Silk Test 20.5

ilk Test Classic Classic Agent Help

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-10-23

Contents

Automation Under Special Conditions (Missing Peripherals) 19
SilK TESt ProAUCT SUITE oo 21
(O 1= 1] [ol o 1] o | AP PPPUPPUUPPPPPPR 23
How Silk Test Classic Assigns an Agent to a Window Declaration ccccceevviiieeeennnnen. 23

AGENE OPLIONS oottt e et e e et b et e e e st e e e et e b e e e e e b e e e s ar e e e e nane 23
Setting the Defaull AQENT ..o e e s e e e e 43
Setting the Default Agent Using the Runtime Options Dialog BOX —ccccceveeennee 44

Setting the Default Agent Using the Toolbar ICONS cooveiiiiiiiiiiieee e, 44

Connecting to the Default AQENT ..o 44
Creating a Script that Uses Both AQENTS ... 44
Overview of Record Functionality Available for the Silk Test Agents ccccovivveeeviiiieeen. 45
Setting the Window Timeout Value to Prevent Window Not Found Exceptions 46
Manually Setting the Window Timeout Value cccoociiiiiiiii e 46

Setting the Window Timeout Value in the Agent Options Dialog Box c.......... 46

Basic Workflow for the Classic Agent ... 48
Creating @ NEW PrOJECE ..ottt e e e e e e e e e e s eanb e eee e 48
Enabling Extensions Automatically Using the Basic Workflow ..., 49
Setting the Recovery System for the Classic AgeNt ..o 49
Recording a Test Case With the ClassiC AQENt ... 50
RUNNING 8 TESE CABSE .eeeiiiiiiiie ettt et e e e e e e e bbb e e e e e e e e e e e e e s nnbbenaees 51
VIEWING TESE RESUILS oo e e e e e e e e e e e abe e ee s 52
Troubleshooting Basic Workflow Issues with the Classic Agent ..., 52
Migrating from the Classic Agent to the Open Agentcccccccieiiiiiiieeeeeee, 53
Differences for Agent Options Between the Silk Test Agents ooooiiiiiiiiiiiiiiieeee e 53
Differences in Object Recognition Between the Silk Test Agents ... 54
Differences in the Classes Supported by the Silk Test Agents ... 56
Differences in the Parameters Supported by the Silk Test Agents ccccoceiiiiiiiiiiiiiienenn. 60
Overview of the Methods Supported by the Silk Test AGeNtS ..., 61

SYS Functions Supported by the Open Agent and the Classic Agent ..., 61

SilKk TeSt ClasSSIC PrOJECIS .oeeiiiiiiiiiiii e e e e e e e 63
Storing Project INfOrmation ... 63
Accessing Files Within YOUr ProjECt ..o 64
Sharing a Project AMONG @ GIOUP coeeeeiiiiiieiie ettt e e e e e e e e e e st eeeeaaeaeeaeanns 65

[o] [=Tor o d o] (o] {1 PP U T PPPPTRTT 65
Creating @ NEW PrOJECE ..ottt e e e e e e e e e e s eanb e e ee e 66
Opening an EXIStING PrOJECT eiiiiiiiiie ittt e e e e e e e e 67
Converting EXisting TEStS t0 @ PrOJECE ...ceiiiiiiiiiiiiieeie et 68

Using Option Sets in YOUr PrOJECT oot e e 68
Editing an OPLIONS S ..ot 68

Silk TeSt ClassSiC File TYPES e e e e e e e e as 69
Organizing PrOJECIS oottt e et e e e e e e e e e e s e r e e e e e e e e e e e aaa 70
Adding Existing Files t0 @ ProjeCt ..o 70

ReNamMiNg YOUr PrOJECE ..ooiiiiiiiii ittt e e e e e e e e e 70

Working with Folders in @ ProjeCt eeeiiiiiiiiii e 71

Moving Files BEtWEEN PrOJECIS oot e e 72

Removing Files from a ProjECt ..o 73

Turning the Project Explorer View On and Off ... 73

Viewing Resources Within @ Project ... 73

Packaging a Silk Test ClasSiC PrOJECE ooviiiiiiiiiiiiieee e 73
EMAiliNg @ PrOJECT oot e e e 75

Contents | 3

4 | Contents

EXPOrtiNg @ PrOJECE oottt e e e e e e s e bbb e e e e e e e e e e s e aanes 77

TroubleShOOtING PrOJECES ...ttt e e e e e e e e e e e e e e nanes 78
Files Not Found When Opening ProjeCt ooooiiioiiiiiiiiiiiieieeeee e 78

Silk Test Classic Cannot Load My Project File ... 78

Silk Test Classic Cannot Save Files to My Project cccocoiiiiiiiiiiiiiiieeeeeeeee 78

Silk Test Classic DOES NOt RUN ...ocoiiiiiiiiiiiiiie et 79

My Files No Longer Display In the Recent Files LiSt ..., 79
Cannot Find Items IN CIASSIC 4TESt ..eviiiiiiiiiieee et 79
Editing the ProjeCt FIlesS ... 79
Project Description Dialog BOX —eveiiiiiiiiiies ittt 80
Enabling Extensions for Applications Under Test cccccceeiiiiiiiieeiiieiceeeenns 81
Extensions that Silk Test Classic can Automatically Configure —cccoiiiiiiiiiie 81
Extensions that Must be Set Manually —ooooiiiiiiii e 82
Extensions on Host and Target Machines ..o 82
Enabling Extensions Automatically Using the Basic Workflow ..., 83
Enabling Extensions on a Host Machine Manually ..., 83
Manually Enabling Extensions on a Target Machine ... 84
Enabling Extensions for Embedded Browser Applications that Use the Classic Agent85
Enabling Extensions for HTML Applications (HTAS) ..eeeiiiiiiiiiiieeeeee e 86
Adding a Test Application to the Extension Dialog BOXES ccoooviiiiiiiiiiiiiieiee e 86
Verifying EXIENSION SEHINGS .oeeiiiiiiiiiiiii ittt e e e e e e e e e e e e e e 87
Why Applications do not have Standard Names ... 87
Duplicating the Settings of a Test Application in Another Test Application cccee 87
Deleting an Application from the Extension Enabler or Extensions Dialog Box 88
Disabling Browser EXIENSIONS ..ooiiiiiiiiiiiiiiiie ittt ettt et e nnes 88
Comparison of the Extensions Dialog Box and the Extension Enabler Dialog Box 88
Configuring the BrOWSEI ...ttt ettt e e e e e e e e e bbb e e e e e e e e e e e e e aannnees 89
Setting Agent Options for Web TeSting ..o 90
Specifying a Browser for Silk Test Classic to Use in Testing a Web Application 91
Specifying your Default BIOWSEI ..ot e e 91
Enable Extensions Dialog Box (ClassSiC AQENL) ..o 91
Extension Information Dialog BOX —ueeiiiiiiiiiiiiii e 92
Extension Settings Dialog BoX ((NET) oot 92
Extension Settings Dialog Box (WD) ... 93
Extension Settings Dialog BoX (CHIEN/SEIVEI) ... 93
Extension Settings Dialog BOX (JAVA) ..cceeieieiiiiiiiieeei et 94
Understanding the Recovery System for the Classic Agentcc..ooe. 95
Setting the Recovery System for the Classic AgeNt ..o 96
BASE STALE . e e e e 97
DefaultBaseState FUNCLION ..o 97
Adding Tests that Use the Classic Agent to the DefaultBaseState —ccccccciviiiiiiiiiinnen. 98
DefaultBaseState and WMaiNWINAOW oooiiiiiiiiiiiieeceie et 98
FIOW OF CONIOL oottt e e st e e e s e e e s anrreee e 99
The Non-Web Recovery Systems Flow of Control ... 99

Web Applications and the Recovery System ... 99

How the Non-Web Recovery System Closes Windows —ccceeeeveeeeniniiiiiiiinne, 100

How the Non-Web Recovery System Starts the Application cccccooiiiiiiiiinee 100
Modifying the Default RECOVErY SYSIEM ... 101
Overriding the Default Recovery SYyStem ... 101
Handling Login WINAOWS ...t 102
Handling Browser Pop-up Windows in Tests that Use the Classic Agent 104
Specifying Windows to be Left Open for Tests that Use the Classic Agent — 105
Specifying New Window Closing ProCcedures eeeeeiiiiiiiiiiiiiiiiiiiieeeee e 105
Specifying Buttons, Keys, and Menus that Close WIindows —cccccoviiiiiiiiiinnen. 106
Recording a Close Method for Tests that Use the Classic Agent ccccceeeeeeen. 106

Set Recovery System Dialog BOX —eeeeiiiiiiiiiiiiiiie e 107

TSt P AN S e 108

Structure of @ TESE Plan oo 108
Overview of Test Plan TEMPIAteS ...cooiiiiiiii e 109
Example Outline for Word Search FEature oeiiiiiiiiiiiiiiiieecee e 109
Converting a Results File to @ TESt PIan ... 111
Working With TESE PIANS oo e e e 111
Creating a New TeSt Plan ..o 111
Indent and Change Levels in an Outline ... 112
Adding Comments to Test Plan ReSUItS ..o 112
Documenting Manual Tests in the Test Plan ..., 113
Describing the State of a Manual TESt eeiiiiiiii e 113
INSerting @ TEMPIALE ..o e 113
Changing Colors in @a TeSt Plan ... 114
Linking the Test Plan to Scripts and TeSt CaSeS eeviiiiiieiiiiiiiiiiiieeee e 114
Insert Testplan Template Dialog BOX —cooiiiiiiiiiiiiiiiieiiiee e 115
Working with Large TeSt PIANS ... 115
Determining Where Values are Defined in a Large Test Plan cccccoeiiiiiiiiinnee. 115
Dividing a Test Plan into a Master Plan and Sub-Plans ccccccciiiiiiiiiiinee, 115
Creating @ SUD-Plan ..o 116
Copying @ SUD-PIan ..o 116
Opening @ SUb-PIan ..o 116
Connecting a Sub-Plan with a Master Plan ..., 116
Refreshing a Local Copy of @ Sub-Plan ... 116
Sharing a Test Plan Initialization File ... 117
SAVING CRANQES oottt e e e e e e e e e e e e e e 117
OVEIVIEW OF LOCKS .ottt 117
Acquiring and Releasing a LOCK ..o 117
Generating a Test Plan Completion REPOIt ... 117
Testplan Completion Report Dialog BOX — ..ooooeiiiiiiiiiiiiieieeeeee e 118
Adding Data to @ TESt PIAN ..ot a e 118
Specifying Unique and Shared Data cccccooiiiiiiiiiiiiiicecee e 118
Adding Comments in the Test Plan Editor ..., 119
Testplan Editor STAtEMENTS eeeiiiiiieii e 119
The # Operator in the Testplan EditOr —c.oueiiiiiiiie e 119
Using the Testplan Detail Dialog Box to Enter the testdata Statement — 119
Entering the testdata Statement Manually ... 120
LINKING TESE PIANS oottt e e e e e eeaaaae s 120
Linking a Description to a Script or Test Case using the Testplan Detail Dialog Box
... 120
Linking a Test Plan to a Data-Driven Test Case ccviiiiiiiiiiiiiiiiieeeee e 120
Linking to a Test Plan Manually ... 121
Linking a Test Case or Script to a Test Plan using the Testplan Detail Dialog Box
... 121
Linking the Test Plan to Scripts and TeSt CaSeS ceciiiiiariiiiiiiiiiiiieee e 121
Example of Linking a Test Plan to @ Test Case coooviiiiiiiiiiiiiiiieeeeee e 122
Categorizing and Marking TESt PIaNS eeiiiiiiiiiiie et 122
Marking @ TESE PIaNn oo 122
How the Marking Commands INtEract ooooiiiiiiiiiiiiiiie e 123
Marking ONe OF MOre TESIS .oiiiiiiiii ittt e e e e e e 123
Printing Marked TeSIS oot e e e e e 123
Mark By QUEry Dialog BOX — ..oooiiiiiiiiiiiiiiiie ittt 123
Mark By Named Query Dialog BOX —uuiiiiiiiiiaiiiiiieiee e 124
USING SYMDI0IS oot e et e e e e e e e e e s bbb et e e e e e e e e e e e e e annnaee 125
Overview Of SYMDOIS oo 125
Symbol Definition Statements in the Test Plan Editor ... 127
Defining Symbols in the Testplan Detail Dialog box ... 127

Contents | 5

6 | Contents

Assigning a Value to a Symbol ... 128
Specifying Symbols as Arguments when Entering a testcase Statement 128
ATIDULES AN VAIUES ..o 128
Predefined AMINDULES oo 129
User Defined ATHDUIES ..o 129
Adding or Removing Members of a Set Attribute ... 129
RUIES fOr USING + @NA - oo 130
Defining an Attribute and the Values of the Attribute ..., 130
Assigning Attributes and Valuesto a Test Plan ..., 130
Assigning an Attribute from the Testplan Detail Dialog BOX —ooveviiieiiiiiiiiiinnee. 131
Modifying the Definition of an Attribute ... 131
L0 T 1T =PRSS 132
Overview of Test Plan QUENES ..o e e e e e e eeeaeaaanees 132
Overview of Combining Queries to Create a New QUETIY ...ocoovviiiiiiiiiiiiiiiiieeeeeenn, 132
Guidelines for Including Symbols in @ QUEIY ..o 133
The Differences between Query and Named Query Commands cccceeeevnnnen. 133
Creating & NEeW QUETY ..ottt s s 133
Bt @ QUEIY e 134
Delete @ QUEBTY ettt e e e e e e e e 134
CombinNiNg QUETIES oottt e et e e e e e s sn e ee e 134
Combine Testplan Queries Dialog BOX —oooiiiiiiiieiiiiiiec e 135
New/Edit Testplan Query Dialog BOX — ...ooceviiiiiiiiiiiie e 135
Create Session Dialog BOX ..oooiiiiiiiiiiieec e 136
Testplan Detail Dialog BOX ..ooioiiiiiiieiiiiiiie ettt 136
Testplan Detail - Testcase Dialog BOX ...oeeviiiiiiiiieiiiiieiee ettt 138
Define AIrbutes DIialog BOX ..ooiiiiiiiiieiiiieit ettt 138
New ALribute DIalog BOX — ...eeeiiiiiiiieei ittt 139
Update Manual Tests Dialog BOX ...ccoiciiiiiieiiiiieies ettt 139
Duplicate Test Descriptions dialog DOX ..o 140
Designing and Recording Test Cases with the Classic Agent 141
Creating a New Test Frame for the ClassiC AQENt euiiiiiiiiiiiieeee e 141
Hierarchical Object RECOgNILION uuiiiiiiiiie e 141
Highlighting Objects During ReCOrding ...cooooeiiiiiiieee e 142
Setting Recording Options for the ClassiC AQENt ... 143
TESE CASES oottt a e e n e 144
OVEIVIEW Of TESE CASES .oiiiiiiiiie ittt ettt e s e e e 144
Anatomy Of & BaSIC TESt CASE ..eiiiiiiiiiiiieeii ettt 145
TYPES Of TESE CASES .ottt e e e et e e e e e e e e e as 145
TESE CASE DESION oottt e e e e e e e e e e aaae s 145
COoNStruCtiNg @ TESE CASE .eiiiiiiii ittt e e e e e e e e e e e 146
DAata in TESE CASES ..ieiiiieiiiiiiie ettt e e e e e e 147
SAVING TESE CASES coiiiiiiiiiiiite ettt e e et e e e e e e st e e e e e e e e e e s e annbbeeeees 147
Recording Without Window Declarations —c.eueiiiiiiiiiiiiiieeeee e 148
Overview of Application StateS oociiiiiiiiii e 148
Behavior of an Application State Based on NONE ... 149
Example: A Feature of a WOrd ProCeSSOI ...coooiiiiiiiiiiiieeeee e 149
Recording Test Cases with the ClassiC AQENt ... 150
Overview of Recording the Stages of a Test Case cccoeeiiiiiiiiiiiiiiiieeee s 150
Overview of Recording 4Test COMPONENES ...ooiiiiiiiiiiiiiiiieeeeee e 151
Recording a Test Case With the Classic AgeNnt ...t 152
VErifyiNg @ TESE CASE .oeiiiiiii ittt e e e e e e e e e e e e e e e sennees 152
Recording the Cleanup Stage and Pasting the Recording ..., 153
Testing the Ability of the Recovery System to Close the Dialog Boxes of Your Application
... 154
Linking to a Script and Test Case by Recording a Test Case cccccceeveeeeeeninnnns 154
Saving @ SCHPL FIlE oo 155

Recording an Application State cc.euiiiiiiiiieee e 155

Testing an Application State eeiiiiiiiiii e 156
ReCOrding ACHIONS oot e e e e e e eeaeas 156
Recording the Location of an ObJect ..., 156
Recording WIndow Identifiers ..o 157
Recording a Scripted ClasS ... 158
Recording a Windows Accessibility Class —eeiiiiiiiiiiie e 159
Recording a Defined WINAOW —ooooiiiiiiie e 159
Recording WINAOW TAGS coeieiieiiiii ittt e e et e e e e e e e e e e 159
Record Status on Classic Agent Dialog BOX —ooooiiiiiiiiiiiiiiiieeeeeeiieeeee e 160

Verify WIindow Dialog BOX ...ttt 161

Verify Window Edit Dialog BOX — ..ocooiiiiiieieeee e 162
Record Actions Dialog BOX — .ooooiiiiiiiieeeii e 162
Record Testcase Dialog BOX ..cooooiiiiiiiiiieiieeee e 163
Windows Accessibilitys accex.ini File ... 163
Update Files Dialog BOX e 164
Y]] (0= 11 (o] IO PP P PTP PP PRI 165
Verifying ODJECt PrOPertieS ..o 165
Verifying Object AUINDULES ... 167
Overview of Verifying BitMaps oooiiiiiiii e 167
Overview of Verifying an Objects State ..., 168
FUzzy VENIfICAtION oot e e e e e e e 169
Verifying that a Window or Control is No Longer Displayed —cccccooviiiiiiiiiineen. 171
Data-Driven TESt CASES ..cciiciiiieeiiitiiie ettt e ettt e et e st e e e e st e e e s e e e e e e 171
Data-Driven WOTKFIOW ..o 172
Working with Data-Driven TESt CASES ...ciiiiiiiiiiiiiiiiiieie et a e 172

Code Automatically Generated by Silk Test ClasSiC covvveeeeiiiiiiiiiiiiiieeeeeee e 173

Tips And Tricks for Data-Driven TeSt CASES uveeeiiiiieiiiiiiiiiiieiieee e 174
Testing an Application with Invalid Data ... 175
Enabling and Disabling WOrkflow Bars ... 176

Data Source for Data-Driven TESt CASES vvvveiiiiiieeeiiiiieee et 176
Creating the Data-Driven TESt CASE ..oooiiiiiiiiiiiiiee et 178
Select Data Source Dialog BOX — ..ocoooiiiiiiiiieieeceee e 185

Setup Data Driven Script DSN Dialog BOX ..ooooiiiiiiiiieiieeeeeiiiieecee e 185
Specify Data Driven Script Dialog BOX —uviiiiiiiiiieiie e 186
Specify Data Driven Testcase Dialog BOX — ...oooooiiiiiiiiiiiiiiiiiieeeeeeiiieeee e 186
Specify ROWS DIialog BOX ...uueiiiiiiiiiieeei ettt 187

GO t0 TestCase Dialog BOX — ..oooiiiiiiiiiiiiiiiie ettt 189
Select Testcase Dialog BOX ...ceeiiiiiiiiieiieei e 189

e 0] 0[] VAT £ T PP P PP PPUPPPPP 189
Verifying Properties @s SEIS ... 189
Creating a New Property Set .. 190
Combining Property SEIS oot 190
Deleting @ Property SEt oo 190
Editing an EXIiSting Property Set ... 191
Specifying a Class-Property Pair ... 191
Predefined Property SeIS e 191
Characters Excluded from Recording and Replaying oooooiiiiiiiiiiiiiieeeieeee 192
Testing in Your Environment with the Classic Agentcccceeeeiiiiiiininnnns 193
Distributed Testing with the ClassiC AQENt ... 193
Configuring Your Test Environment (Classic AgeNnt) ...ceeeviiiiiiiieeiiiiiiiieeeeeeeeen 193
Running Test Cases in Parallel ... 200
Testing Multiple MacChines ... 208
Testing Multiple APPlICAtIONS .o 215
Troubleshooting Distributed TEStING uvieiiiiiiiiee e 227
Testing ActiveX/Visual BasiC CONIOIS ...oooiiiiiiiiiiiee e 228

Contents | 7

Overview of ActiveX/Visual BasiC SUPPOIT eeeiiiiiieiiiiiiiieeeeee e 228

Enabling ActiveX/Visual BasiC SUPPOIT ..oooiiiiiiiiiiiiiiieieee e 229
Predefined Classes for ActiveX/Visual Basic Controls —cccocceveiiiiieerenniieeenn 229
Predefined Class Definition File for Visual BasiC cccccvviiiiie i 229
List of Predefined ActiveX/Visual Basic CONtrolS cccocvvvveiiiiiiiie e 230
Access to VBOptionButton Control Methods ..., 231
0-BaASEA ATAYS coeiiiie ittt e e e e e e e e e e e e e e e e nb e aee e 232
Dependent Objects and Collection ObJECIS ..oooiiiiiiiiiiie e 232
Working with Dynamically Windowed ControlS ... 232
WINAOW TIMEOUL oottt et e e st e e e e s anrr e e e e e e 233
Conversion of BOOLEAN ValUES ..o 233
Testing Controls: 4Test Versus ActiveX Methods ..., 233
Control Access is Similar to Visual BaSiC cccevveiiiiiieeeiieeeeeiee e 233
Prerequisites for Testing ActiveX/Visual Basic Controls —cccccceeeieiiiiiiiiinnnee. 234
ActiveX/Visual Basic EXCeption ValuUeS eiiiiiiiiiiiiiiiiiiieeee e 234
Recording New Classes for ActiveX/Visual Basic Controls —cccccciiiiiiiiiinneen. 235
Loading Class Definition FIleS .o 235
Disabling ActiveX/Visual BasiC SUPPOIT uuiiiiiiiiiiiee e 236
Ignoring an ActiveX/Visual BasiC ClaSS ... 236
Setting ActiveX/Visual Basic Extension OptioNS coooiviiiiiiiiiiiiieieee e 236
Setup for Testing ActiveX Controls or Java Applets in the Browser —o....... 237
Client/Server AppliCation SUPPOIT ..eeeiiiiiiee et e e 237
Client/Server Testing Challenges ... 238
Verifying Tables in ClientServer Applications ooeiiiiiiiiiiiiie e 238
Evolving @ TESHING Srategy eeeeeeiiiiieiaiie ittt e e e 239
Incremental Functional TeSt DeSIgN ...ooiiiiiiiiiieeee e 239
NEtWOrk TESHING TYPES coeeeiiiiie ettt e e e e e e e e e e e e e e e e e aannaees 240
How 4Test Handles Script DeadloCK ... 241
Troubleshooting Configuration Test Failures ..., 241
Testing .NET Applications with the Classic AgEeNt ... 242
ENabling .NET SUPPOIT ottt ettt e e e e e e e e e 242
Tips for Working With .NET ..o 242
Windows FOrms APPlICALtIONS .o 243
Testing Java AWT/Swing Applications with the Classic Agent ..., 251
Testing Standard Java Objects and Custom Controls —ccceeeeeiiieeiiiniiiiieee, 252
Recording and Playing Back JFC MENUS coooiiiiiiiiiiieiieeeeeee e 252
Recording and Playing Back Java AWT MENUS cooiiiiieiiiiiiiiiiiiiieeee e 252
Object Recognition for Java AWT/Swing Applications ..o 253
Supported Controls for Java AWT/Swing Applications cccveiiiiiiiiiiiiiiiiceeeeeeen, 253
Java AWT Classes for the ClassiC AgeNt ... 253
Supported Java Virtual Machines ... 253
Supported Browsers for Testing Java Applets ... 253
Overview Of JavaSCript SUPPOIT oo 254
SUpPOrt for JAVaBEANS .. 254
Classes in Object-Oriented Programming Languages cccceeveeeeeeeeeeennnnnninieneen 254
Configuring Silk Test Classic t0 TESt JAVA uueeieiiiiieiiiiiiiiiieeieeee e 255
Testing Java Applications and APPIetS ..o 259
Frequently Asked Questions About Testing Java Applications —cccccvvvvieeeeen. 289
Testing Java SWT and Eclipse Applications with the Classic Agent cccoooiiiiiiiieneen. 290
Suppressing Controls (ClassiC AQENL) oo 291
Java SWT Classes for the ClassiC AQENT eiiiiiiiiiiiee e 291
Testing Web Applications with the Classic AgENt ... 291
Testing Methodology for Web Applications ... 291
Supported Controls for Web Applications ... 292
Sample Web AppliCatioNS ..o 292
API Click Versus Agent CICK ..o 292

8 | Contents

Testing Dynamic HTML (DHTML) Popup MeNUS oooiiiiiiiiiiieicceeee e 293

Setting Up a Web Application (ClassiC Agent) ... 293
Recording the Test Frame for a Web Application (Classic Agent) occciviineee. 294
Recording Window Declarations for a Web Application cccoiiiiiiiiiiiienenn, 294
Streamlining HTML Frame Declarations ccooiiiiiiiiiiiiiiiiieieeee e 295
Overview Of TESt Frames ..o 295

USEI OPLIONS oottt e e e e e e e e e s bbbt e e e e e e e e e e e e s nnbnbbnaeeeaaaaaens 297
Testing Web Applications on Different BrOWSEers —c.eveeiiiiiieeiiiiiiiiiiiieeeeeee e 301

VO AULOMEALION oottt e et et e s s e e e s e e s 302
Testing Objects in a Web Page with the Classic Agent ..., 303
General Web Application CIAaSSES ..ooviiiiiiiiiiieee e 314
Testing Windows API-Based AppliCatioNS oooiiiiiiiiiieee e 314
Overview of Windows API-Based Application Support —ccccceeeeieeennniniiiiieeee 314
Locator Attributes for Windows API-Based Applications —ccccoiiiiiiiiieiiinneennnn. 314
Suppressing Controls (ClassiC AQENL) oo 315
Suppressing Controls (Open AGENL) i 315
Configuring Standard AppliCatiONS ...oooiiiiiiie e 316
Determining the priorLabel in the Win32 Technology Domain —ccccceeeeeeeeenn. 317
Testing Embedded Chrome Applications eeiiiiiiiiiiiie e 317
Microsoft Foundation Class SUPPOIt .o 318
Testing Applications with the SIIKBEAN ... 318
Preparing Test Scripts to Run with SilkBean ... 319
Configuring SilkBean Support on the Target (UNIX) Machine cccoiiiieeeen. 319
Configuring SilkBean Support on the Host Machine when Testing Multiple Applications
... 320
Correcting Problems when Using the SilkBean —cccccoiiiiiiii e 320
Using Advanced Techniques with the Classic Agentccccoeeeiiieeeeeennnnee, 322
Starting from the Command LINE ...t 322
Starting Silk Test Classic from the Command Line ... 322
Starting the Classic Agent from the Command Line ... 324
Recording @ TESE FramE ..ot e e e e e e e e e e e e e an 325
Overview Of ODJECE FIlES ..o 325
[DL=TolF= 1= 11 (o] £ 1P PPPPPPPPPPPPRP 327
WiINAOW DECIAratiONS ...oeeiiiiiiiiiee ettt 331
Identifiers @nd TAQS .oooiiiiiieiie et e e 338

Save the TESE Frame et 340
Specifying How a Dialog Box is INVOKed oeiiiiiiiiiiiiiieeeee e 341

Class AINDULES ...t 341
Improving Object Recognition with Microsoft Accessibility ... 344
Enabling ACCeSSIDIIILY oo 345
Adding AccessSibility CIASSES ..eeiiiiiiiii i 345
Improving Object Recognition with Accessibility ..., 345
Removing Accessibility CIaSSeS ..o 346
Calling WIindows DLLS from 4TESt ..oeeiiiiiiieiee ettt e e e e 347
AlIaSING @ DLL NAME oottt ee e e e e e e e e e 347
Calling a DLL from within @ 4TeSt SCHPt ..oooiiiieeee e 347
Passing Arguments to DLL FUNCLIONS ..o 349

Using DLL Support Files Installed with Silk Test ClassiC ccccvvvieeeiiieeiiiiiee 350
Extending the Class HIErarChy ...t 351
ClaSSES e e e e e s e e e 351
Verifying Attributes and PropertiesS ... 356
Defining Methods and Custom PropertiesS eeeeeieiioeiiiiiiiieeeeeee e 357
EXAMPIES oo e e e e as 361
Porting Tests to Other GUIS ... a e 362
Handling Differences Among GUIS ..o 362

ADOUL GUI SPECIFIEIS et 368

Contents | 9

Supporting GUI-Specific ODJECES oo 371

Supporting CUStOM CONIOIS ..o e e e e e e e e e e e 372
Why Silk Test Classic Sees Controls as Custom ControlsS —ccccceeiviiiiiiiiieenen. 373
Reasons Why Silk Test Classic Sees the Control as a Custom Control — 373
Supporting Graphical CONtrolS ..o 373
Custom Controls (ClasSiC AQENE) ... 374
Using Clipboard MethOdS eeeiiiiiieei e 379
Filtering CUSIOM CIaSSES .ooiiiiiiiiiiitee ettt a e 379
OCR SUPPOM ettt e e e e e e e e e e e e e e eeeeeeeeeeeeeanebbbannaanans 382

Supporting Internationalized ODJECES ...oiiiiiiii i 386
Overview of Silk Test Classic Support of Unicode Content ccccceeiiiiiiiiiiinnen. 386
Using DB Tester with Unicode Content oeiiiiiiiiiiiiiiec e 387
Issues Displaying Double-Byte Characters ..ot 387
Learning More About Internationalization ..o 387
Silk Test ClassiC File FOrMALS oiiiiiiiiiiie it 388
Working with Bi-Directional LANQUAgES oooiiiiiiiiiiiieeie e 390
Recording Identifiers for International Applications —ccccccoiiiiiiiiiiiiiieeeee 390
Configuring Your ENVIFONMENT ..ot 391
Troubleshooting Unicode CONTENE uuiiiiiiiiiiiii e 394

USING AULOCOMIPIBIE .ttt e e e e e e e e e bbb e b e e e e e e aaeeeaaas 396
Overview Of AULOCOMPIELE ..o 396
Customizing your MemBbDEILIST eeiiiiiiiiie e 397
Frequently Asked Questions about AutoComplete ... 398
Turning AutoComplete OptionNs Off ..o 399
USING APPSTALELIST .ot e e e e e e e e e 399
USING DAt@TYPELISE ..eeieieiiiiiiie et e e e e e e e e e e e e as 399
USING FUNCHONTIP oottt e e e e e e e s e et eeeeaaaeeas 400
USING MEMDEILIST .t e e e e e e as 400

