Liant Software Corporation

CodeBridge”

User's Guide

First Edition

LIANT

This manual is areference guide for Liant Software Corporation’s CodeBridge, a cross-language call system designed
to simplify communication between RM/COBOL programs and non-COBOL subprogram libraries written in C (or
C++). Itisassumed that the reader is familiar with programming concepts and with the COBOL and C (or C++)
languagesin general.

The information contained herein applies to systems running under Microsoft 32-bit Windows and UNIX-based
operating systems.

The information in this document is subject to change without prior notice. Liant Software Corporation assumes no
responsibility for any errors that may appear in this document. Liant reserves the right to make improvements and/or
changes in the products and programs described in this guide at any time without notice. Companies, names, and data
used in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopied, recorded, or otherwise, without prior written permission of Liant
Software Corporation.

The software described in this document is furnished to the user under alicense for a specific number of uses and
may be copied (with inclusion of the copyright notice) only in accordance with the terms of such license.

Copyright © 1999-2005 by Liant Software Corporation. All rightsreserved. Printed in U.SA.

Liant Software Cor poration
8911 N. Capital of Texas Highway
Austin, TX 78759
U.SA.

Phone (512) 343-1010
(800) 762-6265
Fax (512) 343-9487

Website http://www.liant.com/

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels, VanGui
Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, WOW Extensions, InstantSQL, Xcentrisity, XML
Extensions, Liant, and the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 98, Windows Me, Windows NT, Windows 2000, Windows X P, Windows 2003,
and Visual Basic are trademarks or registered trademarks of Microsoft Corporation in the USA and other countries.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark holders, and are used only for explanation purposes.

http://www.liant.com

Documentation Release History for the CodeBridge User's Guide:

Edition Document Applies To Publication
Number Part Number Product Version Date

1 401228 CodeBridge version 9 and later January 2005

Contents

Contents

o (1= 1= o = S 1
LVAYLE Koo 04 =R (o @Xeo [=: 2] ¢ o o - 1
What's New in COAEBIIAGE 9oveeeeeeese et 1
Who Should Use COAEBIIAGE.........uruririiririiie e 2
Organization Of INFOMELION...........cciriiiiriieer e 2
Related PUDIICELIONS.ccceieiiseiecieee ettt e et sresre e eneeneens 3
SymbolS AN CONVENLIONS........ooiiiiieitesteie ettt sae b e se e e e e nee e 4
RS 0TS = 1 o o TSSO 5
L= 0Tz RS U0 o) SRS 5

SUPPOIT GUIAEIINES.....eeeieciie sttt st e st eae e e et resrenre s 6
TS CBSES. ... cueieeeeteeteet e s et e sttt ra e e e s ae e bt e bt e r et e aeeshe e s be e s Re e ne s e sne e sneenneeneennean 6

Chapter 1: INtroduCtion..........cvuviiiiii e 7

What 1S COUEBIIAGE?. ...ttt b e b 7
CodeBridge COMPONENEScouiiiireeeeieeeie et sbe b e e see e e e 8
Benefits of USING COOEBIIAJEovuiruiriiriinierie et 8
Requirements for Developing Applications Using CodeBridge..........ccocevvvvrevieennnne. 9

USING thISMaNUALocueciiiieecece et re e sn e e 9
Developers Who are New to C Programming........cccceeeveeeseseseseseeseeseeseeseseessennes 9
Developers Who are Evaluating CodeBridge........cocvvvverevenenenieceresese e sie e 10
Developers Who Wish to Use Existing C Libraries or Write

New Non-COBOL SUDPIOGIaMScciereriereeeeeeeseeseesiessessesseessessesssssessesssessessenses 10
Developers Who Have Written Non-COBOL Subprograms for

Previous Versions of RM/COBOLcccuveeieierine e siesieeceee e se e neeneas 10
Developers Who Need Assistance in Testing and Debuggingccceeveeenenenienee 11

Typical Development PrOCEAUIE............coi it e 11

Typical Development EXAMPIE ..o e 14
Example 1: Calling a Standard C Library FUNCLIONccceeiiiieiiniii e 14

Chapter 2: CONCEPLS .ouveiiieieeeieeee e 17

Using Template File COMPONENTS.........coeiiiiririeieereesese e 17
F N 1] o013 18
ATETDULE LISES ettt e st ee e saenne s 18

Parameter AttriDULE LISEScoeiiiieieeeeeee e 18
Global AtHDULE LiSES......oiueieeieieeee e 20

Passing INnformation t0 @ C FUNCHIONcccueciiiciccese et 21

Passing COBOL ATQUMENTScc.ecueiueiierieereseeeeaeseesieseesressessesseseessessessessessessessessens 21

Passing COBOL NUMENC ATQUMENTSc.ceveeeiiereesiesiesresesieereeeeseeneeseesseseesnens 22

Passing COBOL Non-NUMENic ArgUMENEScccovvrerereseneeeeseeseeseeseeseeseeseens 24

Passing COBOL Pointer ArgUMENES.........cevereerierereseseseseeeeeeseeseeseessesseseens 26

Passing Null-Vaued Pointer ArgUMENEScceveverieieseseeeeeeseeseesee e e see e 27
CodeBridge User's Guide v

First Edition

Contents

Passing COBOL Argument PrOPETIES.cocuvveererieenereee et 28
Passing COBOL DeSCIPLOr Daa.........civeerrerieerierieiniesieesie et 28
Passing String Length INformation.............coceeoeieiinene i 29
Passing Miscellaneous INfOrmMation..........c.ceereeierierene e e 30
Managing Omitted ATrQUIMENES.........coieiririeieriee ettt s e s 30
RELUrNING C EITON VAIUES.....c.cciee ettt sttt sttt sn e e st nnas 31
ConSIStENt RELUMN VAIUES........ceeuiieiieie ettt sttt st eresre e 31
Specifying Both errno and get [ast_erTor.........cccveievececececeeeee e 32
Function Return Value (Status) Versus Error ValUES.........covvveeveeeerenenieseseseenens 32
Associating C Parameters with COBOL ArgUMENLS.......ccevvvereveeseneceereeseeseseeseesee e 33
[0 Lo AN S o oo o PSP 34
AULOMEEIC ASSOCIBLION ...ttt ae et resnesre s e eneeneens 34
Automatic Association of the C Function Return Value
With @ COBOL ATQUIMENTeiiiiiiteiie ettt e e e 34
Automatic Association of C Parameters with COBOL Arguments................... 34
Examples of Associating Parameters with Arguments..........ocecevereneveneneneeceenns 35
Example 1. Automatic Versus Explicit ASSOCIationccccceeveveneneneceeieennnn 35
Example 2: Multiple Attribute Lists for aC Parameter...........cccocevevevveeienene 37
Example 3; No Attribute List for aC Parametercccccevevievesesieneceeceennnn 39
Working with aVariable Number of C Parameters..........cccoovvvvereceeieeneneseseseseeseenens 39
Repeating C NUMENC ParaMEterSccovvveeeeeeereseseseestese e eseeseesee e te e enesneenees 39
Repeating C String Parameters.........cccvivvviisieieseeeeseesieseeseseesresessessaesesseseessessesnens 40
NUMENTC_SEIING 1ttt sttt b e b e n s 40
o< 0T = IS] o TSSOSO 40
SEFINIQ ettt bbb bbb bt b e et b e 40
Modifying COBOL Data ATEBS........cooeiuirerueeiereeiereesie et te s saes e see e see st e sbe e sneeneeneas 40
Using the out Direction AttribULe..........cocooiiiii e 41
Passing the Address of COBOL Data.........cocevererieieenieriinie e sie e 42
Passing BUffer AAArESSES........coiiiii et 43
USING P-SCalING ...ttt sttt st sttt eeae e e e e ae st e tesrestesneeneeneenean 43
WOTKING WITh ATTAYS....ccuiceeieie ettt s r et s re e aetesresbesaesreennenean 43
[N [0 o AN 4 = V£ SR 44
S T 00 A = Y 45
COBOL Array REFEIENCESceeeeieiecieieeetee sttt 46
COoUEBITAGE BUITAET ..ottt et 47
Using the CodeBridge BUilder ..o 47
Appendix A: CodeBridge Errors ... 49
CodeBridge Builder Error MESSAgES.cccvivvvueriereeeeeeiesiessesiessestesseesesssesesssessessesssssesses 49
CodeBridge Builder EXit COUES......ccivirrrieriresecteeeeee e sees e e e e e e 51
CodeBridge Library Error MESSAgES.......cccviviuirireeeeeesieseseseseestesseesesssessesseseessesssssenses 51
Appendix B: CodeBridge EXxamplescccvvviviiiiieie e 55
Example 1. Calling a Standard C Library FUNCIONcccoeeveievicieieccce e 55
Example 2; Calling aWindows APl FUNCLION..........cccocieiiiine e 56
Example 3; Accommodating a Variable Number of Parameters...........cccocevevvvveeeeenen. 59
Example 4: Accessing COBOL Pointer ArguUMENES........cccecvevereriereseseeseeseeseeseseeseennes 63
Example 5: Packing and Unpacking StrUCLUIES..........ccovevereeeeeereresesese e 67
Example 6;: Converting Buffered C Data...........ccocvvievvierereccesese s eseese s 70
Example 7: Calling C++ Libraries from CodeBridge..........cccvverrinenneneinineeseeee 72
EXamPle 8: USING EITN0.....cueeieirieiirieieerieie ettt bbb 75
Example 9: USING gL 18SE EITONccoiiiicereeeee et 78
Vi CodeBridge User's Guide

First Edition

Contents

Appendix C: Useful C Informationcccceevvveviiiiiiee e, 81
Understanding C Language CONCEPLScceeeeierierieriesrenieeeeieesseseseesresseseesessesseseessenss 81
CASE SENSIIVITY 1.vvveeieeeceesee ettt sre e e e e e eenaenrenns 82
[= Y] - P 82
Data DECIAIAiONS......civeeeeerieieierieeete ettt sttt st st st seese st e enesteseenens 83
Type Definitions and MaCIOS.........cc.ceiirieiriereeere e 83
CalliNg CONVENTIONS. ..ottt er ettt s be s b e b s sre e 84
FUNCEION PrOLOLYPES. .. .ccveiteeeee sttt sttt et sttt e 84
Compiling and Linking C FUNCHIONSccciiiiririeieneeie et s e 85
Compiling ON WINGOWS........c.coiiriiiinieie ettt see e ee e e 85
Compiling 0N UNDX ...t et se et e b 85
LinKiNg ON WINAOWS.......cceiieieiieiese et eae et e et essa e s e saeteseestesnesreeneennan 86
TS To o0 T\ TS 87
MUltiple TEMPIALE FIlES ..o e 87
Appendix D: Global Attributesccceeeiiiiiiiiiice e, 89
Global AttrDULES OVEIVIEIVeoieiiiiie e 89
DANNEN ATLIIDULE. ...ttt s 90
CONVENTION ATIITDULE.......oeieieeee e e e s 90
AIagNOSHIC ALITTDULEeiiiecei e bbb 91
[0ad_MeSSAge AITIDULE ..o e 91
FEPIACE tYPE ALITDULEovieeeeeiieeee et 92
Appendix E: Parameter Attributescccevviiiiiiii e 93
Parameter AttriDULES OVEIVIBWcc.eiiiieieee e e 93
Argument NUMbDEr AtIFHTDULES........c.oiiiiieeee e e 94
DIreCtiON ALLHIDULES. ..ot 94
Base and Base Modifier AttHDULES...........ccoviiririse e 95
Base Modifiers Common to Base AfIBULES.........cccooveeieneieneeeeeeee e 95
NUMENiC Base AtTDULEScoireeirieee s 97
Numeric String Formatting and Conversion RUIES............ccecevevevenceneceseenn, 97
Base Modifiersthat Apply to Numeric Base Attributes.........cccovcvvevvvvneienene 98
SHNG BaSE AIITDULE. ... e e 101
Base Modifiersthat Apply to the String Base Attribute..........cccocevcvvvvvnienene 102
general_string Base AttriDULE...........ooooi i 104
String Length Base AIHDULES ..o e 104
Base Modifiersthat Apply to String Length Base Attributes.............ccoceeuenee. 105
Pointer Base AttHiDULES..........cooiiiie e 106
Base Modifiersthat Apply to Pointer Base Attributes..........cccceveveieveciennn, 107
Descriptor Base AttrBULEScceceie e 107
Base Modifier that Appliesto Descriptor Base Attributes.........cccocvceveeienene 110
Error Base AUIDULES.couiieiriee e 110
Base Modifiersthat Apply to Error Base Attributes.........cceeveevevevvrcevesenennn, 111
Parameter AttribULES SUMIMEIYcoooiiiriiieinieieereee s 113
Parameter Attribute CombDINGLIONS.........cooveiierire e 119
Appendix F: CodeBridge Library Functionscccceeeeevvvvvennnn. 123
Library FUNCLIONS OVEIVIEW.......c.ciiuiieiricieiesiece st eens 123
Specifying the FIags Parameter...........cceveiieiene e ee e 126
F NS 1 o £ 128
FN S 1o 1 £ = S 129
ASSEDIGISRIGNT ... 130
ASSEILENGEN <. bbb 131
CodeBridge User's Guide vii

