thread unlocks it.

void unlock();

Unlocks the locked RTCORBA::Mutex.

CORBA::Boolean try_lock(const TimeBase::TimeT _max_wait);

Attempts to lock the RTCORBA::Mutex, waiting for a maximum of _max_wait amount of
time. Returns true if the lock is successfully taken within the time, or false if it could
not be taken before the time expired.

RTCORBA::NativePriority

typedef CORBA::Short RTCORBA::NativePriority

The type RTCORBA::NativePriority is used to represent priorities in the priority
scheme of the particular Operating System that the Real-Time ORB is running on.
Real-Time CORBA applications only use RTCORBA::NativePriority values in special
circumstances:

– When defining a Priority Mapping. For details, see “RTCORBA::PriorityMapping”.

– When interacting directly with the Operating System, or with some other non-
CORBA subsystem, that works in terms of Native Priorities. This should still be
done by means of the installed Priority Mapping. For details, see “Using Native
Priorities in VisiBroker Application Code” in the VisiBroker for C++ Developer's
Guide.

Normally, within a Real-Time CORBA application, priorities are expressed in terms
of RTCORBA::Priority values.

IDL definition

typedef CORBA::Short NativePriority;

RTCORBA::Priority

typedef CORBA::Short RTCORBA::Priority
static const Priority RTCORBA::minPriority; // 0
static const Priority RTCORBA::maxPriority; // 32767

The type RTCORBA::Priority should be used to represent priority values in a Real-
Time CORBA application. These values are mapped on to the Native Priority
scheme of the particular Operating System that the application is running on by the

Parameter Description

_max_wait The maximum amount of time to wait for the lock, in 100 nanosecond ticks. A
value of 0 means do not wait for the lock.

 18: Real-Time CORBA inter faces and c lasses 299

RTCORBA::Pr ior i tyMapping

currently installed Priority Mapping. For a detailed discussion of Real-Time CORBA
Priority, see “Real-Time CORBA Priority” in the VisiBroker for C++ Developer's
Guide.

The only time a Real-Time CORBA application should use Native Priority values is
when interacting directly with the Operating System or some other non-CORBA
subsystem. Even then, this should still be done using the installed Priority Mapping.
For details see 'Using Native Priorities in VisiBroker Application Code' in the
VisiBroker for C++ Developer's Guide.

RTCORBA::Priority values are in the range 0 to 32767. However, it is not expected
that this full range of priorities will be used in a Real-Time CORBA system. Instead,
the application system designer should decide on a suitable range of priorities for
that system, and implement a Priority Mapping that only allows priority values in that
range. For many applications the default valid range of 0 to 31 is acceptable, but
there might still be reasons to override the default Priority Mapping. See
“RTCORBA::PriorityMapping” for details.

IDL definition

typedef CORBA::Short Priority;

static const Priority minPriority; // 0

static const Priority maxPriority; // 32767

RTCORBA::PriorityMapping

class RTCORBA::PriorityMapping

The RTCORBA::PriorityMapping class facilitates the mapping of RTCORBA::Priority
values to and from the Native Priority scheme of the Operating System the Real-
Time ORB is running on. The ORB calls out to a Priority Mapping object whenever it
needs to map a RTCORBA::Priority value to a RTCORBA::NativePriority value or vice
versa.

A Real-Time CORBA application should describe its priorities in terms of
RTCORBA::Priority values. However, the application might need to make explicit use
of the installed Priority Mapping, in order to interact directly with the Operating
System or some other non-CORBA subsystem. For details see “Using Native
Priorities in VisiBroker Application Code” in the VisiBroker for C++ Developer's
Guide.

The range of RTCORBA::Priority values supported by a Priority Mapping should
always start from zero. The Real-Time ORB expects RTCORBA::Priority zero to be
valid. Also, this convention makes integration of different Real-Time CORBA
systems on the same node easier.

PriorityMapping Creation and Destruction

It is not necessary to create instances of a Priority Mapping in the code of a normal
Real-Time CORBA application. The available Priority Mapping is automatically used by
the ORB, and can be accessed by the application if necessary.

Exactly one Priority Mapping is 'installed' at any one time. A 'default' Priority Mapping is
provided, which is installed by default. This Default Priority Mapping can be overridden
by installing an application-implemented Priority Mapping object. The installation
process is described in the section “Replacing the Default Priority Mapping” in the
VisiBroker for C++ Developer's Guide.

300 VisiBroker C++ API Reference Guide

RTCORBA::Pr ior i tyMapping

IDL definition

// 'native' IDL type

native PriorityMapping;

The RTCORBA::PriorityMapping IDL type is defined as a 'native' IDL type. This means
that its mapping to different programming languages is defined on a per-language
basis. The C++ class representing RTCORBA::PriorityMapping has the following
declaration:

class PriorityMapping {

 public:

 virtual CORBA::Boolean to_native(

 RTCORBA::Priority corba_priority,

 RTCORBA::NativePriority &native_priority)=0;

 virtual CORBA::Boolean to_CORBA(

 RTCORBA::NativePriority native_priority,

 RTCORBA::Priority &corba_priority)=0;

 virtual RTCORBA::Priority max_priority() = 0;

 PriorityMapping();

 virtual ~PriorityMapping() {}

 static RTCORBA::PriorityMapping * instance();

};

The purpose of each method is explained in the next section, “PriorityMapping
Methods”.

PriorityMapping Methods

static RTCORBA::PriorityMapping * instance();

This static method, implemented by VisiBroker for C++, can be used by Real-Time
CORBA applications to access the currently installed Priority Mapping. For details
see “Using Native Priorities in VisiBroker Application Code” in the VisiBroker for C++
Developer's Guide for details.

virtual RTCORBA::Priority max_priority() = 0;

This method returns the maximum Real-Time CORBA Priority value that is valid
using this Priority Mapping. For example, if the installed Priority Mapping maps
Real-Time CORBA Priorities in the range 0 to 31, the value 31 will be returned every
time this method is called.

This method must be implemented when implementing a new Priority Mapping.

virtual CORBA::Boolean to_CORBA (
 RTCORBA::NativePriority native_priority,

 RTCORBA::Priority &corba_priority) = 0;

This method maps a given Native Priority value, native_priority, to a Real-Time
CORBA Priority value. If the Native Priority value is in the range supported by this
Priority Mapping, the resultant Real-Time CORBA Priority value is stored in
corba_priority, and a true value is returned. Otherwise corba_priority is not
changed, and a false is returned.

 18: Real-Time CORBA inter faces and c lasses 301

RTCORBA::Pr ior i tyModel

This method must be implemented when implementing a new Priority Mapping..

virtual CORBA::Boolean to_native (
 RTCORBA::Priority corba_priority,
 RTCORBA::NativePriority &native_priority) = 0;

This method maps a given Real-Time CORBA Priority value, corba_priority, to a
Native Priority value. If the Real-Time CORBA Priority value is in the range
supported by this Priority Mapping, the resultant Native Priority value is stored in
native_priority, and a true value is returned. Otherwise native_priority is not
changed, and a false value is returned.

This method must be implemented when implementing a new Priority Mapping..

RTCORBA::PriorityModel

enum RTCORBA::PriorityModel {
 CLIENT_PROPAGATED,

 SERVER_DECLARED

};

This enumeration specifies the two Real-Time CORBA Priority Models : Client
Propagated Priority Model and Server Declared Priority Model. These are described
in the section “Real-Time CORBA Priority Models” in the VisiBroker for C++
Developer's Guide

These enumeration values are used as values for a parameter to the
create_priority_model_policy method of RTCORBA::RTORB. See
“RTCORBA::PriorityModelPolicy” for details.

RTCORBA::PriorityModelPolicy

class RTCORBA::PriorityModelPolicy : CORBA::Policy

An instance of this Real-Time Policy type is created by calling the
create_priority_model_policy method of RTCORBA::RTORB. The Policy instance can
then be used to configure a Real-Time POA at the time of its creation, by passing it
into the create_POA method, as a member of the Policy List parameter.

See “RTCORBA::RTORB” and “RTCORBA::PriorityModel” for more information.

Parameter Description

native_priority The Native Priority value to be mapped to a Real-Time CORBA
Priority.

corba_priority The variable to assign the mapped Real-Time CORBA Priority value
to.

Parameter Description

corba_priority The Real-Time CORBA Priority value to be mapped to a Native
Priority.

native_priority The variable to assign the mapped Native Priority value to.

302 VisiBroker C++ API Reference Guide

RTCORBA::RTORB

IDL definition

interface PriorityModelPolicy : CORBA::Policy {

 readonly attribute PriorityModel priority_model;

 readonly attribute Priority server_priority;

};

RTCORBA::RTORB

class RTCORBA::RTORB : public CORBA::Object
typedef RTCORBA::RTORB* RTCORBA::RTORB_ptr
class RTCORBA::RTORB_var

The interface RTCORBA::RTORB provides methods for the management of Real-Time
CORBA Threadpools and Mutexes, and to create instances of Real-Time CORBA
Policies.

RTCORBA::RTORB is defined in IDL, as a locality constrained interface. Hence
applications handle RTCORBA::RTORB by means of CORBA Object References, using
the C++ classes RTCORBA::RTORB_ptr and RTCORBA::RTORB_var.

Note

As stated in the VisiBroker for C++ Developer's Guide, to support Real-Time
CORBA Extensions, the VisiBroker for C++ ORB has to operate in a special 'real-
time compatible' mode, the behavior and semantics of which differ from the regular
mode of operation. Since obtaining an “RTORB” reference automatically puts the ORB
in this special mode, you should obtain an “RTORB” reference as early as possible
in your application code to avoid any possible inconsistency in behavior.

See “RTCORBA::Mutex”, “RTCORBA::Priority”, “RTCORBA::ThreadpoolId”, and
“RTCORBA::ThreadpoolPolicy”. For details on the use of Real-Time CORBA
Threadpools, see “Threadpools” in the VisiBroker for C++ Developer's Guide.

RTORB Creation and Destruction

The Real-Time ORB does not need to be explicitly initialized—it is initialized implicitly
as part of the regular CORBA::ORB_init call.

To use the Real-Time ORB operations, the application must have a reference to the
Real-Time ORB instance. This reference can be obtained any time after the call to
ORB_init, and is obtained through the resolve_initial_references operation on
CORBA::ORB, with the object ID string “RTORB” as the parameter. For details, see “Real-
Time CORBA ORB” in the VisiBroker for C++ Developer's Guide.