Overview of the LiDrary BrOWSEI ...ttt 401
Library Browser SOUrce File ..o 401
Adding Information to the Library BrOWSEr cceeiiiiiiiiiiiieeeiieeeee e 402
Add User-Defined Files to the Library Browser with Silk Test Classic — 402
Viewing Functions in the Library BrOWSEr —oooiiiiiiiiiiiiiiieeeeieieeee e 402
Viewing Methods for a Class in the Library Browser ... 403
Examples of Documenting User-Defined Methods ... 403
Web Classes Not Displayed in Library BrowSer —oooooiiiiiiiiiiiiieniiiiieeeee, 404
LIDrary BrOWSEE oottt ettt e e e e e e e e e e e eeeaeas 404

Text RECOGNItION SUPPOIT oottt ettt e e e e e e st e e e e e e e e e e e e aannnes 405

Running Tests and Interpreting ResuUlts ccccoooviiiiiiiiii e, 407

RUNNING TOSS oo ettt ettt et e e e e e e e e s s e et abee e e e e aaaeeeesaannnnns 407
Creating @ SUITE ..eiiiieiiiiie ittt e e e e e e e et e e e e e e e e e e e e e e annennee 407
Passing Arguments t0 @ SCHPL ..euuiiiiiiiiiia et e e 407
RUNNING 8 TESE CASE .eeeeiiiiiiie ettt e e e e e e e e e e e e e 408
RUNNING @ TESE PIAN e 409
Running the Currently Active SCript Or SUItE oceiiiiiiiiee e 410
Stopping a Running Test Case Before it Completes ..o, 410
Setting a Test Case to Use Animation Mode ... 410
Run Application State Dialog BOX — ...ooooiiiiiiiiiiiieeieeeee et 410
RUN Testcase Dialog BOX — .oooeiiiiiiiiiiititie ettt a e 410
Runtime Status Dialog BOX —eeiiiiiiiiiiaie et 412

Interpreting Results in REeSUIt FIlES oo 412
Overview of the ReSUILS File ..o 412
VIewing TESE RESUILS ..o a e e 413
Errors And the ReSUItS File ..o 414
Viewing DIffEr@NCES oo 415
Merging Test Plan RESUILS ..o 415

10 | Contents

Selecting which Results to DiSplay ...coooiiiiiiiiiieeee e 416

EXport RESUILS DiIalog BOX — ...veeiiiiiiiiiiiiieiiiee ettt 416

View Options Dialog BOX — ..ocoooiiiiiiiieeetee et 417
Compare Two Results Dialog BOX — ..ocoooiiiiiiiiieeeeeee e 417
Analyzing Results with the Silk TrueLog EXPIOrer ... 417
TrUELOQG EXPIOIEr ettt e e e e e e e e e e e e 417
TrueLog Limitations and PrereqUISIteS eeeeiiiiiieiiiiiiiiiiieeee e 418
Opening the TrueLog Options Dialog BOX —ceiiiiiiiiiiiiiiiiieeeeeee e 418
Setting TrueLog OPLIONS ..o e e e eaeaeeas 418
Toggle TrueLog at Runtime USINg @ SCHPt ...oooiiiiiiieieeieeee e 420
Viewing Results Using the TrueLog EXPIOrer ... 420
Modifying Your Script to Resolve Window Not Found Exceptions When Using TrueLog
... 420
ANAIYZING BItMAPS oottt e e e e e e e e e e e e e e aa e e an 421
Overview of the Bitmap TOOI eeeiiiiiii e 421

When to use the Bitmap TOOI ..o 422
Capturing Bitmaps with the Bitmap ToOl ... 422
Comparing BIitMaPS oottt a e 424

Rules for Using Comparison Commands —oooocuiiiiiiiiiiieeeeeeiiiiieeee e e 425
Bitmap FUNCLONS e e 425
Baseline and ResuUlt BItMAPS ..ceiiiiiiiiiiiaee e 425
Zooming the Baseline Bitmap, Result Bitmap, and Differences Window 426
LOOKING @t STALISLICS ..eeeiiiiiieeie ittt e e e e e e e e e e e e 426
EXiting from SCan MOAE eeiiiiiiie s 426
Starting the Bitmap TOOI ... 426

USING MASKS ottt ettt e e e e e e e e e e bbb e e e e e e e e e e e e e nnns 427
Analyzing Bitmaps for Differences ... 430
Working With RESUIL FIlES ... e e 431
Attaching a Comment to @ RESUIE SE ..o 431
Comparing ReSUIt FIlES e 431
CUSLOMIZING FESUILS oottt e e e e e e e e e s eb e eee e 432
Deleting RESUIIS oo e e e 432
Change the default number of result SEetS ..o, 432
Changing the Colors of Elements In the Results File cccccoiiiiiiiiiiiie, 432

FiX INCOIrect values iN @ SCHPL e a e 433
Marking Failed TESt CASES uiiiiiiiiiiie et 433
Merging Test Plan RESUILS ..o 433

N EV T P L] gL N (o I =T 1 o] £ T TP PPRPPPT 434
Viewing an individual SUMMATY ooiiiiiiiiie e e 434
Storing and EXporting RESUIS eeeeiiiiiieee e 434
SEOMNG FESUILS ettt e et e e e e e e e e e s neeb e eeeeas 434
EXIracting RESUILS ..ot e e e e e 434
EXPOrting RESUILS ..ot e e e e e 435
Displaying a different set Of reSultS eeiiiiiiii 436
Removing the Unused Space from a Result File ... 436
Logging Elapsed Time, Thread, and Machine Information ccccccciiiennnnnns 436
Debugging TESE SCHIPLIS ooiiiieeieiir e e e e e e e e e e 437
Designing and Testing with Debugging in Mind ..., 437
Executing a Script in the DebUgQer i 438
Debugging @ TESE SCHPL ..eeeiiiiiiiiiie ettt e e e e e e e e e e e ebb e e e eaaaaeaeeaaanas 438
DEDUGEN MEBNUS ettt e e e e e oottt e et e e e e e e e e e s e bbb bbb e e eeaaaeeeeaeanns 439
Stepping INto and OVEr FUNCHIONS uiiiiiiiieeiiei e 439
Working with Scripts During Debugging eeeeeiiiiiii e 439
EXItiNg the DebUGOEr e 439
BrEAKPOINTS e e e e e et e e e e e e s e b e aeaeas 440
Setting BreakpOinNtS ... a e e e 440

Contents | 11

Viewing BreakpointS ... 440

Deleting BreakpointS . 441

Add Breakpoint Dialog BOX —oooiiiiiiiiiiiiiie e 441
Delete Breakpoint Dialog BOX —cooiiiiiiiiiiiiiiieeeee ettt 441
Breakpoint Dialog BOX e 441
VIEWING Variables oot e e e e e e e e e e e e e e 441
Changing the Value of a Variable ... 442
L€1[e] oL 1 LR B =1 (oo [=70) QTP PP UTPTRT PP 442
(o Tor= 1R B I = 1[0 o [=10) QPP PUP TP TP 442
[y d o] (=115 (o] £SO PPPPPPRTT 442
Evaluating EXPreSSIONS oottt ettt e e e e e e e e ennaes 443
Enabling VIiew Trace LISHING .eeoiiiiiiiiiiiiiitie ittt e e et e e e e e e e e e e 443
Viewing a List Of MOAUIES . e e 443
View Module Dialog BOX — ..eceiiiiiiiiiiiit ettt e e e e e e e e e e 444
Viewing the Debugging TranSCrPLS oooiiiiiiiiiiiii e e e 444
TransCript DIAlog BOX ..ottt e e e e e e e e e e e 444
Call Stack Dialog BOX ooeeiiiiiiiete ettt a e e e a e e e e e s 444
[D1=T 10T fo 1o To I I o 1< PP PPPPPPTT 444
Checking the Precedence of Operators —eeeeeeiiiiieoiiiiiiiiiieeeeeee e 444
Checking for Code that Never EXECULES uuiiiiiiiieiieeaeeieiiiieeeee et 445
Global and Local Variables with the Same Name ccccviiiiiii e 445
Handling Global Variables with Unexpected Valuesccccocciiiiiiiiniiiiiieeeee, 445
Incorrect Usage of Break Statements ... 445
Incorrect Values for Loop Variables ... 445
INFINITE TOOPS ettt e e e e e e s eeaeas 445
TypographiCal ErrOrs .ttt 445
Uninitialized VariableS ... 446
Setting Silk Test ClassiC OPLIONS ciiiiiii e 447
Setting General OPLIONS ... e e e e e e e e s b e e e e e e e e e as 447
Setting the EdItOr FONE et e e e e e 449
Setting the EItOr COIOIS ...ttt e e e e e e e e e e e e e e an 449
Runtime Options Dialog BOX — .coooiiiiiieteeiieee ettt e e e e e e e e 450
Compiler Constants Dialog BOX —eueiiiiiiiiieiaee e 453

Agent Options Dialog BOX ocoooiiiiiiiie et 453
TIMING TAD ettt e et e e e e e e e e e e s nb e e aeeeas 454
Verification Tal oo 455

ClOSE TAD oo 456
Bitmap Tah oo 457
Synchronization Tab ..o 458
Setting Advanced OPLIONS oot e e e e e e 459

Other TaD e 460
Compatibility TaD oo 461
EXtensions Dialog BOX oot a e 462
Extension Details Dialog BOX — ..ccoooiiiiiiiiiiiiiee e 464
Setting Recording Options for the Open AgeNnt ... 464
Setting Recording Options for the ClassiC AQENt ... 467
Setting Replay Options for the Open AQENt ... 468
Defining which Custom Locator Attributes to Use for Recognition ccccccveeeiiiiniiins 468
Setting ClassSes t0 IgNOIE .ot e e e e e e e 469
Custom ControlS DIialog BOX — ...ueeeiiiiiiiaeiie ittt e e e e e e e e e 469
Property Sets Dialog BOX e 470
New Property Set Dialog BOX — ...oooiiiiiiiiiiiiiie et 471
Combine Property Sets Dialog BOX — .oociiiiiiiiiiiieeeeee e 471

DOM EXtensions DIialog BOX ueiiiiiiiiiiieie ittt a e e e e e e e 471
Extension Application Dialog BOX —ueeiiiiiiiiiiiiiiie e 473
Extension Options (ActiveX) Dialog BOX — ..ccooiiiiiiiiieieiieee e 473

12 | Contents

Extension Options Dialog BOX (JAVA) ..eeoeiiiiiiiiiiiiieeie et 474

TrueLog Options - Classic Agent Dialog BOX — ...cooieeiiiiiiiiiiiiiiiieee et 474
Setting TruELOG OPLIONS ..ottt e e e e e e e e s st e e e e e aaee e e e e aannnes 477
Troubleshooting the ClassiC AgENt ..o 479
ActiveX and Visual Basic ApPpliCatiONS ...ooooeiiiiiiee e 479

What Happens When You Enable ActiveX/Visual BasiC? ccccccceieeeiiiiiiiiiiinee, 479

Silk Test Classic Does Not Display the Appropriate Visual Basic Properties 479

Silk Test Classic Does Not Recognize ActiveX Controls in a Web Application ... 479
Silk Test Classic Displays an Error When Playing Back a Click on a Sheridan Command Button

... 479
Silk Test Classic Displays Native Visual Basic Objects as Custom Windows 480
Record Class Finds no Properties or Methods for a Visual Basic Object 480
Inconsistent Recognition of ActiveX ControlS uueiiiiiiiiiiiieee e 480
Test Failures During Visual Basic Application Configuration —ccccccceiiiiiiiiinns 481
Application ENVIFONMENT .ot e e e e e e e e e beeeeaeeaeas 481
Dr. Watson when Running from Batch File ... 481
Silk Test Classic does not Launch my Java Web Start Application —cc...... 481
Which JAR File do | Use with IDK/JRE? ..o 482
Sample Declarations and Script for Testing JFC Popup Menus —c.eoeeiiivinneen. 482
Java Extension Loses Injection when Using Virtual Network Computing (VNC) ..484
Troubleshooting Basic Workflow Issues with the Classic Agent ... 484
Bl OV SIS e e a e 485
I Am not Testing Applets but Browser is Launched During Playback 485
Playback is Slow when | Test Applications Launched from a Browser — 485
Library Browser does Not Display Web Browser Classes ccccccceeeeiiiiiiiiiiiinneen. 485
EITOr MBSSA0ES ittt e e e e e e e e e ettt et ettt e e ae bbb b e b e b e e e e e aaaaaas 486
AQENt NOL FESPONTING ..iieiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e s e nnnbbeeeeeeeeas 486
BrowserChild MainWindow Not Found When Using Internet Explorer 7.x 486
Cannot find file agENE.EXE ..o 487
Control iS NOt FESPONAING ..eeeiiiiieiiieie et e e e e e e e e e e eeeees 487
Functionality Not Supported on the Open Agent cc.eieiiiiiiieiiiieeee e 487
Unable t0 CONNECE 10 AQENT e 488
Unable to Delete File ..o 488
Unable to Start Internet EXPIOrer ..o 488
Variable Browser not defined oooiiiiiiiii 489
Window Browser does not define @ tag ... 489
WINAOW IS NOL ACHIVE ..ot e 489
WiINndow is Not enabled ... 490
WiINAOW iS NOL @XPOSEA ettt e e e e e et e e e e e e e e as 490
WINAOW NOTFOUND e 491
FUNCions and MEtNOOS ooiiiiiiiii et e e e e 491
Class NOt LOAAEM EITOI ..ooeeeieieiiiiee ettt 491
Exists Method Returns False when Object EXIStS oooiiiiiiiiiii e, 492

How can | Determine the Exact Class of a java.lang.Object Returned by a Method
... 492
How to Define IWLeaVEOPEN .ot 493
Defining TestCaseEnter and TestCaseExit Methods ... 494
How to Write the Invoke Method ... 494
| cannot Verify $Name Property during Playback ... 495
Errors when calling nested methods ... 496
Methods Return Incorrect Indexed Values in My SCriptS ... 496
Handling EXCEPLIONS ..ottt e e e e e e e e e e e e e e e aaans 496
Default Error HANAIING e 496
Custom Error HANAING ..eeeeeeiieiieeee et 497
Trapping the exception NUMDEr ... e 498
Defining Your OWN EXCEPLIONS ...uiiiiiiiiiie ittt e e 498

Contents | 13

Using do...except Statements to Trap and Handle Exceptions —ccccveeeeeeneeenn. 499

Programmatically Logging an EIrOr ... 500
Performing More than One Verification in a Test Case cccccooviiiiiiiiiiiiieeeeeeees 500
Writing an Error-Handling FUNCLION ... 502
EXCEPLION VAlUEBS oot 503
Troubleshooting Java APPlICAtIONS ooiiiiiii e 507
Why Is My Java Application Not Ready To TEeSt? oooiiiiiiiiiiiiieeeee e 507
Why Can | Not Test a Java Application Which Is Started Through a Command Prompt?
... 507
What Can | Do If My Java Application Not Contain Any Controls Below JavaMainWin?
... 508
How Can | Enable a Java Plug-In? .. 508
What Can | Do If the Java Plug-In Check Box Is Not Checked? cccoviiinnnee. 508
What Can | Do When | Am Testing an Applet That Does Not Use a Plug-In, But the Browser Has a |
... 508
What Can | Do If the Silk Test Java File Is Not Included in a Plug-In? 509
What Can | Do If Java Controls In an Applet Are Not Recognized? 509
Multiple MachineS TESHNG ...eeeiiiiiiieiii it e e e e e et e e e e e e e e e e e e aans 509
Remote Testing and Default BrOWSEr ooiiiiiiiiiiiieee e 509
Setting Up the Recovery System for Multiple Local Applications —ccccvvveeee. 509
L0V T =T 0] 61N PP PP TP PPTPTPRRR 510
TWO_APPS.INC ettt e et e e e et e e e e e e e e e e e annb e aeees 511
L0 o] 1T £ TP PUT T PR 516
Does Silk Test Classic Support Oracle FOrms? ... 516
Mouse Clicks Fail on Certain JFC and Visual Café Objects cccceveeviiiiieeeennne 517
My Sub-Menus of a Java Menu are being Recorded as JavaDialogBoxes 517
Other ProbIEMS oo e e e e e e 517
Adding a Property to the RECOrder ... 517
Application Hangs When Playing Back a Menu Item Pick cccccceiiiiiiiiiiiiinnnee. 518
Cannot Access Some of the Silk Test Classic Menu Commands ccccovcveeen. 518
Cannot Double-Click a Silk Test Classic File and Open Silk Test Classic 519
Cannot Extend AnyWin, Control, or MoveableWin Classes ccccccoviiiiiiiiiieennn. 519
Cannot Find the Quick Start Wizard oooiriiiiicccesee e, 519
Cannot 0pen results file oo 520
Cannot Play Back Picks of Cascaded Sub-Menus for an AWT Application 520
Cannot Record Second WINAOW eeiiiiiiiiiiee et 520
Common DLL ProbIEMS .. 520
Common Scripting Problems ... 521
Conflict With VIrUS DELECIOIS ...coiiiiiiei ettt 523
Displaying the Euro Symbol ... 523
Do | Need Administrator Privileges to Run Silk Test Classic? —ccccooiiiiiiieeeeenn. 523
General Protection FAUILS ...cooiiiiiieeiee e 524
Running Global Variables from a Test Plan Versus Running Them from a Script
... 524
IGNOIING @ JAVA ClASS ..eeiiiiiiiiiiie ettt e et e e e e e e 525
Include File or Script Compiles but Changes are Not Picked Up coociiiiieeeeen. 525
Library Browser Not Displaying User-Defined Methods ... 526
Maximum Size of Silk Test ClassiC FileS c.oevviiiiiie e 526
Playing Back MOUSE ACHIONS ...eiiiiiiiieiiiiieee et 526
Recorder Does Not Capture All ACHIONS ...oooiiiiiiiiie e 527
Recording two SetText () StateMENtS ...oeeeiiiiiiiee e 527
Relationship between Exceptions Defined in 4test.inc and Messages Sent To the Result File
... 528
The 4Test Editor Does Not Display Enough Characters ... 528
Silk Test Classic Support of Delphi Applications ..., 528
StoppINg @ TESE PIAN e 530

14 | Contents

A Text Field Is Not AlloWING INPUL ..o 530

Using a Property Instead of a Data Member ... 531
Using File Functions to Add Information to the Beginning of a File — 531
Why Does the Str Function Not Round Correctly? ..., 531
TroubleShOOtING PrOJECES ...t e e e e e e e e e e e e as 532
Files Not Found When Opening ProjeCt cooiiiiiiiiiiiiiiiiieeee e 532
Silk Test Classic Cannot Load My Project File ... 532
Silk Test Classic Cannot Save Files to My Project cccccciiiiiiiiiiiiiiiiiieeeeeee 532
Silk Test Classic DOES NOt RUN ...oioiiiiiiiieiiiieee et 533
My Files No Longer Display In the Recent Files LiSt ccouviiiiiiiiiiiiiiieeee, 533
Cannot Find Items IN ClIaSSIiC 4TESt ...viiiieiiiiieie et 533
Editing the Project FIleS ... e 533
RECOGNILION ISSUBS ..ttt e e e e e e e e e e e e e e e s e annbeereees 534
How Can the Application Developers Make Applications Ready for Automated Testing?
... 534
I Cannot See all Objects in my Application even after Enabling Show All Classes
... 534
java.lang.UnsatisfiedLINKEITOr ... 534
JavaMainWin is Not Recognized c..oeeiiiiiiiiiiie e 535
None of My Java Controls are Recognized ..o 535
Only JavaMainWin is Recognized cccuiiiiiiiiiiieee et 535
ONly APPIBE SEEN et e e 536
Silk Test Classic Does not Record Click() Actions Against Custom Controls in Java Applets
... 536
Silk Test Classic Does not Recognize a Popup Dialog Box caused by an AWT Applet in a Browser
... 536
Silk Test Classic is Not Recognizing Updates on Internet Explorer Page Containing JavaScript
... 537
Java Controls are Not Recognized ooeiiiiiiiiiiie e 537
Verify Properties does not Capture Window Properties ... 537
B oL PSP PR PPPTUPPP 537
Owner-Draw List Boxes and CombO BOXES oooiiiieeiiiiiieee et 537
Options fOr LEQACY SCIPLS ooiiiiiiiiieiie ettt e e e e e e e 539
Declaring an Object for which the Class can Vary —cccccoiiiiiiiiiiiis 540
Drag and Drop OPEratiONS ceeiiiiiiiiiiiiiiiiiee et e e ee e e e e e e e e e s nsbee e e eeeeas 541
Example Test Cases for the Find Dialog BOX — ...ooooeiiiiiiiiiiiiiiiieeeceeee e 541
Declaring an Object for which the Class can Vary cccccoiiiiiiiiiiiis 542
When to use the Bitmap TOOI oooiiiii e 543
Troubleshooting Web AppliCatioNS ...oooiiiiii s 543
Why Is My Web Application Not Ready To TESt? oooiiiiiiiiiiiieeeee e 543
What Can | Do If the Page | Have Selected IS Empty? ... 544
Why Do | Get an Error Message When | Set the Accessibility Extension? — 544
HtmlPopupList Causes the Browser to Crash when Using IE DOM Extension544
Silk Test Classic Does Not Recognize LINKS oooiiiiiiiiiiiiiiieeeee e 544
Mouse Coordinate (X, y) is Off the Screen ... 545
Recording a Declaration for a Browser Page Containing Many Child Objects 545
Recording VerifyProperties() Detects BrowserPage Properties and Children 545
Silk Test Classic Cannot See Any Children in My Browser Page —ccccccevvinnnns 546
Silk Test Classic Cannot Verify Browser Extension Settings —cccccceeeiiiiniiiinnnen. 546
Silk Test Classic Cannot Find the Web Page of the Application cooiiiiiinnee. 547
Silk Test Classic Cannot Recognize Web Objects with the Classic Agent 547
Silk Test Classic Recognizes Static HTML Text But Does Not Recognize Text548
A Test Frame Which Contains HTML Frame Declarations Does Not Compile 549
Web Property Sets Are Not Displayed During Verification —ccccccoiiiiiiiininneen. 549
Why Does the Recorder Generate so Many MoveMouse() Calls? ... 549
Using the Runtime Version of Silk Test ClasSIC cccccceeeiiiiiiieeeieeeeeeeeiiis 551

Contents | 15

16 | Contents

Installing the RUNLIME VEISION ..ot e e e e e 551

Starting the RUNIIME VEISION . 551
Comparing Silk Test Classic and Silk Test Classic Runtime Menus and Commands 551
WOrKIiNg WIth FIlES oo 562
Creating @ NEW File .ot e e e e e e e e e e 562
Searching for a String in @ File ..o 562
Replacing a String in @ File ..o 563
Z TS B o [(o] TP U PRI 563
Setting UP @ PHINTEE oot e e e e e e e e e e e e e e e as 564
Printing the Contents of the Active WINAOW ... 564
Confirm Test Description Identifier Dialog BOX —coviiiiiiiiiiiiiiiiiieeeeee e 565
Contacting MICrO FOCUS ..o e e e e e e e e 566
Information Needed by Micro FOCUS SUPPOItLING ..o 566
(€7 [0151ST- 1 Y/ 567
ATESE ClASSES eeiiiiiiiiiiiiie e e e ettt e e e e oo oot bbbt ettt e e e e e e e e e e aaa bbb be et e e e e e e e e e e e e nbnbreaeeaaaaaeaeas 567
4Test-Compatible Information or Methods oooiiiiiiiii e 567
Abstract WINdowing TOOIKIt ...ooiiiiiiiiii ettt e e e e e e e 567
o Tolot=T a0 To ol o= =T = ST PPTPT PR 567
= To =] o | TP P PP PO PPTTPRPRRRR 567
=T o] o] 1= PO TP 568
Yo o [Tor= Vi o] 1) r= 1 (= ST PPPRUTTP 568
L] o] U (TP TP TP 568
= oL I (V1 = I T O O PO PPT PP 568
DS SEALE oo e e e e e e e eas 568
DIdIrECHIONAI TEXE et e e e e e e e e bbb eeaeeaeas 568
234 =T oo o [PP PP RPOTPP 568
(o= | 1RS] r= To3 G PP PO PP PPPRPRTRP 569
(o3 11 [0 o] o] = ox AU U TP PPPRURTP 569
Lol = TSP PUT TP 569
ClaSS lIDFAIY et e e e e e e aaaaeas 569
(oo S o g F=T o] o] o [T U PPPRUTTP 569
L0 Fo S (o 1 TP OT TSP 569
(ol [=T o) =T == LU PPPPPRTRR 569
(olU 1S3 (0] 1 4 1o o] [T o AT UUT TP 569
data-ariVEN TESE CASE oottt et e et e e e e e e e e e e e st e e e e aaaaeeeeas 570
(o Fo = 01T 0] 0= ST UUT TP 570
(o =Tod = U= Vi o] L= E PP PPPPPRT 570
DefaUltBASESIAE ...ooiiiiiiiiiiiit ettt e e e e e e e e e e e e eaaaa s 570
[0 [F= Tox | (o3P PPRTPPTRRE 570
DIffErENCE VIBWET ettt e ettt e e e e e e e e e s e babbe b e e eeaaaaaeeaaas 570
double-byte character Set (DBCS) ..ooiiiiiiiiiiiiee et e s 570
dynamicC INSLANTIALIONeeieiiii it e e e e e e e e et e e e e e e e e e e e e e annnenes 570
dynamicC INK IDrary (DLL) ..ottt e e e e et e e e e e e e e e e e e annes 571
=T o F=1 o] 11 To TR TP UPT PP TPPRT 571
12> Cod=] 1[0] o PSP PPPRTPPR 571
TrAMIE fIlE ettt a e 571
fully qualified ODJECE NAME e 571
(oo]8] ol e =3 ol ¢10] 1 o] o NPT PPPPURTRPTN 571
T a0 | L= TP U PP TP 572
hierarchy of GUI ODJECES ... 572
NOSE MACKHINE et e e e e e e e e e e e e e e e e e e annas 572
1] 1C) Y T EE TP T TP PPPTT 572
([ToF=T g =Tl gTo] r= U1 T] o TP PPPPPPPPT 576
[0 =T 011111 PP PU PP 576
INCIUAE FIlE ettt e e e e e e e e e s bbbt e e e e e e e e e e e e e aannnnes 577

internationalization or globalization ... 577

Java Database Connectivity (JDBEC) ..ouuiiiiiiiieaiiei it 577
Java Development Kit (JDK) oot e e e e 577
Java Foundation ClasSes (JFC) it e e 577
Java Runtime Environment (JRE) ..o 577
Java Virtual Machine (JVM) et e e e e e 577
JAVABEANS ..o e e e 577
= 111 =T o3] | S PP PPPPPPTPT 578
oo U | PP TP PPPPPPRTP 578
[eVElS OF IOCALIZALION ...eeeiiieieeee e 578
ToT=To I (=11 1] o [PP TP PPPPRPPPRP 578
[oTor=1 7421 1T] o PP PP PP PPPPPPRN 578
localize an appliCatioN ..o e 578
[oTor= 1 (o] P TP PP PP PPPPPPRN 578
[0giCal NIEIAICNY et e e e e e et re e e e e e e 579
MANUAL TEST et e e e e et e e e bt e e e st e e e s e nanre e e e e ennnee 579
102 11 P PP P PP PPPPPPP PRI 579
g Fo TSy (=] g] = T PP PR UOT PP 579
MESSATE DOX oo et e e e e e e e e 579
00171 (oo T PP PP E PP P PTPPTPPPRPIN 579
001U S T o | o I PP TSP P P PPPTRP 579
(00 Te = PP PP PP PPPPPPPN 579
MNOOBIESS et s 580
Multibyte Character Set (MBCS) ..o e e 580
Multiple Application DOMAINS ((NET) it e e 580
NEJALIVE TESTING .eeiiiiiiii ittt et e e e e e e s e bbbttt e e e e e e e e e s e s annnbbbbeeeeaeaaaeaaas 580
NeSted dECIAratioNS oiiiiiiiiiee e 580
NO-TOUCKH ((NET) oottt e e e e e e st e e e e e e e e e e 580
(o] o] =T ox PSP PPPPPRTTR 580
(01011] TP O PP PPP PP 580
Overloaded MEtNOA ... e 581
PArENt ODJECT oottt e e e e e eaa e as 581
PErfOrMAaNCE TESHING oooeiiiiiiti ettt e e e et e e e e e e e e e e e e e bbb e e aeeeaaaaaeas 581
physical hierarchy ((NET) e e e e e eeaaaaeeas 581
11T R T o | o TP PPPPRUPPT 581
POIYMOIPRISIM ettt e e e e e e e e e s st et eeeeaaaaaeeaan 581
o] (0] 1T o AT PP T T PR O PPTPP 581
o] o] o1=T o =1 PP TSRO 582
(o U= oY PP PPRP PP 582
FECOVEIY SYSTEIM oottt et e e e e e e e e e e e e e e e et eeeeeeeeebebabbbnaa e e e e e e e eeas 582
FEOIESSION TESHING oottt e e e e ettt e e e e e e e e e e s e bbb e be e e e e e aaeeeeeaaannnes 582
FESUIS TIl8 oo e e 582
o1 1] o] TP PP PPPPRRPTRR 582
o 1] o] 8 111 TP PPPPPPPRPE 582
SIAE-DY-SIAE ((NET) ittt e e e e e e e e e s bbb e b e e eeaaaa e e e e s aannnnnes 582
SIMPLIfiIed ChINESE et e e e e e e e e e as 583
Single-Byte Character Set (SBCS) oo 583
SIMOKE TESE e 583
Standard Widget TOOIKIt (SWT) oo a e 583
SEAIEIMENT e e e e e st e e e 583
SEATUS [IN8 et e et s e e e e e e e 583
LSRR (1] 1] T TP UUT TP 583
S0 o] o] = 1 o TP PPPPPRTTP 584
] U 1 TP PPPPPRTTR 584
YY1 o PP TP T TP 584
£} 101 010 < TR OUT TP 584

Contents | 17

18| Contents

BB oeveoeeeeee e eee e e e e e e ettt ettt ee et e ettt 584

TArget MACKINE ettt e e e e e e e e e e e e e e nb e 584
L0101 o1 F= 1= PP PRPPT RPN 585
10215 e (1Tt] o] 1o] o I PP PPPPPPRTT 585
TESETAME fIl e e 585
LTS o= 1= PPN UPUPRPPNt 585
(1S3 0 o] = o TP PO PPPPUPPP 585
TOtalMEMOIY PArAMELET ettt e e e e e et e e e e e e e e e e e e e bbb b e e e e eeaaaeaaas 585
TraditionNal ChINESE ...ttt e e e et e e e e e e et b e e e e earannns 586
(21112 o] L= PRSP 586
VErIfICAtioN SLAtEMENT oo e e et e e e e e eaba s 586
VIS V- N 1= PSR UPUOOURPPN 586
WINAOW AECIArAtIONS ..eeeiiiiiii ettt e e e e et e e e e s et e e e eeeesbaeaeeeaens 586
1L ao [0 1T o - o PP TP PPPRT 586
D= 11 PSR PSOORR 586

Automation Under Special Conditions
(Missing Peripherals)

Basic product orientation

Silk Test Classic is a GUI testing product that tries to act like a human user in order to achieve meaningful
test results under automation conditions. A test performed by Silk Test Classic should be as valuable as a
test performed by a human user while executing much faster. This means that Silk Test Classic requires a
testing environment that is as similar as possible to the testing environment that a human user would
require in order to perform the same test.