First Edition

Contents

viii

ASSEITSIGNEU. ...ttt bbb e et b e e nr e 132
ASSEITUNSIGNE ...ttt s b e st b e s ere e 133
BUFFEILENGEN ...t e b 134
160 ol0] LAY o @1 | SRRSO 135
CObOIDESCIIPLOTAUAINESS ...ttt et eb e e e e e seesbe e eneas 136
100 o 0 I L= v] o104 B o T £35S 137
1000 o IBI=Sw ¢ o0 g I = 0o 1 o WSS 138
CODOIDESCIIPIOISCAIE......c.ve ittt sre st e be e esa e e aesresreseesneas 139
100 o 0] I TS v] o] (0] gl 1Y/ o= TSRS 140
CODOHNITIAI SEALE.ottt 141
L@0] oo [o] [OSSR 142
CObOI TOGENEIAISIIING ..c.viueetirtieeiereete et b e 144
L600] o/l o] 1 011 o [SO TSRS 146
CODOI TONUMEITCSEIING ...ttt ettt se e e bbb e e e e e e neanbe e 148
CObOI TOPOINTEIAGAIESS ...ttt bbbt se b e b eneas 150
CODOITOPOINTEIBASE........ceeieiieie ettt ettt e e b ene s 151
100 oo I =0 1 g1 1= 4 = oo {1 o TSRS 152
COobOI TOPOINEErOFFSELveviuieeiiieeee et 153
CODOITOPOINIEIr SIZE ...ttt ettt sttt e 154
LO0 o0 I 1S 1 o P 155
CobOIWINAOWSHENAIE ... 157
10010117 1= To 101 = o U] o 1SS 158
CONVESIONSEAMTUD ...ttt sttt e et b bbb bbb b e 159
DiagNOSIICMOUE ...ttt 160
EffECtIVEL ENGN ... e 161
FIOBETOCODON........ee ettt e e b e eneas 162
General StriNgTOCODOIooiiiiieee e e e 163
€T (07 1= o o1 (o TSSOSO 165
Fa10= o (= g 0Tl oo S 166
NUMENTCSIINGTOCODO0cooiviiiieceeeere e sresre e ereas 168
POINtErBasETOCOD0N.........cuiieiiiiiieiiriee ettt neenes 170
POIiNterOffSETOCODONc.eiviieiiee s 171
POINLErSIZETOCODO0cuiiiiictiitieeteree et seenes 172
SNGTOCODO ...ttt b et 173

Appendix G: Non-COBOL Subprogram Internals for Windows 175

C Subprograms for WINAOWS...........cceeeierieiie e seeeeieeee e sie et e e e e sne e sneas 175
Methods of Using Non-COBOL SUDPIOGramMScccecuevuerueniesiesresieeeeeeseeseeseessessessessens 176
Calling C Subprograms from COBOL for WindOWS..........cccccevverereeieererenesesesesnens 176
COBOL CALL StABMENEcveeeviiieeeie et 177

C Subprogram Name Table Structure on Windows..........ccocvevvevenenieeseeneenennnenns 178
Example RM_EntryPoints for Windows..........c.ccceveirineienennenerese e 179
Parameters Passed to the C Subprogram on Windows...........ccceeerenenenenenenennne 179
COBOL Argument Entry Structure for C on Windows...........cceeeeeeeeneneseninnnnnens 181
Preparing C Subprograms for WindOWS...........cccieriieienenieee e 183
Specia Entry Points for Support Modules on Windows..........ccoeeevereninneneseneneneens 186
R Y Y 0 @ 0] =TT 187
RM_AddOnCancel NONCOBOLPIrOgram........ccccceieeiesieeeeeeseeseseestesesnesreseeaeeens 187

L N0 [0 (@011 o T S TSP 187
RM_AddONLOBAMESSAGE.ccveiveierieeririieeeieeseesieseestessessesseesesaesaessestesaesresseesesseens 188
RM_AddONTEMIUNGLE........ccueeeeeeeieiesiese st seereeeeee et ee e e e e neesreseenns 188
RM_AddONVErsioNCRECKcceeeeeeeerese e reese st 189
RM_EntryPoints and RM_ENUMENtryPOINtS.........cccoceveveniere e 190
Debugging C Subprograms 0N WIiNAOWScoeeeriieeriieereee e 191
Calling a CodeBridge Subprogram Library on Windows...........cccceeeveiniinennenencnienens 192

CodeBridge User's Guide

First Edition

Contents

Appendix H: Non-COBOL Subprogram Internals for UNIX........ 193
C Subprograms for UNIX ..ot nesresresnea 193
Calling C Subprograms from COBOL for UNIX.........cccivvviivenereeeeereseesesesese e 194

COBOL CALL StABMENEcveeeverieeeie et st 194

C Subprogram Name Table Structure on UNIX........ccoovvvevevienieveseceeeereesesie s 195
Example RM_EntryPointS for UNIX ... 195
Parameters Passed to the C Subprogram on UNIX ... 196
COBOL Argument Entry Structurefor Con UNIX.......ccoiviiininnineineneceeee 198
Accessing C Subprograms from UNDX ..o 200
Preparing C Subprograms for UNIX ... 202
Creating a Support Module from & C SOUICEcovreiriire e 202
Creating a Support Module from a C Object (NO SOUICE)cceeveeeveeiereesienieinens 204
Specia Entry Points for Support Modules on UNIX ... 204
Y Ao (0 (@01 57T = S 205
RM_AddONnCancel NONCOBOLPIrOgram.......ccccevverierieeeeeeseeseeseeseesiesnesseseeeeseens 205
T 2o (0 [0] 1 o T S 205
RM_AddONLOBAM ESSAQE.cverviriereeeterieeeeeeseesieseestessessessesssesessessessesssssesseesessenns 206
RM_AddONTEMMINGLE.ceeueieireeirierieerieiees et 206
RM_AddONV ErSIONCRECKc.veueeeiiiieiirieieieseeee st 206
RM_EntryPoints and RM_ENUMENLrYPOINES.........cocooeiiiieirieeseeeseeee e 207
Calling a CodeBridge Subprogram Library on UNIX ... 208
C Subprograms Performing Terminal 1/0ccooeiiriiiiie et 208
Debugging C Subprograms on UNIXcccicieiinieieseneceesie e see e sne e 209
C SUbProgram EXaMPIEcceiiciiececieriese st e e see e sttt re e e e s aesaesresne s 209
Runtime Functions for SUPPort MOAUIES ... 209

Appendix I: Calling the CodeBridge Library Directly 211
OVEIVIBIV ...ttt ettt et b e s bt bt e ae e e e a e e se e besaeeb e ebeeaeenae e anbeseeebesaenneas 211
INCIUdING COMAGEN. ... e 212
Declaring the C Function Return Value and Parameters.............ccoeveeeeneenenesesenennens 212
Specifying the COBOL Argument NUMDETcccoeiiinniirie e 213
Declaring C Data Items Used in the Conversion ProCESS..........coevvineenenieenenieeneenes 213

NUMENC CONVEISIONS......cuiiiiieeiriiiesesieeesestesesestesesessessesessessssessesessessesessessensssessens 214
SHING CONVEISIONSoeitiieiiniereeie sttt sttt sttt st ettt be b sbe e 214
AdUress CONVEISIONS........coirieuiriirieisiereeiesieste st sae b seene s stenesseseenes 215
Pointer Numeric Component CONVEISIONS.c.uurererieesieresesiesese e sienesseseene 215
Other CONVEISIONS......ccueiiiiiiieieietieeeie e ste e ste st se e seessesteseeste s e eseeseeneeseseessessnssens 215
THIVIAl CONVEISIONS.......coieiereeiestesteseeieeeesees e see st sae s e eseeseestestestestesaeeseeeensenaeseenes 216
Initializing and Terminating the CoNVersion ProCESS..........ccoeeieererieene s 216
TQTN A= L2z o o USSP 217
L= 1001117 1o o H SRR 217
Converting COBOL Argumentsto C Data Iltems.........coooevevereneniereeeeiereee e 217
Specifying the ArgCount, ArgNumber, and Arguments Parameters............c.coeueuen. 218
Specifying the Parameter Parameter..........coovvvveeeciesene s 218
Specifying the Sz Parameter ..o s s 218
Specifying Other ParamELersS........cocveveieririeie e 219
Converting C Data Itemsto COBOL ArgUMENES........ceovevereerererieseseseeseeseessessessessens 219
Specifying the ArgCount, ArgNumber, and Arguments Parameters............c.coueue.. 219
Specifying the Parameter Parameter..........cooeeiereieieneieseneese e 220
Specifying the SZe Parameter ..o e 220
Specifying Other ParameELers..... oo e 220
Validating Properties of COBOL ATQUMENES........couererereerierieniesiesiesiesseseeseeseeseeseesee s 221
EXAMPIE. ..ttt bt e et b e b ae et e e e e 222
CodeBridge User's Guide ix

First Edition

Contents

X

Appendix J: Summary of Enhancements...........ccccooveiiiiiiiviinnnne. 223
Version 8 ENNBNCEMENTS.........cccoiiiiii ettt st e st a e e s 223
Version 7.5 ENNBNCEMENTSciiieie ettt ne e s 223
Version 7.1 ENNBNCEMENTSc.oiiveieeireceeestese st st ne e s 224
Version 7.0 ENNBNCEMENTSoiiveiecireeeeertes ettt ne e s 224

GloSSary Of TEIMS ..uuuii i e eeenns 225
Terminology and DEfiNITIONS.........c.cceveieiesese e sreens 225

Lo 1= P 229

List of Figures
Figure 1. Library Error MeSSage BOX......ccovrererieneieeeeeeesieses e see e s seenee e e e 52

List of Tables

Table 1: CodeBridge Builder Error MESSAgES........cceeevueerereeeeieeseesestes e se e sseseeaeneens 49
Table 2: CodeBridge Builder EXit COUES........cccoeeivieieieriese et 51
Table 3;: CodeBridge Library ErTOrs........coccovieeiecieieie s seeeesie e s eeaenens 53
Tabled: Type AttribULE COUEScccvveieceeeece et sre e 109
Table 5: Parameter AttributeS SUMMAYccoovveiireceeeeesere e 113
Table 6: Parameter Attribute Combinations...........ccovieiinieneneneeeee e 119
Table7: CodeBridge Library FUNCLIONS........cccocoreiririeine e 124
Table8: CodeBridge Library Flag Definitions..........coeovineinenecseneeeeese e 127
Table 9: RM/COBOL Data Types as NUMDENS.ccceiiririiinere e 182
Table 10: RM/COBOL Data Types as NUMDENS.ccccovviveieneneeeseree s 199

CodeBridge User's Guide

First Edition

Welcome to CodeBridge
Preface

Preface

Welcome to CodeBridge

This document describes CodeBridge, Liant Software Corporation’s cross-language
call system that is designed to simplify communication between RM/COBOL
programs and non-COBOL subprogram libraries that are written in C.

CodeBridge for Windows and UNIX alows RM/COBOL programs to call non-
COBOL subprograms built from external Application Programming Interfaces
(APIs) or custom-developed C libraries without introducing “foreign” language data
dependencies into either the COBOL program or the called C functions. This
means that devel opers can write COBOL-callable C functions using C data types as
usual, without worrying about the complexities of COBOL calling conventions or
data types.

CodeBridge runs on Microsoft Windows 32-bit and UNIX-based operating systems.

What's New in CodeBridge 9

CodeBridge version 9 includes several defect corrections, and the product complies
with the RM/COBOL 9 release level.

In addition, two new parameter attributes, the base modifier attributes

c _data is ans and c_data is oem, have been added to CodeBridge to support
conversion of C string data to/from the COBOL native character set on Windows. In
RM/COBOL version 9, the COBOL native character set for arun unit on Windows
can be based on the OEM or ANSI system codepage. (Prior to version 9, the native
character set for arun unit on Windows was assumed to be based on the OEM
system codepage.) Frequently, C strings are based on the ANSI codepage for
Windows, particularly when used with Windows system functions. Thus COBOL
character data passed as an argument to a C routine parameter may need conversion
from OEM to ANSI and C string data returned to the COBOL program argument
may need conversion from ANSI to OEM.

Prior to the addition of the new base modifier attributes, these conversions, if
necessary, were the responsihility of the COBOL program. |f the new base modifier
attributes are specified in the template, CodeBridge will now perform the
conversions automatically when transferring argument and parameter values.

CodeBridge User's Guide 1
First Edition

Who Should Use CodeBridge
Preface

CodeBridge uses the native character set of the COBOL run unit to decideif a
conversion is necessary when one of these base modifier attributes is specified. If
neither of the new base modifier attributes is specified, no conversion is done,
regardless of the character set for the COBOL run unit, thus matching the prior
behavior of CodeBridge. The new attributes are ignored on UNIX so that a common
template can be shared between Windows and UNIX development environments.
For amore detailed discussion of these attributes, refer to Appendix E: Parameter
Attributes (on page 93).

Note For information on the significant enhancements in previous rel eases of
CodeBridge, see Appendix J. Summary of Enhancements (on page 223).

Who Should Use CodeBridge

CodeBridge isintended for the following audiences:

1. Developers who may or may not be proficient in the C programming language
and who wish to call existing C function libraries or system APIs without
writing any additional C code.