IDL definition

// locality constrained interface

interface RTORB {

 Mutex create_mutex();

 void destroy_mutex(in Mutex the_mutex);

 exception InvalidThreadpool {};

 ThreadpoolId create_threadpool (

 in unsigned long stacksize,

 in unsigned long static_threads,

 18: Real-Time CORBA inter faces and c lasses 303

RTCORBA::RTORB

 in unsigned long dynamic_threads,

 in Priority default_priority,

 in boolean allow_request_buffering,

 in unsigned long max_buffered_requests,

 in unsigned long max_request_buffer_size);

 void destroy_threadpool(in ThreadpoolId threadpool)

 raises (InvalidThreadpool);

 void threadpool_idle_time(in ThreadpoolId threadpool,

 in unsigned long seconds)

 raises (InvalidThreadpool);

 PriorityModelPolicy create_priority_model_policy(

 in PriorityModel priority_model,

 in Priority server_priority);

 ThreadpoolPolicy create_threadpool_policy(

 in ThreadpoolId threadpool);

};

RTORB Methods

Mutex_ptr create_mutex();

Creates a new Real-Time CORBA Mutex and returns a reference to it.

void destroy_mutex(Mutex_ptr _the_mutex);

Destroys a Real-Time CORBA Mutex.

ThreadpoolId create_threadpool(
 CORBA::ULong _stacksize,
 CORBA::ULong _static_threads,
 CORBA::ULong _dynamic_threads,
 Priority _default_priority,
 CORBA::Boolean _allow_request_buffering = 0,
 CORBA::ULong _max_buffered_requests = 0,
 CORBA::ULong _max_request_buffer_size = 0);

Creates a new Real-Time CORBA Threadpool with the specified configuration, and
returns a RTCORBA::ThreadpoolId for it.

Parameter Description

_the_mutex Reference of the Mutex to destroy.

Parameter Description

_stacksize Stacksize, in bytes, for each thread in the Threadpool.

_static_threads Number of threads to create at the time of Threadpool creation.
This value can be zero, as long as _dynamic_threads is non-zero.

_dynamic_threads Number of extra threads that can be created, if all the statically
created threads are in use and more threads are required. This
value can be zero (so that no more threads can be dynamically
created), as long as _static_threads is non-zero.

304 VisiBroker C++ API Reference Guide

RTCORBA::RTORB

void destroy_threadpool(ThreadpoolId _threadpool);

Destroys a Real-Time CORBA Threadpool. The Threadpool must not be in use by
any Object Adapter, or the operation will fail, and a CORBA system exception is
raised.

void threadpool_idle_time(
 ThreadpoolId _threadpool,
 CORBA::ULong _seconds);

Sets the time, in seconds, that dynamically allocated threads remain idle before they
are garbage collected. Configured on a per-Threadpool basis. The default is to
garbage collect dynamically allocated threads after 300 seconds.

This method is a proprietary VisiBroker extension.

PriorityModelPolicy create_priority_model_policy(
 in PriorityModel _priority_model,
 in Priority _server_priority);

Creates an instance of the RTCORBA::PriorityModelPolicy policy object, for use in
configuring one or more Real-Time POAs. See “RTCORBA::PriorityModel” and
“RTCORBA::PriorityModelPolicy”.

_allow_request_buffe
ring

Boolean flag to enable request buffering when all threads are in
use. Not supported by VisiBroker for C++. The value of this
parameter is ignored.

_max_buffered_reques
ts

Maximum number of requests to buffer when all threads are in
use. Not supported by VisiBroker for C++. The value of this
parameter is ignored.

_max_request_buffer_
size

Maximum amount of data to buffer, in bytes, when all threads are
in use. Not supported by VisiBroker for C++. The value of this
parameter is ignored.

Parameter Description

_threadpool The ThreadpoolId of the Threadpool to destroy.

Parameter Description

_threadpool The ThreadpoolId of the Threadpool to set the Idle Time for.

_seconds The maximum number of seconds that a dynamically allocated thread
can be idle in this Threadpool before it is destroyed. Statically allocated
threads are not destroyed.

Parameter Description

_priority_model RTCORBA::SERVER_DECLARED, for the Server Declared Priority Model or
RTCORBA::CLIENT_PROPAGATED for the Client Priority Propagation Model.

_server_priority In the Server Model, the Real-Time CORBA Priority that invocations
on objects activated on this POA will be executed at, provided a
Priority value is not associated with the individual object at the time of
activation.
In the Client Model, the Real-Time CORBA Priority that invocations
on objects activated on this POA will be executed at if they come
from a non-Real-Time CORBA client or a Real-Time CORBA client
that has not specified a Real-Time CORBA Priority on
RTCORBA::Current before making the invocation.

Parameter Description

 18: Real-Time CORBA inter faces and c lasses 305

RTCORBA::ThreadpoolId

ThreadpoolPolicy create_threadpool_policy(
 in ThreadpoolId _threadpool);

Creates an instance of the RTCORBA::ThreadpoolPolicy policy object, for use
in configuring one or more Real-Time POAs.

RTCORBA::ThreadpoolId

typedef CORBA::ULong RTCORBA::ThreadpoolId

Values of the type RTCORBA::ThreadpoolId are used to identify Real-Time CORBA
Thread-pools. A value of this type is returned from the create_threadpool method of
RTCORBA::RTORB.

The ID can be used to initialize an instance of a Threadpool Policy, which in turn can
be passed in to a call to create_POA, as a member of the PolicyList parameter, to
configure a Real-Time POA. For details, see “RTCORBA::RTORB”,
“RTCORBA::ThreadpoolPolicy”, and the section “Association of an Object Adapter
with a Threadpool” in the VisiBroker for C++ Developer's Guide.

IDL definition

typedef unsigned long ThreadpoolId;

RTCORBA::ThreadpoolPolicy

class RTCORBA::ThreadpoolPolicy : CORBA::Policy

An instance of this Real-Time Policy type is created by calling the
create_threadpool_policy method of RTCORBA::RTORB. The Policy instance can then
be used to configure a Real-Time POA at the time of its creation, by passing it into
the create_POA method, as a member of the Policy List parameter. See
“RTCORBA::RTORB”, “RTCORBA::ThreadpoolId”, and the section “Association of
an Object Adapter with a Threadpool” in the VisiBroker for C++ Developer's Guide
for more information.

IDL definition

interface ThreadpoolPolicy : CORBA::Policy {
 readonly attribute ThreadpoolId threadpool;
};

Parameter Description

_threadpool The ThreadpoolId of the Threadpool to associate POA with.

306 VisiBroker C++ API Reference Guide

RTCORBA::ThreadpoolPol icy

 19: Pluggable Transport Interface Classes 307

Pluggable Transport Interface
Classes
This chapter describes the classes of the Pluggable Transport Interface provided by
VisiBroker for C++. For information on how to implement support for a transport
protocol via the VisiBroker Pluggable Transport Interface, see the chapter “VisiBroker
Pluggable Transport Interface” in the Developer Guide.

Important

For documentation updates, go to www.borland.com/techpubs/bes.

VISPTransConnection
This class is the abstract base class for a connection class that must be implemented
for each transport protocol that is to be plugged in to VisiBroker, to allow VisiBroker to
work with that particular transport protocol. Each instance of the derived class will
represent a single connection between a server and a client. VisiBroker will request
instances of this class be created (via the corresponding factory class, see “virtual
CORBA::Boolean waitNextMessage(CORBA::ULong _timeout) = 0;”) on both the client
and server side of the ORB, whenever a new connection is required.

Include file

The vptrans.h file should be included to use this class.

VISPTransConnection methods

virtual void close() = 0;

To be implemented by the derived connection class. This method closes the
connection in an orderly fashion. This method must be able to close the connection
from either the client- or the server-side of a connection.

308 VisiBroker C++ API Reference Guide

VISPTransConnect ion

virtual void connect(CORBA::ULongLong _timeout) = 0;

To be implemented by the derived connection class. This method will be called by
the client-side ORB, and must communicate with the remote peer’s ‘Listener’
instance to setup a new connection on the server-side. The function does not return
any error code, but should throw exceptions if any transport layer errors occur. Any
exception may be thrown, including a CORBA User Exception, as the exception will
be thrown back to the client CORBA application. CORBA::TRANSIENT is one
possible exception that could be thrown.

The timeout value is in specified in milliseconds. A value of 0 means no timeout
(block forever), and this is the default value, which is used unless the timeout is set
through the VisiBroker policy system. If the transport does not support timeouts on
connect, it still can be used successfully. In this case the connect call must always
block until the connection is established or has failed.

virtual void flush() = 0;

To be implemented by the derived connection class. If this transport buffers data,
this method should immediately send all data buffered for output, and block until the
data is sent. Otherwise, there is nothing to be done and it can return immediately.

virtual IOP::ProfileValue_ptr getPeerProfile() = 0;

To be implemented by the derived connection class. This method should return a
copy of the Profile describing the peer endpoint used in this connection. The copy
must be created on the heap and the caller is responsible for releasing the used
memory. The Profile does not describe the actual connection for this instance, but
the Profile of the ‘Listener’ endpoint used during the ‘connect’ call.

virtual CORBA::Long id() = 0;

To be implemented by the derived connection class. This method must return a
unique number for each connection instance. The ID only needs to be unique for
this transport. It is used to lookup/locate a connection instance during request
dispatching for this transport.

virtual CORBA::Boolean isBridgeSignalling() = 0;

To be implemented by the derived connection class. This method is used to indicate
to the ORB which worker thread ‘cooling’ strategy is to be used. If the method
returns 0 (FALSE), it means that the protocol plug-in itself is going to handle the re-
reading of the connection after a request has been read. This is only possible if the
plug-in is capable of doing a blocking read with timeout on the protocol endpoint. If it
cannot or chooses not to, this method should return 1 (TRUE), and the transport
bridge will notify the thread if another request becomes available or the when the
timeout is reached. Note that thread cooling only occurs if a cooling time is
configured for that protocol instance.

virtual CORBA::Boolean isConnected() = 0;

To be implemented by the derived connection class. This method should return 1
(TRUE), if the remote peer is still connected. If the connection was closed by the
peer or any error condition exists that prevents the use of this connection, it must
return 0 (FALSE).

Parameter Description

_timeout Timeout value to use, in milliseconds. 0 indicates no timeout (block forever)

 19: Pluggable Transport Interface Classes 309

VISPTransConnect ion

virtual CORBA::Boolean isDataAvailable() = 0;

To be implemented by the derived connection class. This method should return 1
(TRUE), if data is ready to be read from the connection. Otherwise, it should return 0
(FALSE).

virtual CORBA::Boolean no_callback() = 0;

To be implemented by the derived connection class. This method indicates whether
a connection of this transport can be used to reverse the client/server setup and call
back to a servant in the client code. It should return 0 (FALSE) if it can not, which
will cause the ORB to create a new connection for this kind of call, or 1 (TRUE) if it
can.

This feature is provided to support Bi-Directional IIOP, that was introduced in GIOP-
1.2. See the CORBA specification for details.

virtual void read(CORBA::Boolean _isFirst, CORBA::Boolean _isLast, char* _data,
CORBA::ULong _offset, CORBA::ULong _length, CORBA::ULongLong _timeout)= 0;

To be implemented by the derived connection class. This method reads data from
the connection. It does not return any error code, but must signal transport related
errors by throwing exceptions. The arguments describe a byte array with a given
length that needs to be filled. This function must either fill the complete byte array
successfully, timeout, or throw an exception.