Physical peripherals

Manually testing the Ul of a real application requires physical input and output devices like a keyboard, a
mouse, and a display. Silk Test Classic does not necessarily require physical input devices during test
replay. What Silk Test Classic requires is the ability of the operating system to perform keystrokes and
mouse clicks. The Silk Test Classic replay usually works as expected without any input devices connected.
However, some device drivers might block the Silk Test Classic replay mechanisms if the physical input
device is not available.

The same applies to physical output devices. A physical display does not necessarily need to be
connected, but a working video device driver must be installed and the operating system must be in a
condition to render things to the screen. For example, rendering is not possible in screen saver mode or if a
session is locked. If rendering is not possible, low-level replay will not work and high-level replay might also
not work as expected, depend on the technology that is used in the application under test (AUT).

Virtual machines

Silk Test Classic does not directly support virtualization vendors, but can operate with any type of
virtualization solution as long as the virtual guest machine behaves like a physical machine. Standard
peripherals are usually provided as virtual devices, regardless of which physical devices are used with the
machine that runs the virtual machine.

Cloud instances

From an automation point of view, a cloud instance is not different to a virtual machine. However, a cloud
instance might run some special video rendering optimization, which might lead to situations where screen
rendering is temporarily turned off to save hardware resources. This might happen when the cloud instance
detects that no client is actively viewing the display. In such a case, you could open a VNC window as a
workaround.

Special cases

Application Such an application cannot be tested with Silk Test Classic. Silk Test Classic needs to
launched hook to a target application process in order to interact with it. Hooking is not possible
without any for processes that do not have a visible window. In such a case you can only run
window system commands.

(headless)

Remote If Silk Test Classic resides and operates within a remote desktop session, it will fully
desktops, operate as expected.

terminal

services, and Note: You require a full user session and the remote viewing window needs to

be maximized. If the remote viewing window is not displayed for some reason,

Automation Under Special Conditions (Missing Peripherals) | 19

remote for example network issues, Silk Test Classic will continue to replay but might

applications (all produce unexpected results, depending on what remote viewing technology is

vendors) used. For example, a lost remote desktop session will negatively impact video
rendering, whereas other remote viewing solutions might show no impact at all
once the viewing window was lost.

If Silk Test Classic is used to interact with the remote desktop, remote view, or remote
app window, only low-level techniques can be used, because Silk Test Classic sees
only a screenshot of the remote machine. For some remote viewing solutions even
low-level operations may not be possible because of security restrictions. For example,
it might not be possible to send keystrokes to a remote application window.

Known Silk Test Classic requires an interactively-logged-on full-user session. Disable anything
automation that could lock the session, for example screen savers, hibernation, or sleep mode. If
obstacles this is not possible because of organizational policies you could workaround such

issues by adding keep alive actions, for example moving the mouse, in regular
intervals or at the end of each test case.

ﬂ Note: Depending on the configuration of the actual testing environment and the
technologies that are used for the AUT, the virtualization, and the terminal
services, you may face additional challenges and limitations during the test
automation process.

20 | Automation Under Special Conditions (Missing Peripherals)

Silk Test Product Suite

Silk Test is an automated testing tool for fast and reliable functional and regression testing. Silk Test helps
development teams, quality teams, and business analysts to deliver software faster, and with high quality.
With Silk Test you can record and replay tests across multiple platforms and devices to ensure that your
applications work exactly as intended.

The Silk Test product suite includes the following components:

» Silk Test Workbench — Silk Test Workbench is the quality testing environment that offers .NET scripting
for power users and easy to use visual tests to make testing more accessible to a broader audience.

e SIilk4ANET — The Silk4NET Visual Studio plug-in enables you to create Visual Basic or C# test scripts
directly in Visual Studio.

« Silk4J — The Silk4J Eclipse plug-in enables you to create Java-based test scripts directly in your Eclipse
environment.

» Silk Test Classic — Silk Test Classic is the Silk Test client that enables you to create scripts based on
4Test.

» Silk Test Agents — The Silk Test agent is the software process that translates the commands in your
tests into GUI-specific commands. In other words, the agent drives and monitors the application you are
testing. One agent can run locally on the host machine. In a networked environment, any number of
agents can run on remote machines.

Silk Test Product Suite

21

SILK TEST PRODUCT SUITE

Silk Test Silk4N et Silk4J
Workbench ‘ufilauul Studio Plugin Echipize Flugin

v v v v
visual Ill
Test / /
o Do
Q? ? 9 Q
Scripted With
: : H
.Met Testing Java Testing
Framework | NTF Framework | JTF
Testing Fra |h 0
v v v v v
OPEN AGENT CLASSIC AGENT
0 0 0 °© 90 00 o
.I':'LI;:]E[l " " - : Esmaa Il:- FETEIYT] n.;- eodooay :
v v v vV vy T wvw

Enterprise Packaged Mabile Web Deskiop Legacy
Application Application Application Application Application Application
- . - . - 3 - | . "

The sizes of the individual boxes in the image above differ for visualization purposes and do not reflect the
included functionality.

The product suite that you install determines which components are available. To install all components,
choose the complete install option. To install all components with the exception of Silk Test Classic, choose
the standard install option.

22 | Silk Test Product Suite

Classic Agent

The Silk Test agent is the software process that translates the commands in your test scripts into GUI-
specific commands. In other words, the agent drives and monitors the application you are testing. One
agent can run locally on the host machine. In a networked environment, any number of agents can run on
remote machines.

Silk Test Classic provides two types of agents, the Open Agent and the Classic Agent. The agent that you
assign to your project or script depends on the type of application that you are testing.

When you create a new project, Silk Test Classic automatically uses the agent that supports the type of
application that you are testing. For instance, if you create an Apache Flex or Windows API-based client/
server project, Silk Test Classic uses the Open Agent. When you open a project or script that was
developed with the Classic Agent, Silk Test Classic automatically uses the Classic Agent. For information
about the supported technology domains for each agent, refer to Testing in Your Environment.

The Classic Agent uses hierarchical object recognition to record and replay test cases that use window
declarations to find and identify objects. With the Classic Agent, one Agent process can run locally on the
host machine, but in a networked environment, the host machine can connect to any number of remote
Agents simultaneously or sequentially. You can record and replay tests remotely using the Classic Agent.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

How Silk Test Classic Assigns an Agent to a Window
Declaration

When you record a test with the Open Agent set as the default agent, Silk Test Classic includes a locator to
identify the top-most window of the test application. For instance, this window declaration for a Notepad
application that uses the Open Agent includes the following locator:

window MainWin UntitledNotepad
locator "/MainWin[@caption="Untitled - Notepad™]"

Silk Test Classic determines which agent to use by detecting whether a locator or Find or FindAll
command is used. When Silk Test Classic detects a locator on the top-most window or detects a Find or
FindAll command, the Open Agent is automatically used. If no locator or Find or FindAll command is
present, Silk Test Classic uses the Classic Agent.

Note: Any window declaration is only valid for either the Open Agent or the Classic Agent. There is no
way to use the same window declaration with both agents. The only exception to this rule are SYS
functions and DLL calls, which are implemented for both agents.

Agent Options

The following table lists the AgentClass options that can be manipulated with the GetOption method
and SetOption method. Only options that can be manipulated by the user are listed here; other options
are for internal use only.

Agent Option Agent Supported Description

OPT_AGENT_CLICKS_ONLY Classic Agent BOOLEAN

Classic Agent | 23

https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

24

Classic Agent

Agent Option

Agent Supported

Description

OPT_ALTERNATE_RECORD_BREAK

OPT_APPREADY_RETRY

OPT_APPREADY_TIMEOUT

OPT_BITMAP_MATCH_COUNT

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

FALSE to use the API-based clicks;
TRUE to use agent-based clicks. The
default is FALSE. This option applies
to clicks on specific HTML options
only. For additional information, see
API Click Versus Agent Click.

This option can be set through the
Compatibility tab on the Agent
Options dialog box,
Agent.SetOption, or
BindAgentOption(), and may be
retrieved through
Agent.GetOption().

BOOLEAN

TRUE pauses recording when Ctrl
+Shift is pressed. Otherwise, Ctrl+Alt
is used. By default, this is FALSE.

NUMBER

The number of seconds that the agent
waits between attempts to verify that
an application is ready. The agent
continues trying to test the application
for readiness if it is not ready until the
time specified with
OPT_APPREADY_TIMEOUT is
reached.

NUMBER

The number of seconds that the agent
waits for an application to become
ready. If the application is not ready
within the specified timeout, Silk Test
Classic raises an exception.

To require the agent to check the
ready state of an application, set
OPT_VERIFY_APPREADY.

This option applies only if the
application or extension knows how to
communicate to the agent that it is
ready. To find out whether the
extension has this capability, see the
documentation that comes with the
extension.

INTEGER

The number of consecutive snapshots
that must be the same for the bitmap
to be considered stable. Snapshots
are taken up to the number of

Agent Option Agent Supported Description

seconds specified by
OPT_BITMAP_MATCH_TIMEOQOUT,
with a pause specified by
OPT_BITMAP_MATCH_INTERVAL
occurring between each snapshot.

Related methods:

« CaptureBitmap

+ GetBitmapCRC

+ SYS_CompareBitmap
« VerifyBitmap

+ WaitBitmap

OPT_BITMAP_MATCH_INTERVAL Classic Agent INTEGER

Open Agent The time interval between snapshots
to use for ensuring the stability of the
bitmap image. The snapshots are
taken up to the time specified by
OPT_BITMAP_MATCH_TIMEOUT.

Related methods:

« CaptureBitmap

+ GetBitmapCRC

- SYS_CompareBitmap
« VerifyBitmap

- WaitBitmap

OPT_BITMAP_MATCH_TIMEOUT Classic Agent NUMBER

Open Agent The total time allowed for a bitmap
image to become stable.

During the time period, Silk Test
Classic takes multiple snapshots of
the image, waiting the number of
seconds specified with
OPT_BITMAP_MATCH_TIMEOUT
between snapshots. If the value
returned by
OPT_BITMAP_MATCH_TIMEOUT is
reached before the number of
bitmaps specified by
OPT_BITMAP_MATCH_COUNT
match, Silk Test Classic stops taking
snapshots and raises the exception
E_BITMAP_NOT_STABLE.

Related methods:
« CaptureBitmap

+ GetBitmapCRC
« VerifyBitmap

Classic Agent | 25

26

Classic Agent

Agent Option

Agent Supported

Description

OPT_BITMAP_PIXEL_TOLERANCE

OPT_CLASS_MAP

OPT_CLOSE_CONFIRM_BUTTONS

OPT_CLOSE_DIALOG_KEYS

OPT_CLOSE_MENU_NAME

OPT_CLOSE_WINDOW_BUTTONS

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Classic Agent

Classic Agent

Open Agent

- WaitBitmap

INTEGER

The number of pixels of difference
below which two bitmaps are
considered to match. If the number of
pixels that are different is smaller than
the number specified with this option,
the bitmaps are considered identical.
The maximum tolerance is 32767
pixels.

Related methods:

+ SYS CompareBitmap
 VerifyBitmap
« WaitBitmap

LIST OF STRING

The class mapping table for custom
objects, with each entry in the list in
the form custom_class =
standard_class.

LIST OF STRING

The list of buttons used to close
confirmation dialog boxes, which are
dialog boxes that display when
closing windows with the methods
Close, CloseWindows, and
Exit.

LIST OF STRING

The keystroke sequence used to
close dialog boxes with the methods
Close, CloseWindows, and
Exit.

STRING

A list of strings representing the list of
menu items on the system menu used
to close windows with the methods
Close, CloseWindows, and
Exit.

Default is Close.

LIST OF STRING

The list of buttons used to close
windows with the methods Close,
CloseWindows, and EXit.

Agent Option Agent Supported Description

OPT_CLOSE_WINDOW_MENUS Classic Agent LIST OF STRING

Open Agent The list of menu items used to close
windows with the methods Close,
CloseWindows, and EXit.

OPT_CLOSE_WINDOW_TIMEOUT Classic Agent NUMBER

Open Agent The number of seconds that Silk Test
Classic waits before it tries a different
close strategy for the Close method
when the respective window does not
close. Close strategies include Alt+F4
or sending the keys specified by
OPT_CLOSE_DIALOG_KEYS. By
default, this is 2.

OPT_COMPATIBLE_TAGS Classic Agent BOOLEAN

TRUE to generate and operate on
tags compatible with releases earlier
than Release 2; FALSE to use the
current algorithm.

The current algorithm affects tags that
use index numbers and some tags
that use captions. In general, the
current tags are more portable, while
the earlier algorithm generates more
platform-dependent tags.

Enables you to use the behavior of
the specified Silk Test Classic version
for specific features, when the
behavior of these features has
changed in a later version.

Example strings:

« 12
- 11.1
+ 13.0.1

By default, this option is not set.

OPT_COMPRESS_WHITESPACE Classic Agent BOOLEAN

TRUE to replace all multiple
consecutive white spaces with a
single space for comparison of tags.
FALSE (the default) to avoid replacing
blank characters in this manner.

This is intended to provide a way to
match tags where the only difference
is the number of white spaces
between words.

Classic Agent | 27

28

Classic Agent

Agent Option

Agent Supported

Description

OPT_DROPDOWN_PICK_BEFORE_GET

OPT_ENABLE_ACCESSIBILITY

Classic Agent

Classic Agent

Open Agent

If at all possible, use "wildcard "
instead of this option.

This option can increase test time
because of the increased time it takes
for compressing of white spaces in
both source and target tags. If Silk
Test Classic processes an object that
has many children, this option may
result in increased testing times.

The tag comparison is performed in
two parts. The first part is a simple
comparison; if there is a match, no
further action is required. The second
part is to compress consecutive white
spaces and retest for a match.

Due to the possible increase in test
time, the most efficient way to use this
option is to enable and disable the
option as required on sections of the
testing that is affected by white space.
Do not enable this option to cover
your entire test.

Tabs in menu items are processed
before the actual tags are compared.
Do not modify the window
declarations of frame files by adding
tabs to any of the tags.

BOOLEAN

TRUE to drop down the combo box
before trying to access the content of
the combo box. This is usually not
needed, but some combo boxes only
get populated after they are dropped
down. If you are having problems
getting the contents of a combo box,
set this option to TRUE.

Default is FALSE.

BOOLEAN

TRUE to enable Accessibility when
you are testing a Win32 application
and Silk Test Classic cannot
recognize objects. Accessibility is
designed to enhance object
recognition at the class level. FALSE
to disable Accessibility.

Note: For Mozilla Firefox and
Google Chrome, Accessibility
is always activated and cannot
be deactivated.

Agent Option Agent Supported

Description

OPT_ENABLE_MOBILE_WEBVIEW_FALLBAC Qpen Agent
K_SUPPORT

OPT_ENABLE_UI_AUTOMATION_SUPPORT Qpen Agent

OPT_ENSURE_ACTIVE_WINDOW Open Agent

OPT_EXTENSIONS Classic Agent

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES Classic Agent

OPT_HANG_APP_TIME_OUT Open Agent

OPT_ITEM_RECORD Open Agent

Default is FALSE.

BOOLEAN

Enables mobile native fallback
support for hybrid mobile applications
that are not testable with the default
browser support.

By default, this is FALSE.

TRUE to enable Microsoft Ul
Automation support instead of the
normal Win32 control recognition.
This option might be useful when you
are testing a Win32 application and
Silk Test Classic cannot recognize
objects. AUTODETECT to
automatically enable Microsoft Ul
Automation support for JavaFX.

By default, this is FALSE.

BOOLEAN

TRUE ensures that the main window
of the call is active before a call is
executed. By default, this is FALSE.

LIST OF STRING

The list of loaded extensions. Each
extension is identified by the name of
the .dll or .vxx file associated with the
extension.

Unlike the other options,
OPT_EXTENSIONS is read-only and
works only with GetOption().
BOOLEAN

TRUE returns an empty list if no text
is selected. FALSE removes any
blank lines within the selected text.

By default, this is TRUE.

NUMBER

Specifies the Unresponsive
application timeout, which is the
timeout for pending playback actions.

The default value is 5 seconds.

BOOLEAN

For SWT applications, TRUE records
methods that invoke tab items directly
rather than recording the tab folder

Classic Agent | 29

30

Classic Agent

Agent Option Agent Supported

Description

OPT_KEYBOARD_DELAY Classic Agent
Open Agent

OPT_KEYBOARD_LAYOUT Classic Agent

OPT_KILL_HANGING_APPS Classic Agent
Open Agent

OPT_LOCATOR_ATTRIBUTES_CASE_SENSIT Qpen Agent
IVE

hierarchy. For example, you might
record
SWTControls.SWTTabControl
1._TabFolder.Select(). If this
option is set to FALSE, SWT tab
folder actions are recorded. For
example, you might record
SWTControls.SWTTabControl
1.Select("TabFolder'™)

By default, this is TRUE.

NUMBER

Default is 0.02 seconds; you can
select a number in increments of .001
from .001 to up to 1000 seconds.

Be aware that the optimal number can
vary, depending on the application
that you are testing. For example, if
you are testing a Web application, a
setting of .001 radically slows down
the browser. However, setting this to 0
(zero) may cause basic application
testing to fail.

STRING

Provides support for international
keyboard layouts in the Windows
environment. Specify an operating-
system specific name for the
keyboard layout. Refer to the
Microsoft Windows documentation to
determine what string your operating
system expects. Alternatively, use the
GetOption method to help you
determine the current keyboard
layout, as in the following example:
Print (Agent.GetOption
(OPT_KEYBOARD_LAYOUT))

BOOLEAN

Specifies whether to shutdown the
application if communication between
the Agent and the application fails or
times out. Set this option to TRUE
when testing applications that cannot
run multiple instances. By default, this
is FALSE.

BOOLEAN

Set to Yes to add case-sensitivity to
locator attribute names, or to NO to

Agent Option Agent Supported Description

match the locator names case

insensitive.
OPT_MATCH_ITEM_CASE Classic Agent BOOLEAN
Open Agent Set this option to TRUE to have Silk

Test Classic consider case when
matching items in combo boxes, list
boxes, radio lists, and popup lists, or
set this option to FALSE to ignore
case differences during execution of a
Select method. This option has no
effect on a Verify function or a
VerifyContents method.

The command, keystrokes or mouse
buttons, used to display pop-up
menus, which are menus that popup
over a particular object. To use mouse
buttons, specify <button1>,
<button2>, or <button3> in the
command sequence.

OPT_MENU_PICK_BEFORE_GET Classic Agent BOOLEAN

TRUE to pick the menu before
checking whether an item on it exists,
is enabled, or is checked, or FALSE to
not pick the menu before checking.
When TRUE, you may see menus
pop up on the screen even though
your script does not explicitly call the
Pick method.

Default is FALSE.

OPT_MOUSE_DELAY Classic Agent NUMBER

Open Agent The delay used before each mouse
event in a script. The delay affects
moving the mouse, pressing buttons,
and releasing buttons. By default, this

is 0.02.
OPT_MULTIPLE_TAGS Classic Agent BOOLEAN
Open Agent TRUE to use multiple tags when

recording and playing back. FALSE to
use one tag only, as done in previous
releases.

This option cannot be set through the
Agent Options dialog box. Its default
is TRUE and is only set by the INI file,
option file, and through
Agent.SetOption.

Classic Agent | 31

32

Classic Agent

Agent Option

Agent Supported

Description

OPT_NO_ICONIC_MESSAGE_BOXES

OPT_PAUSE_TRUELOG

OPT_PLAY_MODE

OPT_POST_REPLAY_DELAY

OPT_RADIO_LIST

OPT_RECORD_LISTVIEW_SELECT BY_TYP

EKEYS

OPT_RECORD_MOUSE_CLICK_RADIUS

Classic Agent

Classic Agent

Classic Agent

Classic Agent

Open Agent

Classic Agent

Open Agent

Open Agent

This option overrides the Record
multiple tags check box that displays
in both the Recorder Options dialog
box and the Record Window
Declaration Options dialog box.

If the Record multiple tags check
box is grayed out and you want to
change it, check this setting.

BOOLEAN

TRUE to not have minimized windows
automatically recognized as message
boxes.

Default is FALSE.

BOOLEAN

TRUE to disable TrueLog at runtime
for a specific portion of a script, or
FALSE to enable TruelLog.

This option has no effect if Truelog is
not enabled.

Default is FALSE.

STRING

Used to specify playback mechanism.
For additional information for
Windows applications, see Playing
Back Mouse Actions.

NUMBER

The time in seconds to wait after
invoking a function or writing
properties. Increase this delay if you
experience replay problems due to
the application taking too long to
process mouse and keyboard input.
By default, this is 0.00.

BOOLEAN

TRUE to view option buttons as a
group; FALSE to use the pre-Release
2 method of viewing option buttons as
individual objects.

BOOLEAN

TRUE records methods with typekeys
statements rather than with keyboard
input for certain selected values. By
default, this is FALSE.

INTEGER

Agent Option Agent Supported Description

The number of pixels that defines the
radius in which a mouse down and
mouse up event must occur in order
for the Open Agent to recognize it as
a click. If the mouse down and mouse
up event radius is greater than the
defined value, a PressMouse and
ReleaseMouse event are scripted.
By default, this is set to 5 pixels.

OPT_RECORD_MOUSEMOVES Classic Agent BOOLEAN

Open Agent TRUE records mouse moves for Web
pages, Win32 applications, and
Windows Forms applications that use
mouse move events. You cannot
record mouse moves for child
domains of the xBrowser technology
domain, for example Apache Flex and
Swing. By default, this is FALSE.

OPT_RECORD_SCROLLBAR_ABSOLUT Open Agent BOOLEAN

TRUE records scroll events with
absolute values instead of relative to
the previous scroll position. By
default, this is FALSE.

OPT_REL1_CLASS_LIBRARY Classic Agent BOOLEAN

TRUE to use pre-Release 2 versions
of GetChildren, GetClass, and
GetParent, or FALSE to use
current versions.

OPT_REMOVE_FOCUS_ON_CAPTURE_TEXT Qpen Agent BOOLEAN

TRUE to remove the focus from a
window before text is captured. By
default, this is FALSE.

OPT_REPLAY_HIGHLIGHT_TIME Open Agent NUMBER

The number of seconds before each
invoke command that the object is
highlighted.

By default, this is 0, which means that
objects are not highlighted by default.

OPT_REPLAY_MODE Classic Agent NUMBER

Open Agent The replay mode defines how replays
on a control are executed: They can
be executed with mouse and
keyboard (low level) or using the API
(high level). Each control defines
which replay mode is the default
mode for the control. When the

Classic Agent | 33

34

Classic Agent

Agent Option

Agent Supported

Description

OPT_REQUIRE_ACTIVE

Classic Agent

OPT_RESIZE_APPLICATION_BEFORE_RECO Qpen Agent

RDING

OPT_SCROLL_INTO_VIEW

OPT_SET_TARGET_MACHINE

Classic Agent

Classic Agent

default replay mode is enabled, most
controls use a low level replay. The
default mode for each control is the
mode that works most reliably. If a
replay fails, the user can change the
replay mode and try again. Each
control that supports that mode will
execute the replay in the specified
mode. If a control does not support
the mode, it executes the default
mode. For example, if PushButton
supports low level replay but uses
high level replay by default, it will use
low level replay only if the option
specifies it. Otherwise, it will use the
high level implementation.

Possible values include 0, 1, and 2. 0
is default, 1 is high level, 2 is low
level. By default, this is 0.

BOOLEAN

Setting this option to FALSE allows
4Test statements to be attempted
against inactive windows.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

BOOLEAN

Define whether to resize the
application under test (AUT) when a
recording session starts, to display
the Silk Recorder next to the AUT. If
this option is disabled, the AUT and
the Silk Recorder might overlap. This
option is TRUE by default.

BOOLEAN

TRUE to scroll a control into view
before recording events against it or
capturing its bitmap. This option
applies only when
OPT_SHOW_OUT_OF_VIEW is set
to TRUE. This option is useful for
testing Web applications in which
dialog boxes contain scroll bars. This
option applies only to HTML objects
when you are using the DOM
extension.

STRING

Agent Option Agent Supported Description

The IP address and port number to
use for the target machine in
distributed testing using the
SetOption method. To set the
target machine, type:
Agent._SetOption(OPT_SET_ T
ARGET_MACHINE, <
IPAddress >:< PortNumber

>).

Note: A colon must separate
the IP address and the port
number.

To return the IP address and port
number of the current target machine,
type:
Agent.GetOption(OPT_SET T
ARGET_MACHINE)

OPT_SHOW_OUT_OF_VIEW Classic Agent BOOLEAN

TRUE to have the agent see a control
not currently scrolled into view;
FALSE to have the Agent consider an
out-of-view window to be invisible.
This option applies only to HTML
objects when you are using the DOM
extension.

OPT_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: When you upgrade from af Silk
Test version prior to Silk Test 13.0,
and you had set the
OPT_XBROWSER_SYNC_TIMEOUT
option, the Options dialog box wi
display the default value of the

OPT_SYNC_TIMEOUT, aIthougJ:

your timeout is still set to the vallie
you have defined.

OPT_TEXT_NEW_LINE Classic Agent STRING

The keys to type to enter a new line
using the SetMul tiText method
of the TextField class. The default
value is "<Enter>".

Specifies the name of the translation
table to use. If a translation DLL is in
use, the QAP_SetTranslateTable

Classic Agent | 35

36

Classic Agent

Agent Option Agent Supported

Description

OPT_TRIM_ITEM_SPACE Classic Agent
OPT_USE_ANSICALL Classic Agent
OPT_USE_SILKBEAN Classic Agent
OPT_VERIFY_ACTIVE Classic Agent
Open Agent
OPT_VERIFY_APPREADY Classic Agent
OPT_VERIFY_CLOSED Classic Agent
OPT_VERIFY_COORD Classic Agent

entry point is called with the string
specified in this option.

BOOLEAN

TRUE to trim leading and trailing
spaces from items on windows, or
FALSE to avoid trimming spaces.

BOOLEAN

If set to TRUE, each following DLL
function is called as ANSI. If set to
FALSE, which is the default value,
UTF-8 DLL calls are used. For single
ANSI DLL calls you can also use the
ansicall keyword.

BOOLEAN

TRUE to enable the agent to interact
with the SilkBean running on a UNIX
machine.

Default is FALSE.

BOOLEAN

TRUE to verify that windows are
active before interacting with them;
FALSE to not check. See Active and
Enabled Statuses for information
about how this option affects Silk Test
Classic methods.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

BOOLEAN

TRUE to synchronize the agent with
the application under test. Calls to the
agent will not proceed unless the
application is ready.

BOOLEAN

TRUE to verify that a window has
closed. When FALSE, Silk Test
Classic closes a window as usual, but
does not verify that the window
actually closed.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

BOOLEAN

Agent Option Agent Supported Description

TRUE to check that coordinates
passed to a method are inside the
window before the mouse is pressed;
FALSE to not check. Typically, you
use the checking feature unless you
need to be able to pass coordinates
outside of the window, such as
negative coordinates.

If this option is set to TRUE and
coordinates fall outside the window,
Silk Test Classic raises the exception
E_COORD_OUTSIDE_WINDOW.

OPT_VERIFY_CTRLTYPE Classic Agent BOOLEAN

TRUE to check that objects are of the
specified type before interacting with
them; FALSE to not check.

When TRUE, Silk Test Classic
checks, for example, that an object
that claims to be a listbox is actually a
listbox. For custom objects, you must
map them to the standard types to
prevent the checking from signaling
an exception, using the Silk Test
Classic class map facility.

Default is FALSE.

OPT_VERIFY_ENABLED Classic Agent BOOLEAN

TRUE to verify that windows are
enabled before interacting with them;
FALSE to not check. For information
about how this option affects various
Silk Test Classic methods, see Active
and Enabled Statuses.

OPT_VERIFY_EXPOSED Classic Agent BOOLEAN

TRUE to verify that windows are
exposed (that is, not covered,
obscured, or logically hidden by
another window) before interacting
with them; FALSE to not check.

Default is TRUE, except when running
script statements that were recorded
and are in a recording statement.

OPT_VERIFY_RESPONDING Classic Agent BOOLEAN

Setting this option to FALSE
suppresses "control not responding"
errors.

OPT_VERIFY_UNIQUE Classic Agent BOOLEAN

Classic Agent | 37

38

Classic Agent

Agent Option

Agent Supported

Description

OPT_WAIT_ACTIVE_WINDOW

OPT_WAIT_ACTIVE_WINDOW_RETRY

OPT_WINDOW_MOVE_TOLERANCE

Open Agent

Open Agent

Open Agent

Classic Agent

TRUE to raise the
E_WINDOW_NOT_UNIQUE
exception upon encountering two or
more windows with the same tag;
FALSE to not raise the exception.
When OPT_VERIFY_UNIQUE is
FALSE, Silk Test Classic ignores the
duplication and chooses the first
window with that tag that it
encounters.

You can use a modified tag syntax to
refer to a window with a non-unique
tag, even when
OPT_VERIFY_UNIQUE is TRUE. You
can either include an index number
after the object, as in
myDialog("Cancel[2]"), or you can
specify the window by including the
text of a child that uniquely identifies
the window, such as "myDialog/
uniqueText/...", where the unique text
is the tag of a child of that window.

NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active. If a window does not become
active within the specified time, Silk
Test Classic raises an exception.

To require the Open Agent to check
the active state of a window, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW is set
to 2 seconds.

NUMBER

The number of seconds Silk Test
Classic waits for a window to become
active before trying to verify again that
the window is active.

To require the Open Agent to retry the
active state of an object, set
OPT_ENSURE_ACTIVE_WINDOW
to TRUE.

By default,
OPT_WAIT_ACTIVE_WINDOW_RET
RY is set to 0.5 seconds.

INTEGER

Agent Option Agent Supported Description

The number of pixels allowed for a
tolerance when a moved window does
not end up at the specified position.