2. Developerswho are proficient in C programming and who wish to write new
C function libraries that may be called from RM/COBOL.

3. Developers who have previously written non-COBOL subprogram librariesin
the form of Windows DL Lsthat are callable from RM/COBOL and who wish to
take advantage of data conversion and validation features that are availablein
CodeBridge.

Organization of Information

The following lists the topics that you will find in the CodeBridge manual and
provides a brief description of each.

Chapter 1—Introduction. This chapter provides ageneral overview of the
CodeBridge cross-language call system, including components, benefits,
requirements, information on how use this manual, and a typical development
procedure with abasic, illustrative example. More examples are provided in
Appendix B: CodeBridge Examples.

Chapter 2—Concepts. This chapter describes the concepts that are central to an
understanding of CodeBridge, including using the template file components, passing
information to a C function, returning C error values, associating C parameters with
COBOL arguments, working with a variable number of C parameters, modifying
COBOL data areas, using P-scaling, working with arrays, and using the CodeBridge
Builder.

Appendix A—CodeBridge Errors. Thisappendix lists and describes the
messages that can be generated during the use of either the CodeBridge Builder
or the CodeBridge Library. These messages also include the CodeBridge Builder
exit codes.

Appendix B—CodeBridge Examples. This appendix contains additional examples
that use the typical CodeBridge development procedure outlined in Chapter 1:

2 CodeBridge User's Guide
First Edition

Related Publications
Preface

Introduction. The examples build from simple to complex, as a means of introducing
CodeBridge concepts.

Appendix C—Useful C Information. The explanations in this appendix are
intended to introduce basic C concepts to developers who are inexperienced in C.
Thisinformation isintended to serve as a starting point for those developers who
may not be proficient with C programming and who wish to call existing C function
libraries without writing any additional C code.

Appendix D—Global Attributes. Thisappendix provides detailed descriptions of
the global attributes used in atemplate file. See Chapter 2: Concepts, for more
information about the basic components of atemplate file.

Appendix E—Parameter Attributes. Thisappendix provides detailed descriptions
of the parameter attributes used in atemplate file. See Chapter 2: Concepts, for
more information about the basic components of atemplate file.

Appendix F—CodeBridge Library Functions. This appendix describes each
function in the CodeBridge Library. These descriptions will help you understand the
C code generated by the CodeBridge Builder and will assist you in debugging
applications developed using CodeBridge. Information on specifying the Flags
parameter is also covered.

Appendix G—Non-COBOL Subprogram Internalsfor Windows. This appendix
describes the internal details of how a non-COBOL subprogram is called from an
RM/COBOL program running under Microsoft 32-bit Windows. It also provides
information on preparing anon-COBOL subprogram for use by an RM/COBOL
program on 32-bit Windows.

Appendix H—Non-COBOL Subprogram Internalsfor UNIX. This appendix
describes the internal details of how anon-COBOL subprogramis called from an
RM/COBOL program running under UNIX. It also provides information on
preparing a non-COBOL subprogram for use by an RM/COBOL program on UNIX.

Appendix |—Calling the CodeBridge Library Directly. Thisappendix includes
guidelines for calling the CodeBridge Library directly rather than having the
CodeBridge Builder generate the interface code from a template file. In order to call
the CodeBridge Library directly, you must use an alternate method for preparing
non-COBOL subprograms, as described in Appendices G and H.

Appendix J—Summary of Enhancements reviews the new features and
enhancements that were added to earlier releases of CodeBridge.

The CodeBridge manual also includes a glossary (see page 225) and an index (see
page 229).

Related Publications

For additional information, refer to the following publications:
¢ RM/COBOL User'sGuide

e RM/COBOL Language Reference Manual

e RM/COBOL Syntax Summary

e RM/CodeWatch

CodeBridge User's Guide 3
First Edition

Symbols and Conventions
Preface

Symbols and Conventions

The following typographic conventions are used throughout this manual to help you
understand the text material and to define syntax:

1. Wordsin all capital lettersindicate COBOL reserved words, such as statements,
phrases, and clauses; acronyms; configuration keywords; environment variables,
and RM/COBOL Compiler and Runtime Command line options.

2. Text that isdisplayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). Thistype styleisalso used for
sample command lines, program code and file listing examples, and sample
Sessions.

3. Bold, lowercase letters represent filenames, directory names, programs, C
language keywords, and CodeBridge attributes.

Words you are instructed to type appear in bold. Bold type styleisalso used for
emphasis, generally in some types of lists.

4. Italic typeidentifies thetitles of other books and names of chaptersin this guide,
and it is also used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for information
you supply, as described below.

5. The symbolsfound in the COBOL syntax charts are used as follows:
a italicized wordsindicate items for which you substitute a specific value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown
(although not necessarily in uppercase).

c. ... indicatesindefinite repetition of the last item.

d. | separates alternatives (an either/or choice).

e. [] enclose optional items or parameters.

f. {} encloseaset of aternatives, one of which isrequired.

0. {|} surround aset of unique alternatives, one or more of which isrequired,

but each alternative may be specified only once; when multiple alternatives
are specified, they may be specified in any order.

6. All punctuation must appear exactly as shown.

Key combinations are connected by aplus sign (+), for example, Ctrl+X. This
notation indicates that you press and hold down the first key while you press the
second key. For example, “press Ctrl+X” meansto press and hold down the Ctrl
key while pressing the X key. Then release both keys.

8. Theterm “Windows’ in this document refers to 32-bit Microsoft Windows
operating systems, including Windows 98, Windows Me, Windows NT 4.0,
Windows 2000, Windows XP, or Windows Server 2003, unless specificaly
stated otherwise. Asyou read through this guide, note that Liant may use
two shorthand notations when referring to these operating systems. The
term “Windows 9x class’ refers to the Windows 98 or Windows Me
operating systems. Theterm “Windows NT class’ refers to the Windows
NT 4.0, Windows 2000, Windows XP, or Microsoft Windows Server 2003
operating systems.

4 CodeBridge User's Guide
First Edition

Registration
Preface

9. RM/COBOL Compile and Runtime Command line options may be preceded by
ahyphen. If any option is preceded by a hyphen, then aleading hyphen must
precede al options. When assigning a value to an option, the equal signis
optiona if leading hyphens are used.

@ 10. If present in the electronic PDF file, this symbol represents a“note” that allows
you to view last-minute comments about a specific topic on the page in which it
occurs. This same information is aso contained in the README text file under
the section, Documentation Changes. In Adobe Reader, you can open comments
and review their contents, although you cannot edit the comments. Notes do not
print directly from the comment that they annotate. Y ou may, however, copy
and paste the comment text into another application, such as Microsoft Word, if
you wish.

To review notes, do one of the following:

e Toview anote, position the mouse over the note icon until the note
description pops up.

e To open anote, double-click the note icon.

e Tocloseanote, click the Close box in the upper-left corner of the
note window.

Registration

Please take amoment to fill out and mail (or fax) the registration card you received
with RM/COBOL. Y ou can also complete this process by registering your Liant
product online at: http://www.liant.com.

Registering your product entitles you to the following benefits:

e Customer support. Free 30-day telephone support, including direct access to
support personnel and 24-hour message service.

e Special upgrades. Free media updates and upgrades within 60 days of
purchase.

e Product information. Notification of upgrades, revisions, and enhancements as
soon asthey are released, as well as news about other product developments.

Y ou can also receive up-to-date information about Liant and all its products via our
website. Check back often for updated content.

Technical Support

Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the RM/COBOL family of products. The technical support staff is
committed to providing you prompt and professional service when you have
problems or questions about your Liant products.

These technical support services are subject to Liant’s prices, terms, and conditions
in place at the time the service is requested.

CodeBridge User's Guide 5
First Edition

http://www.liant.com

Technical Support

Preface

6

Whileit is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each product.
For customers who elect not to upgrade to the most current release of the products,
support is provided on alimited basis, astime and resources allow.

Support Guidelines

When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name and contact information.

2. Liant product serial number (found on the medialabel, registration card,
or product banner message).

Product version number.

Operating system and version number.
Hardware, related equipment, and terminal type.
Exact message appearing on screen.

N o o M ®w

Concise explanation of the problem and process involved when the
problem occurred.

Test Cases

Y ou may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

e Thesmaller thetest caseis, the faster we will be able to isolate the cause of the
problem.

e Do not send full applications.
e Reducethetest case to one or two programs and as few datafiles as possible.

o If you have very large datafiles, write asmall program to read in your current
data files and to create new datafiles with as few records as necessary to
reproduce the problem.

o Test thetest case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. Y ou may need to
include an RM/COBOL configuration file.

When submitting your test case, please include the following items:

1. README text filethat explainsthe problems. Thisfile must include
information regarding the hardware, operating system, and versions of all
relevant software (including the operating system and all Liant products). It
must also include step-by-step instructions to reproduce the behavior.

2. Program source files. Werequire source for any program that is called during
the course of the test case. Be sureto include any copy files necessary for
recompilation.

3. Datafilesrequired by the programs. These files should be as small as
possible to reproduce the problem described in the test case.

CodeBridge User's Guide

First Edition

What is CodeBridge?
Chapter 1: Introduction

Chapter 1. Introduction

Thisintroductory chapter provides an overview of CodeBridge technology and its
components, and describes the following topics:

e Benefits of using CodeBridge (on page 8)

e Requirements for developing applications using CodeBridge (on page 9)
e |nformation on using this manual (on page 9)

e Typical development procedure (on page 11)

e Typical development example (on page 14)

What is CodeBridge?

CodeBridge allows RM/COBOL applications to call C functions without being
concerned about the conversion between COBOL arguments and C parameters.

CodeBridge allows RM/COBOL programs to call non-COBOL subprograms built
from external Application Programming Interfaces (APIs) or custom-developed C
libraries without introducing “foreign” language data dependencies into either the
COBOL program or the called C functions. This means that devel opers can write
COBOL-callable C functions using C data types as usual, without worrying about the
complexities of COBOL calling conventions or data types.

The developer augments C function prototypes with global and parameter attributes
described in this manual to produce atemplate file. The developer usesthe
CodeBridge Builder utility to generate a C source file from the template file. This
generated C source file contains the interface logic that, with the help from the
CodeBridge Library, connects the calling COBOL program to the C function. The
developer compilesthis C source file, along with the C functions to be called, and
links the generated object files together to form the completed non-COBOL
subprogram library. In many cases, existing C library functions may be used to
generate anon-COBOL subprogram library without writing any C code.

Note For Windows platforms, the generated non-COBOL subprogram library isa
32-bit dynamic-link library (DLL). For UNIX platforms, the generated non-COBOL
subprogram library is a“shared object” (normally referred to as an optional

support module).

CodeBridge User's Guide 7
First Edition

What is CodeBridge?
Chapter 1: Introduction

8

CodeBridge Components

CodeBridge consists of two main components:

CodeBridge Builder. The CodeBridge Builder is a standalone program that
functions like a pre-compiler by reading a template file to generate a C source
code file. The template file consists of C function prototypes that have been
augmented with descriptive information. The output of the CodeBridge Builder
is compiled and linked with the C functions to produce a non-COBOL
subprogram library. The CodeBridge Builder isincluded in the RM/COBOL
development system.

CodeBridge Library. The CodeBridge Library isa set of functions that
performs conversion operations from COBOL arguments to C parameters and
back again. The CodeBridge Library also contains functions to validate data and
enforce interface constraints. The CodeBridge Library is part of the
RM/COBOL runtime system.

Benefits of Using CodeBridge

CodeBridge provides the following benefits:

CodeBridge User's Guide
First Edition

Converts between COBOL and C data formats, eliminating the need for either
the COBOL program or the C function having to deal with “foreign” language-
dependent data types.

Allows existing C libraries and standard APIs (such as the WIN32 API) to be
used, in many cases, without writing any additional C code.

Supports basic COBOL data types, including numeric, non-numeric, and pointer
dataitems.

Supports basic C data types, including integer and floating-point data items,
numeric ASCII-encoded strings, and standard null-terminated C strings.

Provides access to elements of COBOL data descriptors, which describe the
properties of COBOL arguments.

Provides C functions with the COBOL argument count, the COBOL initial state
flag, and the Windows handle of the calling program.

Provides data range and integrity checks for COBOL argumentsand C
parameters.

Provides support for omitted arguments and null-valued pointer arguments.

Provides limited support for calling C functions that allow a variable number
of parameters.

Using this Manual
Chapter 1: Introduction

Requirements for Developing Applications Using
CodeBridge

In order to develop applications using CodeBridge, you must have the following:
1. AnRM/COBOL development system to develop applications using CodeBridge.

2. RM/COBOL runtime systems for deployment of applications based on
CodeBridge technology.

3. A contemporary C development system:

e For Windows, the C development system must be capable of generating
32-bit dynamic-link libraries (DLLS). Liant Software selected Microsoft’s
Visual C++ compiler for the development of the Windows version of
CodeBridge. The Windows examples used in this manual are based on
Microsoft command line syntax.

e For UNIX, the C development system must be capable of generating shared
objects. The command line syntax for the UNIX examples used in this
manual istypical of many C compilers on UNIX. A makefileis provided
with the RM/COBOL development and runtime systems that can be used or
modified to build a shared object to be used as a support module with the
RM/COBOL runtime system. For additional information, see Preparing C
Subprograms for UNIX (on page 202).