The timeout parameter’s value defaults to 0 unless the user sets it through the
VisiBroker QoS policies. A value of 0 indicates no timeout, and hence that the read
should block forever waiting for data. Therefore, if this transport does not support
timeouts on read/write, it still can be used successfully. In this case the read call
must always block until all data has arrived.

virtual void setupProfile(const char* prefix, VISPTransProfileBase_ptr peer) = 0;

To be implemented by the derived connection class. This method is used to tell a
newly created client-side connection object what peer it should try to connect to in
later steps. (When connect() is called.) The given VISPTransProfileBase_ptr base
class should be cast to the Profile class type of the particular transport and all
member data in the connection should be initialized from that instance. A prefix
string is also passed, for property lookup, in case additional property parameters
need to be read.

Parameter Description

_isFirst TRUE if this is the first time data is being read from the connection.

_isLast TRUE if this is the last time data is being read from the connection.

_data Byte array to read data into.

_offset Offset into the array at which to start storing the read data.

_length The number of bytes of data to be read.

_timeout Timeout value to use, in milliseconds. 0 indicates no timeout (block forever)

Parameter Description

prefix String prefix of the form “vbroker.se.<SE_name>.scm.<SCM_name>” that the
method can use to read any protocol-specific VisiBroker properties that may
have been set to configure this instance.

peer Profile for the Listening endpoint that this connection will connect to. Given as
an instance of this protocol’s Profile class, passed as a pointer to the base
VISPTransProfile class.

310 VisiBroker C++ API Reference Guide

VISPTransConnect ionFactory

virtual CORBA::Boolean waitNextMessage(CORBA::ULong _timeout) = 0;

To be implemented by the derived connection class. This method should block the
calling thread until either data has arrived on this connection or the given timeout (in
milliseconds) has expired. It should return 1 (TRUE) if data is available, or 0
(FALSE) if not. Note that a value of 0 for the _timeout parameter should never occur
(as in this case the ORB should not call this method). Therefore receiving this value
should be handled as an error, perhaps by logging an error message.

virtual void write(CORBA::Boolean _isFirst, CORBA::Boolean _isLast, char* _data,
CORBA::ULong _offset, CORBA::ULong _length, CORBA::ULongLong _timeout) = 0;

To be implemented by the derived connection class. This method sends data
through the connection to the remote peer. It does not return any error code, but
must signal transport related errors by throwing exceptions. The arguments
describe a byte array with a given length that needs to be sent. This function must
either send the complete byte array successfully, timeout, or throw an exception.
The timeout parameter’s value defaults to 0 unless the user sets it through the
VisiBroker QoS policies. A value of 0 indicates no timeout, and hence that the write
should block forever waiting for data. Therefore, if this transport does not support
timeouts on read/write, it still can be used successfully. In this case the write call
must always block until all data has arrived.

VISPTransConnectionFactory
This class is the abstract base class for a connection factory class that must be
implemented for each transport protocol that is to be plugged in to VisiBroker, to allow
VisiBroker to work with that particular transport protocol. A singleton instance of the
derived class is registered with VisiBroker, via the VISPTransRegistrar class,
described later. The ORB calls the connection factory object to create instances of the
connection class of the associated transport. The connection class is the
corresponding class derived from class VISPTransConnection.

Include file

The vptrans.h file should be included to use this class.

VISPTransConnectionFactory methods

VISPTransConnection_ptr create(const char* prefix) = 0;

To be implemented by the derived connection factory class. This method creates a
new instance of the corresponding connection class and returns the pointer to it cast

Parameter Description

_timeout Maximum amount of time to wait for a message (in seconds). 0 means wait
forever.

Parameter Description

_isFirst TRUE if this is the first time data is being sent through the connection.

_isLast TRUE if this is the last time data is being sent through the connection.

_data Byte array of data that needs to be sent.

_offset Offset into the array at which to start storing the read data.

_length The number of bytes of data to be sent.

_timeout Timeout value to use, in seconds. 0 indicates no timeout (block forever)

 19: Pluggable Transport Interface Classes 311

VISPTransListener

to the base class type. The caller is responsible for the destruction of the instance
when it is no longer required.

VISPTransListener
This class is the abstract base class for a listener factory that must be implemented for
each transport protocol that is to be plugged in to VisiBroker, to allow VisiBroker to
work with that particular transport protocol. Instances of the derived class are created
each time a Server Engine is created that includes Server Connection Managers
(‘SCMs’) that specify the particular transport protocol. One instance is created per SCM
instance that specifies the protocol. The listener instances are used by the server-side
ORB to wait for incoming connections and requests from clients. New connections and
requests on existing connections are signalled by the listener to the ORB via the
Pluggable Transport Interface’s Bridge class (see “VISPTransBridge”). When a request
is received on an existing connection, the connection goes through a ‘Dispatch Cycle’.
The Dispatch Cycle starts when the connection delivers data to the transport layer. In
this initial state, the arrival of this data must be signalled to the ORB via the Bridge and
then the Listener ignores the connection until the Dispatch process is completed (in the
mean time, the connection is said to be in the ‘dispatch state’). The connection is
returned to the initial state when the ORB makes a call to the Listener’s
completedData() method. During the dispatch state the ORB will read directly from the
connection until all requests are exhausted, avoiding any overhead incurred by the
Bridge-Listener communication. In most cases, the transport layer uses blocking calls
that wait for new connections. In order to handle this situation, the Listener should be
made a subclass of the class VISThread and start a separate thread of execution that
can be blocked without holding up the whole ORB.

Include file

The vptrans.h file should be included to use this class.

VISPTransListener methods

virtual void completedData(CORBA::Long id) = 0;

To be implemented by the derived listener class. This method is called when the
ORB has completed reading a request from the connection with the given id and
wants the Listener once again to signal any new incoming requests on that
connection (via the Bridge).

virtual void destroy() = 0;

To be implemented by the derived listener class. This method instructs the Listener
instance to tear down its endpoint and close all related active connections.

virtual IOP::ProfileValue_ptr getListenerProfile() = 0;

To be implemented by the derived listener class. This method should return the
Profile describing the Listener instance’s endpoint on this transport. The returned
Profile should be a copy on the heap and the caller (the ORB) takes over memory
management of it.

Parameter Description

prefix String prefix of the form “vbroker.se.<SE_name>.scm.<SCM_name>” that the
method can use to read any protocol-specific VisiBroker properties that may
have been set to configure the connection factory.

Parameter Description

id Id of the connection that may once again be listened on.

312 VisiBroker C++ API Reference Guide

VISPTransListenerFactory

virtual CORBA::Boolean isDataAvailable(CORBA::Long id) = 0;

To be implemented by the derived connection factory class. This method should
return 1 (TRUE), if the connection with the given Id has data ready to be read.
Returns 0 (FALSE) otherwise. Normally the call should just be forwarded to the
transport layer to find out.

virtual void setBridge(VISPTransBridge* up) = 0;

To be implemented by the derived listener class. This method establishes the ‘link’
to the Pluggable Transport Bridge instance to be used by this Listener instance. The
pointer it passes to the Listener should be stored to allow ‘upcalls’ to be made into
ORB when necessary.

VISPTransListenerFactory
This class is the abstract base class for a listener factory class that must be
implemented for each transport protocol that is to be plugged in to VisiBroker, to allow
VisiBroker to work with that particular transport protocol. A singleton instance of the
derived class is registered with VisiBroker, via the VISPTransRegistrar class. The ORB
calls this object to create instances of the listener class of the associated transport. The
listener class is the corresponding class derived from class VISPTransListener, as
described in “VISPTransListener”.

Include file

The vptrans.h file should be included to use this class.

VISPTransListenerFactory methods

VISPTransListener_ptr create(const char* propPrefix) = 0;

To be implemented by the derived listener factory class. This method creates a new
instance of the corresponding listener class and returns the pointer to it cast to the
base class type. The caller (the ORB) is responsible for the destruction of the
instance when it is no longer required.

Parameter Description

id Id of the connection that should be queried to see if data is available.

Parameter Description

up Pointer to Pluggable Transport Bridge instance that the Listener instance
should use to communicate with the ORB.

Parameter Description

propPrefix String prefix of the form “vbroker.se.<SE_name>.scm.<SCM_name>” that the
method can use to read any protocol-specific VisiBroker properties that may
have been set to configure the listener instance or the particular listener
instance that is being created. Note that the factory can pass the prefix into
the constructor of the listener instance it is creating, to allow it to read
properties itself. This would require the derived listener class to have a
constructor that takes the prefix as a parameter.

 19: Pluggable Transport Interface Classes 313

VISPTransProf i leBase

VISPTransProfileBase

class VISPTransProfileBase : public GIOP::ProfileBodyValue, public
CORBA_DefaultValueRefCountBase

This class is the abstract base class for a Profile class that must be implemented for
each transport protocol that is to be plugged in to VisiBroker, to allow VisiBroker to
work with that particular transport protocol. This class provides the functionality to
convert between a transport specific endpoint description and an CORBA IOP
based IOR that can be exchanged with other CORBA implementations. It is also
used during the process of binding a client to a server, by passing a ProfileValue to
a ‘parsing’ function that has to return TRUE or FALSE, to determine whether a
particular IOR is usable for this transport or not. An instance of the derived Profile
class is frequently passed to functions via a pointer to its base class type. In order to
support safe runtime downcasting with any C++ compiler, a ‘_downcast’ function
must be provided that can test if the cast is legal or not.

Include file

The vptrans.h file should be included to use this class.

VISPTransProfileBase methods

static GIOP::ObjectKey* convert(const PortableServer::ObjectId& seq);

Converts octet sequence representation of an Object Key into the in-memory
representation.

void object_key(GIOP::ObjectKey_ptr k);

Set the Object Key for this Profile instance.

const GIOP::ObjectKey_ptr object_key() const;

Get the Object Key for this Profile instance.

void version(const GIOP::Version& v);

Set the GIOP version for this Profile.

GIOP::Version& version();

Get the GIOP version of this Profile.

Parameter Description

seq Octet sequence version of Object Key, to be converted into in-memory
representation.

Parameter Description

k Object key

Parameter Description

v GIOP Version

314 VisiBroker C++ API Reference Guide

VISPTransProf i leBase

const GIOP::Version& version() const;

Get the GIOP version of this Profile.

static const VISValueInfo& _info();

Get the VisiBroker ValueInfo for this Profile type.

VISPTransProfileBase members

static const VISValueInfo& _stat_info;

Stores the VisiBroker ValueInfo for this particular Profile type.