For some windows and GUIs, you
cannot always move the window to
the specified pixel. If the ending
position is not exactly what was
specified and the difference between
the expected and actual positions is
greater than the tolerance, Silk Test
Classic raises an exception.

On Windows, the tolerance can be set
through the Control Panel, by setting
the desktop window granularity
option. If the granularity is zero, you
can place a window at any pixel
location. If the granularity is greater
than zero, the desktop is split into a
grid of the specified pixels in width,
determining where a window can be
placed. In general, the tolerance
should be greater than or equal to the

granularity.
OPT_WINDOW_RETRY Classic Agent NUMBER
Open Agent The number of seconds Silk Test

Classic waits between attempts to
verify a window, if the window does
not exist or is in the incorrect state.
Silk Test Classic continues trying to
find the window until the time
specified with
OPT_WINDOW_TIMEOUT is
reached.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

* OPT_VERIFY_ENABLED
» OPT_VERIFY_ACTIVE
* OPT_VERIFY_EXPOSED
* OPT_VERIFY_UNIQUE

OPT_WINDOW_SIZE_TOLERANCE Classic Agent INTEGER

The number of pixels allowed for a
tolerance when a resized window
does not end at the specified size.

Classic Agent | 39

40

Classic Agent

Agent Option

Agent Supported

Description

OPT_WINDOW_TIMEOUT

Classic Agent

Open Agent

OPT_WPF_CHECK_DISPATCHER_FOR_IDLE = Open Agent

OPT_WPF_CUSTOM_CLASSES

Open Agent

For some windows and GUIs, you
cant always resize the window to the
particular size specified. If the ending
size is not exactly what was specified
and the difference between the
expected and actual sizes is greater
than the tolerance, Silk Test Classic
raises an exception.

On Windows, windows cannot be
sized smaller than will fit comfortably
with the menu bar.

NUMBER

The number of seconds Silk Test
Classic waits for a window to appear
and be in the correct state. If a
window does not appear within the
specified timeout, Silk Test Classic
raise an exception.

The correct state of the window
depends on various options. For
example, Silk Test Classic might
check whether a window is enabled,
active, exposed, or unique, depending
on the settings of the following
options:

OPT_VERIFY_ENABLED
« OPT_VERIFY_ACTIVE
OPT_VERIFY_EXPOSED
OPT_VERIFY_UNIQUE

BOOLEAN

For some WPF applications the Silk
Test synchronization might not work
due to how certain controls are
implemented, resulting in Silk Test
Classic not recognising when the
WPF application is idle. Setting this
option to FALSE disables the WPF
synchronization and prevents Silk
Test Classic from checking the WPF
dispatcher, which is the thread that
controls the WPF application. Set this
option to FALSE to solve
synchronization issues with certain
WPF applications. By default, this is
TRUE.

LIST OF STRING

Specify the names of any WPF
classes that you want to expose

Agent Option Agent Supported Description

during recording and playback. For
example, if a custom class called
MyGrid derives from the WPF Grid
class, the objects of the MyGrid
custom class are not available for
recording and playback. Grid objects
are not available for recording and
playback because the Grid class is
not relevant for functional testing
since it exists only for layout
purposes. As a result, Grid objects
are not exposed by default. In order to
use custom classes that are based on
classes that are not relevant to
functional testing, add the custom
class, in this case MyGrid, to the
OPT_WPF_CUSTOM_CLASSES
option. Then you can record,
playback, find, verify properties, and
perform any other supported actions
for the specified classes.

OPT_WPF_PREFILL_ITEMS Open Agent BOOLEAN

Defines whether items in a
WPFItemsControl, like
WPFComboBox or WPFL i stBox,
are pre-filled during recording and
playback. WPF itself lazily loads items
for certain controls, so these items
are not available for Silk Test Classic
if they are not scrolled into view. Turn
pre-filling on, which is the default
setting, to additionally access items
that are not accessible without
scrolling them into view. However,
some applications have problems
when the items are pre-filled by Silk
Test Classic in the background, and
these applications can therefore
crash. In this case turn pre-filling off.

OPT_XBROWSER_ENABLE_IFRAME_SUPPO Open Agent BOOLEAN

RT
Specifies whether to enable iframe

and frame support for browsers. If you
are not interested in the content of the
iframes in a web application, disabling
the iframe support might improve
replay performance. For example,
disabling the iframe support might
significantly improve replay
performance for web pages with many
adds and when testing in a mobile
browser. This option is ignored by

Classic Agent | 41

42

Classic Agent

Agent Option Agent Supported

Description

OPT_XBROWSER_EXCLUDE_IFRAMES Open Agent

OPT_XBROWSER_FIND_HIDDEN_INPUT_FIE (Qpen Agent
LDS

OPT_XBROWSER_INCLUDE_IFRAMES Open Agent

OPT_XBROWSER_SYNC_MODE Open Agent

Internet Explorer. This option is
enabled by default.

Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are considered during testing.
Wildcards are allowed, for example
the entry "src:*advertising*" would
exclude <IFRAME src=http://
my.domain/advertising-banner.html>.
This option is ignored by Internet
Explorer. If the list is empty, all
iframes and frames are considered
during testing. Separate multiple
entries with a comma.

BOOLEAN

Specifies whether to display hidden
input fields, which are HTML fields for
which the tag includes
type="hidden"". The default value
is TRUE.

Every entry in the list defines an
attribute name and the corresponding
value. All iframes and frames that do
not match at least one of the entries
are excluded. Wildcards are allowed,
for example the entry "name:*form"
would include <IFRAME name="user-
form" src=...>. This option is ignored
by Internet Explorer. If the list is
empty, all iframes and frames are
considered during testing. Separate
multiple entries with a comma.

STRING

Configures the supported
synchronization mode for HTML or
AJAX. Using the HTML mode ensures
that all HTML documents are in an
interactive state. With this mode, you
can test simple Web pages. If more
complex scenarios with Java script
are used, it might be necessary to
manually script synchronization
functions, such as
WaitForObject,
WaitForProperty,
WaitForDisappearance, or
WaitForChildDisappearance
. Using the AJAX mode eliminates the

Agent Option Agent Supported Description

need to manually script
synchronization functions. By default,
this value is set to AJAX.

OPT_XBROWSER_SYNC_TIMEOUT Open Agent NUMBER

Specifies the maximum time in
seconds for an object to be ready.

Note: Deprecated. Use the
option OPT_SYNC_TIMEOUT
instead.

OPT_XBROWSER_SYNC_EXCLUDE_URLS Qpen Agent STRING

Specifies the URLs of any services or
web pages that you want to exclude
during page synchronization. Some
AJAX frameworks or browser
applications use special HTTP
requests, which are permanently
open in order to retrieve
asynchronous data from the server.
These requests may let the
synchronization hang until the
specified synchronization timeout
expires. To prevent this situation,
either use the HTML synchronization
mode or specify the URL of the
problematic request in the
Synchronization exclude list setting.

Type the entire URL or a fragment of
the URL, such as http://
test.com/timeService or
timeService. Separate entries by
comma. For example:
Agent.SetOption(OPT_XBROW
SER_SYNC_EXCLUDE_URLS,

{ "fpdownload.macromedia.
com',

"fpdownload.adobe.com",
""download.microsoft.com"

19

Setting the Default Agent

Silk Test Classic automatically assigns a default agent to your project or scripts. When you create a new
project, the agent currently selected in the toolbar is the default agent. Silk Test Classic automatically starts
the default agent when you open a project or create a new project. You can configure Silk Test Classic to
automatically connect to the Open Agent or the Classic Agent by default.

To set the default agent, perform one of the following:

* Click Options > Runtime and set the default agent in the Runtime Options dialog box.

Classic Agent | 43

44

» Click the appropriate agent icon in the toolbar.

When you enable extensions, set the recovery system, configure the application, or record a test case, Silk
Test Classic uses the default agent. When you run a test, Silk Test Classic automatically connects to the
appropriate agent. Silk Test Classic uses the window declaration, locator, or Find or FindAl'l command
to determine which agent to use.

Setting the Default Agent Using the Runtime Options
Dialog Box

To set the default agent using the Runtime Options dialog box:

1. Inthe main menu, click Options > Runtime. The Runtime Options dialog box opens.
2. Select the agent that you want to use as the default from the Default Agent list box.

3. If you use the Classic Agent, select the type of network you want to use in the Network list box. If you
select the Open Agent, TCP/IP is automatically selected.

4. If you use named agents, select the local agent name from the Agent Name list box. For instance, if
your environment uses multiple agents or a port that uses a value other than the default, select the local
agent.

5. Click OK.
When you record a test case, Silk Test Classic automatically uses the default agent.

Setting the Default Agent Using the Toolbar Icons
From the main toolbar, click one of the following icons to set the default agent:

¢ to use the Classic Agent.
¢ to use the Open Agent.

Connecting to the Default Agent

Typically, the default agent starts automatically when it is needed by Silk Test Classic. However, you can
connect to the default agent manually if it does not start or to verify that it has started.

To connect to the default Agent, from the main menu, click Tools > Connect to Default Agent.

The command starts the Classic Agent or the Open Agent on the local machine, depending on which agent
is specified as the default in the Runtime Options dialog box. If the Agent does not start within 30
seconds, a message is displayed. If the default Agent is configured to run on a remote machine, you must
connect to it manually.

Creating a Script that Uses Both Agents

Classic Agent

You can create a script that uses the Classic Agent and the Open Agent. Recording primarily depends on
the default agent while replaying the script primarily depends on the window declaration of the underlying
control. If you create a script that does not use window declarations, the default agent is used to replay the
script.

1. Set the default agent to the Classic Agent.
. In the Basic Workflow bar, enable extensions for the application automatically.

2
3. In the Basic Workflow bar, click Record Testcase and record your test case.
4

. When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s).

Click OK. The frame now contains window declarations from the Classic Agent.

Click File > Save to save the test case.

Type a name for the file into the File name field and click Save.

Set the default agent to the Open Agent.

. Click Options > Application Configurations. The Edit Application Configurations dialog box opens.
10.Click Add.

© © N o v

The Select Application dialog box opens.
11.Configure a standard or Web site test configuration.
12.Click OK.
13.Click Record Testcase in the Basic Workflow bar and record your test case.

14.When prompted, click Paste to Editor and then click Paste testcase and update window
declaration(s). The frame now contains window declarations from both the Classic Agent and the Open
Agent. Silk Test Classic automatically detects which agent is required for each test based on the
window declaration and changes the agent accordingly.

15.Click File > Save to save the test case.

16.Click Run Testcase in the Basic Workflow bar to replay the test case. Silk Test Classic automatically
recognizes which agent to use based on the underlying window declarations.

You can also use the function Connect([sMachine, sAgentType]) in a script to connect a machine
explicitly with either the Classic Agent or the Open Agent. Using the connect function changes the default
agent temporarily for the current test case, but it does not change the default agent of your project.
However, this does not override the agent that is used for replay, which is defined by the window
declaration.

Overview of Record Functionality Available for the Silk
Test Agents

The Open Agent provides the majority of the same record capabilities as the Classic Agent and the same
replay capabilities.

The following table lists the record functionality available for each Silk Test agent.

Record Classic Agent Open Agent
Command

Window Supported Supported
Declarations

Application Supported Supported
State

Testcase Supported Supported
Actions Supported Supported
Window Supported Not Supported
Identifiers

Window Supported Not Supported
Locations

Window Not Supported Supported
Locators

Class/Scripted Supported Not Supported

Classic Agent | 45

46

Record Classic Agent Open Agent

Command

Class/ Supported Not Supported
Accessibility

Method Supported Not Supported
Defined Supported Not Supported
Window

Note: Silk Test Classic determines which agent to use by detecting whether a locator or Find or
FindAll command is used. If a locator or Find or FindAll command is present, Silk Test Classic
uses the Open Agent. As a result, you do not need to record window declarations for the Open Agent.
For calls that use window declarations, the agent choice is made based on the presence or absence
of the locator keyword and on the presence or absence of TAG_IS_OPEN_AGENT in a tag or multitag.
When a window declaration contains both locators and tags and either could be used for resolving the
window, check or uncheck the Prefer Locator check box in the General Options dialog box to
determine which method is used.

Setting the Window Timeout Value to Prevent Window Not
Found Exceptions

Classic Agent

The window timeout value is the number of seconds Silk Test Classic waits for a window to display. If the
window does not display within that period, the Window not found exception is raised. For example, loading
an Apache Flex application and initializing the Apache Flex automation framework may take some time,
depending on the machine on which you are testing and the complexity of your Apache Flex application. In
this case, setting the Window timeout value to a higher value enables your application to fully load.

If you suspect that Silk Test Classic is not waiting long enough for a window to display, you can increase
the window timeout value in the following ways:

* Change the window timeout value on the Timing tab of the Agent Options dialog box.
e Manually add a line to the script.

If the window is on the screen within the amount of time specified in the window timeout, the tag for the
object might be the problem.

Manually Setting the Window Timeout Value

In some cases, you may want to increase the window timeout value for a specific test, rather than for all
tests in general. For example, you may want to increase the timeout for Flex application tests, but not for
browser tests.

1. Open the test script.
2. Add the following to the script: Agent.SetOption (OPT_WINDOW_TIMEOUT, numberOfSeconds).

Setting the Window Timeout Value in the Agent
Options Dialog Box
To change the window timeout value in the Agent Options dialog box:

1. Click Options > Agent.
2. Click the Timing tab.
3. Type the value into the Window timeout text box.

The value should be based on the speed of the machine, on which you are testing, and the complexity
of the application that you are testing. By default, this value is set to 5 seconds. For example, loading
and initializing complex Flex applications generally requires more than 5 seconds.

4. Click OK.

Classic Agent | 47

48

Basic Workflow for the Classic Agent

The Basic Workflow bar guides you through the process of creating a test case. To create and execute a
test case, click each icon in the workflow bar to perform the relevant procedures. The procedures and the
appearance of the workflow bar differ depending on whether your test uses the Open Agent or the Classic
Agent.

The Basic Workflow bar is displayed by default. You can display it or hide it by checking and un-checking
the Workflows > Basic check box. If your test uses both the Open Agent and the Classic Agent, the Basic
Workflow bar changes when you switch between the agents.

When you use the Classic Agent, the Basic workflow uses hierarchical object recognition to record and
replay test cases that use window declarations to find and identify objects.

Creating a New Project

You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. The Create Project dialog box appears.

2. Type a unigue name for the project into the Project Name field.
If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.
Project files with a . vtp (Verify Test Project) extension, projectname.vtp, and a
projectname. ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.
After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or by clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.
You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname. ini to this location and copies the extension .ini files, which
are appexpex. ini, axext. ini, domex. ini, and jJavaex. ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you
want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

< If your test uses the Open Agent, configure the application to set up the test environment.
< If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Basic Workflow for the Classic Agent

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you
are using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.
4. Click Enable Extensions.
You cannot enable extensions for Silk Test Classic (partner .exe), the Classic Agent (agent._exe), or
the Open Agent (openAgent.exe).
5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.

6. If your test application does not display in the list, click Refresh. Or, you may need to add your
application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.
8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Setting the Recovery System for the Classic Agent

The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Open Agent
to start the application, set the recovery system for the Open Agent.

1. Make sure the application that you are testing is running.

2. Click Set Recovery System on the Basic Workflow bar. If the workflow bar is not visible, click
Workflows > Basic to enable it.

Basic Workflow for the Classic Agent | 49

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

50

From the Application list, click the name of the application that you are testing.

All open applications that are not minimized are listed. This list is dynamic and will update if you open a
new application. If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

/ Note: If you selected a non-web application as the application:

* The Command line text box displays the path to the executable (.exe) for the application that
you have selected.
* The Working directory text box displays the path of the application you selected.

If you selected a web application, the Start testing on this page text box displays the URL for the
application you selected. If an application displays in the list, but the URL does not display in this text
box, your extensions may not be enabled correctly. Click Enable Extensions in the Basic Workflow
bar to automatically enable and test extension settings.

Optional: In the Frame file name text box, modify the frame file name and click Browse to specify the
location in which you want to save this file.

Frame files must have a .inc extension. By default, this field displays the default name and path of the
frame file you are creating. The default is frame. inc. If frame. inc already exists, Silk Test Classic
appends the next logical number to the new frame file name; for example, framel. inc.

Optional: In the Window name text box, change the window name to use a short name to identify your
application.

Click OK.
Click OK when the message indicating that the recovery system is configured displays.

A new 4Test include file, fFrame. inc, opens in the Silk Test Editor. Click the plus sign in the file to see
the contents of the frame file.

Record a test case.

Recording a Test Case With the Classic Agent

When you record a test case with the Classic Agent, Silk Test Classic uses hierarchical object recognition,
a fast, easy method to create scripts. However, test cases that use dynamic object recognition are more
robust and easy to maintain. You can create tests for both dynamic and hierarchical object recognition in
your test environment. Use the method best suited to meet your test requirements. You can use both
recognition methods within a single test case if necessary.

1.

Enable extensions and set up the recovery system.

2. Click Record Test Case on the Basic Workflow bar. If the workflow bar is not visible, click Workflows

> Basic to enable it.
Type the name of your test case in the Test case name text box of the Record Test Case dialog box.

Test case names are not case sensitive; they can be any length and consist of any combination of
alphabetic characters, numerals, and underscore characters.

Select DefaultBaseState in the Application State field to have the built-in recovery system restore the
default BaseState before the test case begins executing. If you chose DefaultBaseState as the
application state, the test case is recorded in the script file as: testcase testcase name (). Ifyou
chose another application state, the test case is recorded as: testcase testcase_name ()
appstate appstate_name.

If you do not want Silk Test Classic to display the status window it normally shows during playback when
driving the application to the specified base state—perhaps because the status bar obscures a critical
control in the application you are testing—uncheck the Show AppState status window check box.

Click Start Recording. Silk Test Classic:

Basic Workflow for the Classic Agent

* Closes the Record Test Case dialog box.
« Starts your application, if it was not already running.
* Removes the editor window from the display.
* Displays the Record Status on Classic Agent window.
* Wiaits for you to take further action.
7. Interact with your application, driving it to the state that you want to test.
As you interact with your application, Silk Test Classic records your interactions in the Test case code
field of the Record Test Case dialog box, which is not visible.

8. To review what you have recorded, click Done in the Record Status for Classic Agent window. Silk
Test Classic displays the Record Test Case dialog box, which contains the 4Test code that has been
recorded for you.

9. To resume recording your interactions, click Resume Recording in the dialog box. To temporarily
suspend recording, click Pause Recording on the Record Status for Classic Agent window.

10.Verify the test case.

Running a Test Case

When you run a test case, Silk Test Classic interacts with the application by executing all the actions you
specified in the test case and testing whether all the features of the application performed as expected.

Silk Test Classic always saves the suite, script, or test plan before running it if you made any changes to it
since the last time you saved it. By default, Silk Test Classic also saves all other open modified files
whenever you run a script, suite, or test plan. To prevent this automatic saving of other open modified files,
uncheck the Save Files Before Running check box in the General Options dialog box.

1. Make sure that the test case that you want to run is in the active window.

2. Click Run Testcase on the Basic Workflow bar.
If the workflow bar is not visible, choose Workflows > Basic to enable it.
Silk Test Classic displays the Run Testcase dialog box, which lists all the test cases contained in the
current script.

3. Select a test case and specify arguments, if necessary, in the Arguments field.
Remember to separate multiple arguments with commas.

4. To wait one second after each interaction with the application under test is executed, check the
Animated Run Mode (Slow-Motion) check box.

Typically, you will only use this check box if you want to watch the test case run. For instance, if you
want to demonstrate a test case to someone else, you might want to check this check box. Executions
of the default base state and functions that include one of the following strings are not delayed:

« BaseStateExecutionFinished
« Connecting
« Verify
o Exists
e Is
« Get
- Set
« Print
« ForceActiveXEnum
« Wait
« Sleep
5. To view results using the TrueLog Explorer, check the Enable TrueLog check box. Click TrueLog
Options to set the options you want to record.

Basic Workflow for the Classic Agent | 51

52

6. Click Run. Silk Test Classic runs the test case and generates a results file.

For the Classic Agent, multiple tags are supported. If you are running test cases using other agents, you
can run scripts that use declarations with multiple tags. To do this, check the Disable Multiple Tag
Feature check box in the Agent Options dialog box on the Compatibility tab. When you turn off
multiple-tag support, 4Test discards all segments of a multiple tag except the first one.

7. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

Viewing Test Results

Whenever you run tests, a results file is generated which indicates how many tests passed and how many
failed, describes why tests failed, and provides summary information.

1. Click Explore Results on the Basic Workflow or the Data Driven Workflow bars.
2. On the Results Files dialog box, navigate to the file that you want to review and click Open.

Silk Test Classic provides the following result files:

« _res files, which include information about the execution of the test case, script, suite, test plan, or
keyword-driven test.

- .tlzfiles, which include a TrueLog with optional screenshots before and after each action.

e _htm for HTML reports with summary information about the test run and detailed information about the
executed actions.

By default, Silk Test Classic writes both a TrueLog and an HTML report when running a test. You can select
which result formats Silk Test Classic should generate under Options > TrueLog.

By default, a results file has the same name as the executed script, suite, or test plan.

Troubleshooting Basic Workflow Issues with the Classic
Agent

The following troubleshooting tips might help you with the basic workflow:

| restarted my application, but the Test button is not enabled

In order to enable the Test button on the Test Extensions dialog box, you must restart your application.
Do not restart Silk Test Classic; restart the application that you selected on the Enable Extensions dialog
box.

You must restart the application in the same manner. For example, if you are testing:

« A standalone Java application that you opened through a Command Prompt, make sure that you close
and restart both the Java application and the Command Prompt window .

« A browser application or applet, make sure you return to the page that you selected on the Enable
Extensions dialog box.

< An AOL browser application, make sure that you do not change the state of the application, for example
resizing, or you may have issues with playback.

You can configure only one Visual Basic application at a time.

The test of my enabled Extension failed — what should | do?

If the test of your application fails, see Troubleshooting Configuration Test Failures for general information.

Basic Workflow for the Classic Agent

Migrating from the Classic Agent to the

Open Agent

This section includes several useful topics that explain the differences between the Classic Agent and the
Open Agent. If you plan to migrate from testing using the Classic Agent to the Open Agent, review this
information to learn how to migrate your existing assets including window declarations and scripts.

Differences for Agent Options Between the Silk Test

Agents

Before you migrate existing Classic Agent scripts to the Open Agent, review the Agent Options listed below
to determine if any additional action is required to facilitate the migration.

Classic Agent Option

Action for Open Agent

OPT_AGENT_CLICKS_ONLY

Option not needed.

Note: Use OPT_REPLAY_MODE for switching
between high-level (API) clicks and low-level clicks.

OPT_CLOSE_MENU_NAME

Not supported by Open Agent.

OPT_COMPATIBLE_TAGS

Option not needed.

OPT_COMPRESS_WHITESPACE

Not supported by Open Agent.

OPT_DROPDOWN_PICK_BEFORE_GET

Option not needed. The Open Agent performs this action by
default during replay.

OPT_EXTENSIONS

Option not needed.

OPT_GET_MULTITEXT_KEEP_EMPTY_LINES

Not supported by Open Agent.

OPT_KEYBOARD_LAYOUT

Not supported by Open Agent.

OPT_MENU_INVOKE_POPUP

No action. Pop-up menu handling using the Open Agent
does not need such an option.

OPT_MENU_PICK_BEFORE_GET

Option not needed.

OPT_NO_ICONIC_MESSAGE_BOXES

Option not needed.

OPT_PLAY_MODE

Option not needed.

OPT_RADIO_LIST

Open Agent always sees RadioL i st items as individual
objects.

OPT_REL1_CLASS_LIBRARY

Obsolete option.

OPT_REQUIRE_ACTIVE

Use the option OPT_ENSURE_ACT IVE instead.

OPT_SCROLL_INTO_VIEW

Option not needed. Open Agent only requires scrolling into
view for low-level replay. By default, high-level replay is used,
so no scrolling needs to be performed. However,
CaptureBitmap never scrolls an object into view.

OPT_SET_TARGET_MACHINE

Option not needed.

Migrating from the Classic Agent to the Open Agent | 53

Classic Agent Option

Action for Open Agent

OPT_SHOW_OUT_OF VIEW

Option not needed. Out-of-view objects are always
recognized.

OPT_TEXT_NEW_LINE

Option not needed. The Open Agent always uses Enter to
type a new line.

OPT_TRANSLATE_TABLE

Not supported by Open Agent.

OPT_TRAP_FAULTS

Fault trap is no longer active.

OPT_TRAP_FAULTS_FLAGS

Fault trap is no longer active.

OPT_TRIM_ITEM_SPACE

Option not needed. If required, use a * wildcard instead.

OPT_USE_ANSICALL

Not supported by Open Agent.

OPT_USE_SILKBEAN

SilkBean is not supported on the Open Agent.

OPT_VERIFY_APPREADY

Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_CLOSED

Option not needed. The Open Agent performs this action by
default.

OPT_VERIFY_COORD

Option not needed. The Open Agent does not typically check
for native input in order to allow clicking outside of an object.

OPT_VERIFY_CTRLTYPE

Option not needed.

OPT_VERIFY_EXPOSED

Option not needed. The Open Agent performs this action
when it sets a window to active.
OPT_ENSURE_ACTIVE_OBJECT_DEF should yield the

same result.

OPT_VERIFY_RESPONDING

Option not needed.

OPT_WINDOW_MOVE_TOLERANCE

Option not needed.

Differences in Object Recognition Between the Silk Test

Agents

When recording and executing test cases, the Classic Agent uses the keywords tag or multitag in a window
declaration to uniquely identify an object in the test application. The tag is the actual name, as opposed to

the identifier, which is the logical name.

When using the Open Agent, you typically use dynamic object recognition with a Find or FindAll
function and an XPath query to locate objects in your test application. To make calls that use window
declarations using the Open Agent, you must use the keyword locator in your window declarations. Similar
to the tag or multitag keyword, the locator is the actual name, as opposed to the identifier, which is the
logical name. This similarity facilitates a smooth transition of legacy window declarations, which use the
Classic Agent, to dynamic object recognition, which leverages the Open Agent.

The following sections explain how to migrate the different tag types to valid locator strings.

Caption
Classic Agent
Open Agent

tag “<caption string>"

locator “//<class hame>[@caption="<caption string>']"

Note: For convenience, you can use shortened forms for the XPath locator strings. Silk Test Classic
automatically expands the syntax to use full XPath strings when you run a script.

54 | Migrating from the Classic Agent to the Open Agent

You can omit:

* The hierarchy separator, “.//". Silk Test Classic defaults to “//".

e The class name. Silk Test Classic defaults to the class nhame of the window that contains the locator.
e The surrounding square brackets of the attributes, “[]".

* The "@caption="if the XPath string refers to the caption.

Note: Classic Agent removes ellipses (...) and ampersands (&) from captions. Open Agent removes
ampersands, but not ellipses.

Example

Classic Agent:

CheckBox CaseSensitive
tag “Case sensitive”

Open Agent:

CheckBox CaseSensitive
locator “//CheckBox[@caption="Case sensitive"]”

Or, if using the shortened form:

CheckBox CaseSensitive
locator “Case sensitive”

Prior text
Classic Agent tag “*Find What:”
Open Agent locator “//<class name>[@priorlabel="Find What:]"

Note: Only available for Windows API-based and Java Swing applications. For other technology
domains, use the Locator Spy to find an alternative locator.

Index

Classic tag “#1”
Agent

Open Agent Record window locators for the test application. The Classic Agent creates index values
based on the position of controls, while the Open Agent uses the controls in the order
provided by the operating system. As a result, you must record window locators to identify
the current index value for controls in the test application.

Window ID

Classic Agent tag “$1041”

Open Agent locator “//<class name>[@windowid="1041"]"
Location

Classic Agent tag “@(57,75)"
Open Agent not supported

Note: If you have location tags in your window declarations, use the Locator Spy to find an
alternative locator.

Migrating from the Classic Agent to the Open Agent | 55

Multitag

Classic Agent multitag “Case sensitive” “$1011”

Open Agent locator “//CheckBox[@caption="Case sensitive’ or @windowid="1011"]" ‘parent’ statement

No changes needed. Multitag works the same way for the Open Agent.

Differences in the Classes Supported by the Silk Test
Agents

The Classic Agent and the Open Agent differ slightly in the types of classes that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

Windows-based applications

Both Agents support testing Windows API-based client/server applications. The Open Agent classes,
functions, and properties differ slightly from those supported on the Classic Agent for Windows API-based
client/server applications.

Classic Agent

Open Agent

AnyWin

AnyWin

AgentClass (Agent)

AgentClass (Agent)

CheckBox

CheckBox

ChildWin

<no corresponding class>

ClipboardClass (Clipboard)

ClipboardClass (Clipboard)

ComboBox

ComboBox

Control

Control

CursorClass (Cursor)

CursorClass (Cursor)

CustomWin

CustomWin

DefinedWin

<no corresponding class>

DesktopWin (Desktop)

DesktopWin (Desktop)

DialogBox

DialogBox

DynamicText

<no corresponding class>

Header HeaderEx
ListBox ListBox
ListView ListViewEx
MainWin MainWin
Menu Menu
Menultem Menultem

MessageBoxClass

<no corresponding class>

56 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent
MoveableWin MoveableWin
PagelList PagelList
PopuplList ComboBox
PopupMenu <no corresponding class>
PopupStart <no corresponding class>
PopupSelect <no corresponding class>
PushButton PushButton
RadioButton Note: Items in Radiolists are recognized as RadioButtons on the CA. OA only
identifies all of those buttons as RadioList.
RadioList RadioList
Scale Scale
ScrollBar ScrollBar, VerticalScrollBar, HorizontalScrollBar
StaticText StaticText
StatusBar StatusBar
SysMenu <no corresponding class>
Table TableEx
TaskbarWin (Taskbar) <no corresponding class>
TextField TextField
ToolBar ToolBar
Additionally: PushToolltem, CheckBoxToolltem
TreeView, TreeViewEx TreeView
UpDown UpDownEx

The following core classes are supported on the Open Agent only:

e CheckBoxToolltem
« DropDownToolltem

e Group
e [tem
¢ Link

* MonthCalendar

« Pager
e PushToolltem

* RadioListToolltem

« ToggleButton
« Toolltem

Web-based Applications

Both Agents support testing Web-based applications. The Open Agent classes, functions, and properties
differ slightly from those supported on the Classic Agent for Windows API-based client/server applications.