4. Some knowledge of C programming. The skill level varies depending on what
the developer wishes to accomplish. For those devel opers who are not proficient
in C programming and who wish to call existing C function libraries, only a
cursory knowledge of Cisrequired. Appendix C: Useful C Information (on
page 81) contains brief explanations of some C language concepts and
terminology, and may be useful for those developers who are not proficient in C.

Using this Manual

Depending on your experience level and how you to plan to use CodeBridge, this
section contains information to help you learn to use CodeBridge effectively and
quickly.

Developers Who are New to C Programming

A limited understanding of the C programming language is required to use
CodeBridge effectively. If you are unfamiliar with the C programming language,
you will want to refer first to Appendix C: Useful C Information (on page 81). The
explanationsin this appendix are intended to introduce basic C concepts to
developers who are inexperienced in C. More in-depth information can be found in
the many resources published about programming in C. Appendix C also contains
information on compiling and linking C functions.

CodeBridge User's Guide 9
First Edition

Using this Manual
Chapter 1: Introduction

Developers Who are Evaluating CodeBridge

It is recommended that all CodeBridge developers read and study Chapter 1:
Introduction (on page 7). This chapter presents the main features of CodeBridge,
and acquaints you with an overview and general appearance of atypical CodeBridge
program.

Another good way to become familiar with CodeBridge isto look at the examplesin
Appendix B: CodeBridge Examples (on page 55). This appendix contains examples
that introduce and illustrate several CodeBridge concepts and features. These
examples may be helpful in generating CodeBridge template files that are based on
existing C function prototypes.

In addition to these examples, several CodeBridge sample programs are included
with the development system in the CodeBridge samples subdirectory. Within the
cbridge subdirectory on Windows, the file sample.txt discusses the sample
programs, including the .bat filesto compile and run them, the .tpl and .cbl files, and
the output they produce. These sample programs include atemplate file that contains
definitions for arich subset of the SQL function calls defined by Microsoft's ODBC
API reference. The README.txt file in the chsample subdirectory on UNIX
discusses the CodeBridge sample programs that are included and how to run them.

Developers Who Wish to Use Existing C Libraries
or Write New Non-COBOL Subprograms

For background information, you may wish to refer to the chapters and appendixes
recommended for developers who are inexperienced in C programming and those
who are evaluating CodeBridge.

Then, study Chapter 2: Concepts (on page 17), which focuses on the fundamentals
and structure of CodeBridge.

Two appendices, Appendix D: Global Attributes (on page 89) and Appendix E:
Parameter Attributes (on page 93), serve as reference guides to the attributes and
attribute lists that are used in template files while developing CodeBridge
applications.

Developers Who Have Written Non-COBOL
Subprograms for Previous Versions of RM/COBOL

For background information, please refer to the previously recommended topics for
developers who wish to use existing C libraries or who want to write new non-
COBOL subprograms.

Next, read Appendix F: CodeBridge Library Functions (on page 123) and Appendix I:
Calling the CodeBridge Library Directly (on page 211). Please note that the
information in these two appendixes is not intended for ageneral audience. Rather,

it istargeted to those devel opers who have previously written non-COBOL
subprogram libraries in the form of Windows DLLsthat are callable from
RM/COBOL, and who wish to take advantage of the data conversion and validation
features available in CodeBridge.

Finally, review either Appendix G: Non-COBOL Subprogram Internals for Windows
(on page 175) or Appendix H: Non-COBOL Subprogram Internals for UNIX (on

10 CodeBridge User's Guide
First Edition

Typical Development Procedure
Chapter 1: Introduction

page 193). These appendices document the interface between the RM/COBOL
runtime system and a C subprogram.

Developers Who Need Assistance in Testing and
Debugging

Developersin this category may refer to Appendix A: CodeBridge Errors (on
page 49), which lists the error messages produced by the CodeBridge Builder and
CodeBridge Library.

Theinformation in Appendix F: CodeBridge Library Functions (on page 123)
would also prove useful to devel opers who are debugging applications devel oped
using CodeBridge.

Typical Development Procedure

Note In order to avoid confusion, the term “argument” is used when referring to
COBOL dataitems; the term “parameter” is used when referring to C data items.

A typical CodeBridge development procedure would include the following steps:

1. Selectingthe C functions. Thefirst step isto select the C functions that areto
be called from COBOL.

These C functions may be ones that you have written, or that you have acquired
from a software vendor, or received as part of the standard C library that came
with your C compiler, or obtained as part of a standard API for your operating
system, or one of its add-on components. Regardless of the source of these

C functions, there will be one or more header files that contain descriptions of
the functions (using C function prototypes), and, possibly, definitions of new
data types and constants (using macros defined with #define C preprocessor
directives and data types defined with C typedef statements). The information
from these header files will be augmented with additional information, as
described in step 2.

2. Creating thetemplatefile. The next step isto create atemplate file that
describes the relationship between the COBOL arguments and the C parameters.

The template file, which is described in Chapter 2: Concepts (on page 17),
contains modified C function prototypes, where the modifications provide
additional information describing each C parameter and the function return
value. Each block of descriptive information is called an attribute list. Each
attribute list contains one or more attributes. There are two kinds of attribute
lists: parameter and global. Attributes and attribute lists are described in
Appendix D: Global Attributes (on page 89) and Appendix E: Parameter
Attributes (on page 93).

Template files are generally free format in the sense that a line break may be
placed wherever a blank may be placed. A template file line should not exceed
255 charactersin length.

Note C-style comments (/* comment */) may be included in the template source
file. If comments are included, they are accepted by the CodeBridge Builder,
but are not placed in the C source created from the template file.

CodeBridge User's Guide 11
First Edition

Typical Development Procedure
Chapter 1: Introduction

12

CodeBridge User's Guide
First Edition

In addition to the annotated C function prototypes, it is necessary to add
#include C preprocessor directives to the template file so that the C code
generated by the CodeBridge Builder can correctly resolve C datatypes. For
example, if you are using the standard Windows API function, M essageBox,
you must include the header file, windows.h. Note that Example 2: Calling a
Windows API Function (on page 56) demonstrates this requirement. |If you did
not write the C functions, documentation that came with the software, your C
compiler, or an SDK (Software Development Kit), should provide this
information.

Invoking the CodeBridge Builder. The CodeBridge Builder program uses the
template file to generate C source code that contains the interface callsto
connect the calling COBOL program to the C functions, and to convert COBOL
arguments to and from C parameters.

The CodeBridge Builder is normally executed from a command line or script
environment. It has two command line options: arequired input parameter (the
name of the template file) followed by an optional output parameter (the name of
the generated C sourcefile).

Template files typically have a.tpl extension. If the optional output filenameis
not specified, the output is written to afile with the same name as the input file
with the extension changed to .c.

Any errors that occur are written to afile with the same name as the output file,
but with the extension changed to .err. Errors encountered by the CodeBridge
Builder should be fixed before continuing. Although the CodeBridge source
code is generated when there are errors, it should not be considered valid.

For more information, see CodeBridge Builder (on page 47) and CodeBridge
Builder Error Messages (on page 49).

Building the non-COBOL subprogram library. The CodeBridge Builder
generates a C source program that must be compiled. Once the generated source
has been compiled, it must be linked with the object code for the functions you
wish to call from COBOL and with any libraries required by those functions or
by the operating system. Thislinking process will produce a non-COBOL
subprogram library that your COBOL program will use. Various compilers can
be used to build the non-COBOL subprogram library, including Microsoft's
Visual C++.

Note 1 When calling existing object libraries other than the standard C library,
you must specify the libraries needed in the link command.

Note 2 When calling an existing Windows DLL, you must supply either a
definition file (.def) or an import library filein the link command.

Modifying or creatinga COBOL program. The next step isto modify an
existing COBOL program or create a new one that calls the C functions you
have selected.

The USING phrase of the RM/COBOL CALL statement allows you to specify
arguments you wish to pass to the C function. The GIVING (RETURNING)
phrase of the RM/COBOL CALL statement allows you to specify an argument
that would normally receive the return value of the C function.

CodeBridge is designed to give maximum flexibility in choosing COBOL data
types to be converted to and from the C data types required by the C function.
For more information, see Chapter 2: Concepts (on page 17).

Typical Development Procedure
Chapter 1: Introduction

CodeBridge aso allows wide latitude in mapping C function parametersto
COBOL arguments. For more information, see Associating C Parameters with
COBOL Arguments (on page 33).

Compiling the COBOL program. Use the RM/COBOL compiler to compile
your COBOL program.

Running the application. Execute the COBOL program, specifying the name
of the non-COBOL subprogram library using the L Option of the RM/COBOL
Runtime Command (runcoboal). Alternatively, you may use the Command Line
Options Registry property on Windows or the command line options in the
UNIX resource file to specify the name of the non-COBOL subprogram library.
(For more details, see “ Setting Miscellaneous Properties’ in Chapter 3:
Installation and System Considerations for Microsoft Windows, and the “UNIX
Resource File” section in Chapter 2: Installation and System Considerations for
UNIX, in the RM/COBOL User’s Guide). You may specify the name of the
non-COBOL subprogram with the appropriate file extension. For an example,
see page 16.

Note Thereisan option to automatically load your subprogram library without
the need to specify the L Option on the Runtime Command. Once your
subprogram library istested to your satisfaction, you may

e On UNIX, copy the .so (support module) to the rmcobolso subdirectory of
the runtime execution directory (normally, /usr/bin).

e On Windows, copy the .dll (support module) to the rmautold subdirectory
of the runtime execution directory (normally, c:\program files\rmcobol).

For additional information, see Preparing C Subprograms for UNIX (on

page 202). For ageneral discussion of support modules and how RM/COBOL
uses them, see Appendix D: Support Modules (Non-COBOL Add-Ons) in the
RM/COBOL User’s Guide.

CodeBridge User's Guide 13
First Edition

Typical Development Example
Chapter 1: Introduction

Typical Development Example

The following example uses the typical development procedure outlined in the
previous section. More examples can be found in Appendix B: CodeBridge
Examples (on page 55) and in the CodeBridge samples subdirectory (cbridge on
Windows and chsample on UNIX).

Example 1: Calling a Standard C Library Function

This example demonstrates calling a standard C library function without writing any
C code. Parameter attribute lists are also presented.

1. Start with the function prototype for the standard C library cosine function, cos:
double cos(double x);

2. Create atemplatefile called trig.tpl in the src directory that consists of the
following lines:

#include <math.h>

[[float out rounded]] double cos(
[[Float in]] double x);

The#include C preprocessor directive is added to the template file so that

the generated C source code can correctly resolve C datatypes. Because the
cosine function is defined in the header file math.h, you should include thisfile
in the template.

Parameter attribute lists (for example, [[float out rounded]]) are
constructed by placing the attributes between sets of double brackets. The
parameter attribute lists are placed just before C data type references (in this
example, double).

A parameter attribute list must contain a base attribute (in this case, float, for
floating-point). A parameter attribute list may contain a direction attribute
(either in or out, or both), although a direction attribute is not always required.
Optionally, a parameter attribute list may contain base modifier attributes (in this
case, rounded, to indicate that COBOL rounding rules are to be applied).

Note Unlike COBOL, C is a case-sensitive programming language. Thus, the
caseis significant for wordsin this example templatefile.

3. Invoke the CodeBridge Builder by using the following command line:
cbridge src\trig.tpl

This command reads the input file from src\trig.tpl and writes its output file to
srctrig.c. Any errors would be written to the file src\trig.err.

14 CodeBridge User's Guide
First Edition

Typical Development Example
Chapter 1: Introduction

4. Compile and link the non-COBOL subprogram library with the C compiler of
your choice, using commands similar to the following:

For Windows

cl —c -MD —-Zpl src\trig.c

link —nologo —machine:1X86 —section:_edata,RD —dll
-subsystem:windows —out:trig.dll
trig.obj kernel32_lib user32_lib

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
Preparing C Subprograms for UNIX (on page 202).

To compile:
cc -c src/trig.c

Note Some compilers may require that the ELF (Executable and Linking
Format) object file be specified, as follows:

cc -b elf -c src/trig.c
To link:
cc -G -0 trig.so trig.o

Note Some linkers may require that you explicitly specify the math (or other)
libraries, asfollows:

cc -G -0 trig.so trig.o -Im

5. CreateaCOBOL programin afile called trig.cbl that contains the following
source fragments:

77 X-DEGREES PIC S999Vv99.

77 X-RADIANS PIC S99Vv9(16).

77 RESULT PIC S99Vv9(06).

78 PI Value 3.14159265359.

COMPUTE X-RADIANS = X-DEGREES / 180 * PI.
CALL "cos"™ USING X-RADIANS GIVING RESULT.

Note Either numeric edited or any COBOL numeric usage may be specified in
the data descriptions for X-DEGREES, X-RADIANS, and RESULT.

CodeBridge User's Guide 15
First Edition

Typical Development Example
Chapter 1: Introduction

16

6.