VISPTransProfileBase base class methods

IOP::ProfileValue_ptr copy()

To be implemented by the derived listener factory class. This method should make
an exact copy on the free store and return a pointer to it. It is good coding practice to
use the copy constructor inside of this function.

CORBA::Boolean matchesTemplate(IOP::ProfileValue_ptr body);

To be implemented by the derived Profile class. This method should return 1
(TRUE) if there is an IOR in the given data, that can be used to connect through this
transport. Otherwise return 0 (FALSE).

IOP::ProfileId tag()

To be implemented by the derived Profile class. This method should return the
unique tag value for this Profile.

IOP::TaggedProfile* toTaggedProfile();

To be implemented by the derived Profile class. This method should return a tagged
(stringified) Profile instance created with the values read from this instance’s
member data.

static VISPTransProfileBase* _downcast(CORBA::ValueBase* vbptr);

To be implemented by the derived Profile class. Function to downcast a base class
pointer to an instance of this Profile class.

virtual void* _safe_downcast(const VISValueInfo &info) const;

To be implemented by the derived listener factory class. Virtual method called by
ORB during downcast, to check type info data.

Parameter Description

body body Profile to be checked, to see if it can be used by this transport.

Parameter Description

vbptr Profile instance passed as base Value type pointer.

Parameter Description

info VisiBroker Value Info for this Profile type.

 19: Pluggable Transport Interface Classes 315

VISPTransProf i leFactory

VISPTransProfileFactory
This class is the abstract base class for a Profile factory class that must be
implemented for each transport protocol that is to be plugged in to VisiBroker, to
allow VisiBroker to work with that particular transport protocol. A singleton instance
of the derived class is registered with VisiBroker, via the VISPTransRegistrar class.
The ORB calls this object to create instances of the Profile class of the associated
transport. The Profile class is the corresponding class derived from class
VISPTransProfileBase, as described in “VISPTransProfileBase”.

Include file

The vptrans.h file should be included to use this class.

VISPTransProfileFactory methods

IOP::ProfileValue_ptr create(const IOP::TaggedProfile& profile)

Read the tagged IOR and create a Profile describing a Listener endpoint.

CORBA::ULong hash(VISPTransProfileBase_ptr prof);

Support the optimized storage of profiles in a hashed lookup table by calculating a
hash number for the given instance. Return 0 if you do not provide hash values.

IOP::ProfileId getTag();

Return the unique Profile Id tag for the type of Profile created by this factory.

VISPTransBridge
This class provides a generic interface between the transport classes and the ORB. It
provides methods to signal various events occuring in the transport layer.

Include file

The vptrans.h file should be included to use this class.

VISPTransBridge methods

CORBA::Boolean addInput(VISPTransConnection_ptr con);

Send a connection request to the ORB through the bridge, by passing a pointer to
the Connection instance representing the Listener endpoint. The returned flag
signals whether the ORB has accepted the new connection (returns 1 (TRUE)) or

Parameter Description

profile CDR encoded IOR to be read.

Parameter Description

prof Profile instance to produce hash value for.

316 VisiBroker C++ API Reference Guide

VISPTransRegist rar

refused it (returns 0 (FALSE)). The latter might happen due to resource constraints
or due to a restriction on connections (set up through the property system).

void signalDataAvailable(CORBA::Long conId);

Passes the connection id to the ORB of a connection that just got new data from the
transport layer. This will start the dispatch cycle for incoming requests.

void closedByPeer(CORBA::Long conId);

Tell the ORB that the connection with the given id was closed by the remote peer.

VISPTransRegistrar
This class must be used to register a new transport with the ORB. The protocol name
string given during registration is used as identifier of this transport and must be unique
in the scope of that ORB. It is also used as a prefix in the name string of properties
related to this transport.

Include file

The vptrans.h file should be included to use this class.

VISPTransRegistrar methods

static void addTransport(const char* protocolName, VISPTransConnectionFactory*
connFac, VISPTransListenerFactory* listFac, VISPTransProfileFactory* profFac);

Register the protocol name string and the three Factory instances used to create
specific classes for this transport. This method is static and can therefore be called
at any time during the initialization of the ORB.

Members Description

con Connection object representing the Listener endpoint wish to connect to.

Members Description

conId Connection Id of connection want to indicate data is available on

Members Description

conId Connection Id of connection want to indicate was closed by the remote peer.

Members Description

protocolName Name to be used to identify this transport protocol.

connFac Pointer to singleton instance of connection factory.

listFac Pointer to singleton instance of Listener factory.

profFac Pointer to singleton instance of Profile factory.

 19: Pluggable Transport Interface Classes 317

VISPTransRegistrar

318 VisiBroker C++ API Reference Guide

 20: Vis iBroker for C++ Logging 319

VisiBroker for C++ Logging
This section describes the classes that support VisiBroker for C++ logging.

VISDLoggerMgr
This class is a bootstrap class into the functionality provided by the logging library
vdlog.

Include file

Include the vdlog.h file when you use this class.

VISDLoggerMgr methods

static VISDLoggerMgr_ptr instance();

Static function to access a singleton instance of VISDLoggerMgr.

CORBA::Boolean global_log_enabled();

Returns true of the global log switch is enabled, else false.

void global_log_enabled(CORBA::Boolean b);

Setter method for the global log level switch.

VISDLogLevel::Level global_log_level();

Returns the current global log level (verbosity) setting on the log manager.

Parameter Description

b boolean value to enable or disable the global log level switch

320 VisiBroker C++ API Reference Guide

VISDLoggerMgr

void global_log_level(VISDLogLevel::Level l);

Setter for the global log level on the log manager.

VISDLogger_ptr get_default_logger();

Returns the default logger. If not created, creates and returns. The name of the
returned logger is “default”.

VISDLogger_ptr get_logger(const char* name, VISDAppender_ptr* apps = NULL,
CORBA::Short num_apps = 0);

Creates if not created and returns a logger with the given name.

void register_app_factory(VISDAppenderFactory* fac);

API for custom appender factories to register themselves with the logger framework.
Factory will be added to a dictionary of appender factories indexed by its name. If a
factory is not registered with the framework, then an instance of its type cannot be
created.

VISDAppender_ptr create_app(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p);

API to create an appender for the logger specified by its name using the
configuration information pointed.

void register_lyt_factory(VISDLayoutFactory* fact);

API for custom layout factories to register themselves with the logger framework.

Parameter Description

l global verbosity setting

Parameter Description

name input name of the logger

apps pointer to an array of appender pointers indicating an initial list of appender for
the logger

num_apps number of appenders in the array of appender pointer

Parameter Description

fac appender factory to be registered

Parameter Description

logger_name name of the logger for which the appender instance is to be created

p pointer to the logger appender instance conifiguration

Parameter Description

fact pointer to the implemented layout factory to be registered

 20: Vis iBroker for C++ Logging 321

VISDLogger

VISDLayout_ptr create_lyt(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p);

API to create a layout instance.

VISDLogger
Class providing the logging interface.

Include file

Include the vdlog.h file when you use this class.

VISDLogger methods

const char* name() const;

Returns the name of the logger object.

void log(VISDLogLevel::Level level, const char* message, const char*
sourcefile = NULL, CORBA::ULong linenum = 0, const void* bindata = NULL,
size_t binsize = 0);

API to log messages.

void log(VISDLogLevel::Level level, const char* component, const char*
message, const char *sourcefile = NULL, CORBA::ULong linenum = 0, const
void *bindata = NULL, size_t binsize = 0)

API to log messages.

Parameter Description

logger_name name of the logger in which the appender instance is associated which
needs to use the layout

p pointer to the logger appender instance conifiguration

Parameter Description

level log level of the logged message

message logged message data

sourcefile source file name from where the message is being logged

linenum source file line number from where the message is being logged

bindata binary data pointer

binsize size of any binary data

Parameter Description

level log level of the logged message

component source name from where the message is being logged. The source name is
the logical module name that can be useful during filtering

message logged message data

sourcefile source file name from where the message is being logged

linenum source file line number from where the message is being logged

bindata binary data pointer

binsize size of any binary data

322 VisiBroker C++ API Reference Guide

VISDAppenderFactory

VISDAppenderFactory
Interface for appender factory implementations to implement. The logger framework
calls on this interface for appender instance creation.

Include file

Include the vdlog.h file when you use this class.

VISDAppenderFactory methods

virtual const char* type_name() = 0;

This method is invoked by the logger framework when it needs to know the type of
the factory. For example, when a factory registers itself with the logger manager,
this API is called to get the type name. The type name identifies the type of
destination to which its appenders will forward the logger. Type names “stdout”,
“rolling” and others as mentioned in the developer guide are restricted from usage.
Should return back a unique type name for the appender type.

virtual VISDAppender_ptr create(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p) = 0;

This method is invoked by the logger framework when it needs to create an instance
of the appender supported by this factory. The return value should be an instance of
desired appender.

virtual void destroy(VISDAppender_ptr p) = 0;

This method is invoked by the logger framework when it is done with using the
appender instance. The API is supposed to remove all resources dedicated to the
appender instance when it was created.

VISDAppender

class VISDAppender : public VISResource

Interface providing the appender interface. The logger object uses this interface to
log to specific destinations..

Include file

Include the vdlog.h file when you use this class.

Parameter Description

logger_name name of the logger on which the appender instance is to be associated with

p pointer to the logger's appender instance configuration.

Parameter Description

p Appender instance pointer that is to be destroyed

 20: Vis iBroker for C++ Logging 323

VISDLayoutFactory

VISDAppender methods

virtual VISDAppenderFactory* factory() = 0;

Should return the associated factory object which created this appender instance.

virtual CORBA::Boolean append(const VISDLogRecord& record) = 0;

API used by the logger to forward the log message to a specific destination. The log
record abstracts the complete log message. On successful completion of
forwarding, the API should return TRUE..

virtual CORBA::Boolean ORB_initialized(void* orb_ptr) = 0;

This is a notification from the ORB that it has initialized. If an appender is going to
use any of the ORB functionality, then it needs to wait for this notification and return
back TRUE. Otherwise, it should return back FALSE. After this notification, the
appender can start using any of the ORB interfaces.

virtual void ORB_shutdown() = 0;

This is a notification from the ORB that it is shutting down. If the appender is using
any ORB functionality, then it needs to stop using that after this notification.

VISDLayoutFactory
Interface for layout factory implementations to implement. The logger framework calls
on this interface for layout instance creation.

Include file

Include the vdlog.h file when you use this class.

VISDLayoutFactory methods

virtual const char* type_name() = 0;

Returns the type name of the layout that this factory will create.

Parameter Description

record log record to be appended to the destination

Parameter Description

orb_ptr reference to the ORB

324 VisiBroker C++ API Reference Guide

VISDLayout

virtual VISDLayout_ptr create(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p) = 0;

Should creates a layout instance. This API is called by the logger framework when
an instance of the layout is desired.

virtual void destroy(VISDLayout_ptr layout) = 0;

Framework calls this API when it is done with usage of the layout and needs to
factory to destroy the instance.