Migrating from the Classic Agent to the Open Agent | 57

Classic Agent

Open Agent

Browser

BrowserApplication

BrowserChild

BrowserWindow

HtmICheckBox

DomCheckBox

HtmlIColumn

<no corresponding class>

HtmIComboBox

<no corresponding class>

HtmlForm DomForm

HtmIHeading <no corresponding class>
HtmlIHidden <no corresponding class>
Htmlimage <no corresponding class>
HtmiLink DomLink

HtmlList <no corresponding class>
HtmiListBox DomListBox

HtmIMarquee

<no corresponding class>

HtmIMeta <no corresponding class>
HtmlPopuplList DomListBox
HtmIPushButton DomButton

HtmIRadioButton

DomRadioButton

HtmlIRadioList

<no corresponding class>

HtmlITable DomTable

HtmlText <no corresponding class>
HtmlTextField DomTextField

XmINode <no corresponding class>

Xul* Controls

<no corresponding class>

Note: The DomElement class of the Open Agent enables you to access any element on an HTML
page. If the Open Agent has no class associated with a specific class supported on the Classic Agent,
you can use the DomElement class to access the controls in the class.

Java AWT/Swing Applications

Both Agents support testing Java AWT/Swing applications. The Open Agent classes, functions, and
properties differ slightly from those supported on the Classic Agent for Windows API-based client/server

applications.
Classic Agent Open Agent
JavaApplet AppletContainer
JavaDialogBox AWTDialog, JDialog
JavaMainWin AWTFrame, JFrame
JavaAwtCheckBox AWTCheckBox

58 | Migrating from the Classic Agent to the Open Agent

Classic Agent Open Agent
JavaAwtListBox AWTList
JavaAwtPopuplList AWTChoice
JavaAwtPopupMenu <no corresponding class>
JavaAwtPushButton AWTPushButton
JavaAwtRadioButton AWTRadioButton
JavaAwtRadioList <no corresponding class>

JavaAwtScrollBar

AWTScrollBar

JavaAwtStaticText AWT Label
JavaAwtTextField AWTTextField, AWT TextArea
JavaJFCCheckBox JCheckBox

JavaJFCCheckBoxMenultem

JCheckBoxMenultem

JavaJFCChildWin

<no corresponding class>

JavaJFCComboBox

JComboBox

JavaJFClmage

<no corresponding class>

JavaJFCListBox JList
JavaJFCMenu JMenu
JavaJFCMenultem JMenultem
JavaJFCPagelList JTabbedPane
JavaJFCPopuplList JList
JavaJFCPopupMenu JPopupMenu
JavaJFCProgressBar JProgressBar
JavaJFCPushButton JButton
JavaJFCRadioButton JRadioButton

JavaJFCRadioButtonMenultem

JRadioButtonMenultem

JavaJFCRadioList

<no corresponding class>

JavaJFCScale

JSlider

JavaJFCScrollBar

JScrollBar, JHorizontalScrollBar, JVerticalScrollBar

JavaJFCSeparator JComponent
JavaJFCStaticText JLabel

JavaJFCTable JTable
JavaJFCTextField JTextField, JTextArea
JavaJFCToggleButton JToggleButton
JavaJFCToolBar JToolBar
JavaJFCTreeView JTree

Migrating from the Classic Agent to the Open Agent | 59

Classic Agent

Open Agent

JavaJFCUpDown

JSpinner

Java SWT/RCP Applications

Only the Open Agent supports testing Java SWT/RCP-based applications. For a list of the classes, see

Supported SWT Widgets for the Open Agent.

Differences in the Parameters Supported by the Silk Test

Agents

The Classic Agent and the Open Agent differ slightly in the function parameters that they support. These
differences are important if you want to manually script your test cases. Or, if you are testing a single test
environment with both the Classic Agent and the Open Agent. Otherwise, the Open Agent provides the
majority of the same record capabilities as the Classic Agent and the same replay capabilities.

For some parameters, the Open Agent uses a hard-coded default value internally. If one of these
parameters is set in a 4Test script, the Open Agent ignores the value and uses the value listed here.

Function

Parameter

Classic Agent Value

Open Agent Value

AnyWin::PressKeys/
ReleaseKeys

AnyWin::PressKeys/
ReleaseKeys

AnyWin::TypeKeys

AnyWin::GetChildren
AnyWin::GetChildren
TextField::GetFontName

AnyWin::GetCaption

AnyWin::GetCaption,
Control::GetPriorStatic

PagelList::GetContents/

GetPageName

nDelay

sKeys

sEvents

binvisible
bNoTopLevel

iLine

bNoStaticText
bRawMode

bRawMode

60 | Migrating from the Classic Agent to the Open Agent

Any number.

More than one key is
supported.

Keystrokes to type or
mouse buttons to press.

TRUE or FALSE.
TRUE or FALSE.
The Classic Agent

recognizes this parameter.

TRUE or FALSE.
TRUE or FALSE.

TRUE or FALSE.

0

Only one key is supported.
The first key is used and
the remaining keys are
ignored. For example
MainWin.PressKeys(
"<Shift><Left>"") will
only press the Shift key. To
press both keys, specify
MainWin.PressKeys(
"<Shift>")
MainWin.PressKeys(
<Left >").

The Open Agent supports
keystrokes only.

FALSE.
FALSE.

The Open Agent ignores
this parameter.

FALSE.

FALSE. However, the
returned strings include
trailing and leading spaces,
but ellipses, accelerators,
and hot keys are removed.

FALSE. However, the
returned strings include
trailing and leading spaces,
ellipses, and hot keys but
accelerators are removed.

Function Parameter Classic Agent Value Open Agent Value

AnyWin::Click/ bRawEvent The Classic Agent The Open Agent ignores

) recognizes this parameter. this value.
DoubleClick/

MoveMouse/ MultiClick/
PressMouse/
ReleaseMouse,

PushButton::Click

Overview of the Methods Supported by the Silk Test
Agents

The winclass. inc file includes information about which methods are supported for each Silk Test
Classic Agent. The following 4Test keywords indicate Agent support:

supported_ca Supported on the Classic Agent only.

supported_oa Supported on the Open Agent only.

Standard 4Test methods, such as AnyWin::GetCaption(), can be marked with one of the preceding
keywords. A method that is marked with the supported_ca or supported_oa keyword can only be executed
successfully on the corresponding Agent. Methods that do not have a keyword applied will run on both
Agents.

To find out which methods are supported on each Agent, open the .inc file, for instance winclass. inc,
and verify whether the supported_ca or supported_oa keyword is applied to it.

Classic Agent

Certain functions and methods run on the Classic Agent only. When these are recorded and replayed, they
default to the Classic Agent automatically. You can use these in an environment that uses the Open Agent.
Silk Test Classic automatically uses the appropriate Agent. The functions and methods include:

» C data types for use in calling functions in DLLs.
» ClipboardClass methods.

e CursorClass methods.

« Certain SYS functions.

SYS Functions Supported by the Open Agent and the
Classic Agent

The Classic Agent supports all SYS functions. The Open Agent supports all SYS functions with the
exception of SYS_GetMemorylnfo. SYS_GetMemory Info defaults to the Classic Agent when a script is
executed.

The following SYS functions behave differently depending on the agent that is used:

SYS Function Description

SYS_GetRegistryValue With the Classic Agent, SYS_GetRegistryValue returns an incorrect value
when a binary value is used. Use the Open Agent with
SYS_GetRegistryValue to avoid this issue.

Migrating from the Classic Agent to the Open Agent | 61

SYS Function Description

SYS_FileSetPointer When setting the pointer after the end of the file, the Open Agent does not
throw an exception, while the Classic Agent does throw an exception.

SYS IniFileGetValue = The Open Agent does not allow the] character to be part of a section name,
while the Classic Agent does allow it. Also, with the Open Agent, = must not be
part of a key name. The Classic Agent allows = to be part of a key name, but
produces incorrect results.

f Note: Error messages and exceptions might differ between the Open Agent and the Classic Agent.

62 | Migrating from the Classic Agent to the Open Agent

Silk Test Classic Projects

Silk Test Classic projects organize all the resources associated with a test set and present them visually in
the Project Explorer, making it easy for you to see your test environment, and to manage it and work
within it.

Silk Test Classic projects store relevant information about your project, including the following:

» References to all the resources associated with a test set, such as the following:

e Data.
* Frame files.
¢ Include files.
e _ini files.
« Keyword-driven tests.
e Option sets.
* Results.
« Script files.
« Test plan files.
« Configuration information.
« Editor settings.
« Data files for attributes and queries.

All of this information is stored at the project level, meaning that once you add the appropriate files to your
project and configure it once, you might never need to do it again. Switching among projects is easy - since
you need to configure the project only once, you can simply open the project and run your tests.

When you create a new project, Silk Test Classic automatically uses the agent that is selected in the
toolbar.

Each project is a unique testing environment

By default, new projects do not contain any settings, such as enabled extensions, class mappings, or agent
options. If you want to retain the settings from your current test set, save them as a options set by opening
Silk Test Classic and clicking Options > Save New Options Set. You can include the options set when you
create your project. You can create a project manually or you can let Silk Test Classic automatically
generate a project for you, based on existing files that you specify.

Note: To optimally use the functionality that Silk Test Classic provides, create an individual project for
each application that you want to test, except when testing multiple applications in the same test.

Storing Project Information

Silk Test Classic stores project-related information in the following project files:

projectname.vtp The project file has a Verify Test Project (.vtp) extension and is organized as
an .ini file. It stores the names and locations of files used by the project.

projectname.ini The project initialization file, similar to the partner . ini file, stores
information about options sets, queries, and other resources included in your
project.

Silk Test Classic Projects | 63

64

SilkTestClassic.ini A user-specific initialization file that stores user-specific information about the
location of the last projects, the size of the project history, and the location of
the current project.

These files are created in the projectname folder. When you create your project, Silk Test Classic
prompts you to store your project in the default location C:\Users\<Current user>\Documents\Silk
Test Classic Projects. Silk Test Classic creates a <Project name> folder within the specified
directory, saves the projectname.vtp and projectname. ini to this location and copies the

extension .ini files, which are appexpex. ini, axext. ini, domex. ini, and javaex. ini, to the
extend subdirectory. If you do not want to save your project in the default location, click Browse and
specify the folder in which you want to save your project.

When you export a project, the default location is the project directory.

Note: The extension .ini files, which are appexpex. ini, axext. ini, domex. ini, and

Javaex. ini, located in your <Silk Test Classic installation directory>\extend
folder are copied to the extend directory of your project, regardless of what extension you have
enabled. Do not rename the extend directory; this directory must exist in order for Silk Test Classic
to open your project.

You can have Silk Test Classic automatically enable the appropriate extension using the basic workflow
bar, or you can manually enable extensions. The current project uses the extension options in the
extension .ini file copied to the extend directory of your project. Any modifications you make to the options
for this enabled extension will be saved to the copy stored within the current project in the extend
directory.

The extend directory is used only for local testing on the host machine. If you want to test on remote
agent machines, you must copy the .ini files from the extend directory of your project to the extend
directory on the target machines.

File references

Whether you are emailing, packaging, or adding files to a project, it is important to understand how Silk
Test Classic stores the path of the file. The .vtp files of Silk Test Classic use relative paths for files on the
same root drive and absolute paths for files with different root drives. The use of relative and absolute file
paths is not configurable and cannot be overridden. If you modify the .vtp file to change file references from
relative paths to absolute paths, the next time you open and close the project it will have relative paths and
your changes will be lost.

Accessing Files Within Your Project

Working with Silk Test Classic projects makes it easy to access your files - once you have added a file to
your project, you can open it by double-clicking it in the Project Explorer. The Project Explorer contains
the following two tabs:

Tab Description

Files Lists all of the files included in the project. From the Files tab, you can view, edit, add, and
remove files from the project, as well as right-click to access menu options for each of the file
types. From the Files tab, you can also add, rename, remove and work with folders within each
category.

Global Displays all the resources that are defined at a global level within the project's files. For example
test cases, functions, classes, window declarations, and others. When you double-click an object
on the Global tab, the file in which the object is defined opens and your cursor displays at the
beginning of the line in which the object is defined. You can run and debug test cases and

Silk Test Classic Projects

Tab Description

application states from the Global tab. You can also sort the elements that display within the
folders on the Global tab.

Existing test sets do not display in the Project Explorer by default; you must convert them into projects.

Sharing a Project Among a Group

Apply the following guidelines to share a Silk Test Classic project among a group:

« Create the project in the location from which it will be shared. For example, you can create the project
on a network drive.

« Ensure that testers create the same directory structure on their machines.

Project Explorer

Use the Project Explorer to view and work with all the resources within a Silk Test Classic project. You can
access the Project Explorer by clicking:

* File > Open Project and specifying the project you want to open.

* File > New Project and creating a new project.

* Project > View Explorer, if you currently have a project open and do not have the Project Explorer
view on.

* Project > New Project or Open Project on the Basic Workflow bar.

The resources associated with the project are grouped into categories. You can easily navigate among and
access all of these resources using the Files and Global tabs. When you double-click a file on the Files
tab, or an object on the Global tab, the file opens in the right pane. You can drag the divider to adjust the
size of the Project Explorer windows and click Project > Align to change the orientation of the tabs from
left to right.

Files tab

The Files tab lists all of the files that have been added to the project. The file name displays first, followed
by the path. If files exist on a network drive, they are referenced using Universal Naming Conventions
(UNC). Files are grouped into the following categories:

Category Description

Profile Contains project-specific initialization files, such as the projectname. ini and option
sets files, which means .opt files, that are associated with the project.

Script Contains test scripts, which means .t and .g.t files, that are associated with the project.

Include/Frame Contains include files, which means .inc files, and frame/object files that are associated
with the project.

Plan Contains test plans and suite files, which means .pIn and .s files, that are associated with
the project.

Results Contains results, which means .res and .rex files, that are associated with the project.

Data Contains data associated with the project, such as Microsoft Word documents, text files,

bitmaps, and others. Double-click the file to open it in the appropriate application. You
must open files that are not associated with application types in the Windows Registry
using the File/Open dialog box.

From the Files tab, you can view, edit, add, remove and work with files within the project. For example, to
add a file to the project, right-click the category name, for example Script, and then click Add File. After

Silk Test Classic Projects | 65

66

you have added the file, you can right-click the file name to view options for working with the file, such as
record test case and run test case. Silk Test Classic functionality has not changed - it is now accessible
through a project.

You can work with the folders within the categories on the Files tab, by adding, renaming, moving, and
deleting folders within each category.

Global tab

The Global tab lists resources that are defined at a global level within the entire project. The resource
name displays first, followed by the file in which it is defined. Resources contained within the project's files
are grouped into the following categories:

* Records
* Classes
e Enums

e Window Declarations
* Testcases
e Appstates
e Functions
« Constants

From the Global tab, you can go directly to the location in which a global object or resource is defined.
Double-click any object within the folders to go to the location in which the object is defined. Silk Test
Classic opens the file and positions your cursor at the beginning of the line in which the object is defined.

You can also run and debug test cases and application states by right-clicking a test case or application
state, and then selecting the appropriate option. For example, right-click a test case within the Testcase
folder and then click Run. Silk Test Classic opens the file containing the test case you selected, and
displays the Run Testcase dialog box with the selected test case highlighted. You can input argument
values and run or debug the test case.

On the Global tab, you can sort the resources within each node by resource name, file name, or file date.

Note: Methods and properties are not listed on the Global tab since they are specific to classes or
window declarations. You can access methods and properties by double-clicking the class or window
declaration in which they are defined.

You cannot move files within the Project Explorer. For example, you cannot drag a script file under the
Frame file node. However, you can drag the file to another folder within the same category node.

Note: If you change the location or name of a file included in your project, outside of Silk Test Classic,
you must make sure the projectname.vtp contains the correct reference.

Creating a New Project

You can create a new project and add the appropriate files to the project, or you can have Silk Test Classic
automatically create a new project from an existing file.

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by opening Silk Test Classic and clicking Options > Save New
Options Set. You can add the options set to your project.

To create a new project:

1. In Silk Test Classic, click File > New Project, or click Open Project > New Project on the basic
workflow bar. The Create Project dialog box appears.

2. Type a unique name for the project into the Project Name field.

Silk Test Classic Projects

If the project name already exists, you are prompted to specify a different project name or overwrite the
existing project.

Project files with a . vtp (Verify Test Project) extension, projectname.vtp, and a

projectname. ini are created in the directory that you specify in the Save in text box.

3. Optional: Type a description for the project into the Description field.

After you create the project, you can view the project description by right-clicking the projectname
folder on the Files or Global tabs or by clicking Project > Project Description.

4. Type the location at which you want to save the project into the Save in field.

You can also click Browse and specify the folder in which you want to save your project. The default
location is C:\Users\<Current user>\Documents\Silk Test Classic Projects.

5. Click OK. Silk Test Classic creates a <Project name> folder within the specified directory, saves the
projectname.vtp and projectname. ini to this location and copies the extension .ini files, which
are appexpex. ini, axext. ini, domex. ini, and javaex. ini, to the extend subdirectory. If you
do not want to save your project in the default location, click Browse and specify the folder in which you

want to save your project. Silk Test Classic then creates your project and displays nodes on the Files
and Global tabs for the files and resources associated with this project.

6. Perform one of the following steps:

« If your test uses the Open Agent, configure the application to set up the test environment.
« If your test uses the Classic Agent, enable the appropriate extensions to test your application.

Note: This Help covers the functionality of Silk Test Classic when using the Open Agent. If you
are using the Classic Agent, refer to the Silk Test Classic Classic Agent Help.

Opening an Existing Project

You can open a Silk Test Classic project as well as open an archived Silk Test Classic project. You can also
open a Silk Test Classic project or archived project through the command line.

To open an existing project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

If you already have a project open, a dialog box opens informing you that the open project will be

closed. If you associated Silk Test Classic file types with Silk Test Classic during installation, then you

can open a Silk Test Classic project or package by double-clicking the .vtp or .stp file.

2. If you are opening a packaged Silk Test Classic project, which means an .stp file, you must perform the

following steps:

a) Indicate into what directory you want to unpack the project in the Base path text box. The files are
unpacked to the directory you indicate in the Base path text box.

b) Enter a password into the Password text box if the archived Silk Test Classic project was saved with
a password.

If you open a package by double-clicking the .stp file, the base path is the directory that contains
the .stp file.

When you select a location for unpacking the archive on the Open Project dialog box, Silk Test
Classic uses that directory path, the base path, to substitute for the drive and root directory in the
Use Path and Use Files paths.
The Base path and Password text boxes are enabled only if you are opening an .stp file.

3. On the Open Project dialog box, specify the project that you want to open, and then click Open.

If you open a project file (.vtp) by clicking File > Open command, the projectname.vtp file will open
in the 4Test Editor, but the project and its associated settings will not be loaded. Projects do not display
in the recently opened files list. To close all open files within a project, click Window > Close All.

Silk Test Classic Projects | 67

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Converting Existing Tests to a Project

Since each project is a unique testing environment, by default new projects do not contain any settings,
such as extensions, class mappings, or Agent options. If you want to retain the settings from your current
test set, save them as an options set by clicking Options > Save New Options Set. You can include the
options set when you create your project.

To convert existing test sets to a project:

1. Create a new project.
2. Manually add the files to the project.

Using Option Sets in Your Project

To use an options set within your project, you must make sure that the options set is loaded into memory.
You can tell if an options set is loaded by looking at the Silk Test Classic title bar. If fi lename.opt
displays in the title bar, then the options set fi lename.opt is loaded. If an options set is loaded, it
overrides the settings contained in the projectname. ini file.

Note: When an options set is loaded, the context menu options are available only for the loaded
options set; these menu options are grayed out for .ini and .opt files that are not loaded.

You can load an options set into your project using any of the following methods:
« |If the options set is included in your project, within the Profile node on the Files tab, right-click the

options set that you want to load and then click Open Options Set.

* Right-click Save New Options Set to load the options set and add it under the Profile node on the
Files tab.

* Use the Options menu; click Options > Open Options Set, browse to the options set (.opt) that you
want to load, and then click Open.

» Load the options set at runtime using the optionset keyword. This loads the options set at the point in
the plan file in which the options set is called. All test cases that follow use this options set.

If an options set was loaded when you closed Silk Test Classic, Silk Test Classic automatically re-loads this
options set when you re-start Silk Test Classic.

To include an options set in your project, you can add the options set by right-clicking Profile on the Files
tab, clicking Add File, selecting the options set you want to add to the project, and then clicking OK. You
can also click Save New Options Set; this loads the options set and adds it under the Profile node on the
Files tab.

Editing an Options Set
To edit an options set in your project:

1. On the Files tab, expand the Profile node.

2. Right-click the options set that you want to edit and click Open Options Set. The options set is loaded
into memory.

3. Right-click the options set that you want to edit again and select the type of option you want to edit.
For example Runtime, Agent, Extensions, and others.
4. Modify your options and then click OK. Your current settings are changed and saved to the .opt file.

If you want to change settings for future use, double-click the options set that you want to edit on the Files
tab. This opens the options file in the Editor without loading the options file into memory. Changes you

68 | Silk Test Classic Projects

make to the options set in the Editor will be saved, but will not take effect until you load the options set by
selecting Open Options Set from the Options menu or the right-click shortcut.

Silk Test Classic File Types

Silk Test Classic uses the following types of files in the automated testing process, each with a specific
function. The files marked with an * are required by Silk Test Classic to create and run test cases.

File Type Exte Description

nsio
n

Project VP silk Test Classic projects organize all the resources associated with a test set and present them
visually in the Project Explorer, making it easy to see, manage, and work within your test
environment.

The project file has a Verify Test Project (. Vtp) extension and is organized as an . ini file; it
stores the names and locations of files used by the project. Each project file also has an
associated project initialization file: projectname. ini.

Exported .stp A Silk Test Project (- Stp) file is a compressed file that includes all the data that Silk Test Classic

Project exports for a project. A file of this type is created when you click File > Export Project.

The .stp file includes the configuration files that are necessary for Silk Test Classic to set up
the proper testing environment.

Testplan .pln An automated test plan is an outline that organizes and enhances the testing process,
references test cases, and allows execution of test cases according to the test plan detail. It can
be of type masterplan or of subplan that is referenced by a masterplan.

Test .inc A specific kind of include file that upon creation automatically captures a declaration of the AUT's

Frame* main window including the URL of the Web application or path and executable name for client/
server applications; acts as a central repository of information about the AUT; can also include
declarations for other windows, as well as application states, variables, and constants.

4Test t Contains recorded and hand-written automated test cases, written in the 4Test language, that

Script* verify the behavior of the AUT.

Data- .g.t Contains data-driven test cases that pull their data from databases.

Driven

Script

4Test .inc A file that contains window declarations, constants, variables, classes, and user defined

Include File functions.

Suite .S Allows sequential execution of several test scripts.

Text File txt An ASCII file that can be used for the following:

« Store data that will be used to drive a data driven test case.

¢ Print a file in another document (Word) or presentation (PowerPoint).
* Accompany your automation as a readme file.

* Transform a tab-delimited plan into a Silk Test Classic plan.

Results .res Is automatically created to store a history of results for a test plan or script execution.

File

Results .rex A single compressed results file that you can relocate to a different machine. Click Results >

Export File Export to create a - rex file out of the existing results files of a project.

TrueLog Xxlg Afile that contains the captured bitmaps and the logging information that is captured when

File TrueLog is enabled during a test case run.

Keyword- .kdt An executable file which contains keywords. Keyword-driven test files are used when testing with

Driven Test the keyword-driven testing methodology.

File

Silk Test Classic Projects | 69

70

File Type Exte Description

nsio

n
Keyword .kseq A keyword-sequence file contains a combination of keywords, which are always executed in the
Sequence same order. A keyword-sequence file cannot be executed on its own, only when included in a

keyword-driven test. In context of a keyword-driven test, a keyword-sequence can be used as
any other keyword. Keyword sequence files are used when testing with the keyword-driven

testing methodology.

Organizing Projects

This section includes the topics that are available for organizing projects.

Adding Existing Files to a Project

You can add existing files to a project or create new files to add to the project. We recommend adding all
referenced files to your project so that you can easily see and access the files, and the objects contained
within them. Referenced files do not have to be included in the project. Plans and scripts will continue to
run, provided the paths that are referenced are accurate.

When you add a file to a project, project files (.vtp files) use relative paths for files on the same root drive
and absolute paths for files with different root drives. The use of relative and absolute files is not
configurable and cannot be overridden.

To add an existing file to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project to which you want to add a file, and then click Open.

2. On the Project Explorer, select the Files tab, right-click the node associated with the type of file you
want to add, and then click Add File.

For example, to add a script file to the project, right-click Script, and then click Add File.

3. Onthe Add File to Project dialog box, specify the file you want to add to the open project, and then
click Open.
The file name, followed by the path, displays under the appropriate category on the Files tab sorted
alphabetically by name and is associated with the project through the projectname.vtp file. If files
exist on a network drive, they are referenced using Universal Naming Conventions (UNC).

You can also add existing files to the project by clicking Project > Add File. Silk Test Classic automatically
places the file in the appropriate node, based on the file type; for example if you add a file with a .pIn
extension, it will display under the Plan node on the Files tab. We do not recommend adding

application .ini files or Silk Test Classic .ini files, which are gaplans. ini, propset. ini, and the
extension. ini files, to your project. If you add object files, which are .to and .ino files, to your project,
the files will display under the Data node on the Files tab. Objects defined in object files will not display in
the Global tab. You cannot modify object files within the Silk Test Classic editor because object files are
binary. To modify an object file, open the source file, which is a .t or .inc file, edit it, and then recompile.

Renaming Your Project

The projectname. ini and the projectname.vtp refer to each other; make sure the references are
correct in both files when you rename your project.

To rename your project:

1. Make sure the project you want to rename is closed.

Silk Test Classic Projects

2. In Windows Explorer, locate the projectname.vtp and projectname. ini associated with the
project name you want to change.

3. Change the names of projectname.vtp and projectname. ini. Make sure that you use the same
projectname for both files.

4. In a text editor outside of Silk Test Classic, open projectname.vtp, change the reference to the
projectname. ini file to the new name, and then save and close the file. Do not open the project in
Silk Test Classic yet.

5. In a text editor outside of Silk Test Classic, open projectname. ini, change the reference to the
projectname.vtp file to the new name, and then save and close the file.

6. In Silk Test Classic, open the project by clicking File > Open Project or Open ProjectOpen Project on
the basic workflow bar. The new project name displays.

Working with Folders in a Project

In addition to working with files, you can also add your own folders to all nodes listed on the File tab of the
Project Explorer. For example, the Files tab of the Project Explorer can include notes.

You can also right-click a folder and click the following:

« Expand All to display all contents of a folder.

* Collapse All to collapse the contents of the folder.

* Display Full Path to show the full path for the contents.

» Display Date/Time to show creation information for the content file.

Adding a Folder to the Files Tab of the Project Explorer

You may add a folder to any of the categories (nodes) on the Files tab of the Project Explorer. You may
not add a folder to the root project folder, nor change the titles of the root nodes.

To add a folder to a project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Add Folder.
3. On the Add Folder dialog box, enter the name of the new folder, then click OK.

When you are naming a folder, you may use alphanumeric characters, underscore character, character
space, or hyphens. Folder names may be a maximum of 256 characters long. Creating folders with
more than 256 characters is possible, but Silk Test Classic will truncate the name when you save the
project. The concatenated length of the names of all folders within a project may not exceed 256
characters. You may not use periods or parentheses in folder names. Within a node, folder names must
be unique.

Moving Files and Folders

You may move an individual file or files between folders within the same category on the Files tab of the
Project Explorer. You cannot move the predefined Silk Test Classic folders (nodes) such as Profile Script,
Plan, Frame, and Data.

You may also move sub-folders within the same category on the Files tab. You cannot move sub-folders
across categories.

To move a folder or file:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab. Click a file, a folder, or shift-click to select several files or
folders, then drag the items to the new location.

Silk Test Classic Projects | 71

72

3. Release the mouse to move the items.
There is no undo.

Removing a Folder from the Files tab of the Project Explorer

You may delete folders on the Files tab of the Project Explorer, however, you may not delete any of the
predefined Silk Test Classic categories (nodes) such as Profile Script, Plan, Frame, and Data.

f Note: There is no undo.

To remove a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, right-click a folder and select Remove Folder to delete it
from the Project Explorer. If you select a folder with child folders or a folder that contains items, Silk
Test Classic displays a warning before deleting the folder.

Renaming a Folder on the Files Tab of the Project Explorer

You may rename any folder that you have added to a project. You may not rename any of the predefined
Silk Test Classic folders (nodes) such as Profile, Script, Include/Frame, Plan, Results, or Data.

To rename a folder:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. In the Project Explorer, click the Files tab, then navigate to the folder you want to rename.
Right-click the folder and select Rename Folder.
4. On the Rename Folder dialog box, enter the new name of the folder then click OK.

When naming a folder, you may use alphanumeric characters, underscore character, character space,
or hyphens. Folder names may be a maximum of 64 characters long. You may not use periods or
parentheses in folder names. Within a node, folder names must be unique.

w

Sorting Resources within the Global Tab of the Project Explorer

On the Global tab of the Project Explorer, you can sort the resources within each category (hode) by
resource name, file name, or file date.

To sort resources:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar, select the project whose elements you want to sort, and then click Open.

2. On the Project Explorer, click the Global tab, right-click the node associated with the type of element
you want to sort, and then click Sort by FileName or Sort by FileDate.

The default is sort by element name.
3. Click Ascending or Descending to indicate how you want to organize the sort.

For example, to sort the elements of a script file by file date in reverse chronological order, right-click the
Script node and select Sort by FileDate, then click Descending.

When you release the mouse, the elements are sorted by the parameters you selected.

Moving Files Between Projects

We recommend that you use Export Project to move projects, but if you want to move only a few files
rather than an entire project, you can open the project in Silk Test Classic and remove the files that you
want to move from the project. Move the files to their new location in Windows Explorer, and then add the
files back to the currently open project.

Silk Test Classic Projects

You can also move your project by opening the projectname.vtp and projectname. ini files in a text
editor outside of Silk Test Classic and updating references to the location of source files. However, we
recommend that you have strong knowledge of your files and how the partner and projectname .ini files
work before attempting this. We advise you to use great caution if you decide to edit the projectname .vtp
and projectname .ini files.

Removing Files from a Project

You cannot remove the projectname. ini file.
To remove a file from a project:

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar.

2. Click the plus sign [+] to expand the node associated with the type of file you want to remove, and then
choose one of the following:

* Right-click the file you want to remove, and then click Remove File.
* Select the file in the Project Explorer and press the Delete key.
» Select the file you want to remove on the Files tab, and then click Project > Remove File.

The file is removed from the project and references to the file are deleted from the projectname.vtp.
The file itself is not deleted; it is just removed from the project.

Turning the Project Explorer View On and Off

The Project Explorer view is the default. If you do not want to view the Project Explorer, uncheck Project
> View Explorer. You can continue to work with your files within the project, you just will not see the
Project Explorer.

To turn Project Explorer view on, check Project > View Explorer.

If you do not want to use projects in Silk Test Classic, close the open project, if any, by clicking File > Close
Project, and then use Silk Test Classic as you would have in the past.