CodeBridge User's Guide
First Edition

Compile the COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol trig

Run the application, specifying the name of the COBOL program and the name
of the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate
file extension. The following two commands illustrate how to specify a
Windows DLL or aUNIX shared object (generally known as support modules).
Since the COBOL program and the non-COBOL subprogram have the same root
name (trig), it is necessary to specify the correct file extension.

For Windows

runcobol trig -1 trig.dll

For UNIX

runcobol trig -1 trig.so

If the preceding examples had used different root names for the COBOL
program and the non-COBOL subprogram, it would not be necessary to specify
the file extension. For example, if the COBOL program were named “myprog”,
then the following command could be used for either Windows or UNIX:

runcobol myprog -1 trig

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

Using Template File Components
Chapter 2: Concepts

Chapter 2: Concepts

This chapter describes concepts that are central to an understanding of CodeBridge:
e Using template file components (attributes and attribute lists)
e Passing information to a C function (on page 21), including:
— Passing COBOL arguments (on page 21)
— Passing COBOL argument properties (on page 28)
— Passing miscellaneous information (on page 30)
— Managing omitted arguments (on page 30)
e Returning C error values (on page 31)
e Associating C parameters with COBOL arguments (on page 33)
e Working with avariable number of C parameters (on page 39)
e Modifying COBOL data areas (on page 40)
e Using P-scaling (on page 43)
e Working with arrays (on page 43)
e Using the CodeBridge Builder (on page 47)

Using Template File Components

In order to use the CodeBridge Builder (on page 47), you must provide atemplate
file that describes each C function to be called from COBOL. Attribute lists are used
in the template file to supplement information from the C function prototypes. An
attribute list is a collection of attributes. Detailed information about attributesis
provided in Appendix D: Global Attributes (on page 89) and Appendix E:
Parameter Attributes (on page 93).

Note 1 Asyou read through this manual, keep in mind that the term “ parameter
attribute” is a shorthand notation for an attribute that occurs in a parameter attribute
list. Likewise, “global attribute” indicates that the attribute can be found in a global
attribute list.

Note2 C-style comments (/* comment */) may be included in the template source
file. If comments are included, they are accepted by the CodeBridge Builder, but are
not placed in the C source created from the template file.

CodeBridge User's Guide 17
First Edition

Using Template File Components

Chapter 2: Concepts

18

Attributes

An attribute is akeyword, such asinteger, or a keyword with an associated value in
parentheses, such as occur §(3). Attribute keywords are case-sensitive and must be
entered as shown.

The associated value is a constant. The CodeBridge Builder does not detect errorsin
the construction of the associated value.

A collection of attributesis known as an attribute list.

Attribute Lists

Two kinds of attribute lists, parameter and global, are used in atemplate file.

A parameter attribute list (described in the next section) is formed by enclosing one
or more attributes in double brackets. For example:

[[integer in occurs(3)]1]

A global attribute list (see page 20) isformed by enclosing one or more attributes
between the characters [# and #]. For example:

[# replace_type (VOID_PTR; void *) #]

Sample template files using parameter and global attribute lists can be found on
pages 19 and 20.

Parameter Attribute Lists

A parameter attribute list is associated with a C parameter or function return value.
Each parameter attribute list describes the following:

e How COBOL arguments are to be validated and converted into C parameters
before the C function is called.

e How C parameters are to be validated and converted back to COBOL arguments
when the C function returns.

Zero or more parameter attribute lists may immediately precede the type information
for each C parameter or function return value.

Attribute lists for a parameter or function return value may be omitted if the
parameter or function return value is to be ignored.

Within a parameter attribute list, the parameter attributes need not be presented in
any particular order. For example, [[integer in]] isthesameas[[in
integer]]. When aparameter is used for both input and output, specify both thein
and out direction attributes in either order.

The attributes in a parameter attribute list belong to one of the following categories:

e Base. Base attributes indicate the general classification of a parameter (numeric,
string, string length, pointer, descriptor, or error). Each parameter attribute list
must contain exactly one base attribute, except that the alias(name) base
modifier attribute may be used by itself if the return value is to be ignored.
Therefore, within this document, a parameter attribute list is sometimes

CodeBridge User's Guide

First Edition

Using Template File Components
Chapter 2: Concepts

identified by its base attribute. For example, the phrase “an integer attribute
list” refersto an attribute list that contains the integer base attribute. For more
information, see Base and Base Modifier Attributes (on page 95).

Base Maodifier. Base modifier attributes perform several tasks, such as:
parameter conversion, parameter validation, error handling, array processing,
handling of a variable number of C parameters, overriding the default size of a
parameter, or supplying default values for omitted arguments. For more
information, see Base and Base Modifier Attributes (on page 95).

Direction. A direction attribute, in and/or out, is sometimes required so that
CodeBridge knows whether to generate code to convert a COBOL argument to a
C parameter before calling the C function and/or to convert a C parameter to a
COBOL argument when returning to the COBOL program. For more
information, see Direction Attributes (on page 94).

The base attributes, float, general_string, integer, numeric_string,
pointer _base, pointer_offset, pointer_size, and string, apply to both input
parameters and output parameters, and, therefore, require that adirection
attribute be specified.

All other base attributes apply only to input parameters, and, therefore, assume
the presence of the in direction attribute. These base attributes do not allow the
in direction attribute to be specified.

Argument Number. CodeBridge provides a default automatic method of
associating the C parameters and function return value from the C function
prototype with COBOL arguments from the USING phrase and GIVING
(RETURNING) phrase of the CALL statement. This default automatic
association method is able to handle most cases. Note that for the more than 60
functions described in the file sql.tpl in the cbridge subdirectory (Windows
only), none required using argument number attributes. (For more information,
see Argument Number Attributes (on page 94).

There are, however, situations that the default automatic association method
will not handle. See Example 4: Accessing COBOL Pointer Arguments (on
page 63) and Associating C Parameters with COBOL Arguments (on page 33).
For these cases, use the explicit association method by specifying argument
number attributes, arg_num or ret_val, to override the automatic association
method.

For an alphabetized summary of the parameter attributes, see Table 5 in Parameter
Attributes Summary (on page 113).

Sample Template File Using Parameter Attribute Lists
The following C function prototype:
int MyFunction(char *Name, short NameSize);

may be modified by adding parameter attribute lists to produce the following
templatefile:

[[integer out]] int MyFunction(
[[string in]] char *Name,
[[buffer_length]] short NameSize);

CodeBridge User's Guide
First Edition

19

Using Template File Components

Chapter 2: Concepts

20

For each usage of adataitem in the C function prototype (either for the function
return value or for a parameter), a parameter attribute list has been added.

Since the C function returns an int, the integer base attribute and the out direction
attribute are used.

For the Name parameter, the string base attribute and the in direction attribute are
used to specify that the C function expects a string (array of char) asinput.

The buffer_length base attribute is used to specify the size (in bytes) of the buffer
used to contain the converted COBOL argument. By default, the buffer _length base
attribute refers to the same COBOL argument number as was applicable in the
attribute list that immediately precedes the attribute list containing the buffer _length
base attribute; an argument number attribute may be specified in the attribute list
containing the buffer_length attribute in order to override the default argument
number. For further clarification regarding the COBOL argument referenced by a
buffer_length base attribute, see String Length Base Attributes (on page 104) and
Automatic Association of C Parameters with COBOL Arguments (on page 34).
Because the buffer_length base attribute may be used only with input parameters, it
is neither necessary nor allowed to add the in direction attribute to the attribute list.

The COBOL program would call the C function with the following statement:

CALL "MyFunction'™ USING Name-1, GIVING Result-1.

Global Attribute Lists

A global attribute list provides information about one or more C function prototypes
that is not specific to any given parameter. Thisinformation also could be used to
modify the default behavior of the CodeBridge Builder.

Global attribute settings take effect at the point the global attribute list occurs and are
valid until another global attribute list alters these settings. A global attributelist is
not associated with any particular function, argument, or parameter.

Sample Template File Using Global Attribute Lists
The following C function prototype:

SQLRETURN SQL_API SQLParamData(SQLHSTMT StatementHandle,
SQLPOINTER *ValuePtrPtr);

may be modified by adding global and parameter attribute lists to produce the
following templatefile:

#include "sqgltypes._h"

[# replace_type(SQLPOINTER; void *) #]
[# convention(SQL_API) #]

[[integer out]] SQLRETURN SQL_API SQLParamData(

[[integer in]] SQLHSTMT
StatementHandle,
[[address]] SQLPOINTER *ValuePtrPtr);

CodeBridge User's Guide

First Edition

Passing Information to a C Function
Chapter 2: Concepts

Thereplace_type global attribute is used to expand the definition of SQLPOINTER
tovoid *. The convention global attribute is used to identify function calling
conventions.

Note 1 Thisexampleisbased onthe ODBC API, which is provided by Microsoft on
Windows platforms. Other companies provide ODBC APl implementations for
some UNIX platforms.

Note 2 The header file, sgltypes.h, isincluded so that the C source code generated
by CodeBridge will be able to resolve the data types, SQLRETURN and
SQLHSTMT.

Passing Information to a C Function

CodeBridge is designed to simplify the process of calling C functions from COBOL
programs. It ispossibleto call existing C library and standard API functions without
writing additional C code. Even though no additional C code is required when using
only existing C library or standard API functions, some knowledge of C
programming is required in order to create the CodeBridge template file and to
compile and link the CodeBridge non-COBOL subprogram library. Further
knowledge of C programming isrequired if the developer desiresto write new C
programs or if intermediate functions must be written to pack scalars into structure or
union parameters.

CodeBridge handles the conversion between COBOL and C data formats, which
eliminates the need for either the COBOL program or the C function having to deal
with “foreign” language-dependent data types. During the conversion process,
CodeBridge can aso perform data range and validity checksto verify that specified
interface constraints are maintained.

CodeBridge allows three categories of information to be passed to the C function:
COBOL arguments, COBOL argument proprieties, and miscellaneous information.
For more information, see the following topics:

e Passing COBOL Arguments (see below)
e Passing COBOL Argument Properties (on page 28)

e Passing Miscellaneous Information (on page 30)

Furthermore, a COBOL program may omit an argument in the information passed to
a C function, as discussed in Managing Omitted Arguments (on page 30).

Passing COBOL Arguments

COBOL arguments may be numeric, non-numeric, or pointer dataitems. COBOL
numeric arguments may be passed to C integer, floating-point, and numeric string
parameters. COBOL non-numeric arguments must be passed to C string parameters.
Asaspecia case for C functions designed to interpret a null-valued pointer as an
omitted parameter, a COBOL null-valued pointer argument may be passed in place
of anumeric or non-numeric argument and the C function parameter will be set to a
null-valued pointer. COBOL pointer data items contain three components. base
address, offset, and size. The address component must be passed to C pointer
parameters; the offset and size components must be passed to C numeric parameters.

CodeBridge User's Guide 21
First Edition

Passing Information to a C Function

Chapter 2: Concepts

22

Passing COBOL Numeric Arguments

CodeBridge supports all RM/COBOL numeric data types, including display, numeric
edited, packed, unpacked, and binary. A COBOL numeric argument may be passed
to one of three C parameter types: integer, floating-point, and string. When passed
to a string, the numeric value is converted to and from a string representation.
Therefore, in this document, thisform is referred to as a numeric string.

Note While the COBOL language defines the numeric edited category as belonging
to the alphanumeric class, CodeBridge treats numeric edited data items as numeric.
Itiscurrently an error to pass a numeric edited argument to a parameter described
with the string base attribute. Instead, a numeric edited argument should be passed
to a parameter described with either the numeric_string or general_string base
attributes.

Numeric Arguments with C Integer Parameters

A Cinteger parameter is described in the template file using the integer base
attribute. Theinteger base attribute may be used with any of the C integer data
types, including char, short, int, and long, with or without the C signed type
specifier keywords signed and unsigned. These data types can be used directly
(such as“int Name”), indirectly (“int *pName”), and with array declarations (“int
ArrayName[]”).

When used directly (“int Name”), the parameter is passed to the C function “by
value”. Assuch, it isunable to modify the value of the actual parameter. Passing a
parameter “by value’ usually meansthat it is an input parameter, which indicates that
the in direction attribute should be specified in the attribute list for the parameter.

When used indirectly (“int *pName”), the parameter is passed to the C function “by
reference”’. This meansthat the C function is given a pointer to the parameter and,
therefore, is able to modify the value of the actual parameter. Passing a parameter
“by reference” usually meansthat it is an output (or input/output) parameter, which
indicates that the out direction attribute (or both the in and out direction attributes)
should be specified in the attribute list for the parameter.

Asaspecia casefor Cinteger parameters that are passed indirectly, CodeBridge will
pass the C null pointer to the C function when the COBOL argument is a null-valued
COBOL pointer. For more information, see Passing Null-Valued Pointer Arguments
(on page 27).

When used as an array (“int ArrayName[]”), the address of the array is passed to the
C function. For more information, see Working with Arrays (on page 43).

The conversion process for C integer parameters may be modified by using the
following base modifier attributes. no_size error, occurs(value), repeat(value),
rounded, scaled(value), silent, unsigned, and value if_omitted(value). For
more information, see Base Modifiers that Apply to Numeric Base Attributes (on

page 98).