VISDLayout

class VISDLayout : public VISResource

Interface which all layout instances should implement. Appenders which desire to
format the log message before outputting to the desired destination will make use of
this interface.

Include file

Include the vdlog.h file when you use this class.

VISDLayout methods

virtual VISDLayoutFactory* factory() = 0;

Should return the factory of the layout instance that created it.

virtual void format(const VISDLogRecord& record, char* buf, CORBA::ULong
buf_size, CORBA::String_var& other_buf) = 0;

API that is called by the appender instances for formatting the log record. The
appender allocates buffer and sends the buffer into this API and expects the layout
to format the message and set in this buffer. However, if the layout wants more
memory than that has been sent to it by the appender, then it can itself allocate
memory and make use of other_buf.

Parameter Description

logger_name name of the logger whose associated appender instance needs this layout
instance

p pointer to the logger's appender instance configuration.

Parameter Description

layout pointer to layout instance which needs to be destroyed

Parameter Description

record log record containing the log message

buf memory buffer sent by the appender onto which the layout can set the
formatted message

buf_size size of the memory buffer sent in by the appender

other_buffer If the layout needs more memory than that sent by the appender, then it can
allocate memory into this buffer and set the formatted text into it.

 20: Vis iBroker for C++ Logging 325

VISDConfig

VISDConfig
Namespace class for configuration structures.

Include file

Include the vdlog.h file when you use this class.

LogAppenderConfig structure

struct LogAppenderConfig {
 CORBA::String_var appender_name;
 CORBA::String_var appender_type;
 CORBA::String_var layout_type;
};
typedef LogAppenderConfig* LogAppenderConfig_ptr;

This structure contains a single appender instance configuration on a logger. This is
filled and passed to the factory interfaces by the logger framework after reading
from the configurations.

VISDLogRecord
Class abstracting a log message. Apart from the actual log message, it also captures
various other states such as thread id, timestamp etc.parameter.

Include file

Include the vdlog.h file when you use this class.

VISDLogRecord methods

Timestamp get_timestamp() const;

Returns the timestamp of the log record.

CORBA::ULong get_seq_number() const;

Returns a sequence number if many log records are logged at the same time
interval.

CORBA::ULong get_process_id() const;

Returns the process id.

Members Description

appender_name Name of the appender instance configured on the logger

appender_type Type name of the appender instance. This implies which appender
factory needs to be used

layout_type Type name of the layout instance desired. Again this implies which
layout factory should be used to obtain layout instance.

326 VisiBroker C++ API Reference Guide

VISDLogLevel

CORBA::ULong get_thread_id() const;

Returns the thread id of the thread that logged this message.

const char* get_thread_name() const;

If the thread is named, then it returns the thread name.

const char* get_logger_name() const;

Returns the logger object's name.

VISDLogLevel::Level get_log_level() const;

Returns the verbosity of the logged message.

const char* get_component_name() const;

Returns the source name of the source that logged the message.

const char* get_filename() const;

Returns the name of the file that logged the message.

CORBA::ULong get_line_number() const;

Returns the line number in the file from where the log message is emanating.

const char* get_message() const;

This is the actual logged message.

const unsigned char* get_bindata() const;

Returns any binary data that is piggybacking on the log record.

size_t get_binsize() const;

Returns the size of the binary data.

VISDLogLevel
Class enclosing verbosity enumeration Level.

Include file

Include the vdlog.h file when you use this class.

Level enumeration

enum Level {
 OFF_ = 1000,
 EMERG_ = 800,
 EXCEP_ = 800,
 FATAL_ = 800,
 ALERT_ = 700,

 20: Vis iBroker for C++ Logging 327

 CRIT_ = 600,
 ERROR_ = 500,
 WARN_ = 400,
 NOTICE_ = 300,
 INFO_ = 200,
 DEBUG_ = 100,
 ALL_ = 0,
 DEFAULT_ = -1
};

328 VisiBroker C++ API Reference Guide

Index 329

Symbols
_POA class 2
tie class 2
_var class 2

Numerics
5.x interceptors

interceptor managers 241
InterceptorManager class 242
IOR templates 242

A
accessing

system exceptions 56
the interface repository 102
user exceptions 56

ActiveObjectLifeCycleInterceptor, class 248
ActiveObjectLifeCycleInterceptorManager, class 249
Adapter activators 3
AdaptorActivator, methods 3
agent class 281
Agent methods 282
AliasDef 75

class 75
methods 75

all_repository_ids 282
Any 43, 59, 307, 319

class 43, 307, 319
extraction operators 45
initialization operators 44
methods 43, 307, 319

arguments
-ORBid 236
-ORBServerId 236

ArrayDef 76
class 76
methods 76

AttributeDef 76
class 76

AttributeDescription 77
class 77

AttributeMode 78
class 78

B
BAD_INV_ORDER

ClientRequestInfo 215
Current methods 221
ORBInitInfo 229
ServerRequestInfo 235

BAD_PARAM
ClientRequestInfo 215
IORInfo 224

Basic Object Adaptor (see BOA) 5
bind options

connection_timeout 4
defer_bind 4
enable_rebind 4
max_bind_tries 4

receive_timeout 4
send_timeout 4

Binding 127
binding clients to objects 13
Binding structure 127
BindingIterator

class 128
methods 128

BindingList sequence 127
BindingList, class 127
BindInterceptor 243
BindInterceptorManager, class 244
BindOptions 4

struct 4
BOA 5

include file 113, 115, 118
methods 5
VisiBroker extensions 9

C
C++ language exceptions 56
CancelRequestHeader 266
ChainUntypedObjectWrapperFactory 254

class 254
class

POA 2
tie 2
_var 2
ActiveObjectLifeCycleInterceptor 248
ActiveObjectLifeCycleInterceptorManager 249
agent 281
AliasDef 75
Any 43, 59, 307, 319
ArrayDef 76
AttributeDef 76
AttributeDescription 77
AttributeMode 78
Binding 127
BindingIterator 128
BindingList 127
BindInterceptor 243
BindInterceptorManager 244
BOA 5
ChainUntypedObjectWrapperFactory 254
ClientInterceptor 244
ClientRequestIncterceptorManager 246
ClientRequestInfo 214
ClientRequestInterceptor 216
Codec 218
CodecFactory 220
CompletionStatus 9
ConstantDef 78
ConstantDescription 79
Contained 79, 81, 96, 97
Container 81, 96
Context 10
ContextList 45, 310, 321
CORBA::PolicyManager 259
Current 220, 296
DuplicateName 228
DynamicImplementation 47, 311, 322
DynAny 47, 312, 322

Index

330 VisiBroker C++ API Reference Guide

DynAnyFactory 51, 313, 323
DynArray 51, 315, 324
DynEnum 52, 315, 325
DynSequence 53, 316, 325
DynStruct 54, 326
DynUnion 55
EnumDef 88
Environment 56
Exception 13, 39
ExceptionDef 88
ExceptionList 57, 222
ExtendedNamingContextFactory 129
Fail 287
FixedDef 89
FormatMismatch 219
ForwardRequest 222
IDLType 92, 96
Interceptor 223
InterceptorManager 242
InterceptorManagerControl 242
interface_name 1
InterfaceDef 92
InvalidName 228
InvalidTypeForEncoding 219
IORCreationInterceptor 251
IORInfo 223
IORInfoExt 225
IORInterceptor 226
IRObject 96
MarshalInBuffer 273, 277
MarshalOutBuffer 273, 277
Messaging::RebindPolicy 262
ModuleDef 96
ModuleDescription 96
Mutex 297
NamedValue 59
NamingContext 121
NamingContextExt 126
NamingContextFactory 129
NativeDef 97
NVList 10, 59, 60
Object 13
ObjectStatus 118
ObjectStatusList 118
ObjectWrapper 2
OperationDef 97
ORB 17
ORBInitializer 227
ORBInitInfo 228
ParameterList 231
POA 24
POALifeCycleInterceptor 247
POALifeCycleInterceptorManager 247
PolicyFactory 232
PrimitiveDef 101
PriorityMapping 299
PriorityModelPolicy 301
QoSExt::DeferBindPolicy 263
Repository 102
Request 63, 66, 70
RequestInfo 232
RTORB 302
Seq 289
SeqSeq 290
SequenceDef 103
ServantActivator 35

ServantLocator 37
ServantManager 38
ServerRequestInfo 235
ServerRequestInterceptor 238, 249
ServerRequestInterceptorManager 251
StringDef 104, 106
StructDef 104
SystemException 39
ThreadpoolPolicy 305
TriggerHandler 288
TypedefDef 105
TypeMismatch 219
UnionDef 106
UnknownEncoding 220
UntypedObjectWrapper 256
UntypedObjectWrapperFactory 257
ValueBoxDef 107
ValueDef 108
VISClosure 253
VISClosureData 254
VISInit 293
WstringDef 111

class CORBA, Object 260
classes 213
ClientInterceptor 244
ClientRequestInfo

BAD_INV_ORDER 215
BAD_PARAM 215
class 214
exceptions 215
INV_POLICY 215
methods 215

ClientRequestInterceptor
class 216
exceptions 217
ForwardRequest 217
methods 217

ClientRequestInterceptorManager, class 246
Codec

class 218
exceptions 219
FormatMismatch 219
InvalidTypeForEncoding 219
members 219
methods 219

Codec encoding, struct 221
CodecFactory

class 220
exceptions 220
UnknownEncoding 220

COMPLETED_MAYBE 10
COMPLETED_NO 10
COMPLETED_YES 10
CompletionStatus 9
ConstantDef 78

class 78
ConstantDescription, class 79
ConsumerAdmin

interface 131
method 131

Contained 79, 96, 97
methods 80

Container 81, 96
methods 82

containment hierarchy 81
Context 10

Index 331

Index

class 10
include file 10
methods 10

Context_var class 10
ContextList

class 45, 310, 321
CORBA::BOA methods 5
creation

Current 296
Mutex 297
PriorityMapping 299
RTORB 302

Current 296
class 12, 220, 296
methods 12, 221, 296

Current methods
BAD_INV_ORDER 221
exceptions 221
InvalidSlot 221

D
deactivating, object implementations 5
DeferBindPolicy, class 263
defining an ORB object’s interface 92
DefinitionKind 86

enum 86
delegation implementations 2
deriving Interface Repository objects 79
Desc structure 286
destruction

Current 296
Mutex 297
PriorityMapping 299
RTORB 302

DuplicateName
class 228
ORBInitInfo 229

dynamic interfaces 43, 307, 319
DynamicImplementation 47, 311, 322

class 47, 311, 322
methods 47, 311, 322

DynAny 47, 312, 322
class 47, 312, 322
methods 48, 312, 323
usage restrictions 48