Viewing Resources Within a Project

1. Click File > Open Project or click Open Project > Open Project on the basic workflow bar and select
the project that you want to open.

2. Click one of the following:

* The Files tab to view all the files associated with the open project.
* The Global tab to view global objects defined in the files associated with the project.

3. To close all open files within a project, click Window > Close All.

Packaging a Silk Test Classic Project

You can package your Silk Test Classic project into a single compressed file that you can relocate to a
different computer. When you unpack your project you will have a fully functional set of test files. This is
useful if you need to relocate a project, email a project to a co-worker, or send a project to technical
support.

Source files included in the packaged project

When you package a project, Silk Test Classic includes all of the source files, meaning the related files
used by a project, such as:

Silk Test Classic Projects | 73

74

Description Extension

plan files .pln

script files 1t

include files .inc

suite files .S

results files (optional) .res and .rex
data files -

Silk Test Classic takes these files and bundles them up into a new file with an .stp extension. The .stp file
includes the configuration files necessary for Silk Test Classic to set up the proper testing environment
such as project. ini, testplan.ini, optionset .opt files, and any .ini files found in the .\Silk Test
Classic projects\<Project name>\extend directory.

You have the option of including .res and .rex files when you package a Silk Test Classic project because
these files are sometimes quite large and not necessary to run the project.

Relative paths in comparison to absolute paths

When you work with Silk Test Classic projects, the files that make up the project are identified by
pathnames that are either absolute or relative. A relative pathname begins at a current folder or some
number of folders up the hierarchy and specifies the file’s location from there. An absolute pathname
begins at the root of the file system (the topmost folder) and fully specifies the file’s location from there. For
example:

Absolute path C:\Users\<Current user>\Documents\Silk Test Classic Projects
\<Project name>\options.ini

Relative path . .\tesla\Silk Test\options\options.ini or SUSDir\options.inc

When you package a project, Silk Test Classic checks to make sure that the paths used within the project
are properly maintained. If you try to compress a project containing ambiguous paths, Silk Test Classic
displays a warning message. Silk Test Classic tracks the paths in a project in a log file.

Including all files needed to run tests

Files associated with a project, but not necessary to run tests, for example bitmap or document files, which
you have manually added to the project are included when Silk Test Classic packages a project.

If Silk Test Classic finds any include:, script:, or use: statements in the project files that refer to files with
absolute paths, c:\program Files\Silk\Silk Test\, Silk Test Classic verifies if you have checked
the Use links for absolute files? check box on the Export Project or on the Email Project dialog boxes.

* If you check the Use links for absolute files? check box, Silk Test Classic treats any file referenced by
an absolute path in an include, script, or use statement as a placeholder and does not include those
files in the package. For example, if there are use files within the Runtime Options dialog box referred
to as "g:\gaplans\SilkTest\frame.inc" or "c", these files are not included in the package. The assumption
is that these files will also be available from wherever you unpack the project.

» If you uncheck the Use links for absolute files? check box, Silk Test Classic includes the files
referenced by absolute paths in the packaged project. For example, if the original file is stored on c:
\temp\myfFile.t, when unpacked at the new location, the file is placed on c:\temp\myfile._t.

The following table compares the results of packaging projects based on whether there are any absolute
file references in your source files, and how you respond to the Use links for absolute files? check box on
the Export Project or on the Email Project dialog boxes.

Silk Test Classic Projects

Any absolute references in source Use links for absolute files? Results

files?

No Checked or unchecked Package unpacks to any location.

Yes Checked Files referenced by absolute paths
are not included in the packaged
project.

Yes Unchecked Files referenced by absolute paths
are put into a ZIP file within the
packaged project.

f Note:

» If there are any source files located on a different drive than the .vtp project file, and if there are
files referenced by absolute paths in the source files, Silk Test Classic treats the source files as
referenced by absolute paths. The assumption is that the absolute paths will be available from the
new location. Silk Test Classic therefore puts the files into a zip file within the packaged project for
you to unpack after you unpack the project.

» Files not included in the package - The assumption is that since these files are referenced by
absolute paths, these same files and paths will be available when the files are unpacked. On
unpacking, Silk Test Classic warns you about these files and lists them in a log file (manifest.XXX).

« ip files — Because you elected not to use links for files referenced by absolute paths, these files are
put into a zip file within the packaged project. The zip file is named with the root of the absolute
path. For example, if the files are located on c:/, the zip file is named c.zip.

Tips for successful packaging and unpacking
For best results when packaging and unpacking Silk Test Classic projects:

e Put your .vtp project file and source files on the same drive.
» Use relative paths to reference the following:
e+ include statements

e options sets

* use paths set within the Runtime Options dialog box

e use statements in 4Test scripts

e script statements

* Uncheck the default Use links for absolute files? check box if your source files are on a different drive
as the .vtp project file and if there are files referenced by absolute paths in your source files.

Packaging with Silk Test Classic Runtime and the Agent
If you are running Silk Test Classic Runtime, you may not package or email a project.

If you are running the Agent, you may package or email a project.

Emailing a Project

Emailing a project automatically packages a Silk Test Classic project and then emails it to an email
address. In order for this to work, you must have an email client installed on the computer that is running
Silk Test Classic.

You cannot email a project if you are running Silk Test Classic Runtime.

One of the options you can select before emailing is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the email.

Silk Test Classic supports any MAPI-compliant email clients such as Outlook Express.

Silk Test Classic Projects | 75

The maximum size for the emailed project is determined by your email client. Silk Test Classic does not
place any limits on the size of the project.

To email your project:

1.

If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

Click File > Email Project.
You can only email a project if you have that project open.

On the Email Project dialog box, type the email address where you want to send the Silk Test Classic
project.

For example, enter support@acme.com to send a package to Acme Technical Support.
| Tip: If you are not sure about the email address, you can just enter some text here. Once you click
OK, this information is passed to your default mail system where you can correct the address.

Optional: Check the Create file references for files with absolute paths check box to use links for
any absolute file reference.

By default, this check box is checked.

i

Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.
Optional: Check the Compile before exporting check box to compile the project before emailing it.
By default, this check box is checked.

Optional: Check the Include results files of all tests (.res, .rex, and .xlg) check box to
include .res, .rex, and .xlg results files in the emailed project.

Only results files that were added to the Results folder of the project are emailed. By default, this check
box is unchecked.

Optional: Check the Include extend.ini file check box to include extensions that you have configured
for target machines in the project that you export.
Typically, when working with a project, extension configurations are stored in the project specific
project. ini file. However, you can also configure extensions for target machines in the extend. ini
file, by using the Extension Enabler, a tool which is available from the Start menu. By default, this
check box is unchecked.
Optional: Check the Protect Silk Test Classic package files with password check box to secure the
compressed file with a password.
If you have secured the compressed file with a password, you cannot extract any files from the
compressed package without specifying this password. This option is available only when you have
checked the Export to single Silk Test Classic package check box.
a) Type the password into the Enter password field.

A password may include up to 79 alphanumeric characters.
b) Re-enter the password into the Confirm password field to confirm it.
Click OK. If you opted to compile the project before packaging it, Silk Test Classic displays a warning
message if any file failed to compile. Silk Test Classic opens a new email message and attaches the
packaged project to a message. You can edit the recipient, add a subject line, and text, just as you can
for any outgoing message.

10.Click Send to add the project to your outgoing queue. If your email client is already open, your message

is sent automatically. If your email client was not open, the message is placed in your outgoing queue.

Note: If the email process does not finish successfully, Micro Focus recommends deleting any
partially packaged project or draft email message and restarting the email process.

76 | Silk Test Classic Projects

Exporting a Project

Exporting a Silk Test Classic project lets you copy all the files associated with a project to a directory or a
single compressed file in a directory.

You cannot export a project if you are running Silk Test Classic Runtime.
Silk Test Classic will not change the file creation dates when copying the project’s files.

One of the options you can select before exporting is to compile your project. If a compile error occurs, Silk
Test Classic displays a warning message, and you can opt to continue or to cancel the compile.

To export your project:

1. If your project is not already open, click File > Open Project or click Open Project > Open Project on
the basic workflow bar. Select a project, then click Open.

2. Click File > Export Project.
You can only export a project if you have the project open.
3. On the Export Project dialog box, enter the directory to which you want to export the project or click

_l to locate the export folder.

The default location is the parent directory of the project folder, which means the folder containing the
project file, not the project's current location.

4. Check the Export to single Silk Test Classic package check box if you want to package the Silk Test
Classic project into a single compressed file.

5. Optional: Check the Create file references for files with absolute paths check box to use links for
any absolute file reference.

By default, this check box is checked.
Note: Using references for absolute paths produces a smaller package that can be opened more
quickly.
6. Optional: Check the Compile before exporting check box to compile the project before exporting it.
By default, this check box is checked.

7. Optional: Check the Include results files of all tests check box to include . res and . rex results files
in the exported project or package.
Only results files that were added to the Results folder of the project are exported. By default, this
check box is unchecked.

8. Optional: Check the Include extend.ini file check box to include extensions that you have configured
for target machines in the project that you export.
Typically, when working with a project, extension configurations are stored in the project specific
project. ini file. However, you can also configure extensions for target machines in the extend. ini
file, by using the Extension Enabler, a tool which is available from the Start menu. By default, this
check box is unchecked.

9. Optional: Check the Protect Silk Test Classic package files with password check box to secure the
compressed file with a password.

If you have secured the compressed file with a password, you cannot extract any files from the
compressed package without specifying this password. This option is available only when you have
checked the Export to single Silk Test Classic package check box.

a) Type the password into the Enter password field.

A password may include up to 79 alphanumeric characters.
b) Re-enter the password into the Confirm password field to confirm it.

Silk Test Classic Projects | 77

10.Click OK. Silk Test Classic determines all the files necessary for the project and copies them to the
selected directory or compresses them into a package. Silk Test Classic displays a warning message if
any of the files could not be successfully packaged and gives you the option of continuing.

y Tip: If the export process does not finish successfully, Micro Focus recommends deleting any partially

= packaged project and restarting the export process.

Troubleshooting Projects

This section provides solutions to common problems that you might encounter when you are working with
projects in Silk Test Classic.

Files Not Found When Opening Project

If, when opening your project, Silk Test Classic cannot find a file in the location referenced in the project
file, which is a . vtp file, an error message displays noting the file that cannot be found.

Silk Test Classic may not be able to find files that have been moved or renamed outside of Silk Test
Classic, for example in Windows Explorer, or files that are located on a shared network folder that is no
longer accessible.

« If Silk Test Classic cannot find a file in your project, we suggest that you note the name of missing file,
and click OK. Silk Test Classic will open the project and remove the file that it cannot find from the
project list. You can then add the missing file to your project.

« If Silk Test Classic cannot open multiple files in your project, we suggest you click Cancel and
determine why the files cannot be found. For example a directory might have been moved. Depending
upon the problem, you can determine how to make the files accessible to the project. You may need to
add the files from their new location.

Silk Test Classic Cannot Load My Project File

If Silk Test Classic cannot load your project file, the contents of your .vtp file might have changed or
your .ini file might have been moved.

If you remove or incorrectly edit the ProjectlIni=line in the ProjectProfile section of your
<projectname>.vtp file, or if you have moved your <projectname>._ ini file and the ProjectlIni=
line no longer points to the correct location of the . ini file, Silk Test Classic is not able to load your
project.

To avoid this, make sure that the ProjectProfile section exists in your .vtp file and that the section
refers to the correct name and location of your . ini file. Additionally, the <projectname>. ini file and
the <projectname>.vtp file refer to each other, so ensure that these references are correct in both files.
Perform these changes in a text editor outside of Silk Test Classic.

Example

The following code sample shows a sample ProjectProfile section in a
<projectname>._vtp file:
[ProjectProfile]

ProjectIni=C:\Program Files\<Silk Test install directory>
\Si lkTest\Projects\<projectname>.ini

Silk Test Classic Cannot Save Files to My Project

You cannot add or remove files from a read-only project. If you attempt to make any changes to a read-only
project, a message box displays indicating that your changes will not be saved to the project.

78 | Silk Test Classic Projects

For example, Unable to save changes to the current project. The project file has
read-only attributes.

When you click OK on the error message box, Silk Test Classic adds or removes the file from the project
temporarily for that session, but when you close the project, the message box displays again. When you re-
open the project, you will see your files have not been added or removed.

Additionally, if you are using Microsoft Windows 7 or later, you might need to run Silk Test Classic as an
administrator. To run Silk Test Classic as an administrator, right-click the Silk Test Classic icon in the Start
Menu and click Run as administrator.

Silk Test Classic Does Not Run

The following table describes what you can do if Silk Test Classic does not start.

If Silk Test Classic does not run because it is looking You can do the following:
for the following:

Project files that are moved or corrupted. Open the SilkTestClassic. ini file in a text editor
and remove the CurrentProject= line from the
ProjectState section. Silk Test Classic should then
start, however your project will not open. You can
examine your <projectname>._ini and
<projectname>.vtp files to determine and correct
the problem.

The following code example shows the ProjectState
section in a sample partner . ini file:

[ProjectState]
CurrentProject=C:\Program Files
\<SilkTest install directory>

\Si lkTest\Examples\ProjectName.vtp

A testplan. ini file that is corrupted. Delete or rename the corrupted testplan. ini file,
and then restart Silk Test Classic.

My Files No Longer Display In the Recent Files List

After you open or create a project, files that you had recently opened outside of the project do no longer
display in the Recent Files list.

Cannot Find Items In Classic 4Test

If you are working with Classic 4Test, objects display in the correct nodes on the Global tab, however when
you double-click an object, the file opens and the cursor displays at the top of the file, instead of in the line
in which the object is defined.

Editing the Project Files

You require good knowledge of your files and how the partner and <projectname>. ini files work before
attempting to edit these files. Be cautious when editing the <projectname>_vtp and
<projectname>. ini files.

To edit the <projectname>.vtp and <projectname>. ini files:

1. Update the references to the source location of your files. If the location of your projectname.vtp
and projectname. ini files has changed, make sure you update that as well. Each file refers to the
other.

Silk Test Classic Projects | 79

The ProjectProfile section in the projectname . vtp file is required. Silk Test Classic will not be able to
load your project if this section does not exist.

1. Ensure that your project is closed and that all the files referenced by the project exist.

2. Open the <projectname>._vtp and <projectname>. ini files in a text editor outside of Silk Test
Classic.

f Note: Do not edit the projectname.vtp and projectname. ini files in the 4Test Editor.

3. Update the references to the source location of your files.

4. The <projectname>.vtp and <projectname>. ini files refer to each other. If the relative location
of these files has changed, update the location in the files.

The ProjectProfile section in the <projectname>.vtp file is required. Silk Test Classic is not able to
load your project if this section does not exist.

Project Description Dialog Box

Use the Project Description dialog box to view or edit the description of the current project.

Open a project and click Project > Project Description.

Description Displays the description of this project. The original description is the text that you typed in
the Description field on the Create Project dialog box or the AutoGenerate Project dialog
box when you created the project. You can modify the project description as necessary,
typing up to 1024 characters. The project description is stored in the System Settings
section of the projectname . vtp file.

80 | Silk Test Classic Projects

Enabling Extensions for Applications
Under Test

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

This section describes how you can use extensions to extend the capabilities of a program or the data that
is available to the program.

An extension is a file that serves to extend the capabilities of, or the data available to, a basic program. Silk
Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

Related Files

If you are using a project, the extension configuration information is stored in the partner . ini file. If you
are not using a project, the extension configuration information is stored in the extend. ini file.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box. Extensions that use
technologies on the Classic Agent are located in the <Silk Test Classic project directory>
\extend\ directory.

Extensions that Silk Test Classic can Automatically
Configure

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the Basic Workflow, Silk Test Classic can automatically configure extensions for many development
environments, including:

» Browser applications and applets running in one of the supported browsers.
e .NET standalone Windows Forms applications.

« Standalone Java and Java AWT applications.

» Java Web Start applications and InstallAnywhere applications and applets.
» Java SWT applications.

* Visual Basic applications.

» Client/Server applications.

For information about new features, supported platforms, and tested versions, refer to the Release Notes.

You cannot enable extensions for Silk Test Classic (partner .exe), Classic Agent (agent.exe), or Open
Agent (openAgent.exe).

You can also click Tools > Enable Extensions to have Silk Test Classic automatically set your extension.
If the Basic workflow does not support your configuration, you can enable the extension manually.

If you use the Classic Agent, the Basic Workflow does not automatically configure browser applications
containing ActiveX objects. To configure a browser application with ActiveX objects, check the ActiveX
check box in the row for the extension that you are enabling in the Extensions dialog box. Or use the Open
Agent.

Enabling Extensions for Applications Under Test | 81

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktest-releasenotes-en.pdf

Extensions that Must be Set Manually

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the Basic Workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If the Basic Workflow does not support your configuration or you prefer to
enable extensions manually, enable the extension on your host machine and enable the extension on your
target machine, regardless of whether the application you plan to test will run locally or on remote
machines. Enable extensions manually if you:

« Want to change your currently enabled extension.

« Want to enable additional options for the extension you are using, such as Accessibility, Active X, or
Java.

« Are testing embedded browser applications using the Classic Agent, for example, if DOM controls are
embedded within a Windows Forms application.

« Are testing an application that does not have a standard name.

If you are testing Web applications using the Classic Agent, Silk Test Classic enables the extension
associated with the default browser you specified on the Select Default Browser dialog box during the Silk
Test Classic installation. If you want to use the extension you specified during the Silk Test Classic
installation, you do not need to complete this procedure unless you need additional options, such as
Accessibility, Java, or ActiveX.

If you are not testing Java but do have Java installed, we recommend that you disable the classpath before
using Silk Test Classic.

Silk Test Classic automatically enables Java support in the browser if your web page contains an applet.
The Enable Applet Support check box on the Extension Settings dialog for browser is automatically
selected when the Enable Extensions workflow detects an applet. You can uncheck the check box to
prevent Silk Test Classic from loading the extension. If no applet is detected, the check box is not available.

Extensions on Host and Target Machines

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must define which extensions Silk Test Classic should load for each application under test, regardless
of whether the application will run locally or on remote machines. You do this by enabling extensions on
your host machine and on each target machine before you record or run tests.

Extensions on the host machine

On the host machine, we recommend that you enable only those extensions required for testing the current
application. Extensions for all other applications should be disabled on the host to conserve memory and
other system resources. By default, the installation program:

< Enables the extension for your default Web browser environment on the host machine.
» Disables extensions on the host machine for all other browser environments.
« Disables extensions for all other development environments.

When you enable an extension on the host machine, Silk Test Classic does the following:

* Adds the include file of the extension to the Use Files text box in the Runtime Options dialog box, so
that the classes of the extension are available to you.

82 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

* Makes sure that the classes defined in the extension display in the Library Browser. Silk Test Classic
does this by adding the name of the extension’s help file, which is browser . ht, to the Help Files For
Library Browser text box in General Options dialog box and recompiling the help file used by the
Library Browser.

« Merges the property sets defined for the extension with the default property sets. The web-based
property sets are in the browser . ps file in the Extend directory. The file defines the following property
sets: Color, Font, Values, and Location.

Extensions on the target machine

The Extension Enabler dialog box is the utility that allows you to enable or disable extensions on your
target machines. All information that you enter in the Extension Enabler is stored in the extend. ini file
and allows the Agent to recognize the non-standard controls you want to test on target machines.

Enabling Extensions Automatically Using the Basic
Workflow

An extension is a file that serves to extend the capabilities of, or data available to, a more basic program.
Silk Test Classic provides extensions for testing applications that use non-standard controls in specific
development and browser environments.

If you are testing a generic project that uses the Classic Agent, perform the following procedure to enable
extensions:

1. Start the application or applet for which you want to enable extensions.

2. Start Silk Test Classic and make sure the basic workflow bar is visible. If it is not, click Workflows >
Basic to enable it.

If you do not see Enable Extensions on the workflow bar, ensure that the default agent is set to the
Classic Agent.

3. If you are using Silk Test Classic projects, click Project and open your project or create a new project.
4. Click Enable Extensions.
You cannot enable extensions for Silk Test Classic (partner .exe), the Classic Agent (agent.exe), or
the Open Agent (openAgent.exe).
5. Select your test application from the list on the Enable Extensions dialog box, and then click Select.

6. If your test application does not display in the list, click Refresh. Or, you may need to add your
application to this list in order to enable its extension.

7. Click OK on the Extension Settings dialog box, and then close and restart your application.
8. If you are testing an applet, the Enable Applet Support check box is checked by default.

9. When the Test Extension Settings dialog box opens, restart your application in the same way in which
you opened it; for example, if you started your application by double-clicking the .exe, then restart it by
double-clicking the .exe.

10.Make sure the application has finished loading, and then click Test. When the test is finished, a dialog
box displays indicating that the extension has been successfully enabled and tested. You are now ready
to begin testing your application or applet. If the test fails, review the troubleshooting topics.

When you enable extensions, Silk Test Classic adds an include file based on the technology or browser
type that you enable to the Use files location in the Runtime Options dialog box.

Enabling Extensions on a Host Machine Manually

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Enabling Extensions for Applications Under Test | 83

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Using the Basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A host machine is the system that runs the Silk Test Classic software process, in which you develop, edit,
compile, run, and debug 4Test scripts and test plans.

There is overhead to having more than one browser extension enabled, so you should enable only one
browser extension unless you are actually testing more than one browser in an automated session.

1. Start Silk Test Classic and click Options > Extensions.

2. If you are testing a client/server project, rich internet application project, or a generic project that uses
the Classic Agent, perform the following steps:

a) On the Extensions dialog box, click the extension you want to enable. You may need to add your
application to this list in order to enable its extension.

b) Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.

c) Disable other extensions that you will not be using by selecting Disabled in the Primary Extension
field. To disable a Visual Basic extension, uncheck the ActiveX check box for the Visual Basic
application.

d) Click OK.

Manually Enabling Extensions on a Target Machine

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Using the basic workflow, Silk Test Classic can automatically enable extensions for many different
development environments. If you would rather enable the extension manually, or the basic workflow does
not support your configuration, follow the steps described in this topic.

A target machine is a system (or systems) that runs the 4Test Agent, which is the software process that
translates the commands in your scripts into GUI-specific commands, in essence, driving and monitoring
your applications under test. One Agent process can run locally on the host machine, but in a networked
environment, any number of Agents can run on remote machines.

If you are running local tests, that is, your target and host are the same machine, complete this procedure
and enable extensions on a host machine manually.

1. Make sure that your browser is closed.

2. From the Silk Test Classic program group, choose Extension Enabler. To invoke the Extension
Enabler on a remote non-Windows target machine, run extinst.exe, located in the directory on the
target machine in which you installed the Classic Agent.

3. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate. To get
information about the files used by an extension, select an extension and click Details. You may need to
add your application to this list in order to enable its extension.

4. Click OK to close the Extension Enabler dialog box.

If you enable support for ActiveX in this dialog box, make sure that it is enabled in the Extensions
dialog box as well.

5. Restart your browser, if you enabled extensions for web testing.

Once you have set your extension(s) on your target and host machines, verify the extension settings to
check your work. Be sure to consider how you want to work with borderless tables. If you are testing
non-Web applications, you must disable browser extensions on your host machine. This is because the
recovery system works differently when testing Web applications than when testing non-Web
applications. For more information about the recovery system for testing Web applications, see Web
applications and the recovery system. When you select one or both of the Internet Explorer extensions
on the host machine’s Extension dialog box, Silk Test Classic automatically picks the correct version of

84 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

the host machine’s Internet Explorer application in the Runtime Options dialog box. If the target
machine’s version of Internet Explorer is not the same as the host machine’s, you must remember to
change the target machine’s version.

Enabling Extensions for Embedded Browser Applications
that Use the Classic Agent

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

To test an embedded browser application, enable the Web browser as the primary extension for the
application in both the Extension Enabler and in the Silk Test Classic Extensions dialog boxes. For
instance, if you are testing an application with DOM controls that are embedded within a .NET application,
follow the following instructions to enable extensions.

1. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler.

2. Browse to the location of the application executable.

3. Select the executable file and then click Open.

4. Click OK.

5. From the Primary Extension list box, select the DOM extension for the application that you added.

6. Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.
For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

7. Click OK.

8. Start Silk Test Classic and then choose Options > Extensions. The Extensions dialog box opens.

9. Click New.

10.Browse to the location of the application executable.

11.Select the executable file and then click Open.

12.Click OK.

13.From the Primary Extension list box, select the DOM extension for the application that you added.

14.Enable other extensions, such as Java, ActiveX, Accessibility, and .NET, as appropriate.
For example, to test a .NET application with embedded Web controls, select a browser in the Primary
Extension list box and check the .NET check box for the application within the grid.

15.Click OK.

16.Restart Silk Test Classic.

Note: The IE DOM extension may not detect changes to a web page that occur when JavaScript
replaces a set of elements with another set of elements without changing the total number of
elements. To force the DOM extension to detect changes in this situation, call the FlushCache()
method on the top-level browserchild for the embedded browser. This problem might occur more often
for embedded browsers than for browser pages, because Silk Test Classic is not notified of as many
browser events for embedded browsers. Also call FlushCache() if you get a Coordinate out of
bounds exception when calling a method, for example Click(), on an object that previously had
been scrolled into view. The BrowserPage window identifier is not valid when using embedded
browsers because the default browser type is " (none)* (NULL).

Enabling Extensions for Applications Under Test | 85

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Enabling Extensions for HTML Applications (HTAS)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You must enable extensions on the host and target machines manually in order to use HTML applications
(HTAS).

Before you begin, create a project that uses the Classic Agent.

1. Click Options > Extensions to open the Extensions dialog box.
2. Click New to open the Extension Application dialog box.

3. |
Click — to navigate to the location of the _hta file that you want to enable. If the file name contains

spaces, be sure to enclose the name in quotation marks.
4. Select the . hta file and then click Open.
5. Click OK.

6. In the Primary Extension column next to the . hta application that you just enabled, select Internet
Explorer.

7. Click OK.

8. Click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Extension Enabler or
(in Microsoft Windows 10) Start > Silk > Extension Enabler. (Or use the command line to launch "*C:
\Progam Files\Silk\SilkTest\Tools\extinst.exe".)

9. On the Extension Enabler dialog box, click New to open the Extension Application dialog box.

10.
Click _| to navigate to the location of the . hta file that you want to enable. If the file name contains

spaces, be sure to enclose the name in quotation marks.
11.Select the _hta file and then click Open.
12.Click OK.

13.In the Primary Extension column next to the . hta application that you just enabled, select Internet
Explorer.

14.Click OK.

Adding a Test Application to the Extension Dialog Boxes

This functionality is available only for projects or scripts that use the Classic Agent.

You must manually add the following applications to the Extensions dialog box and the Extension
Enabler dialog box:

« Applications that are embedded in Web pages and use the Classic Agent.
» All test applications that do not have standard names and use the Classic Agent.

* When you add a test application to the Extensions dialog box on the host machine, you should
immediately add it to the Extension Enabler dialog box on each target machine on which you intend to
test the application.

You may also add new applications by duplicating existing applications and then changing the application
name.

To add a test application to the Extension dialog boxes:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test program group.

86 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

2. If you are testing a client/server project, Rich Internet Application project, or a generic project that uses
the Classic Agent, perform the following steps:

a) Click New to open the Extension Application dialog box.
b) Click ... to browse to the application’s executable or DLL file.

Separate multiple application names with commas. If the executable name contains spaces, be sure
to enclose the name in quotation marks.

c) Select the executable file and then click Open.
d) Click OK.

3. Click OK to close the dialog box.

Verifying Extension Settings

This functionality is available only for projects or scripts that use the Classic Agent.
If the extension settings for the host and target machines do not match, neither extension will load properly.

* To see the target machine setting, choose Options > Extensions. Verify that the Primary Extension is
enabled and other extensions are enabled, if appropriate. If you enabled a browser extension, you can
also verify the extension settings on the target machine by starting the browser and Silk Test Classic,
and then right-clicking the task bar Agent icon and selecting Extensions > Detail.

* To verify that the setting on the host machine is correct, choose Options > Runtime. Make sure that
the default browser in the Default Browser field on the Runtime Options dialog box is correct.

Why Applications do not have Standard Names

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In the following situations applications might not have standard names, in which case you must add them to
the Extension Enabler dialog box and the Extensions dialog box:

« Visual Basic applications can have any name, and therefore the Silk Test Classic installation program
cannot add them to the dialog box automatically.

* You are running an application developed in Java as a stand-alone application, outside of its normal
runtime environment.

* You have explicitly changed the name of a Java application.

Duplicating the Settings of a Test Application in Another
Test Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can add new applications to the Extension Enabler dialog box or the Extensions dialog box by
duplicating existing applications and renaming the new application. All the settings of the original
application, that is, primary extension, other extensions, or options set on the Extensions dialog box, are
copied.

You can only duplicate applications that you entered manually and that use the Classic Agent.

To copy a test application’s settings into another application:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

Enabling Extensions for Applications Under Test | 87

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

2. Select the application that you want to copy.

3. Click Duplicate. The Extension Application dialog box opens.

4. Type the name of the new application you want to copy.
Separate multiple application names with commas.

5. Click OK to close the Extension Application dialog box. The new applications display in the dialog box
you opened.

6. Click OK to close the dialog box.

Deleting an Application from the Extension Enabler or
Extensions Dialog Box

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

After completing your testing of an application or if you make a mistake, you might want to delete the
application from the Extension Enabler dialog box or the Extensions dialog box. You can delete only
applications that you have entered manually. Visual Basic applications fall into this category.

To remove an application from the Extension Enabler or Extensions dialog box:

1. Click Options > Extensions to open the Extensions dialog box, or open the Extension Enabler dialog
box from the Silk Test Classic program group.

2. Select the application that you want to delete from the dialog box.
3. Click Remove. The application name is removed from the dialog box.
4. Click OK.

Disabling Browser Extensions

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

1. In Silk Test Classic, choose Options > Extensions.

2. From the Primary Extension list, select Disabled for the extension you want to disable.
3. In the Other extensions field, uncheck any checked check boxes.

4. Click OK.

If you are testing non-Web applications, you must disable browser extensions on your host machine. This is
because the recovery system works differently when testing Web applications than when testing non-Web
applications.

Comparison of the Extensions Dialog Box and the
Extension Enabler Dialog Box

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

The Extensions dialog box and the Extension Enabler dialog box look similar; they are both based on a
grid and have identical column headings and have some of the same buttons. However, they configure
different aspects of the product:

88 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Extensions Dialog Box Extension Enabler Dialog Box

What you specify on each:

Enables AUTs and extensions On host machine On target machines

Provides information for Silk Test Classic Agent

Available from Options menu Silk Test Classic program group
Information stored in partner.ini extend. ini

When to enable/disable AUTs and Enable the AUTs and extensions you Enable all AUTs and extensions you
extensions want to test now; disable others. ever intend to test. No harm in leaving

them enabled, even if you are not
testing them now.