Interface constraints for C integer parameters may be specified by using the
following base modifier attributes: assert_digits(min;max),

assert_digits left(min;max), assert_digits right(min;max),
assert_length(min;max), assert_signed, assert_unsigned, integer_only,
no_null_pointer, and optional. For more information, see Base Modifiers that
Apply to Numeric Base Attributes (on page 98).

CodeBridge User's Guide

First Edition

Passing Information to a C Function
Chapter 2: Concepts

Numeric Arguments with C Floating-Point Parameters

A C floating-point parameter is described in the template file using the float base
attribute. The float base attribute may be used with either of the C floating-point
data types, float or double. These data types can be used directly (such as “float
Name”), indirectly (“float *pName”), and with array declarations (“float

ArrayName[]").

When used directly (“float Name”), the parameter is passed to the C function “by
value’. Assuch, it is unable to modify the value of the actual parameter. Passing a
parameter “by value’ usually meansthat it is an input parameter, which indicates that
the in direction attribute should be specified in the attribute list for the parameter.

When used indirectly (“float * pName”), the parameter is passed to the C function “by
reference’. This meansthat the C function is given a pointer to the parameter and,
therefore, is able to modify the value of the actual parameter. Passing a parameter
“by reference” usually meansthat it is an output (or input/output) parameter, which
indicates that the out direction attribute (or both the in and out direction attributes)
should be specified in the attribute list for the parameter.

As aspecia case for C floating-point parameters that are passed indirectly,
CodeBridge will passthe C null pointer to the C function when the COBOL
argument is a null-valued COBOL pointer. For more information, see Passing Null-
Valued Pointer Arguments (on page 27).

When used as an array (“float ArrayNamel[]”), the address of the array is passed to
the C function. For more information, see Working with Arrays (on page 43).

The conversion process for C floating-point parameters may be modified by using
the following base modifier attributes: no_size error, occurs(value), repeat(value),
rounded, silent, and value_if _omitted(value). For more information, see Base
Modifiersthat Apply to Numeric Base Attributes (on page 98).

Interface constraints for C floating-point parameters may be specified by using the
following base modifier attributes. assert_digits(min; max),

assert_digits left(min;max), assert_digits right(min;max),
assert_length(min;max), assert_signed, assert_unsigned, no_null_pointer, and
optional. For more information, see Base Modifiersthat Apply to Numeric Base
Attributes (on page 98).

Numeric Arguments with C Numeric String Parameters

A C numeric string parameter is described in the template file using either the
numeric_string or the general_string base attributes. The numeric_string or
general_string base attributes may be used with any of the C string datatypes: char
* signed char *, and unsigned char *.

Note 1 The C parameter declarations“ char *String” and “char Sring[]” are
equivalent.

Note2 C strings are one-dimensional arrays of characters. C always passes array
parameters “by reference”, which means that the address of the first character of the
string is passed to the C function.

Although string parameters are always passed “ by reference”, this does not mean that
a C string parameter is always an output parameter. Depending on itsusein the C
function, it may be an input parameter, an output parameter, or an input/output
parameter. Its useindicates whether thein direction attribute (input), the out

CodeBridge User's Guide 23
First Edition

Passing Information to a C Function

Chapter 2: Concepts

24

direction attribute (output), or both the in and out direction attributes (input/output)
should be specified in the attribute list for the parameter.

Asaspecia case for C numeric string parameters, CodeBridge will pass the C null
pointer to the C function when the COBOL argument is a null-valued COBOL
pointer. For more information, see Passing Null-Valued Pointer Arguments (on

page 27).

During the conversion process, CodeBridge dynamically allocates a buffer to hold
either the converted COBOL argument (for input conversions) or the C string
generated by the C function (for output conversions). While processing string
parameters, the C function may need to know the size of the string or the size of the
string conversion buffer. CodeBridge provides three attributes for obtaining this
string length information. The length base attribute provides the length of the
COBOL argument. The buffer_length base attribute provides the size of the
allocated string buffer. The effective_length base attribute provides the actual
number of characters stored in the string buffer, not including the null character
terminating the string.

When passing an array of C strings (“char *SringArray[]”), the address of the first
string pointer is passed to the C function. For more information, see Working with
Arrays (on page 43).

The conversion process for C numeric string parameters may be modified by using
the following base modifier attributes: leading_minus, leading_sign,

no_size error, occurs(value), repeat(value), rounded, silent, size(value),
trailing_credit, trailing_debit, trailing_minus, trailing_sign, and

value if_omitted(value). For more information, see Base Modifiers that Apply to
Numeric Base Attributes (on page 98).

Interface constraints for C numeric string parameters may be specified by using the
following base modifier attributes: assert_digits(min;max),

assert_digits left(min;max), assert_digits right(min;max),
assert_length(min;max), assert_signed, assert_unsigned, no_null_pointer, and
optional. For more information, see Base Modifiers that Apply to Numeric Base
Attributes (on page 98).

String base modifier attributes that are allowed when the general_string base
attribute is specified are ignored for numeric arguments.

Passing COBOL Non-Numeric Arguments

CodeBridge supports all RM/COBOL non-numeric data types, including alphabetic
and alphanumeric elementary items. CodeBridge also supports passing group items.
A COBOL non-numeric argument must be passed to a C string parameter.

Note While the COBOL language defines the numeric edited category as belonging
to the alphanumeric class, CodeBridge treats numeric edited data items as numeric.
It iscurrently an error to pass a numeric edited argument to a parameter described
with the string base attribute. Instead, a numeric edited argument should be passed
to a parameter described with either the numeric_string or general_string base
attributes.

CodeBridge User's Guide

First Edition

Passing Information to a C Function
Chapter 2: Concepts

Non-Numeric Arguments with C String Parameters

A C string parameter is described in the template file using either the string or
the general_string base attributes. The string or general_string base attributes
may be used with any of the C string data types: char *, signed char *, and
unsigned char *.

Note 1 The C parameter declarations“char *String” and “char Sring[]” are
equivalent.

Note2 C strings are one-dimensional arrays of characters. C always passes array
parameters “by reference”, which means that the address of the first character of the
string is passed to the C function.

Although string parameters are always passed “ by reference”, this does not mean that
a C string parameter is always an output parameter. Depending on itsusein the

C function, it may be an input parameter, an output parameter, or an input/output
parameter. Its useindicates whether thein direction attribute (input), the out
direction attribute (output), or both the in and out direction attributes (input/output)
should be specified in the attribute list for the parameter.

As aspecid case for C string parameters, CodeBridge will pass the C null pointer to
the C function when the COBOL argument is a null-valued COBOL pointer. For
more information, see Passing Null-Valued Pointer Arguments (on page 27).

During the conversion process, CodeBridge dynamically allocates a buffer to hold
the converted COBOL argument (for input conversions) or hold the C string
generated by the C function (for output conversions). While processing string
parameters, the C function may need to know the size of the string or the size of the
conversion buffer. CodeBridge provides three attributes for obtaining this string
length information. The length base attribute provides the length of the COBOL
argument. The buffer_length base attribute provides the size of the allocated string
buffer. The effective length base attribute provides the actual number of characters
stored in the string buffer, not including the null character terminating the string.

Note If aCOBOL non-numeric argument contains a C null character (0x00),
conversion of the argument to a C string parameter may produce unexpected results.
Theinput conversion process ends when all characters have been copied or a C null
character is encountered.

When passing an array of C strings (“char * SringArray[]”), the address of the first
string pointer is passed to the C function. For more information, see Working with
Arrays (on page 43).

The conversion process for C non-numeric string parameters may be modified by
using the following base modifier attributes: leading(value), leading_spaces,

occur s(value), repeat(value), silent, size(value), trailing(value), trailing_spaces,
and value if _omitted(value). For more information, see Base Modifiers that Apply
to the String Base Attribute (on page 102).

Interface constraints for C non-numeric string parameters may be specified by using
the following base modifier attributes: assert_length(min;max), no_null_pointer,
and optional. For more information, see Base Modifiersthat Apply to the String
Base Attribute (on page 102).

Numeric string base modifier attributes that are allowed when the general_string
base attribute is specified are ignored for non-numeric arguments.

CodeBridge User's Guide 25
First Edition

Passing Information to a C Function

Chapter 2: Concepts

26

Groups with C String Parameters

COBOL group items are hierarchical data structures that contain subordinate groups
and elementary dataitems. CodeBridge does not provide support for accessing data
items subordinate to a group.

A COBOL group is non-numeric but may contain numeric and pointer data. Because
it is non-numeric, a group can be passed to a C string parameter. Since it may
contain numeric and pointer data, the likelihood of unexpected results from
encountering a C null character (0x00) is greater than when passing elementary non-
numeric arguments.

An RM/COBOL variable-length group argument is always passed as a fixed-length
group of the maximum size so that the called program has the opportunity to increase
the variable size if desired. Thus, passing variable-length groups does not support
passing variable-length stringsto C.

Passing COBOL Pointer Arguments

The pointer datatypeis afeature of RM/COBOL. A COBOL pointer describes a
block of memory and consists of three components: base address, offset, and size.

CodeBridge provides two methods for passing COBOL pointers. The first method is
useful when the C function wishes to access only memory referenced by the pointer.
The second method is useful if the C function wishes to access the components of the
COBOL pointer dataitem directly. For more information, see Pointer Base
Attributes (on page 106).

Method 1: Passing Pointer Address and Pointer Length

With this method, you can pass the address or the length of the block of memory to
an input parameter in the C function. Given the address and length of the memory to
which the pointer refers, the C function may read or modify the contents of that
memory block. It isthe C programmer’s responsibility to confine any such
references to lie wholly within the memory block described by the given pointer
values. However, the C function cannot change the base address, offset, or size of
the COBOL pointer.

Use the pointer _addr ess base attribute in the template file to describe a C pointer
parameter and instruct CodeBridge to pass the effective address of the memory block
(base address plus offset) to the C function as the parameter value.

Use the pointer_length base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the effective length of the memory block
(size minus offset) to the C function as the parameter value.

Method 2: Passing and Modifying Pointer Components

With this method, you can pass the base address, offset, or size of the block of
memory to an input, output, or input/output parameter in the C function. Given the
base address, offset, and size of the memory to which the pointer refers, the C
function may read or modify the contents of that memory block. ItistheC
programmer’ s responsibility to confine any such references to lie wholly within the
memory block described by the given pointer values. In addition, for output and
input/output parameters, the C function can also modify the base address, offset, or
size component values of the COBOL pointer.

CodeBridge User's Guide

First Edition

Passing Information to a C Function
Chapter 2: Concepts

Use the pointer _base base attribute in the template file to describe a C pointer
parameter, instruct CodeBridge to pass the base address of the memory block to the
C function for input conversions, and set the base address component of the COBOL
pointer for output conversions. The output conversion process may be modified by
using the following base modifier attributes: pointer_max_size and

pointer reset_offset. For more information, see Base Modifiersthat Apply to
Pointer Base Attributes (on page 107).

Use the pointer_offset base attribute in the template file to describe a C numeric
parameter, instruct CodeBridge to pass the offset component of the COBOL pointer
to the C function for input conversions, and set the offset component of the COBOL
pointer for output conversions. The output conversion process may be modified by
using the pointer_max_size base modifier attribute.

Use the pointer_size base attribute in the template file to describe a C numeric
parameter, instruct CodeBridge to pass the size component of the COBOL pointer to
the C function for input conversions, and set the size component of the COBOL
pointer for output conversions. The output conversion process may be modified by
using the pointer_reset_offset base modifier attribute.

Passing Null-Valued Pointer Arguments

Null-valued pointer arguments arise in one of three ways. the argument isthe
figurative constant NULL (NULLYS), the argument is a COBOL pointer that has been
set to NULL (NULLS), or the argument is a pointer that has been set from another
null-valued pointer. Based on the properties of the C parameter associated with a
pointer argument, CodeBridge handles pointer arguments as follows:

e Numeric or non-numeric parameter (direct or indirect)

For related information, see Passing COBOL Numeric Arguments (on page 22)
and Passing COBOL Non-Numeric Arguments (on page 24).

A COBOL program may pass a COBOL null-valued pointer dataitem asan
argument that is associated with any of these base attributes. float,
general_string, integer, numeric_string, or string. Associating a null-valued
pointer with a parameter having one of these base attributes has meaning only
when the C parameter is a pointer (indirect) parameter.

Some C functions are designed to interpret the occurrence of a null-valued
pointer parameter to indicate that the parameter is omitted and that the function
should not read or write indirectly through the parameter pointer value. If a
COBOL program passes a COBOL null-valued pointer, the C function will
receive a C null-valued pointer in order to support this design.

If the C parameter is not a pointer, it is meaningless to pass a COBOL null-
valued pointer argument. For adirect numeric or non-numeric parameter, an
uninitialized variable will be passed as the parameter value when anull-valued
pointer argument is provided. Theno_null_pointer base modifier attribute may
be specified to cause CodeBridge to return an error if a COBOL null-valued
pointer is passed to the parameter.

If anull-valued pointer argument is used for an output parameter that is numeric
or non-numeric, the parameter result valueisignored asif the out direction
attribute had not been specified.

A null-valued pointer argument may not be used for a numeric or non-numeric
parameter that specifies the no_null_pointer base modifier attribute.