DynAnyFactory, class 51, 313, 323
DynArray 51, 315, 324

class 51, 315, 324
methods 51, 315, 324
usage restrictions 51

DynEnum 52, 315, 325
class 52, 315, 325
methods 52, 315, 325
usage restrictions 52, 55

DynSequence 53, 316, 325
class 53, 316, 325
methods 53, 316, 325
usage restrictions 53

DynStruct 54, 326
class 54, 326
methods 54, 326

usage restrictions 54
DynUnion 55

class 55
methods 55

E
encoding

members 222
struct 221
supported 221

enum
DefinitionKind 86
OperationMode 100
ParameterMode 100
PrimitiveKind 101
PriorityModel 301

EnumDef 88
class 88

enumeration
AttributeMode 78
DefinitionKind 86
OperationMode 100
ParameterMode 100
PrimitiveKind 101
TCKind 69

Environment 56
methods 56

event handlers, interfaces 121, 131
EventChannel

interface 132
methods 132

EventChannelFactory
interface 132
methods 133

exception 39
class 13

ExceptionDef 88
ExceptionDescription 88

structure 88
ExceptionList class 57, 222
exceptions

BAD_INV_ORDER 236
BAD_PARAM 233
CodecFactory 220
DuplicateName 228
FormatMismatch 219
ForwardRequest 222, 238
INV_POLICY 236
InvalidName 228
InvalidSlot 233, 236
InvalidTypeForEncoding 219
IORInfo 224
NO_RESOURCES 238
ORBInitInfo 229
TypeMismatch 219
UNKNOWN 236

extended methods, BOA 9
ExtendedNamingContextFactory

class 129
methods 130

332 VisiBroker C++ API Reference Guide

F
Fail class 287
FixedDef class 89
FormatMismatch

class 219
Codec 219

ForwardRequest
class 222
ClientRequestInterceptor 217
exceptions 222

FullInterfaceDescription 89
structure 89

FullValueDescription structure 90

G
generated classes 1

sk 2
st 1
tie 2
_var 2

GIOP structure
CancelRequestHeader 266
LocateReplyHeader 266
LocateRequestHeader 267
RequestHeader 268

GIOP structure::ReplyHeader 267
GIOP_c.hh 268
GLOBAL_SCOPE 5

I
IDL, OAD 114
IDLType 92, 96

include file 92
methods 92

IIOP structure, ProfileBody 269
ImplementationStatus struct 113
include file

BOA 113, 115, 118
Context 10
IDLType 92

interception points
receive_exception 217
receive_other 217
receive_reply 217
receive_request 238
receive_request_service_contexts 238
send_exception 238
send_other 238
send_poll 217
send_reply 238
send_request 217

Interceptor
class 223
methods 223

interceptor_c.hh 251
InterceptorManager class 242
InterceptorManagerControl class 242
interceptors

client request 216
IOR 226
server request 238

Interface Repository, classes 75
interface_name class 1

InterfaceDef 92
methods 93

InterfaceDescription structure 94
interfaces

ConsumerAdmin 131
EventChannel 132
EventChannelFactory 132
OAD 114
ProxyPullConsumer 133
ProxyPullSupplier 134
ProxyPushConsumer 134
ProxyPushSupplier 134
PullConsumer 135
PullSupplier 136
PushConsumer 135
PushSupplier 136
SupplierAdmin 137

Interoperable Object Reference (see IOR) 270
INV_POLICY

ClientRequestInfo 215
IORInfo 224

InvalidName
class 228
ORBInitInfo 229

InvalidSlot Current methods 221
InvalidTypeForEncoding

class 219
Codec 219

IOP structure::TaggedProfile 270
IOR 270
IORCreationInterceptor class 251
IORInfo

BAD_PARAM 224
class 223, 225
exceptions 224
INV_POLICY 224
methods 224
validity 223

IORInfo class 223
IORInfoExt

class 225
methods 226

IORInterceptor
class 226
methods 226

IRObject (Interface Repository object) 96
IRObject (Interface Repository objects) methods 96

L
LOCAL_SCOPE 5
LocateReplyHeader 266
LocateRequestHeader 267
Location Service

agent 281
Fail 287
Seq 289
SeqSeq 290
TriggerDesc 287
TriggerHandle 288

M
manipulating object references 13
MarshalInBuffer

class 273, 277

Index 333

Index

methods 274, 277
MarshalOutBuffer, methods 278, 280
members

argument in Parameter 231
format in encoding 222
major_version in encoding 222
minor_version in encoding 222
mode in Parameter 231

memory management semantics 10
MessageHeader 265
methods

adapter_id in ServerRequestInfo 236
adapter_manager_state_changed in

IORInterceptor 226
adapter_name in ServerRequestInfo 236
adapter_state_changed in IORInterceptor 226
adapter_template in IORInfo 224
add_client_request_interceptor in ORBInitInfo 229
add_ior_component in IORInfo 224
add_ior_component_to_profile in IORInfo 224
add_ior_interceptor in ORBInitInfo 229
add_reply_service_context in

ServerRequestInfo 236
add_request_service_context in

ClientRequestInfo 215
add_server_request_interceptor in IORInfoExt 226
add_servert_request_interceptor in ORBInitInfo 229
allocate_slot_id in ORBInitInfo 229
arguments in ORBInitInfo 229
arguments in RequestInfo 233
bind in NamingContext 122
bind_context in NamingContext 122
bind_new_context in NamingContext 122
BOA 5
change_implementation in OAD 115
codec_factory in ORBInitInfo 229
components_established in IORInterceptor 226
connect_push_supplier in ProxyPushConsumer 134
Contained 80
Container 82
Context 10
contexts in RequestInfo 233
create in EventChannelFactory 133
create_by_name in EventChannelFactory 133
create_codec in CodecFactory 220
create_policy in PolicyFactory 232
create_struct in Container 82
current_factory in IORInfo 224
decode in Codec 219
decode_value in Codec 219
destroy in EventChannel 132
destroy in EventChannelFactory 133
destroy in Interceptor 223
destroy in NamingContext 122
destroy_on_unregister in OAD 115
disconnect_pull_supplier 136
disconnect_push_consumer in PullConsumer 135
disconnect_push_supplier in PushSupplier 136
effective profile in ClientRequestInfo 215
effective_target in ClientRequestInfo 215
encode in Codec 219
encode_value in Codec 219

establish_components in IORInterceptor 226
exceptions in RequestInfo 233
extraction methods in Any 49
for_suppliers in EventChannel 132
forward_reference in RequestInfo 233
full_poa_name in IORInfoExt 226
get_cluster_manager in NamingContextFactory 129
get_effective_component in ClientRequestInfo 215
get_effective_components in ClientRequestInfo 215
get_effective_policy in IORInfo 224
get_implementation in OAD 115
get_reply_service_context in RequestInfo 233
get_request_policy in ClientRequestInfo 215
get_request_service_context in RequestInfo 233
get_server_policy in ServerRequestInfo 236
get_slot in Current 221
get_status in OAD 115
get_status_all in OAD 115
get_status_interface in OAD 115
getslot in RequestInfo 233
IDLType 92
insertion methods in Any 50
InterfaceDef 93
IRObject 96
list_all_roots in NamingContextFactory 129
lookup_by_name in EventChannelFactory 133
lookup_id in Repository 102
manager_id in IORInfo 224
name in Interceptor 223
NamedValue 59
new_context in NamingContext 122
NVList 60
object_id in ServerRequestInfo 236
obtain_pull_consumer in SupplierAdmin 137
obtain_pull_supplier 131
obtain_push_consumer in SupplierAdmin 137
obtain_push_supplier 131
operation in RequestInfo 233
operation_context in RequestInfo 233
OperationDef 98
ORB 17
orb_id in ORBInitInfo 229
orb_id in ServerRequestInfo 236
POA 24
POAManager 33
post_init in ORBInitializer 228
pre_init in ORBInitializer 228
Principal 35
pull in PullSupplier 136
rebind in NamingContext 122
rebind_context in NamingContext 122
receive_exception in ClientRequestInterceptor 217
receive_other in ClientRequestInterceptor 217
receive_reply in ClientRequestInterceptor 217
receive_request in ServerRequestInterceptor 238
receive_request_service_contexts in

ServerRequestInterceptor 238
received_exception in ClientRequestInfo 215
received_exception_id in ClientRequestInfo 215
reg_implementation in OAD 115
register_initial_reference in ORBInitInfo 229
register_policy_factory in ORBInitInfo 229

334 VisiBroker C++ API Reference Guide

remove_state_contexts in
NamingContextFactory 129

reply_status in RequestInfo 233
Repository 102
Request 63
request_id in RequestInfo 233
resolve in NamingContext 122
resolve_initial_references in ORBInitInfo 229
response_expected in RequestInfo 233
result in RequestInfo 233
root_context in

ExtendedNamingContextFactory 130
send_exception in ServerRequestInterceptor 238
send_other in ServerRequestInterceptor 238
send_poll in ClientRequestInterceptor 217
send_reply in ServerRequestInterceptor 238
send_request in ClientRequestInterceptor 217
sending_exception in ServerRequestInfo 236
ServantActivator 36
ServantBase 37
ServantLocator 38
server_id in ServerRequestInfo 236
ServerRequest 67
set_slot in Current 221
set_slot in ServerRequestInfo 236
state in IORInfo 224
sync_scpoe in RequestInfo 233
SystemException 39
target in ClientRequestInfo 215
target_is_a in ServerRequestInfo 236
target_most_derived_interface in

ServerRequestInfo 236
try_pull in PullSupplier 136
unbind in NamingContext 122
unreg_implementation in OAD 115
unreg_interface in OAD 115
unregister_all in OAD 115

ModuleDef 96
class 96

ModuleDescription 96
structure 96

multi-threaded applications 56
Mutex 297

class 297
methods 297

N
NamedValue 59, 60

methods 59
NamingContext

class 121
methods 122

NamingContextExt
class 126
methods 126

NamingContextFactory
class 129
methods 129

Native Messaging C++
DuplicatedRequestTag class 211
PollingGroupIsEmpty class 211
property struct 209

native messaging C++, RequestAgent class 205
Native Messaging for C++

interfaces and classes 205

OctetSeq class 210
Property fields 210
Property IDL definition 209
PropertySeq class 210
REPLY_NOT_AVAILABLE constant 209
REPLY_NOT_AVAILABLE IDL definition 209
ReplyRecipient class 208
ReplyRecipient methods 209
RequestAgent IDL definition 205
RequestAgent methods 206
RequestDesc fields 208
RequestDesc IDL definition 207
RequestDesc struct 207
RequestNotExist class 211
RequestTag typedef 210
RequestTagSeq class 210
typedef Cookie 211