* Yes, according to the type * Yes, according to the type
« Primary environment « Enable and set options « Enable only
« Java or ActiveX, if required « Enable and set options « Enable only
« Accessibility
What installation does: + Displayed and enabled « Displayed and enabled
« Default browser (If any) « Displayed but disabled « Displayed and enabled
« Other browsers (if any) « Displayed but disabled » Displayed and enabled
« Java runtime environment « Displayed but disabled « Displayed but disabled
« Oracle Forms runtime « Not displayed or enabled * Not displayed or enabled

environment
Visual Basic 5 & 6

Configuring the Browser

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

In order for Silk Test Classic to work properly, make sure that your browser is configured correctly.

If your tests use the recovery system of Silk Test Classic, that is, your tests are based on DefaultBaseState
or on an application state that is ultimately based on DefaultBaseState, Silk Test Classic makes sure that
your browser is configured correctly.

If your tests do not use the recovery system, you must manually configure your browser to make sure that
your browser displays the following items:

The standard toolbar buttons, for example Home, Back, and Stop, with the button text showing. If you
customize your toolbars, then you must display at least the Stop button.

The text box where you specify URLs. Address in Internet Explorer.

Links as underlined text.

The browser window’s menu bar in your Web application. It is possible through some development tools
to hide the browser window’s menu bar in a Web application. Silk Test Classic will not work properly
unless the menu bar is displayed. The recovery system cannot restore the menu bar, so you must make
sure the menu bar is displayed.

The status bar at the bottom of the window shows the full URL when your mouse pointer is over a link.

We recommend that you configure your browser to update cached pages on a frequent basis.

Internet Explorer

1.
2.
3.

Click Tools > Internet Options, then click the General tab.

In the Temporary Internet Files area, click Settings.

On the Settings dialog box, select Every visit to the page for the Check for newer versions of
stored pages setting.

Enabling Extensions for Applications Under Test

89

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Mozilla Firefox

1. Choose Edit > Preferences > Advanced > Cache.
2. Indicate when you want to compare files and update the cache. Select Every time | view the page at
the Compare the page in the cache to the page on the network field.

AOL

Even though AOL's Proxy cache is updated every 24 hours, you can clear the AOL Browser Cache and
force a page to reload. To do this, perform one of the following steps:

« Delete the files in the temporary internet files folder located in the Windows directory.
* Press the CTRL key on your keyboard and click the AOL browser reload icon (Windows PC only).

Friendly URLs

Some browsers allow you to display "friendly URLS," which are relative to the current page. To make sure
you are not displaying these relative URLS, in your browser, display a page of a web site and move your
mouse pointer over a link in the page.

« If the status bar displays the full URL (one that begins with the http:// protocol name and contains the
site location and path), the settings are fine. For example: http://www.mycompany .com/
products.htm

« If the status bar displays only part of the URL (for example, products.htm), turn off "friendly URLs."
(In Internet Explorer, this setting is on the Advanced tab of the Internet Options dialog box.)

Setting Agent Options for Web Testing
This functionality is supported only if you are using the Classic Agent. For additional information, refer to

the Silk Test Classic Classic Agent Help.

When you first install Silk Test Classic, all the options for Web testing are set appropriately. If, for some
reason, for example if you were testing non-Web applications and changed them, you have problems with
testing Web applications, perform the following steps:

1. Click Options > Agent. The Agent Options dialog box opens.
2. Ensure the following settings are correct.

Tab Option Specifies Setting
Timing OPT_APPREADY_TIMEOU The number of seconds that the agent Site-specific; default is 180
T waits for an application to become seconds.
ready. Browser extensions support this
option.
Timing OPT_APPREADY_RETRY The number of seconds that the agent Site-specific; default is 0.1

waits between attempts to verify that seconds.
the application is ready.

Other OPT_SCROLL_INTO_VIE That the agent scrolls a control into TRUE (checked); default is
W view before recording events againstit. TRUE.

Other OPT_SHOW_OUT_OF_VIE Enables Silk Test Classic to see objects TRUE (checked); default is
W not currently scrolled into view. TRUE.

Verification OPT_VERIFY_APPREADY Whether to verify that an applicationis TRUE (checked); default is
ready. Browser extensions support this TRUE.
option.

3. Click OK. The Agent Options dialog box closes.

90 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Specifying a Browser for Silk Test Classic to Use in
Testing a Web Application

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

You can specify a browser for Silk Test Classic to use when testing a Web application at runtime or you can
use the browser specified through the Runtime Options dialog box.

To completely automate your testing, consider specifying the browser at runtime. You can do this in one of
the following ways:

« Use the SetBrowserType function in a script. This function takes an argument of type BROWSERTYPE.
« Pass an argument of type BROWSERTYPE to a test case as the first argument.

For an example of passing browser specifiers to a test case, see the second example in BROWSERTYPE. It
shows you how to automate the process of running a test case against multiple browsers.

Specifying a browser through the Runtime Options dialog box

When you run a test and do not explicitly specify a browser, Silk Test Classic uses the browser specified in
Runtime Options dialog box. To change the browser type, you can:

1. Run a series of tests with a specific browser.
2. Specify a different browser in the Runtime Options dialog box.
3. Run the tests again with the new browser.

Most tests will run unchanged between browsers.

Specifying your Default Browser

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Whenever you record and run test cases, you must specify the default browser that Silk Test Classic should
use. If you did not choose a default browser during the installation of Silk Test Classic or if want to change
the default browser, perform the following steps:

1. Click Options > Runtime. The Runtime Options dialog box opens.

2. Select the browser that you want to use from the Default Browser list box.
The list box displays the browsers whose extensions you have enabled.

3. Click OK.

Enable Extensions Dialog Box (Classic Agent)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

Use to select the application for which you want to enable extensions. The environments listed in the dialog
box are used for running the applications that you want to test. The extensions enable recognition of the
non-standard controls in your environment.

You can automatically configure extensions for many development environments.

The dialog box content changes based on the agent that your project or script uses. Ensure that the agent
that you want to use is selected before you open the dialog box. If necessary, close this dialog box, click
the appropriate Agent icon in the toolbar to change the agent, and re-open the dialog box.

Enabling Extensions for Applications Under Test | 91

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Click Tools > Enable Extensions or click Enable Extensions on the Basic Workflow bar (Workflows >
Basic).

Silk Test Classic does not support 64-bit applications. If you are running a 64-bit application, it will display
in the Enable Extensions dialog box, but an error occurs when you try to enable extensions. Silk Test
Classic does support 32-bit applications that run in 64-bit environments and extensions will enable properly
for these applications.

If you are using a project, the information you specify in the Enable Extensions dialog box is stored in the
partner . ini file. If you are not using a project, the information you specify in the Enable Extensions
dialog box is stored in the extend. ini file.

When you enable extensions, an include file is added based on the technology or browser type that you
enable to the Use files location in the Runtime Options dialog box. For instance, if you enable extensions
for Internet Explorer, Silk Test Classic adds the explorer . inc file to the Runtime Options dialog box.

Application(s) Lists all open applications that are not minimized, including any Web applications (or
Java applets), which are identified by the currently loaded page’s title. Click an
application and then click Select to choose the application for which you want enable
extensions. If you choose an executable name containing spaces, you must enclose the
name in quotation marks.

Applets are automatically detected and can be selected from the Application list.

Select Selects the highlighted application. Information is gathered from the application that you
select and the suggested extension settings are displayed on the Extension Settings
dialog box.

Refresh Click to update the list of applications from which you can select.

Cancel Click to exit the dialog box without selecting an application.

Extension Information Dialog Box

Use the Extension Information dialog box to view information about the enabled extensions for the agent.

Click the Classic Agent icon in the taskbar and then click Extensions > Details. If the agent is not already
running, click (in Microsoft Windows 7) Start > Programs > Silk > Silk Test > Tools > Silk Test Classic
Agent or (in Microsoft Windows 10) Start > Silk > Silk Test Classic Agent.

Extension pjgplays the currently loaded extensions.

Status Displays the status of the currently loaded extensions. The status may be one of the
following:

Loaded The extension is loaded in the application under test.
Enabled The extension is enabled, but not loaded in the application under test.

Error An error message may appear if an error has occurred.

Refresh Cjick to update the information that appears in the dialog box.

Extension Settings Dialog Box (.NET)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a .NET application on the Enable Extensions dialog box, the Extension Settings dialog
box displays information that is specific to .NET applications.

92 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Enable Click to better recognize objects such as the Microsoft Office Word menu. If you are

Accessibility testing an application with Microsoft Accessibility objects, we recommend that you
check this box. If your client/server application does not have these types of objects,
you may leave the check box unchecked.

OK Click to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Extension Settings Dialog Box (Web)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a Web application on the Enable Extensions dialog box, the Extension Settings dialog
box displays information that is specific to Web applications. Verify the information displayed on this dialog
box, and then click OK to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Primary Extension area

Displays the extension that will be used to test your application. An extension is a file that serves to extend
the capabilities of, or data available to, a more basic program. Extensions are provided for testing
applications that use non-standard controls in specific development and browser environments.

DOM Enables the Document Object Model (DOM) extension which is used to query the browser directly
for information about the objects on a Web page.

Secondary Extension (Select as required) area

Enable Applet Check if you are testing an application with applets. This check box is automatically

Support selected when the Enable Extensions workflow detects an applet. You can clear
the check box to prevent loading the extension. If no applet is detected, the check
box is not available.

Enable Check if you are testing an application with Microsoft Accessibility objects or other
Accessibility objects that may be unrecognizable. If your application does not have these types of
objects, you may leave the check box unchecked.

Enable ActiveX Check if you are testing an application with ActiveX objects. If your application does
Support not have these types of objects, you may leave the check box unchecked.

Extension Settings Dialog Box (Client/Server)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a client/server application on the Enable Extensions dialog box, the Extension Settings
dialog box displays information that is specific to client/server applications.

Enable Click to better recognize objects such as the Microsoft Office Word menu. If you are

Accessibility testing an application with Microsoft Accessibility objects, we recommend that you
check this box. If your client/server application does not have these types of objects,
you may leave the check box unchecked.

Enabling Extensions for Applications Under Test | 93

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf
https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

OK Click to enable the extension automatically. After the extension is enabled, Silk Test
Classic can run a test to verify that the extension is working correctly.

Extension Settings Dialog Box (Java)

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When you select a standalone Java application on the Enable Extensions dialog box, the Extension
Settings dialog box displays the path to the Java Virtual Machine (JVM), which is used by the application
you have selected.

Verify that the JVM information is correct and then click OK to enable the extension automatically. The
SilkTest_JavaX. jar file will be copied to the \lib\ext subdirectory of the JVM that the application is
using. If necessary, the accessibilities.properties file in the \lib directory of this JVM will be
updated or installed.

For JVM versions 1.3+, the Copying Dlls dialog box will display the location of the gapjconn.dll and
qapjarex.dll files. During installation, these files are placed in the Windows\System32 folder (copies
are also placed in the Si lkTest\Extend folder). If the default directory for your library files is in a location
other than Windows\System32, you can use the list to select the alternate location. Click OK to save your
changes.

After the extension is enabled, a test is run to verify that the extension is working correctly.

f Note:

If you defined your CLASSPATH in multiple set statements, it will be aggregated into a single set
statement with all parameters fully expanded. Every time the CLASSPATH is updated, the current
autoexec.bat is backed up and saved as autoexec.bak.

94 | Enabling Extensions for Applications Under Test

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

Understanding the Recovery System for
the Classic Agent

The built-in recovery system is one of the most powerful features of Silk Test Classic because it allows you
to run tests unattended. When your application fails, the recovery system restores the application to a
stable state, known as the BaseState, so that the rest of your tests can continue to run unattended.

The recovery system can restore your application to its BaseState at any point during test case execution:

« Before the first line of your test case begins running, the recovery system restores the application to the
BaseState even if an unexpected event corrupted the application between test cases.

« During a test case, if an application error occurs, the recovery system terminates the execution of the
test case, writes a message in the error log, and restores the application to the BaseState before
running the next test case.

« After the test case completes, if the test case was not able to clean up after itself, for example it could
not close a dialog box it opened, the recovery system restores the application to the BaseState.

* The recovery system cannot recover from an application crash that produces a modal dialog box, such
as a General Protection Fault (GPF).

Silk Test Classic uses the recovery system for all test cases that are based on DefaultBaseState or based
on a chain of application states that ultimately are based on DefaultBaseState.

« If your test case is based on an application state of none or a chain of application states ultimately
based on none, all functions within the recovery system are not called. For example, SetAppState and
SetBaseState are not called, while DefaultTestCaseEnter, DefaultTestCaseExit, and error handling are
called.

Such a test case will be defined in the script file as:
testcase Name () appstate none

Silk Test Classic records test cases based on DefaultBaseState as:
testcase Name ()

How the default recovery system is implemented

The default recovery system is implemented through several functions.

Function Purpose

DefaultBaseState Restores the default BaseState, then call the application’s BaseState function, if defined.

DefaultScriptEnte gxecuted when a script file is first accessed.

r .
Default action: none.

Defaul tScriptEXit Executed when a script file is exited.

Default action: Call the ExceptLog function if the script had errors.

DefaultTestCaseEn gxecuted when a test case is about to start.

ter . _—
Default action: Set the application state.

DefaultTestCaseEX gxecuted when a test case has ended.

it
Default action: Call the ExceptLog function if the script had errors, then set the
BaseState.

Understanding the Recovery System for the Classic Agent | 95

Function Purpose

DefaultTestPlanEn gxecuted when a test plan is entered.

ter .
Default action: none.

DefaultTestPlanEX Executed when a test plan is exited.
it

Default action: none.

You can write functions that override some of the default behavior of the recovery system.

Setting the Recovery System for the Classic Agent

The recovery system ensures that each test case begins and ends with the application in its intended state.
Silk Test Classic refers to this intended application state as the BaseState. The recovery system allows you
to run tests unattended. When your application fails, the recovery system restores the application to the
BaseState, so that the rest of your tests can continue to run unattended.

If you are testing an application that uses both the Classic Agent and the Open Agent, set the Agent that
will start the application as the default Agent and then set the recovery system. If you use the Open Agent
to start the application, set the recovery system for the Open Agent.

1. Make sure the application that you are testing is running.

2. Click Set Recovery System on the Basic Workflow bar. If the workflow bar is not visible, click
Workflows > Basic to enable it.

3. From the Application list, click the name of the application that you are testing.
All open applications that are not minimized are listed. This list is dynamic and will update if you open a

new application. If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

f Note: If you selected a non-web application as the application:

« The Command line text box displays the path to the executable (.exe) for the application that
you have selected.
* The Working directory text box displays the path of the application you selected.

If you selected a web application, the Start testing on this page text box displays the URL for the
application you selected. If an application displays in the list, but the URL does not display in this text
box, your extensions may not be enabled correctly. Click Enable Extensions in the Basic Workflow
bar to automatically enable and test extension settings.

4. Optional: In the Frame file name text box, modify the frame file name and click Browse to specify the
location in which you want to save this file.

Frame files must have a .inc extension. By default, this field displays the default name and path of the
frame file you are creating. The default is Frame. inc. If frame. inc already exists, Silk Test Classic
appends the next logical number to the new frame file name; for example, framel. inc.

5. Optional: In the Window name text box, change the window name to use a short name to identify your
application.

6. Click OK.
7. Click OK when the message indicating that the recovery system is configured displays.

8. A new 4Test include file, Frame. inc, opens in the Silk Test Editor. Click the plus sign in the file to see
the contents of the frame file.

9. Record a test case.

96 | Understanding the Recovery System for the Classic Agent

Base State

An application’s base state is the known, stable state that you expect the application to be in before each
test case begins execution, and the state the application can be returned to after each test case has ended
execution. This state may be the state of an application when it is first started.

Base states are important because they ensure the integrity of your tests. By guaranteeing that each test
case can start from a stable base state, you can be assured that an error in one test case does not cause
subsequent test cases to fail.

Silk Test Classic automatically ensures that your application is at its base state during the following stages:

+ Before a test case runs.
» During the execution of a test case.
« After a test case completes successfully.

When an error occurs, Silk Test Classic does the following:

» Stops execution of the test case.

« Transfers control to the recovery system, which restores the application to its base state and logs the
error in a results file.

« Resumes script execution by running the next test case after the failed test case.

The recovery system makes sure that the test case was able to "clean up" after itself, so that the next test
case runs under valid conditions.

DefaultBaseState Function

Silk Test Classic provides a DefaultBaseState for applications, which ensures the following conditions
are met before recording and executing a test case:

* The application is running.

* The application is not minimized.

» The application is the active application.

« No windows other than the application’s main window are open. If the Ul of the application is localized,
you need to replace the strings, which are used to close a window, with the localized strings. The
preferred way to replace these buttons is with the IsCloseWindowButtons variable in the object’s
declaration. You can also replace the strings in the Close tab of the Agent Options dialog box.

For Web applications that use the Open Agent, the Defaul tBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

e The browser is running.

« Only one browser tab is open, if the browser supports tabs and the frame file does not specify
otherwise.

* The active tab is navigated to the URL that is specified in the frame file.

For web applications that use the Classic Agent, the Defaul tBaseState also ensures the following for
browsers, in addition to the general conditions listed above:

e The browser is ready.

« Constants are set.

* The browser has toolbars, location and status bar are displayed.
e Only one tab is opened, if the browser supports tabs.

Understanding the Recovery System for the Classic Agent | 97

98

DefaultBaseState Types

Silk Test Classic includes two slightly different base state types depending on whether you use the Open
Agent and dynamic object recognition or traditional hierarchical object recognition. When you use dynamic
object recognition, Silk Test Classic creates a window object named wDynamicMainWindow in the base
state. When you set the recovery system for a test that uses hierarchical object recognition, Silk Test
Classic creates a window object called wMainWindow in the base state. Silk Test Classic uses the window
object to determine which type of Defaul tBaseState to execute.

Adding Tests that Use the Classic Agent to the
DefaultBaseState

If you want the recovery system to perform additional steps after it restores the default base state, record a
new method named BaseState and paste it into the declaration for your application’s main window. Silk
Test Classic provides the Record/Method menu command to record a BaseState method.

1. Open your application and the application’s test frame file.
2. Place the insertion point on the declaration for the application’s main window.

3. Click Record > Method. Silk Test Classic displays the Record Method dialog box, which allows you to
record a method for a class or window declaration.

4. From the Method Name list box, select BaseState.

5. Click Start Recording. Silk Test Classic closes the Record Method dialog box and displays the
Record Status window, which indicates that you can begin recording the BaseState method. The
Status field flashes the word Recording.

6. When you have finished recording the BaseState method, click Done on the Record Status window.
Silk Test Classic redisplays the Record Method dialog box. The Method Code field contains the 4Test
code you recorded.

7. Click OK to close the Record Method dialog box and place the new BaseState method in the
declaration for your main window.

DefaultBaseState and wMainWindow

Silk Test Classic executes the DefaultBaseState for hierarchical object recognition when the global
constant wmainWindow is defined. Defaul tBaseState works with the wMainWindow object in the
following ways:

1. If the wmainWindow object does not exist, invoke it, either using the Invoke method defined for the
MainWin class or a user-defined Invoke method built into the object. If wainWindow is a
BrowserChi ld object and the browser is not loaded, load the browser before loading the web page
into it.

2. If the wainWindow object is minimized, restore it. If wlainWindow is a BrowserChi Id object and
the browser is minimized, restore it.

3. If there are child objects of the wMainWindow open, close them. If wlainWindow is a BrowserChild
object, close any children of the browser.

4. If the wainWindow object is not active, make it active.

5. If there is a BaseState method defined for the wMainWindow object, execute it.

In a scenario where a dialog box or a different Web page loads on request, the recovery system expects
that web page to be loaded. However, it might not be if a Login page loads first. You can configure Silk Test
Classic to handle login pages.

Understanding the Recovery System for the Classic Agent

Flow of Control

This section describes the flow of control during the execution of each of your test cases.

The Non-Web Recovery Systems Flow of Control

Before you modify the recovery system, you need to understand the flow of control during the execution of
each of your test cases. The recovery system executes the Defaul tTestcaseEnter function. This
function, in turn, calls the SetAppState function, which does the following:

1. Executes the test case.

2. Executes the DefaultTestcaseExit function, which calls the SetBaseState function, which calls
the lowest level application state, which is either the Defaul tBaseState or any user defined
application state.

i Note: If the test case uses AppState none, the SetBaseState function is not called.

DefaultTestCaseEnter() is considered part of the test case, but DefaultTestCaseExit() is not.
Instead, DefaultTestCaseExit() is considered part of the function that runs the test case, which
implicitly is main() if the test case is run standalone. Therefore an unhandled exception that occurs during
DefaultTestCaseEnter() will abort the current test case, but the next test case will run. However, if the
exception occurs during Defaul tTestCaseEXxit(), then it is occurring in the function that is calling the
test case, and the function itself will abort. Since an application state may be called from both
TestCaseEnter() and TestCaseExit(), an unhandled exception within the application state may cause
different behavior depending on whether the exception occurs upon entering or exiting the test case.

Web Applications and the Recovery System

This functionality is supported only if you are using the Classic Agent. For additional information, refer to
the Silk Test Classic Classic Agent Help.

When the recovery system needs to restore the base state of a Web application that uses the Classic
Agent, it does the following:

Invokes the default browser if it is not running.

Restores the browser if it is minimized.

Closes any open additional browser instances or message boxes.
Makes sure the browser is active and is not loading a page.

Sets up the browser as required by Silk Test Classic.

a s~ wbdh e

The recovery system performs the next four steps only if the wainWindow constant is set and points
to the home page in your application.

If bDefaultFont is defined and set to TRUE for the home page, sets the fonts.
If BrowserSize is defined and set for the home page, sets the size of the browser window.
If sLocation is defined and set for the home page, loads the page specified by sLocation.

© © N

If wmainWindow defines a BaseState method, executes it.

10.For additional information, see DefaultBaseState and the wMainWindow Object.

To use the recovery system, you must have specified your default browser in the Runtime Options dialog
box. If the default browser is not set, the recovery system is disabled. There is one exception to this rule:

You can pass a browser specifier as the first argument to a test case. This sets the default browser at
runtime. For more information, see BROWSERTYPE Data Type.

Understanding the Recovery System for the Classic Agent | 99

https://www.microfocus.com/documentation/silk-test/20.5/en/silktestclassic-classicagent-en.pdf

100

The constant wMainWindow must be defined and set to the identifier of the home page in the Web
application for the recovery system to restore the browser to your application’s main page. This window
must be of class BrowserChi Id. When you record a test frame, the constant is automatically defined and
set appropriately. If you want, you can also define a BaseState method for the window to execute
additional code for the base state, for example if the home page has a form, you might want to reset the
form in the BaseState method, so that it will be empty at your base state.

On Internet Explorer 7.x and 8.x, when recording a new frame file using Set Recovery System, by default
Silk Test Classic does not explicitly state that the parent of the window is a browser. To resolve this issue,
add the "parent Browser" line to the frame file.

How the Non-Web Recovery System Closes Windows

The built-in recovery system restores the base state by making sure that the non-Web application is
running, is not minimized, is active, and has no open windows except for the main window. To ensure that
only the main window is open, the recovery system attempts to close all other open windows, using an
internal procedure that you can customize as you see fit.

To make sure that there are no application windows open except the main window, the recovery system
calls the built-in CloseWindows method. This method starts with the currently active window and attempts
to close it using the sequence of steps below, stopping when the window closes.

1. If a Close method is defined for the window, call it.

2. Click the Close menu item on the system menu, on platforms and windows that have system menus.

3. Click the window’s close box, if one exists.

4. If the window is a dialog box, type each of the keys specified by the OPT_ CLOSE_DIALOG_KEYS

option and wait one second for the dialog box to close. By default, this option specifies the Esc key.

If there is a single button in the window, click that button.

6. Click each of the buttons specified by the OPT_CLOSE_WINDOW_ BUTTONS option. By default, this
option specifies the Cancel, Close, Exit, and Done keys.

7. Select each of the menu items specified by the OPT_CLOSE_WINDOW_ MENUS option. By default, this
option specifies the File > Exit and the File > Quit menu items.

8. If the closing of a window causes a confirmation dialog box to open, CloseWindows attempts to close
the dialog box by clicking each of the buttons specified with the OPT_CLOSE_CONFIRM_BUTTONS
option. By default, this option specifies the No button.

o

When the window, and any resulting confirmation dialog box, closes, CloseWindows repeats the
preceding sequence of steps with the next window, until all windows are closed.

If any of the steps fails, none of the following steps is executed and the recovery system raises an
exception. You may specify new window closing procedures.

In a Web application, you are usually loading new pages into the same browser, not closing a page before
opening a new one.

How the Non-Web Recovery System Starts the
Application

To start a non-Web application, the recovery system executes the Invoke method for the main window of
the application. The Invoke method relies on the sCmdL i ne constant as recorded for the main window
when you create a test frame.

For example, here is how a declaration for the sCmdLine constant might look for a sample Text Editor
application running under Windows:

const sCmdLine = "c:\ProgramFiles\<SilkTest install directory>\SilkTest
\TextEdit.exe"

Understanding the Recovery System for the Classic Agent

After it starts the application, the recovery system checks whether the main window is minimized, and, if it
is, uses the Restore method to open the icon and restore the application to its proper size.

The limit on the sCmdLine constant is 8191 characters.

Modifying the Default Recovery System

The default recovery system is implemented in defaults. inc, which is located in the directory in which
you installed Silk Test Classic. If you want to modify the default recovery system, instead of overriding
some of its features, as described in Overriding the default recovery system, you can modify
defaults.inc.

We cannot provide support for modifying defaults. inc or the results. We recommend that you do not
modify defaults. inc. This file might change from version to version. As a result, if you manually modify
defaults. inc, you will encounter issues when upgrading to a new version of Silk Test Classic.

If you decide to modify defaults. inc, be sure that you:

« Make a backup copy of the shipped defaults. inc file.
« Tell Technical Support when reporting problems that you have modified the default recovery system.

Overriding the Default Recovery System

The default recovery system specifies what Silk Test Classic does to restore the base state of your
application. It also specifies what Silk Test Classic does whenever:

« A script file is first accessed.
* A script file is exited.

« Atest case is about to begin.
» Atest case is about to exit.

You can write functions that override some of the default behavior of the recovery system.

To override Define the following
DefaultScriptEnter ScriptEnter
DefaultScriptExit ScriptExit
DefaultTestCaseEnter TestCaseEnter
DefaultTestCaseExit TestCaseExit
DefaultTestPlanEnter TestPlanEnter
DefaultTestPlanExit TestPlanExit

If ScriptEnter, ScriptExit, TestcaseEnter, TestcaseExit, TestPlanEnter, or
TestPlanExit are defined, Silk Test Classic uses them instead of the corresponding default function. For
example, you might want to specify that certain test files are copied from a server in preparation for running
a script. You might specify such processing in a function called ScriptEnter in your test frame.

If you want to modify the default recovery system, instead of overriding some of its features, you can modify
defaults. inc. We do not recommend modifying defaul ts. inc and cannot provide support for
modifying defaults. inc or the results.

Example

If you are planning on overriding the recovery system, you need to write your own
TestCaseExit(Boolean bException). In the following example, DefaultTestcaseExit() is

Understanding the Recovery System for the Classic Agent | 101

102

called inside TestCaseExit() to perform standard recovery systems steps and the bException
argument is passed into Defaul tTestCaseExit().

it (bException)
DefaultTestcaseExit(bException)

If you are not planning to call DefaultTestcaseExit() and plan to handle the error logging in your own
way, then you can use the TestcaseExit() signature without any arguments.

Use the following function signature if you plan on calling Defaul tTestCaseExit(Boolean
bException) or if your logic depends on whether an exception occurred. Otherwise, you can simply use
the function signature of TestcaseExit() without any arguments. For example, the following is from the
description of the ExceptLog() function.
TestCaseExit (BOOLEAN bException)
it (bException)

ExceptLog()

Here, DefaultTestcaseExit() is not called, but the value of bException is used to determine if an
error occurred during the test case execution.

Handling Login Windows

Silk Test Classic handles login windows differently, depending on whether you are testing Web or client/
server applications. These topics provide information on how to handle login windows in your application
under test.

Handling Login Windows in Web Applications that Use the Classic
Agent

This procedure describes how to handle web applications with different possible startup pages or dialog
box objects that use the Classic Agent. For example,

* A Web application requires the user to login the first time he or she visits the site in a day (a non-
persistent cookie). If the user has already logged in for this browser session, the user will not be
prompted for user name and password again, as the "cookie" is still available with their authorization.
This could be either a login web page or a dialog box.

« A dialog box that sometimes gives a "tip of the day" or reminds the user to perform some action
because it is a certain date.

« A dialog box might popup asking the user whether it is okay to download a certificate, a Java module, or
some other component.

In cases such as these, you can use the sLocation data-member from the wainWindow object as a
property. You can create a property and it will look exactly like a data-member and will be called like a data-
member. When trying to retrieve information from a property the Get portion of the property is executed.
And you can add code to deal with login Web pages here.

Here are the steps of what will happen when Defaul tBaseState runs:

1. DefaultBaseState will try to retrieve the sLocation data-member and, as such, will execute the Get
function.

2. The Get function that is part of the property will actually load the web page by putting the URL of the
page into the Location comboBox that is part of the browser and pressing Enter. It will then wait for
the browser to report to Silk Test Classic a ready state.

3. If the Login page exists rather than the page we were expecting, the user name and password will be
entered and the HemlPushButton OK will be clicked. Again, Silk Test Classic will wait for the browser
to return to a ready state.

4. The Get function returns a NULL even though at the definition of the Get function it was specified that a
STRING would be returned. If you were to return the URL, Defaul tBaseState would load the page

Understanding the Recovery System for the Classic Agent

again. Of course, since we have already dealt with login, it would work this time, but would add some
more time into the process by loading the page again.

Although DefaultBaseState will not try to load the page, it will find it there and continue with the
other steps of closing any open windows and setting the browser and Web page active.

You can also handle unexpected and occasional dialog boxes in this way, by changing the sLocation
data-member to a property and handling different possibilities through a Get function that is part of the
property, or you can re-write the Close method. For expected security or login dialog boxes, you can set
the sUsername and sPassword for the wMainWindow object.

Window BrowserChild RealPage

const PAGE_URL = http://www.somepage.com
property slLocation

STRING Get ()

// actually load the page

Browser .SetActive ()
Browser.Location.SetText (PAGE_URL)
Browser.Location.TypeKeys (‘'<Enter>")

// wait for the browser to be "ready'"™ Browser._WaitForReady ()
// it the Login page has shown up..
if Login.Exists ()

// deal with it
Login._UserName.SetText (USERNAME)
Login.Password.SetText (PASSWORD)
Login.OK.Click ()

// now wait for the browser to be ready
Browser .WaitForReady ()

//this way DefaultBaseState will not try to load the page again
return NULL

Handling Login Windows in Non-Web Applications that Use the Classic
Agent

Although a non-Web application’s main window is usually displayed first, it is also common for a login or
security window to be displayed before the main window.