CodeBridge User's Guide 27
First Edition

Passing Information to a C Function

Chapter 2: Concepts

28

A pointer argument with avalue other than null always causes an error for a
numeric or non-numeric parameter. Since COBOL pointer data items are not
typed (that is, they are essentially equivalent to (void *) in C), CodeBridge does
not have enough information to dereference the COBOL pointer (that is, to
convert the data that the pointer references).

e Pointer parameter, wherethe C function needsa COBOL pointer value
For related information, see Passing COBOL Pointer Arguments (on page 26).

When a COBOL program passes a pointer argument associated with a parameter
described with the pointer_address or pointer _base base attributes, the pointer
valueis passed to the C function as the parameter value, regardless of whether
the pointer valueis null or non-null.

The out direction attribute may be specified with the pointer _base base attribute
to modify the base address of the pointer argument upon return from the C
function. Itisan error to specify either of thein or out direction attributes with
the pointer_address base attribute.

The pointer_offset, pointer_size, and pointer_base base attributes yield a zero
for anull-valued pointer argument on input to the C function but allow the
corresponding component of the pointer argument to be changed on output if the
out direction attribute is specified and the base address of the pointer isalso
changed to anon-zero value.

Passing COBOL Argument Properties

CodeBridge supports two categories of COBOL argument properties:. COBOL
descriptor data and string length information. Each of these may be passed to the C
function. For more information, see the following topics:

e Passing COBOL Descriptor Data (on page 28)
e Passing String Length Information (on page 29)

Passing COBOL Descriptor Data

Prior to CodeBridge, if adeveloper wanted information about the properties of the
COBOL arguments, it was necessary for the C program to obtain the information for
each argument from a structure known as the COBOL data descriptor. The COBOL
data descriptor contains properties of the COBOL argument, including its address,
length and type, digit count and scale factor (for numeric arguments), and encoded
picture (for numeric edited and alphanumeric edited arguments). CodeBridge
supports the passing of all these properties except for the encoded picture. See either
Appendix G: Non-COBOL Subprogram Internals for Windows (on page 175) or
Appendix H: Non-COBOL Subprogram Internals for UNIX (on page 193) for more
information about the earlier method of calling non-COBOL subprograms.

In CodeBridge, the following descriptor base attributes may be used to pass a
component of the COBOL argument to the C function. For further details, see
Descriptor Base Attributes (on page 107).

Use the addr ess base attribute in the template file to describe a C pointer parameter
and instruct CodeBridge to pass the address of the COBOL argument to the C
function as the parameter value.

Note Passing the address of the COBOL argument dataitem to a C function asa
parameter value should be arare occurrence when using CodeBridge. Use of the

CodeBridge User's Guide

First Edition

Passing Information to a C Function
Chapter 2: Concepts

dataitem address requires the C function to know the details of COBOL data formats
and is not subject to the data validation and interface constraints that CodeBridge
provides.

Use the digits base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the digit count, that is, the number of 9'sin the
PICTURE character-string, of the COBOL numeric argument to the C function as the
parameter value. For non-numeric arguments, the valueis not defined.

Use the length base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the length of the COBOL argument to the C function
as the parameter value.

Use the scale base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the scale factor of the COBOL numeric argument to
the C function as the parameter value. For non-numeric arguments, the value is not
defined. The value of the scale passed is the arithmetic complement of the valuein
the COBOL argument descriptor.

Use the type base attribute in the template file to describe a C numeric parameter and
instruct CodeBridge to pass the type of the COBOL argument to the C function as
the parameter value.

See also the discussion of passing miscellaneous information to a C function in
Passing Miscellaneous Information (on page 30).

Passing String Length Information

In addition to COBOL data descriptor components, CodeBridge can supply string
length information for input conversions. The C function can be supplied the length
of the COBOL argument (from the COBOL data descriptor), the length of the
conversion buffer, or the effective length of the C string (after conversion).

Use the length base attribute in the template file to describe a C numeric parameter
and instruct CodeBridge to pass the length of the COBOL argument to the C function
as the parameter value. For more information, see Descriptor Base Attributes (on
page 107).

Use the buffer_length base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the length of the conversion buffer to the
C function as the value of the parameter. For more information, see String Length
Base Attributes (on page 104). Thelength of the buffer is determined by the base
attribute that is used to describe the string parameter associated with the same
argument, as follows:

e For the string base attribute, the buffer length defaults to one more than the
length of the passed COBOL argument, which allows space for the characters of
the argument value and a null-termination character.

e Forthenumeric_string base attribute, the buffer length defaults to four more
than the digit length of the passed COBOL argument, which allows space for the
digits of the argument value and the sign, decimal point, and null-termination
characters.

e For thegeneral_string base attribute, the buffer length defaults to the greater of
one more than the length of the passed COBOL argument and four more than the
digit length of the passed COBOL argument, which allows space for either a
non-numeric or numeric argument conversion.

CodeBridge User's Guide 29
First Edition

Passing Information to a C Function

Chapter 2: Concepts

30

The default values for buffer_length may be overridden by using the size(value)
base modifier attribute (see page 103) in the attribute list that contains the string,
numeric_string, or general_string base attribute that is associated with the same
argument as buffer_length.

Use the effective_length base attribute (see page 105) in the template file to describe
a C numeric parameter and instruct CodeBridge to pass the actual number of
characters stored in the conversion buffer, not including the null character that
terminates the string (after the input conversion process is complete), to the C
function as the parameter value.

Passing Miscellaneous Information

CodeBridge aso can supply the number of COBOL arguments specified in the
USING phrase of the CALL statement, the COBOL initia state flag, and the
Windows handle for the COBOL program. For more information, see Descriptor
Base Attributes (on page 107).

Use thearg_count base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the number of COBOL argumentsto the
C function as the parameter value.

Usetheinitial_state base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the COBOL initia state flag to the C
function as the parameter value.

Use the windows_handle base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the Windows handle for the COBOL
program to the C function as the parameter value.

Managing Omitted Arguments

A COBOL program may omit an argument by specifying fewer argumentsin the
USING phrase of the CALL statement than expected by the C function or by
explicitly specifying the OMITTED keyword for an argument in the USING phrase
of the CALL statement. The GIVING argument may be omitted by not specifying
the GIVING (RETURNING) phrasein the CALL statement.

An omitted argument will cause an error if it is passed to a numeric or non-numeric
parameter that does not also specify either the optional or value _if _omitted base
modifier attributes. The descriptor base attributes are implicitly optional and return
default values for an omitted argument; the optional base modifier attribute is not
allowed with the descriptor base attributes.

For an omitted argument passed to a parameter described with the optional in
attributes, an appropriate default is passed to the C function as the parameter value.
The default value associated with an integer or float base attribute is a numeric zero.
The default value associated with ageneral_string, numeric_string, or string base
attribute is an empty string (the first character of the string isanull character). If the
value_if_omitted(value) base modifier attribute has been specified, valueis passed
instead of the default value.

An omitted argument is assumed to satisfy any of the assertion base modifier
attributes. If adefault valueis provided with the value_if _omitted(value) base
modifier attribute, it isthe user’s responsibility to provide a default value that
satisfies all interface constraints.

CodeBridge User's Guide

First Edition

Returning C Error Values
Chapter 2: Concepts

For the descriptor base attributes, an omitted argument has the following results,
regardless of whether the argument is missing from the USING phrase or explicitly
specified as OMITTED:

e Theaddress base attribute for an omitted argument supplies the value NULL.
o Thedigitsbase attribute for an omitted argument supplies zero.

e Thelength base attribute for an omitted argument supplies zero.

e The scale base attribute for an omitted argument supplies zero.

e Thetype base attribute for an omitted argument supplies the value
RM_OMITTED, which hasthe value 32 as shown in Table 4: Type Attribute
Codesin Descriptor Base Attributes (on page 107).

If an argument is omitted for a parameter described with the optional out attributes,
the parameter result value isignored. However, the CodeBridge Builder does not
currently allow this combination of attributes. That is, output arguments are required
in the current implementation of CodeBridge.

Returning C Error Values

Two base attributes, called error base attributes, support returning C error values to
the COBOL program. The errno error base attribute returns the value of the external
variable errno, which is set by many C library functions. Theget_last_error error
base attribute returns the value returned by the Windows API function GetL astError.
The error base attributes are necessary because the RM/COBOL runtime system uses
C library functions, and, on Windows, Windows API functions, during the return to
the COBOL program that modifies the error values. Thus, any error values set by the
CodeBridge-called C function are modified before the COBOL program has a chance
to obtain them. The error base attributes solve this problem by causing the
CodeBridge Builder to generate code to preserve the error value set by the C function
specified in the CodeBridge template. The preserved valueisreturned in an
associated COBOL argument for access by the calling COBOL program. Complete
details regarding the error base attributes are found in the section Error Base
Attributes (on page 110). In addition, some general concepts and examples of error
base attributes are provided in the sections that follow.

Consistent Return Values

For those C library functions that set the external variable errno, it is considered
correct behavior not to modify the value of errno if no error occurs. In other words,
if no error is detected, the external variable errno will have the same value that it had
before the C function was called. The code sequence that is generated by the
CodeBridge Builder guarantees the value of errno is zero just prior to the C function
call. The generated code sequenceis asfollows:

errno = 0O;
_ _RETURN__open = open(filename, oflag);
__save_errno = errno;

Similarly, for those Windows API functions that set avalue to be returned by the
function GetL astError, it is also considered correct behavior not to modify the last

CodeBridge User's Guide 31
First Edition

Returning C Error Values
Chapter 2: Concepts

error value if no error occurs. In other words, if no error is detected by the C
function, the call to GetLastError will return the same value it would have if it were
called just prior to the C function. The code sequence that is generated by the
CodeBridge Builder guarantees that the value returned by GetlL astError will be zero
if no error is detected by the C function call. The generated code sequenceis as
follows:

SetLastError(0);

__RETURN__ CreateDirectory =
CreateDirectory(DirName,SecAttr);
__save_lastError = GetLastError();

Specifying Both errno and get_last_error

It is possible to use the error base attributes errno and get_last_error in the same
function description. Functions that return an error code in the external variable
errno have afunction return value of -1. Functions that return an error through
GetLastError have afunction return value of FALSE (zero). On the surface, this
seems meaningless (and in most cases, it probably is); however, there is no reason to
disallow this behavior. It ispossible for aWindows API function to call aC library
function that could set avalue in the external variable errno. It may be of valueto
the COBOL program to interrogate both error conditions.

The generated code sequence when both attributes are specified is as follows:

SetLastError(0);

errno = 0;

__RETURN__ CreateDirectory = CreateDirectory(DirName, SecAttr);
__save_errno = errno;

__save_lastError = GetLastError();

Function Return Value (Status) Versus Error
Values

In many cases, the return value from a C library function or aWindows API function
ismerely asimple binary indication of success or failure.

C library functions that set the external variable errno generally return —1 asthe
function return value. If the return value is not —1, the value may or may not indicate
anything of significance. For example, the C library function, mkdir, aways returns
0 (for success) or —1 (for failure). On the other hand, the C library function, open,
returns afile handle if the operation succeeded or —1 if the operation failed.
Windows API functions normally return non-zero to indicate success and zero to
indicate an error.

For those C library and Windows API functions where the return valueisasimple
indication of success or failure, it may be inefficient to have the COBOL program
examine both the return value and the value of the argument associated with the
errnoor get_last_error attribute.

32 CodeBridge User's Guide
First Edition

Associating C Parameters with COBOL Arguments
Chapter 2: Concepts

If you are certain that the C function return value is not needed—except to show
success or failure—you need not access this parameter from COBOL. The following
template illustrates how to obtain the _mkdir function return value and the value of
the external variable errno:

[[integer out]] int _mkdir(
[[string in trailing_spaces]] const char *DirName
[[errno]]);

This function could be caled from COBOL with this statement:

CALL " mkdir™ USING File-Name Err-No
GIVING Return-Status.

Thereisno real need to examine Return-Status in the COBOL program, since
examining Err-No is sufficient (it is guaranteed that Err-No will be zero if no error
occurred). You may alter the template so that Err-No becomes the return value
with atemplate similar to the following:

int _mkdir(
[[string in trailing_spaces arg_num(1)]]
const char *DirName
[[errno ret_val]]):

The COBOL calling sequence could then be simplified as follows:

CALL " _mkdir"™ USING File-Name
GIVING Err-No.

Besides making the COBOL calling sequence simpler, this technique also simplifies
the C source code that is generated by the CodeBridge Builder.

Associating

C Parameters with COBOL Arguments

Using CodeBridge, asingle C parameter or return value may be associated with
multiple COBOL arguments by the use of more than one attribute list, but each
attribute list associates a parameter with, at most, one argument from the COBOL
CALL statement. Also, multiple C parameters may be associated with asingle
COBOL argument. That is, the CodeBridge association of C parameters with
COBOL arguments allows a many-to-many relationship.

CodeBridge has two methods of associating C parameters with COBOL arguments:
explicit association and automatic association. Y ou can explicitly specify the
association of a C parameter with a COBOL argument, or you can have CodeBridge
automatically associate C parameters with COBOL arguments for you. |If you do not
use the explicit association method, CodeBridge will use the automatic association
method by default. If the attribute list for any parameter of a function specifies
explicit association of the C parameter to a COBOL argument, the attribute lists for
all parameters for that function—except those attribute lists containing a base
attribute that does not refer to an argument in the COBOL CALL statement—must
specify explicit association. Different functions within a single template file may use
different association methods.