NativeDef class 97
NativePriority 298

type 298
NVList 59, 60

methods 60

O
OAD interface 114
OAD, IDL 114
Object 13

class with QoS 260
methods 13
VisiBroker extensions 15

Object Activation Daemon, OAD interface 114
Object Request Broker. See ORB 17
ObjectStatus 118
ObjectStatusList class 118
OP_NORMAL 100
OP_ONEWAY 100
OperationDef 97

methods 98
OperationDescription structure 99
OperationMode 100

enum 100
NORMAL 100
ONEWAY 100

ORB 17
class 17
extensions to CORBA 23
methods 17

ORBInitializer
class 227
methods 228

ORBInitInfo
BAD_INV_ORDER 229
class 228
DuplicateName 229
exceptions 229
InvalidName 229
members 228
methods 229

P
Parameter struct 231
ParameterDescription 100

structure 100
ParameterList class 231

Index 335

Index

ParameterMode 100
enum 100

PICurrent. See Current
POA

adapter activators 3
class 24
core classes 3
core interfaces 3
creating child POAs 3
methods 24

POALifeCycleInterceptor class 247
POALifeCycleInterceptorManager class 247
POAManager 32

methods 33
PolicyFactory class 232
PolicyManager class 259
portable interceptors

ClientRequestInfo 214
POA scoped server request interceptor 225

Portable Interceptors, interfaces 213
PortableServer::AdapterActivator 3
PortableServer::Current 12
PortableServer::Current methods 12
PortableServer_c.hh 249
PortableServerExt_c.hh 248, 252
PortalServerExt_c.hh 248
PrimitiveDef 101

class 101
PrimitiveKind 101

enum 101
Principal 34

methods 35
Priority 298

type 298
PriorityMapping 299

class 299
methods 300

PriorityModel 301
enum 301

PriorityModelPolicy 301
class 301

ProfileBody 269
programming interface

agent 281
AliasDef 75
Any 59, 307, 319
ArrayDef 76
AttributeDef 76
BindInterceptor 243
BindOptions 4
BOA 5
ChainUntypedObjectWrapperFactory 254
ClientInterceptor 244
CompletionStatus 9
ConstantDef 78
Contained 79, 96, 97
Container 81, 96
Context 10
Current 296
DynamicImplementation 47, 311, 322
DynAny 47, 312, 322
DynArray 51, 315, 324

DynEnum 52, 315, 325
DynSequence 53, 316, 325
DynStruct 54, 326
DynUnion 55
EnumDef 88
Environment 56
Exception 13, 39
ExceptionDef 88
Fail 287
IDLType 92, 96
InterfaceDef 92
IRObject 96
MarshalInBuffer 277
MarshalOutBuffer 273, 277
ModuleDef 96
ModuleDescription 96
Mutex 297
NamedValue 59
NativePriority 298
NVList 59, 60
Object 13
OperationDef 97
ORB 17
PrimitiveDef 101
Principal 34
Priority 298
PriorityMapping 299
PriorityModel 301
PriorityModelPolicy 301
Repository 102
Request 63, 66, 70
RTORB 302
Seq 289
SeqSeq 290
SequenceDef 103
SThreadpoolId 305
SThreadpoolPolicy 305
StringDef 104
StructDef 104
SystemException 39
TriggerHandler 288
TypedefDef 105
UnionDef 106
UntypedObjectWrapper 256
UntypedObjectWrapperFactory 257
VISInit 293
WstringDef 111

ProxyPullConsumer
interface 133

ProxyPullConsumer interface 133
ProxyPullSupplier interface 134
ProxyPushConsumer interface 134
ProxyPushSupplier interface 134
PRTORB 302
PullConsumer interface 135
PullSupplier

interface 136
methods 136

PushConsumer interface 135
PushSupplier interface 136

336 VisiBroker C++ API Reference Guide

Q
Quality of Service, QoS 259
querying an object’s state 13

R
Real-Time CORBA classes 295
RebindPolicy class 262
RefCountServantBase methods 35
ReplyHeader 267
reporting

standard system errors 39
system exceptions 56
user exceptions 56

Repository 102
methods 102

Request 63, 66, 70
methods 63

request interceptors
client 216
server 238

RequestHeader 268
RequestInfo

class 232
methods 233

returning an object’s Typecode 92
RTORB

class 302
methods 303

S
Seq methods 289
SeqSeq methods 290
SequenceDef 103

class 103
ServantActivator

class 35
methods 36

ServantBase methods 37
ServantLocator

class 37
methods 38

ServantManager class 38
Server Manager

container interface 139
container methods for C++ 139
storage interface 142

ServerRequest
methods 67

ServerRequest methods 67
ServerRequestInfo

BAD_INV_ORDER 235
class 235
exceptions 235
methods 236

ServerRequestInterceptor
class 238, 249
methods 238

ServerRequestInterceptorManager class 251
setting an object’s state 13
skeletons 2
StringDef 104

class 104, 106
struct

Codec encoding 221
Parameter 231
UnionMember 107

struct BindOptions 4
struct Parameter 231
StructDef 104

class 104
StructMember structure 105
structure

AttributeDescription 77
BindOptions 4
Desc 286
ExceptionDescription 88
FullInterfaceDescription 89
FullValueDescription 90
GIOP 265
InterfaceDescription 94
IOR 270
ModuleDescription 96
OperationDescription 99
ParameterDescription 100
StructMember 105
TriggerDesc 287
TypeDescription 106
UnionMember 107
ValueDescription 110
VersionSpec 107

structure ExceptionDescription 88
structure ParameterDescription 100
stubs 1
SupplierAdmin interface 137
system exception classes 13
SystemException 39

class 39
defined 39
methods 39

T
TaggedProfile 270
TCKind 69

descriptions 69
ThreadpoolId 305

type 305
ThreadpoolPolicy 305

class 305
TPool 9
TriggerDesc 287
TriggerHandler

class 288
methods 288

TSession 9
type

NativePriority 298
Priority 298
ThreadpoolId 305

TypeCode
constructors 70
methods 70

TypedefDef 105
class 105

TypeDescription 106
TypeMismatch class 219

Index 337

Index

U
UnionDef 106
UnionMember 107

structure 107
UnknownEncoding

class 220
CodecFactory 220

UntypedObjectWrapper 256
class 256

UntypedObjectWrapperFactory 257
class 257

user exception classes 13

V
ValueBoxDef class 107
ValueDef class 108
ValueDescription structure 110
Var classes 2
VersionSpec 107
vinit.h 293
VISClosure class 253
VISClosureData class 254
VISInit 293

methods 293, 294
vobjwrap.h 254, 256, 257

W
WstringDef 111

class 111

338 VisiBroker C++ API Reference Guide

	Contents
	Generated interfaces and classes
	Generated interfaces and classes overview
	<Interface_name>
	<Interface_name>ObjectWrapper
	POA<class_name>
	tie<class_name>
	<class_name>_var

	Core interfaces and classes
	PortableServer::AdapterActivator
	IDL Defintion
	PortableServer::AdapterActivator methods

	BindOptions
	Deprecated as of VisiBroker 4.x
	BindOptions members

	BOA
	Deprecated as of VisiBroker 4.0
	Include file
	CORBA::BOA methods
	VisiBroker extensions to CORBA::BOA

	CompletionStatus
	IDL Definition
	CompletionStatus members

	Context
	Include file
	Context methods

	PortableServer::Current
	IDL Definition
	PortableServer::Current methods

	Exception
	Include file

	Object
	Include file
	CORBA::Object methods
	VisiBroker extensions to CORBA::Object

	ORB
	Include file
	CORBA::ORB methods
	VisiBroker extensions to CORBA::ORB

	PortableServer::POA
	PortableServer::POA methods

	PortableServer::POAManager
	Include file
	PortableServer::POAManager methods

	Principal
	Include file
	Principal methods

	PortableServer::RefCountServantBase
	Include file
	PortableServer::RefCountServantBase methods

	PortableServer::ServantActivator
	Include file
	PortableServer::ServantActivator methods

	PortableServer::ServantBase
	Include file
	PortableServer::ServantBase methods

	PortableServer::ServantLocator
	Include file
	PortableServer::ServantLocator methods

	PortableServer::ServantManager
	Include file

	SystemException
	Include file
	SystemException methods

	Dynamic interfaces and classes
	Include file
	Any methods
	Insertion operators
	Extraction operators
	ContextList
	ContextList methods

	DynamicImplementation
	DynamicImplementation methods

	DynAny
	Include file
	Important usage restrictions
	DynAny methods
	Extraction methods
	Insertion methods

	DynAnyFactory
	DynAnyFactory methods

	DynArray
	Important usage restrictions
	DynArray methods

	DynEnum
	Important usage restrictions
	DynEnum methods

	DynSequence
	Important usage restrictions
	DynSequence methods

	DynStruct
	Important usage restrictions
	DynStruct methods

	DynUnion
	Important usage restrictions
	DynUnion methods

	Environment
	Include file
	Environment methods

	ExceptionList
	ExceptionList methods

	NamedValue
	Include file
	NamedValue methods

	NVList
	Include file
	NVList methods

	Request
	Include file
	Request methods

	ServerRequest
	Include file
	ServerRequest methods

	TCKind
	TypeCode
	Include file
	TypeCode constructors
	TypeCode methods

	Interface repository interfaces and classes
	AliasDef
	AliasDef methods

	ArrayDef
	ArrayDef methods

	AttributeDef
	AttributeDef methods

	AttributeDescription
	AttributeDescription members

	AttributeMode
	AttributeMode values

	ConstantDef
	ConstantDef methods

	ConstantDescription
	ConstantDescription members

	Contained
	Include file
	Contained methods

	Container
	Include file
	Container methods

	DefinitionKind
	DefinitionKind values

	Description
	Description members

	EnumDef
	EnumDef methods

	ExceptionDef
	ExceptionDef methods

	ExceptionDescription
	ExceptionDescription members

	FixedDef
	Methods

	FullInterfaceDescription
	FullInterfaceDescription members

	FullValueDescription
	Variables

	IDLType
	Include file
	IDLType methods

	InterfaceDef
	Include file
	InterfaceDef methods

	InterfaceDescription
	InterfaceDescription members

	IRObject
	Include file
	IRObject methods

	ModuleDef
	ModuleDescription
	ModuleDescription members

	NativeDef
	OperationDef
	Include file
	OperationDef methods

	OperationDescription
	OperationDescription members

	OperationMode
	OperationMode values

	ParameterDescription
	ParameterDescription members

	ParameterMode
	ParameterMode values

	PrimitiveDef
	PrimitiveDef methods

	PrimitiveKind
	PrimitiveKind values

	Repository
	Include file
	Repository methods

	SequenceDef
	SequenceDef methods

	StringDef
	StringDef methods

	StructDef
	StructDef methods

	StructMember
	StructMember methods

	TypedefDef
	TypeDescription
	TypeDescription members

	UnionDef
	UnionDef methods

	UnionMember
	UnionMember members

	ValueBoxDef
	Methods

	ValueDef
	Methods

	ValueDescription
	Values

	WstringDef
	WStringDef methods

	Activation interfaces and classes
	ImplementationStatus
	Include file
	ImplementationStatus members