Use the wStartup constant and the Invoke method

To handle login windows, record a declaration for the login window, set the value of the wStartup
constant, and write a new Invoke method for the main window that enters the appropriate information into
the login window and dismisses it. This enables the Defaul tBaseState routine to perform the actions
necessary to get past the login window.

You do not need to use this procedure for splash screens, which disappear on their own.

P wbd PR

o o

Open the login window that precedes the application’s main window.
Open the test frame.
Click Record > Window Declarations to record a declaration for the window.

Point to the title bar of the window and then press Ctrl+Alt. The declaration is captured in the Record
Window Declarations dialog box.

Click Paste to Editor to paste the declaration into the test frame.
In the Record Window Declarations dialog box, click Close.
Close your application.

Understanding the Recovery System for the Classic Agent | 103

8. In your test frame file, find the stub of the declaration for the wStartup constant, located at the top of
the declaration for the main window:

// First window to appear when application is invoked
// const wStartup = ?

9. Complete the declaration for the wStartup constant by:

* Removing the comment characters, the two forward slash characters, at the beginning of the
declaration.

* Replacing the question mark with the identifier of the login window, as recorded in the window
declaration for the login window.

10.Click the wStartup constant and then click Record > Method.
11.0n the Record Method dialog box, from the Method Name list box, select Invoke.
12.0Open your application, but do not dismiss the login window.

13.Click Start Recording. Silk Test Classic is minimized and your application and the Silk Test Record
Status dialog box open.

14.Perform and the record the actions that you require.

15.0n the Silk Test Record Status dialog box, click Done. The Record Method dialog box opens with the
actions you recorded translated into 4Test statements.

16.0n the Record Method dialog box, click OK to paste the code into your include file.

17.Edit the 4Test statements that were recorded, if necessary.

18.Define an Invoke method in the main window declaration that calls the built-in Invoke method and
additionally performs any actions required by the login window, such as entering a hame and password.
After following this procedure, your test frame might look like this:

window MainWin MyApp
tag llMy Appll
const wStartup = Login

// the declarations for the MainWin should go here
Invoke O
derived::Invoke
Login_Name.SetText ('Your name')
Login.Password.SetText (‘‘password'™)
Login.OK.Click O

window DialogBox Login
tag "'Login"

// the declarations for the Login window go here
PushButton OK
tag "OK"
About the derived keyword and scope resolution operator

Notice the statement derived: : Invoke (). That statement uses the derived keyword followed by
the scope resolution operator (: :) to call the built-in Invoke method, before performing the operations
needed to fill in and dismiss the login window.

Handling Browser Pop-up Windows in Tests that Use
the Classic Agent

Browser pop-up windows are recognized as instances of Browser.

104 | Understanding the Recovery System for the Classic Agent

When the popup window is active, it is seen as Browser and the original browser is seen as Browser 2. In
order to make DefaultBaseState() close the pop-up window instead of the original browser, add the
following line to the end of the test case:

Browser2.SetActive()

This is the standard way of ensuring that the pop-up becomes Browser2 and is closed by
Defaul tBaseState().

Specifying Windows to be Left Open for Tests that Use
the Classic Agent

By default, the non-web recovery system closes all windows in your test application except the main
window. To specify which windows, if any, need to be left open, such as a child window that is always open,
use the lwLeaveOpen constant.

IwLeaveOpen constant

When you record and paste the declarations for your application’s main window, the stub of a declaration
for the IwLeaveOpen constant is automatically included, as shown in this example:

// The list of windows the recovery system is to leave open

// const lwLeaveOpen = {?}

To complete the declaration for the IwLeaveOpen constant:

1. Replace the question mark in the comment with the 4Test identifiers of the windows you want to be left
open. Separate each identifier with a comma.

2. Remove the comment characters (the two forward slash characters) at the beginning of the declaration.

Example

he following 4Test code shows how to set the lwLeaveOpen constant so that the
recovery system leaves open the window with the 4Test identifier DocumentWindow
when it restores the base state.

const lwLeaveOpen = {DocumentWindow}

Specifying New Window Closing Procedures

When the recovery system cannot close a window using its normal procedure, you can reconfigure it in one
of two ways:

« If the window can be closed by a button press, key press, or menu selection, specify the appropriate
option either statically in the Close tab of the Agent Options dialog box or dynamically at runtime.
» Otherwise, record a Close method for the window.

This is only for classes derived from the MoveableWin class: DialogBox, Chi ldWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChi ld objects/classes.

Understanding the Recovery System for the Classic Agent | 105

106

Specifying Buttons, Keys, and Menus that Close
Windows

Specify statically

To specify statically the keys, menu items, and buttons that the non-Web recovery system should use to
close all windows, choose Options > Agent and then click the Close tab.

The Close tab of the Agent Options dialog box contains a number of options, each of which takes a
comma-delimited list of character string values.

Specify dynamically

As you set close options in the Agent Options dialog box, the informational text at the bottom of the dialog
box shows the 4Test command you can use to specify the same option from within a script; add this 4Test
command to a script if you need to change the option dynamically as a script is running.

Specify for individual objects

If you want to specify the keys, menu items, and buttons that the non-web recovery system should use to
close an individual dialog box, define the appropriate variable in the window declaration for the dialog box:

« [IsCloseWindowButtons

« IsCloseConfirmButtons
« [IsCloseDialogKeys

« IsCloseWindowMenus

This is only for classes derived from the MoveableWin class: DialogBox, ChildWin, and MessageBox.
Specifying window closing procedures is not necessary for web pages, so this does not apply to
BrowserChi ld objects/classes.

Recording a Close Method for Tests that Use the
Classic Agent

To specify the keys, menu items, and buttons that the non-Web recovery system uses to close an individual
dialog box, record a Close method to define the appropriate variable in the window declaration for the
dialog box.

1. Open your application.

Open the application’s test frame file.

Place the insertion point on the window declaration for the dialog box.
Choose Record > Method .

From the Method Name list, select Close .

Click Start Recording. Silk Test Classic displays the Record Status dialog box, which indicates that
you can begin recording the Close method. The Status field flashes the word Recording.

o Uk wN

7. When you have finished recording the Close method, click Done on the Record Status dialog box. Silk
Test Classic opens the Record Method dialog box. The Method Code field contains the 4Test code
that you have recorded.

8. Click OK to close the Record Method dialog box and paste the new Close method in the declaration
for the dialog box.

You can also specify buttons, keys, and menus that close windows. This is only for classes derived from
the MoveableWin class: DialogBox, ChildWin, and MessageBox. Specifying window closing
procedures is not necessary for web pages, so this does not apply to BrowserChi ld objects/classes.

Understanding the Recovery System for the Classic Agent

Set Recovery System Dialog Box

Use the Set Recovery System dialog box to identify the starting point of the application you are testing,
the BaseState. The recovery system will return your application to this BaseState:

« Before running a test case.
* During a test case.

e If an error occurs.

« After a test case completes.

If you are using the Basic workflow bar, click Set Recovery System .

If you are recording a test case, click Set Recovery System on the Record Application State dialog box
or the Record Testcase dialog box.

Frame filename pjgplays the default name and path of the frame file you are creating. This field appears
only if you access this dialog box from the Basic workflow bar. The default is
frame.inc. If frame. inc already exists, Silk Test appends the next logical number to
the new frame file name. For example, framel. inc.

Modify the frame file name and click Browse to specify the location in which you want
to save this file. Frame files must have a . inc extension.

Application Lists all open applications that are not minimized, including any Web applications,
which are identified by the title of the currently loaded page. Click to select an
application. This list is dynamic and will update if you open a new application.

If you are connected to the Open Agent, only those applications that have extensions
enabled display in the list.

Command line Displays the path to the executable (.exe) for the application that you selected. This field
does not display if you have selected a Web application.

Start testing on Displays the URL for the application you selected. This field displays only if you have

this page selected a Web application. If an application displays in the list, but the URL does not
display in this field, your extensions may not be enabled correctly. Click the Enable
Extensions button in the Basic workflow bar to automatically enable and test
extension settings.

Working Displays the path of the application you selected. This field does not display if you have
directory selected a Web application.

Window name Displays the window name, a suggested identifier that you can use in your test cases to
identify your application. You can change the window name. We recommend using a
short name to identify your application.

Understanding the Recovery System for the Classic Agent | 107

108

Test Plans

A test plan usually is a hierarchically-structured document that describes the test requirements and
contains the statements, 4Test scripts, and test cases that implement the test requirements. A test plan is
displayed in an easy-to-read outline format, which lists the test requirements in high-level prose
descriptions. The structure can be flat or many levels deep.

Indentation and color indicate the level of detail and various test plan elements. Large test plans can be
divided into a master plan and one or more sub-plans. A test plan file has a .pIn extension, such as
find.pln.

Structuring your test plan as an hierarchical outline provides the following advantages:

» Assists the test plan author in developing thoughts about the test problem by promoting and supporting
a top-down approach to test planning.

« Yields a comprehensive inventory of test requirements, from the most general, through finer and finer
levels of detalil, to the most specific.

« Allows the statements that actually implement the tests to be shared by group descriptions or used by
just a single test description.

* Provides reviewers with a framework for evaluating the thoroughness of the plan and for following the
logic of the test plan author.

« If you are using the test plan editor, the first step in creating automated tests is to create a test plan. If
you are not using the test plan editor, the first step is creating a test frame.

Structure of a Test Plan

Test Plans

A test plan is made up of the following elements, each of which is identified by color and indentation on the
test plan.

Element Description Color

Comment Provide documentation throughout the test plan; Green
preceded by //.

Group Description High level line in the test requirements outline that Black
describes a group of tests.

Test Description Lowest level line describing a single test case; is a Blue
statement of the functionality to be tested by the
associated test case.

Test Plan Statement Used to provide script name, test case name, test data, Red when a sub plan is not
or include statement. expanded.

Magenta statement when sub-plan is

expanded

A statement placed at the group description level applies to all the test descriptions contained by the group.
Conversely, a statement placed at the test description level applies only to that test description. Levels in
the test plan are represented by indentation.

Because there are many ways to organize information, you can structure a test plan using as few or as
many levels of detail as you feel are necessary. For example, you can use a list structure, which is a list of
test descriptions with no group description, or a hierarchical structure, which is a group description and test
description. The goal when writing test plans is to create a top-down outline that describes all of the test
requirements, from the most general to the most specific.

Overview of Test Plan Templates

Because a test plan is initially empty, you may want to insert a template, which is a hierarchical outline you
can use as a guide when you create a new test plan.

The template contains placeholders for each GUI object in your application. Although you may not want to
structure the test plan in a way which mirrors the hierarchy of your application’s GUI, this can be a good
starting point if you are new to creating test plans.

In order to be able to insert a template, you must first record a test frame, which contains declarations for
each of the GUI objects in your application.

Example Outline for Word Search Feature

Because a test plan is made up of a large amount of information, a structured, hierarchical outline provides
an ideal model for organizing and developing the details of the plan. You can structure an outline using as
few or as many levels of detail as you feel necessary.

The following is a series of sample outlines, ranging from a simple list structure to a more specific
hierarchical structure. For completeness, each of the plans also shows the script and test case statements
that link the descriptions to the 4Test scripts and test cases that implement the test requirements.

For example, consider the Find dialog box from the Text Editor application, which allows a user to search in
a document. A user enters the characters to search for in the Find What text box, checks the Case
sensitive check box to consider case, and clicks either the Up or Down radio button to indicate the
direction of the search.

List Structure

At its simplest, an outline is a hierarchy with just a single level of detail. In other words, it is a list of test
descriptions, with no group descriptions.

Using the list structure, each test is fully described by a single line, which is followed by the script and test
case that implement the test. You may find this style of plan useful in the beginning stages of test plan
design, when you are brainstorming the list of test requirements, without regard for the way in which the
test requirements are related. It is also useful if you are creating an ad hoc test plan that runs a set of
unrelated 4Test scripts and test cases.

Example for List Structure

For example:

Test Plans | 109

110

Test Plans

ET Testplan - C:\Program Files'Borland',SilkTest'Exercis =10l x|
B Find dialog, Caze sensitive, forward, character zearch
* zeoript find.t
* testcaze: Caze_For_Char
B Find dialog, Caze sensitive, forward, word zearch
* zoript find.t
tegteaze: Caze_For Word
B Find dialog, Caze sensitive, backward, character search
* zoript find.t
* testeaze: Caze_Back_Char
B Find dialog, Case sensitive, backward, word search
* zoript find.t
* tegteaze: Caze_Back Word
B Find dialog, Case insensitive, forward, character zearch
* zoript find.t
* tegteaze: MoCaze_For_Char
B Find dialog, Caze insensitive, foreard, word zearch
* zoript find.t
tegteaze: MoCaze_For_Word
B Find dialog, Caze insensitive, baclkward, character zearch
* zoript find.t
* tegteaze: MoCaze_Back_Char
B Find dialog, Gaze insensitive, baclward, word search
* zoript find.t
tegteaze: MoCaze_Back Word

e 5| v

L I»

Hierarchical Structure

The following test plan has a single level of group description, preceding the level that contains each of the
test descriptions. The group description indicates that all the tests are for the Find dialog box.

As the figure shows, the test plan editor indicates levels in the outline with indentation. Each successive
level is indented one level to the right. The minus icons indicate that each of the levels is fully expanded. By
clicking on the minus icon at any level, you collapse the branch below that level. When working with large
test plans, collapsing and expanding test plan detail makes it easy to see as much or as little of the test
plan as you need. You could continue this test plan by adding a second level of group description,
indicating whether or not the tests in the group are case sensitive, and even more detail by adding a third
level of group descriptions which indicate whether the tests in the group search in the forward or backward
direction.

EX Testplan - C:4Pro File 10l =]
& Find dialog -
B Caze sensitive, forward, character search _|
* zoript find.t
testeaze: Caze_For_Char
B Caze sensitive, foreeard, word search
* zoript find.t
tegteaze: Caze_For Word
B Caze sensitive, baclawvard, character zearch
* zoript find.t
* testeaze: Caze_Back_Char
B Caze sensitive, baclward, word search
* zoript find.t
* tegteaze: Caze_Back Word
B Caze inzenzitive, foreeard, character search
* zoript find.t
* tegteaze: MoCaze_For_Char
B Caze insenzitive, foreeard, word zearch
* zoript find.t
tegteaze: MoCaze_For_Word
B Caze insenzitive, baclavard, character zearch
* zoript find.t
* tegteaze: MoCaze_Back_Char
B Caze inzenzitive, baclavard, word zearch
* zoript find.t
tegteaze: MoCaze_Back Word

4 | v

Converting a Results File to a Test Plan
You can use the Convert Results to Plan dialog box to transform a results file to a test plan.

Open a results file that was generated by running a script file.

Click Results > Convert to Plan. The Convert Results to Plan dialog box appears.
Select the results file that you want to convert.

Click OK.

A owbdpE

When creating a test plan from a results file generated for a script, the test plan editor uses the # symbol
so that when this test plan is run, the testdata statement doubles as description. Since the results file
was for a script, not a test plan, it does not contain any group or test case descriptions. The # symbol can
be used with any test plan editor statement so that the statement will double as description.

Working with Test Plans

This section describes how you can work with test plans.

Creating a New Test Plan

1. Click File > New.
2. Click Test plan and click OK. An empty test plan window opens.

Test Plans

111

112

Test Plans

3. Create your test plan and then click File > Save.
4. Specify the name and location in which to save the file, and then click OK.

5. If you are working within a project, Silk Test Classic prompts you to add the file to the project. Click Yes
if you want to add the file to the open project, or No if you do not want to add this file to the project.

Before you can begin testing, you must enable extensions for applications you plan to test on both the
target machine and the host machine.

Indent and Change Levels in an Outline

You can use menu, keyboard, or toolbar commands to enter or change group and test descriptions as you
are typing them. The following table summarizes the commands:

Action Menu Item Key

Indent one level Outline/Move Right ALT + forward arrow
Outdent one level Outline/Move Left ALT + back arrow
Swap with line above Outline/Transpose Up ALT + up arrow
Swap with line below Outline/Transpose Down ALT + down arrow

Each command acts on the current line or currently selected lines.

Silk Test Classic ignores comments when compiling, with the exception of functions and test cases.
Comments within functions and test cases must be within the scope of the function/test case. If a comment
is outdented beyond the scope of the function/test case, the compiler assumes that the function/test case
has ended. As long as comments do not violate the function/test case scope, they can be placed anywhere
on a line.

Note: Comments beyond the scope can also impact expand/collapse functionality and may prevent a
function/test case from being fully expanded/collapsed. We recommend that you keep comments
within scope.

Adding Comments to Test Plan Results

You can add comments to your test plans which will display in the results when you run your tests. You can
annotate your tests with such comments to ease the interpretation of the test results.

To add a comment to a test plan, include the following statement in the test plan:
comment: Your comment text

For example, running the following piece of a test plan:

Find dialog
Get the default button
comment: This test should return Find.FindNext
script: find.t
testcase: GetButton

produces the following in the results file:

Find dialog
Get the default button
Find.FindNext
comment: This test should return Find.FindNext

Note: You can also preface lines in all 4Test files with // to indicate a single-line comment. Such
comments do not display in test plan results.

Documenting Manual Tests in the Test Plan

Your QA department might do some of its testing manually. You can document the manual testing in the
test plan. In this way, the planning, organization, and reporting of all your testing can be centralized in one
place. You can describe the state of each of your manual tests. This information is used in reports.

To indicate that a test description in the test plan is implemented with a manual test, use the value manual
in the testcase statement, as in:
testcase: manual

By default, whenever you generate a report, it includes information on the tests run for that results file, plus
the current results of any manual tests specified in the test plan. If the manual test results are subsequently
updated, the next time you generate the report, it incorporates the latest manual results. However, this
might not be what you want. If you want the report to use a snapshot of manual results, not the most recent
manual results, merge the results of manual tests into the results file.

Describing the State of a Manual Test

1. Open atest plan containing manual tests.
2. Click Testplan > Run Manual Tests.

3. Select a manual test from the Update Manual Tests dialog box and document it. The Update Manual
Tests dialog box lists all manual tests in the current test plan.

Mark the test Click the Complete option button.
complete _
Complete means that a test has been defined. A manual test marked here as

Complete will be tabulated as complete in Completion reports.

Indicate whether the

. 1. Click the Has been run option button.
test passed or failed

2. Select Passed or Failed.
3. Specify when the test was run and optionally, specify the machine.

To specify when the test was run, use the following syntax:
YYYY-MM-DD HH:MM:SS

Hours, minutes, and seconds are optional. For example, enter 2006-01-10 to
indicate that the test was run Jan 10, 2006.

A test marked Has been run is also considered complete in Completion
reports.

Add any comments Fill in the Comments text box.
you want about the
test

Inserting a Template

1. Click Testplan > Insert Template. The Insert Testplan Template dialog box, which lists all the GUI
objects declared in your test frame, opens.

2. Select each of the GUI objects that are related to the application features you want to test.
Because this is a multi-select list box, the objects do not have to be contiguous.
For each selected object, Silk Test Classic inserts two lines of descriptive text into the test plan.

Test Plans

113

114

Test Plans

For example, the test plan editor would create the following template for the Find dialog box of the Text
Editor application:

Tests for DialogBox Find
Tests for StaticText FindWhatText
(Insert tests here)
Tests for TextField FindWhat
(Insert tests here)
Tests for CheckBox CaseSensitive
(Insert tests here)
Tests for StaticText DirectionText
(Insert tests here)
Tests for PushButton FindNext
(Insert tests here)

Tests for PushButton Cancel

(Insert tests here)
Tests for RadioList Direction
(Insert tests here)

Changing Colors in a Test Plan

You can customize your test plan so that different test plan components display in unique colors.

To change the default colors:

1. Click Options > Editor Colors.

2. On the Editor Colors dialog box, select the outline editor item you want to change in the Editor Item
list box at the left of the dialog box.

3. Apply a color to the item by selecting a pushbutton from the list of predefined colors or create a new
color to apply by selecting the red, green, and blue values that compose the color.

Default Component Description
color
Blue Test description Lowest level of the hierarchical test plan outline that describes a single test
case.
Red Test plan statement Link scripts, test cases, test data, closed sub-plans, or an include file, such
as a test frame, to the test plan.
Magenta Include statement Sub-plans to be included in a master plan.
when sub-plan is open
Green Comment Additional user information that is incidental to the outline; preceded by
double slashes (//); provides documentation throughout the test plan.
Black Other line (group Higher level lines of the hierarchical test plan outline that describe a group of
description) tests; may be several levels in depth.

Linking the Test Plan to Scripts and Test Cases

After you create your test plan, you can associate the appropriate 4Test scripts and test cases that
implement your test plan. You create this association by inserting script and testcase statements in
the appropriate locations in the test plan.

There are three ways to link a script or test case to a test plan:

« Linking a description to a script or test case using the Testplan Detail dialog box if you want to
automate the process of linking scripts and test cases to the test plan.

e Linking to a test plan manually.

« Linking scripts and test cases to a test plan: the test plan editor automatically inserts the script and
testcase statements into the plan once the recording is finished, linking the plan to the 4Test code.

You can insert a script and testcase statement for each test description, although placing a statement
at the group level when possible eliminates redundancy in the test plan. For example, since it is usually

good practice to place all the test cases for a given application feature into a single script file, you can
reduce the redundancy in the test plan by specifying the script statement at the group level that
describes that feature.

You can also insert a testcase statement at the group level, although doing so is only appropriate when
the test case is data driven, meaning that it receives test data from the plan. Otherwise the same test case
would be called several times with no difference in outcome.

Insert Testplan Template Dialog Box

Use the Insert Testplan Template dialog box to insert a hierarchical outline (template) of objects into your
testplan. This dialog is only available when a testplan is open and the Testplan dialog is active. In order to

be able to insert a template, you must first record a test frame, which contains declarations for each of the

objects in your application.

Click Testplan > Insert Template.

Windows to Displays a list of all the objects declared in your test frame. Select objects related to
create a template the application features you want to test in your testplan. (Press Ctri-Click to
for select multiple objects.) For each selected object, two lines of descriptive text are

inserted into the testplan.

Working with Large Test Plans

For large or complicated applications, the test plan can become quite large. This raises the following
issues:

Issue Solution

How to keep track of where you are in the test plan and Use the Testplan Detail dialog box.
what is in scope at that level.

How to determine which portions of the test plan have Produce a Completion report.
been implemented.

How to allow several staff members to work on the test Structure your test plan as a master plan with one or
plan at the same time. more sub-plans.

This section describes how you can divide your test plan into a master plan with one or more sub-plans to
allow several staff members to work on the test plan at the same time.

Determining Where Values are Defined in a Large Test
Plan

1. Place the insertion point at the relevant point in the test plan and click Testplan > Detail. The Testplan
Detail dialog box opens.

2. Click the level in the list box at the top of the Testplan Detail dialog box, to see just the set of symbols,
attributes, and statements that are defined on a particular level.

3. Once you find the level at which a symbol, attribute, or statement was defined, you can change the
value at that level, causing the inherited value at the lower levels to change also.

Dividing a Test Plan into a Master Plan and Sub-Plans

If several engineers in your QA department will be working on a test plan, it makes sense to break up the
plan into a master plan and sub-plans. This approach allows multi-user access, while at the same time
maintaining a single point of control for the entire project.

Test Plans | 115

116

Test Plans

The master plan contains only the top few levels of group descriptions, and the sub-plans contain the
remaining levels of group descriptions and test descriptions. Statements, attributes, symbols, and test data
defined in the master plan are accessible within each of the sub-plans.

Sub-plans are specified with an include statement. To expand the sub-plan files so that they are visible
within the master plan, double-click in the left margin next to the include statement. Once a sub-plan is
expanded inline, the sub-plan statement changes from red (the default color for statements) to magenta,
indicating that the line is now read-only and that the sub-plan is expanded inline. At the end of the
expanded sub-plan is the <eof> marker, which indicates the end of the sub-plan file.

Creating a Sub-Plan

You create a sub-plan in the same way you create any test plan: by opening a new test plan file and
entering the group descriptions, test descriptions, and the test plan editor statements that comprise the
sub-plan, either manually or using the Testplan Detail dialog.

Copying a Sub-Plan

When you copy and paste the include statement and the contents of an open include file, note that only the
include statement will be pasted.

To view the contents of the sub-plan, open the pasted include file by clicking Include > Open or double-
click the margin to the left of the include statement.

Opening a Sub-Plan
Open the sub-plan from within the master plan. To do this, you can either:

« double-click the margin to the left of the include statement or

« highlight the include statement and choose Include > Open. (Compiling a script also automatically
opens all sub-plans.)

If a sub-plan does not inherit anything (that is, statements, attributes, symbols, or data) from the master
plan, you can open the sub-plan directly from the File > Open dialog box.

Connecting a Sub-Plan with a Master Plan

To connect the master plan to a sub-plan file, you enter an include statement in the master plan at the
point where the sub-plan logically fits. The include statement cannot be entered through the Testplan
Detail dialog box; you must enter it manually.

The include statement uses this syntax:
include: myinclude.pln

where myinclude is the name of the test plan file that contains the sub-plan.

If you enter the include statement correctly, it displays in red, the default color used for the test plan
editor statements. Otherwise, the statement displays in blue or black, indicating a syntax error (the compiler
is interpreting the line as a description, not a statement).

Refreshing a Local Copy of a Sub-Plan

When another user modifies a sub-plan, those changes are not automatically reflected in your read-only
copy of the sub-plan. Once the other user has released the lock on the sub-plan, there are two ways to
refresh your copy:

1. Close and then reopen the sub-plan.

2. Acquire a lock for the sub-plan.

Sharing a Test Plan Initialization File

All QA engineers working on a test plan that is broken up into a master plan and sub-plans must use the
same test plan initialization file.

To share a test plan initialization file:

1. Click Options > General.

2. On the General Options dialog box, specify the same file name in the Data File for Attributes and
Queries text box.

Saving Changes

When you finish editing, choose Include > Save to save the changes to the sub-plan.

Include > Save saves changes to the current sub-plan while File > Save saves all open master plans and
sub-plans.

Overview of Locks

When first opened, a master plan and its related sub-plans are read-only. This allows many users to open,
read, run, and generate reports on the plan. When you need to edit the master plan or a sub-plan, you
must first acquire a lock, which prevents others from making changes that conflict with your changes.

Acquiring and Releasing a Lock

Acquire alock pjgce the cursor in or highlight one or more sub-plans and then choose Include >
Acquire Lock.

The bar in the left margin of the test plan changes from gray to yellow.

Release a lock gglect Include > Release Lock.

The margin bar changes from yellow to gray.

Generating a Test Plan Completion Report

To measure your QA department’s progress in implementing a large test plan, you can generate a
completion report. The completion report considers a test complete if the test description is linked to a test
case with two exceptions:

« |If the test case statement invokes a data-driven test case and a symbol being passed to the data-driven
test case is assigned the value ? (undefined), the test is considered incomplete.

« |If the test case is manual and marked as Incomplete in the Update Manual Tests dialog box, the test is
considered incomplete. A manual test case is indicated with the testcase:manual syntax.

To generate a test plan completion report:

=

. Open the test plan on which you want to report.
Click Testplan > Completion Report to display the Testplan Completion Report dialog box.

In the Report Scope group box, indicate whether the report is for the entire plan or only for those tests
that are marked.

. To subtotal the report by a given attribute, select an attribute from the Subtotal by Attribute text box.
Click Generate.

w N

[S2I

Test Plans

117

118

The test plan editor generates the report and displays it in the lower half of the dialog box. If the test
plan is structured as a master plan with associated sub-plans, the test plan editor opens any closed
sub-plans before generating the report.

You can:

* Print the report.

« Export the report to a comma-delimited ASCII file. You can then bring the report into a spreadsheet
application that accepts comma-delimited data.

Testplan Completion Report Dialog Box

Use the Testplan Completion Report dialog box to generate a report on the number of completed tests.
This dialog is only available when a test plan is open and the Testplan dialog box is active.

To open the Testplan Completion Report dialog box, click Testplan > Completion Report.

The Testplan Completion Report considers a test complete if the test description is linked to a test case,
with two exceptions:

« If the testcase statement invokes a data-driven test case and a symbol being passed to the data-driven
test case has the value ? (undefined) assigned, the test is considered incomplete.

* If the test case is manual and has not been marked as complete with the Finish Test Run button on the
Execute Manual Test dialog box, the test is considered incomplete.

Test plan items that are marked with attributes of type set are not categorized in a Testplan Completion
Report.

Marked tests Select to generate a report only for those tests that are marked within the test plan.

All tests Select to generate a report for all tests within the test plan.

Subtotal by If you want to subtotal the report by a specific attribute, select an attribute from the
attribute list. Default attributes are Category, Component, and Developer.

Report tab Displays the completion report for the selected test plan.

Print Click to print the selected test plan completion report.

Export Click to export the report as an ANSI, Unicode, or UTF-8 file.

Generate

Click to generate a Testplan Completion Report, based on the options you
specified, for the selected test plan.

Adding Data to a Test Plan

Test Plans

This section describes how you can add data to a test plan.

Specifying Unique and Shared Data

If a data value is You should place it in the plan at the same level as the test description, using

unigue to a single test the testdata statement. You can add the testdata statement using the

description Testplan Detail dialog box or type the testdata statement directly into the
test plan.

If data is common to You can factor out the data that is common to a group of tests and define it at a
several tests level in the test plan where it can be shared by the group. To do this, you define

symbols and assign them values. Using symbols results in less redundant data,
and therefore, less maintenance.

Adding Comments in the Test Plan Editor

Use two forward slash characters to indicate that a line in a test plan is a comment. For example:
// This is a comment

Comments preceded by // do not display in the results file. You can also specify comments using the
comment statement; these comments will display in the results files.

Testplan Editor Statements

You use the test plan editor keywords to construct statements, using this syntax:
keyword : value

keyword: One of the test plan editor keywords.
value: A comment, script, test case, include file, attribute name, or data value.

For example, this statement associates the script myscript. t with the plan:
script : myscript.t

Spaces before and after the colon are optional.

The # Operator in the Testplan Editor

When a # character precedes a statement, the statement will double as a test description in the test plan.
This helps eliminate possible redundancies in the test plan. For example, the following test description and
script statement:

Script is test.t
script:test.t

can be reduced to one line in the test plan:
#script: test.t

The test plan editor considers this line an executable statement as well as a description. Any statements
that follow this "description" in the test plan and that trigger test execution must be indented.

Using the Testplan Detail Dialog Box to Enter the
testdata Sta