	OAD
	Include file
	OAD methods

	ObjectStatus
	Include file
	ObjectStatus members

	ObjectStatusList
	Include file
	ObjectStatusList methods

	Naming Service (VisiNaming) interfaces and classes
	NamingContext
	NamingContext methods

	NamingContextExt
	NamingContextExt methods

	Binding and BindingList
	BindingIterator
	BindingIterator methods

	NamingContextFactory
	Methods

	ExtendedNamingContextFactory
	Methods

	Event service interfaces and classes
	ConsumerAdmin
	IDL definition
	ConsumerAdmin methods

	EventChannel
	Methods

	EventChannelFactory
	IDL definition
	EventChannelFactory methods

	ProxyPullConsumer
	IDL definition

	ProxyPushConsumer
	IDL definition

	ProxyPullSupplier
	IDL definition

	ProxyPushSupplier
	IDL definition

	PullConsumer
	IDL definition

	PushConsumer
	IDL definition

	PullSupplier
	IDL definition
	PullSupplier methods

	PushSupplier
	IDL definition

	SupplierAdmin
	IDL definition

	Server Manager Interfaces and Classes
	The Container Interface
	The Container Interface
	Methods related to property manipulation and queries
	Methods related to operations
	Methods related to children containers
	Methods related to storage

	The Storage Interface
	Storage Interface Methods for C++

	Transaction Service interfaces and classes
	CosTransactions and VISTransactions modules
	Looking at the CosTransactions module
	Data types
	Structures
	Exceptions

	Looking at the VISTransactions module

	Current interface
	Choosing a Current interface
	Obtaining a Current object reference
	Using the Current object reference
	Is your VisiTransact Transaction Service instance available?
	Checked behavior
	Current methods

	TransactionalObject interface
	TransactionFactory interface
	TransactionFactory methods

	Control interface
	Control methods

	Terminator interface
	Terminator methods

	Coordinator interface
	Coordinator methods

	RecoveryCoordinator interface
	RecoveryCoordinator methods

	Resource interface
	Resource methods

	Synchronization interface
	Synchronization methods

	VISTransactionService class
	VISTransactionService methods

	VISSessionManager module
	Looking at the module
	Structures
	Exceptions

	ConnectionPool interface
	Obtaining a ConnectionPool object reference
	Using ConnectionPool object references
	Exceptions
	Methods
	getConnection()
	getConnectionWithCoordinator()
	getProfileAttributes()

	Connection interface
	Data types
	Methods
	getAttributes()
	getInfo()
	getNativeConnectionHandle()
	hold()
	isSupported()
	release()
	releaseAndDisconnect()
	resume()

	The ITSDataConnection class
	Native handle acquisition interface
	Local transaction connection and completion interface
	Global transaction connection and completion interface

	Native Messaging Interfaces and Classes
	RequestAgent
	Include File
	IDL definition
	RequestAgent Methods
	create_request
	poll
	destroy_request

	RequestDesc
	Include File
	IDL Definition
	RequestDesc Fields

	ReplyRecipient
	Include File
	ReplyRecipient methods
	reply_available

	REPLY_NOT_AVAILABLE
	Include File
	IDL definition

	Property
	Include File
	IDL definition
	Property Fields

	PropertySeq
	Include File

	OctetSeq
	Include File

	RequestTag
	Include File

	RequestTagSeq
	Include File

	Cookie
	Include File

	DuplicatedRequestTag
	Include File

	PollingGroupIsEmpty
	Include File

	RequestNotExist
	Include File

	Portable Interceptor interfaces and classes
	About Interceptors
	ClientRequestInfo
	Include file
	ClientRequestInfo methods

	ClientRequestInterceptor
	Include file
	ClientRequestInterceptor methods

	Codec
	Include file
	Codec Member Classes
	Codec Methods

	CodecFactory
	Include file
	CodecFactory Member
	CodecFactory Method

	Current
	Include file
	Current Methods

	Encoding
	Include file
	Members

	ExceptionList
	Include file

	ForwardRequest
	Include file

	Interceptor
	Include file
	Interceptor methods

	IORInfo
	Include file
	IORInfo Methods

	IORInfoExt
	Include file
	IORInfoExt Methods

	IORInterceptor
	Include file
	IORInterceptor Methods

	ORBInitializer
	Include file
	ORBInitializer Methods

	ORBInitInfo
	Include file
	ORBInitInfo Member Classes
	ORBInitInfo Methods

	Parameter
	Include file
	Members

	ParameterList
	Include file

	PolicyFactory
	Include file
	PolicyFactory Method

	RequestInfo
	Include file
	RequestInfo methods

	ServerRequestInfo
	Include file
	ServerRequestInfo methods

	ServerRequestInterceptor
	Include file
	ServerRequestInterceptor methods

	5.x Interceptor and object wrapper interfaces and classes
	Introduction
	InterceptorManagers
	IOR templates
	InterceptorManager
	InterceptorManagerControl
	Include file
	InterceptorManagerInterceptor method

	BindInterceptor
	Include file
	BindInterceptor methods

	BindInterceptorManager
	Include file
	BindInterceptorManager method

	ClientRequestInterceptor
	Include file
	ClientRequestInterceptor methods

	ClientRequestInterceptorManager
	Include file
	ClientRequestInterceptorManager methods

	POALifeCycle Interceptor
	Include file
	POALifeCycleInterceptor methods

	POALifeCycleInterceptorManager
	Include file
	POALifeCycleInterceptorManager method

	ActiveObjectLifeCycleInterceptor
	Include file
	ActiveObjectLifeCycleInterceptor methods
	ActiveObjectLifeCycleInterceptorManager
	Include file
	ActiveObjectLifeCycleInterceptorManager method

	ServerRequestInterceptor
	Include file
	ServerRequestInterceptor methods

	ServerRequestInterceptorManager
	Include file
	ServerRequestInterceptorManager method

	IORCreationInterceptor
	Include file
	IORInterceptor method

	IORCreationInterceptorManager
	Include file
	IORCreationInterceptorManager method

	Closure
	ExtendedClosure
	VISClosure
	Include file
	VISClosure members

	VISClosureData
	VISClosureData methods

	ChainUntypedObjectWrapperFactory
	Include file
	ChainUntypedObjectWrapperFactory methods

	UntypedObjectWrapper
	Include file
	UntypedObjectWrapper methods

	UntypedObjectWrapperFactory
	Include file
	UntypedObjectWrapperFactory constructor
	UntypedObjectWrapperFactory methods

	Quality of Service interfaces and classes
	CORBA::PolicyManager
	IDL definition
	Methods

	CORBA::Object
	IDL definition
	Methods

	Messaging::RebindPolicy
	IDL definition
	Policy values

	QoSExt::DeferBindPolicy
	IDL definition

	QoSExt::RelativeConnectionTimeoutPolicy
	IDL definition

	Messaging::RelativeRequestTimeoutPolicy

	IOP and IIOP interfaces and classes
	GIOP::MessageHeader
	MessageHeader members

	GIOP::CancelRequestHeader
	CancelRequestHeader members

	GIOP::LocateReplyHeader
	LocateReplyHeader members

	GIOP::LocateRequestHeader
	LocateRequestHeader members

	GIOP::ReplyHeader
	Include file
	ReplyHeader members

	GIOP::RequestHeader
	Include file
	RequestHeader members

	IIOP::ProfileBody
	ProfileBody members

	IOP::IOR
	Include file
	IOR members

	IOP::TaggedProfile
	TaggedProfile members

	Marshal buffer interfaces and classes
	CORBA::MarshalInBuffer
	Include file
	CORBA::MarshalInBuffer constructors/destructors
	CORBA::MarshalInBuffer methods
	CORBA::MarshalInBuffer operators

	CORBA::MarshalOutBuffer
	Include file
	CORBA::MarshalOutBuffer constructors/destructors
	CORBA::MarshalOutBuffer methods
	CORBA::MarshalOutBuffer operators

	Location service interfaces and classes
	Agent
	IDL definition
	Include file
	Agent methods

	Desc
	IDL definition
	Desc members

	Fail
	Fail members

	TriggerDesc
	IDL definition
	TriggerDesc members

	TriggerHandler
	IDL definition
	Include file
	TriggerHandler methods

	<type>Seq
	<type>Seq methods

	<type>SeqSeq
	<type>SeqSeq methods

	Initialization interfaces and classes
	VISInit
	Include file
	VISInit constructors/destructors
	VISInit methods

	Real-Time CORBA interfaces and classes
	Introduction
	Include file

	RTCORBA::Current
	RTCORBA::Current Creation and Destruction
	IDL definition
	RTCORBA::Current methods

	RTCORBA::Mutex
	Mutex Creation and Destruction
	IDL definition
	RTCORBA::Mutex Methods

	RTCORBA::NativePriority
	IDL definition

	RTCORBA::Priority
	IDL definition

	RTCORBA::PriorityMapping
	PriorityMapping Creation and Destruction
	IDL definition
	PriorityMapping Methods

	RTCORBA::PriorityModel
	RTCORBA::PriorityModelPolicy
	IDL definition

	RTCORBA::RTORB
	RTORB Creation and Destruction
	IDL definition
	RTORB Methods

	RTCORBA::ThreadpoolId
	IDL definition

	RTCORBA::ThreadpoolPolicy
	IDL definition

	Pluggable Transport Interface Classes
	VISPTransConnection
	Include file
	VISPTransConnection methods

	VISPTransConnectionFactory
	Include file
	VISPTransConnectionFactory methods

	VISPTransListener
	Include file
	VISPTransListener methods

	VISPTransListenerFactory
	Include file
	VISPTransListenerFactory methods

	VISPTransProfileBase
	Include file
	VISPTransProfileBase methods
	VISPTransProfileBase members
	VISPTransProfileBase base class methods

	VISPTransProfileFactory
	Include file
	VISPTransProfileFactory methods

	VISPTransBridge
	Include file
	VISPTransBridge methods

	VISPTransRegistrar
	Include file
	VISPTransRegistrar methods

	VisiBroker for C++ Logging
	VISDLoggerMgr
	Include file
	VISDLoggerMgr methods

	VISDLogger
	Include file
	VISDLogger methods

	VISDAppenderFactory
	Include file
	VISDAppenderFactory methods

	VISDAppender
	Include file
	VISDAppender methods

	VISDLayoutFactory
	Include file
	VISDLayoutFactory methods

	VISDLayout
	Include file
	VISDLayout methods

	VISDConfig
	Include file
	LogAppenderConfig structure

	VISDLogRecord
	Include file
	VISDLogRecord methods

	VISDLogLevel
	Include file
	Level enumeration