CodeBridge User's Guide 33
First Edition

Associating C Parameters with COBOL Arguments

Chapter 2: Concepts

34

Explicit Association

CodeBridge is designed to handle most C-parameter-to-COBOL -argument
association situations without requiring you to explicitly specify the associationsin
the attribute lists of your template file. For those situations where the CodeBridge
automatic association method does not produce the desired result, you must use the
explicit association method. Even when the automatic association method produces
the correct result, you may use the explicit association method. For instance, you
might elect to use the explicit association method to clearly document the association
of parameters with arguments.

To explicitly specify the association of the C function return value or a C parameter
to aparticular COBOL argument, you include either theret_val or the
arg_num(value) argument number attribute in the attribute list for the return value or
parameter. For more information, see Argument Number Attributes (on page 94). If
you explicitly specify an argument number attribute in any attribute list for an
individual C function, you must do so for every attribute list for that function—
except for those attribute lists containing a base attribute that does not refer to an
argument.

Automatic Association

The following material explains automatic association of C parameters with COBOL
arguments. Each attribute list refers either to the C function return value or to a
single C parameter.

Automatic Association of the C Function Return Value with
a COBOL Argument

When thereis no attribute list associated with the C function return value, the
function return value is ignored.

If thereis an attribute list for the C function return value, the return valueis
associated with the argument specified by the GIVING (RETURNING) phrase of the
RM/COBOL CALL statement. In the automatic association method, if there are
multiple attribute lists associated with the C function return value, they al associate
the return value with the GIVING argument. If the return valueisto be stored other
than in the GIVING argument, the explicit association method must be used.

Note Only base attributes that allow the out direction attribute may be used in the
attribute list associated with the function return value. These base attributes include
float, general_string, integer, numeric_string, pointer_base, pointer_offset,
pointer_size, and string.

Automatic Association of C Parameters with COBOL
Arguments

When there is no attribute list associated with a C parameter, there is no associated
COBOL argument. For such a parameter there are no input conversions, so the
parameter is passed an uninitialized variable, and there are no output conversions, so
the final value of the parameter isignored.

If there are one or more attribute lists associated with a C parameter, CodeBridge
uses the required base attribute of each attribute list to determine the association with

CodeBridge User's Guide

First Edition

Associating C Parameters with COBOL Arguments
Chapter 2: Concepts

aCOBOL argument. For each attribute list, CodeBridge associates the parameter
with a COBOL argument in one of three ways. The parameter may associate with
one of the following:

e Animplied argument
e The next argument

e The current argument

Automatic Association with an Implied Argument

Thearg_count, initial_state, and windows_handle base attributes do not refer to a
COBOL argument specified in the CALL statement. The CodeBridge Library
supplies the value for the C parameter from an implied argument provided by the
runtime environment at the time the CALL statement is executed.

Automatic Association with the Next Argument

The address, float, general_string, integer, numeric_string, pointer _address,
pointer_base, and string base attributes refer to the next COBOL argument not yet
associated with a C parameter. The first parameter attribute list (ignoring any
attribute lists specified for the function return value) that contains one of these base
attributes will associate the described C parameter with the first argument in the
USING phrase of the COBOL CALL statement. The second such parameter
attribute list will associate the described C parameter with the second argument in the
USING phrase, and so forth.

A single C parameter may be associated with multiple COBOL arguments by the use
of multiple attribute lists for that parameter.

Automatic Association with the Current Argument

Thebuffer_length, digits, effective_length, length, pointer_length,
pointer_offset, pointer_size, scale, and type base attributes associate the described
C parameter with the current COBOL argument. This behavior makes it possible to
have asingle COBOL argument supply values for several contiguous C parameters.
The current COBOL argument is the one last used by the automatic association
method for the next argument, as described in the previous topic, “ Automatic
Association with the Next Argument.” If an attribute list containing a base attribute
that associates with the next argument has not yet been specified, the current COBOL
argument is the argument in the GIVING (RETURNING) phrase.

Examples of Associating Parameters with
Arguments

Example 1: Automatic Versus Explicit Association

The following set of examplesillustrates methods of associating parameters with
arguments.

CodeBridge User's Guide 35
First Edition

Associating C Parameters with COBOL Arguments
Chapter 2: Concepts

Example 1la: Automatic Association

In the following example, the C function moves the value of the parameter named
Floatln to the parameter named FloatOut after checking that the value will fit (using
the values of the parameters named Digits and Scale). The function return value
indicates success or failure.

The template file for the C function contains the following lines:

[[integer out]] int fn(

[[float out]] float *FloatOut,
[[digits]] int Digits,
[[scale]] int Scale,
[[float in]] float Floatln);

The C function is called using the following COBOL statement:
CALL "fn'" USING Float-Out, Float-In GIVING Fn-Status.

CodeBridge uses the automatic association method to associate the function return
value with the GIVING argument named Fn-Status. Thefirst three C parameters
associate with the first USING argument named Float-Out, as follows:

o Thefirst float base attribute causes the C parameter named FloatOut to be
associated with the next (that is, in this case, the first) unassociated COBOL
argument named Float-Out.

e Thedigits base attribute associates the C parameter named Digits with the
current COBOL argument, which isthe first argument named Float-Out.

o Similarly, the scale base attribute associates the parameter named Scale with the
current argument, which is the first argument named Float-Out.

Finally, the second float base attribute associates the C parameter named Floatln
with the next (that is, in this case, the second) COBOL argument named Float-In.

Example 1b: Optional Explicit Association

The following template file accomplishes the same associations asin Example 1a,
but by using the explicit association method:

[[integer out ret_val]l] int fn(

[[float out arg_num(1)]1] float *FloatOut,
[[digits arg_num(D11 int Digits,
[[scale arg_num(1)11 int Scale,
[[float in arg_num(2)]1] float Floatln);

36 CodeBridge User's Guide
First Edition

Associating C Parameters with COBOL Arguments
Chapter 2: Concepts

Example 1c: Required Explicit Association

The automatic association method is possible only when the C parameters occur in
the same order as the COBOL arguments. When they do not and you cannot change
the C function, then the explicit association method isrequired. If the functionin
Example 1lawere changed by moving the output floating-point parameter from first
to last, then there would be no automatic association method that could achieve the
desired result. In this case, the following explicit association method template file
would be required:

[[integer out ret_val]l] int fn(

[[digits arg_num(1)]1]1 int Digits,
[[scale arg_num(D11 int Scale,
[[float in arg_num(2)1] float Floatln,
[[float out arg_num(1)]] float *FloatOut);

Example 2: Multiple Attribute Lists for a C Parameter

The following group of examplesillustrates how to associate multiple attribute lists
with asingle C parameter.

Example 2a: Associating a Parameter with Multiple Arguments

In the following example, the C function has a single input/output parameter, but the
COBOL program wishes to pass the C function one input argument and two output
arguments. Thiswould allow one copy of the result to be stored in binary form while
the other is stored in numeric edited form.

The template file for the C function contains the following lines:

void fn([[float in]]
[[float out]]
[[float out]] float *FloatInOut);

The C function is called using the following COBOL statement:
CALL "fn'" USING Float-In, Binary-Out, Numeric-Edited-Out.

CodeBridge uses the automatic association method to associate each float base
attribute with the next unassociated COBOL argument. Thisresultsinthe C
parameter named FloatlnOut being associated with the first USING argument, named
Float-In, during the input conversion process, and with the second and third
arguments, named Binary-Out and Numeric-Edited-Out, respectively, during the
output conversion process. The final value of the parameter named FloatinOut is
converted by CodeBridge, during the output conversion process after the C function
returns, to a COBOL binary number (assuming argument Binary-Out was described
as abinary dataitem) and to a COBOL numeric edited number (assuming argument
Numeric-Edited-Out was described as a numeric edited dataitem).

The following template file shows the equivalent explicit association method for this
example:

void fn([[float in arg_num(1)]1]
[[float out arg_num(2)]1]
[[float out arg_num(3)]] float *FloatinOut);

CodeBridge User's Guide 37
First Edition

Associating C Parameters with COBOL Arguments

Chapter 2: Concepts

38

Example 2b: In Direction Attribute for Multiple Attribute Lists

Normally, when using multiple attribute lists with a single C parameter, only one of
the attribute lists should contain the in direction attribute for a given C parameter.
Consider the following modified template file;

void fn([[float in arg_num(1)]1]
[[float in arg_num(2)]]
[[float out arg_num(3)]] float *FloatinOut);

Now there are two input arguments and only one output argument. The C functionis
called by the following COBOL statement:

CALL "fn" USING Float-In-1, Float-In-2, Binary-Out.

During the input conversion process, CodeBridge first converts the argument named
Float-In-1 and stores the result in the parameter named FloatlnOut, and second
converts the argument named Float-1n-2 and stores it in the parameter named
FloatInOut. The value of argument Float-In-1 previously stored in parameter
FloatinOut islost. This may be useful in afew circumstances where the side effects
of thefirst conversion are desired (for example, checking the data type), but is
probably almost never what was intended.

Example 2c: Compatibility between Multiple Attribute Lists

When using multiple attribute lists with asingle C parameter, you must make sure
that the attribute lists are compatible. Consider the following template file:

void fn([[float in arg_num(1)]]
[[float out arg_num(2)]1]
[[string out arg_num(3)]] float *FloatinOut);

Thefirst two attribute lists describe a parameter that must be described with the C
type specifiersfloat or double. Thethird attribute list describes a parameter that
must be a C string parameter, that is, an array of type char. A single C parameter
cannot be both types of data at the same time. Because the base attribute also
determines the allowed types of COBOL arguments (in this case, a numeric
argument is required), an error would occur when trying to convert the floating-point
parameter, named FloatlnOut, to the non-numeric argument, named String-Out, of
the following COBOL statement:

CALL "fn'" USING Float-In, Binary-Out, String-Out.

CodeBridge User's Guide

First Edition

Working with a Variable Number of C Parameters
Chapter 2: Concepts

Example 3: No Attribute List for a C Parameter

In addition to allowing one or more attribute lists for asingle C parameter,
CodeBridge also allows C parameters without an attribute list. For such a parameter
there are no input conversions, so the parameter is passed an uninitialized variable,
and there are no output conversions, so the final value of the parameter is ignored.

In the following example, the C function takes a floating-point value as input and
returns two output parameters, the integer part and the fractional part of the input
parameter. The function return value indicates whether the fractional part is zero. If
your COBOL program needs only the integer part, use the following template file:

int fn([[float in]] float Floatln,
[[integer out]] long *IntegerPartOut,
long *FractionPartOut);
Call the C function using the following COBOL statement:

CALL "fn'" USING Float-In, Integer-Part-Out.

Working with a Variable Number of C Parameters

When using a variable number of parametersin a C function prototype, the last
parameter in the parameter list (the parameter that precedesthe ellipsis) isused asa
model for the additional parametersthat may occur. In effect, the last listed
parameter is treated as the first element of an array that contains a variable number
of elements.

All attributes in the template file that apply to the last listed parameter also apply to
the additional parameters. Use the repeat(value) base modifier attribute (see
pages 100 and 103) in the attribute list for the last listed parameter to specify that
there are additional C parameters. For an illustration, see Example 3:
Accommodating a Variable Number of Parameters (on page 59).

The following limitations apply when using a variable number of C parameters:

o Neither thelast listed parameter nor any of the additional parameters may
be arrays.

e All additional parameters must be of the same C data type asthe last listed
parameter.

e The ANSI C convention for variable number of parametersis supported. The
older UNIX convention is not supported.

CodeBridge has limited support for C functions with a variable number of
parameters. The following sections describe that support for numeric and string
C parameters.

Repeating C Numeric Parameters

For numeric parameters that use the float and integer base attributes, all additional
parameters must be the same type and size as the last listed parameter.

CodeBridge User's Guide 39
First Edition

Modifying COBOL Data Areas
Chapter 2: Concepts

Repeating C String Parameters

For avariable number of C parameters where the trailing repeated parameter isa
string parameter, the CodeBridge support depends upon the base attributes,
numeric_string, general_string, or string, associated with the repeated parameter
discussed in the following sections.

numeric_string

For C string parameters that use the numeric_string base attribute, the last listed
parameter and all additional parameters must be numeric strings. The size of the last
listed parameter is used as the size of all additional parameters. For parameters with
the numeric_string base attribute, the default size is four more than the digit length
of the passed COBOL argument. However, the size(value) base modifier attribute
(see page 101) may be used to modify the default size as necessary.

general_string

For C string parameters that use the general_string base attribute, the last listed
parameter and all additional parameters must be strings. The general_string base
attribute allows some of the additional string parameters to be passed as numeric
arguments while others are passed as non-numeric arguments. The size of the last
listed parameter is used as the size of all additional parameters. For parameters with
the general_string base attribute, the default size is the greater of one more than the
length and four more than the digit length of the passed COBOL argument. The
size(value) base modifier attribute (see page 103) may be used to modify the default
Size as necessary.

string

For C string parameters that use the string base attribute, the last listed parameter
and all additional parameters must be non-numeric strings. The size of the last listed
parameter is used as the size of all additional parameters. For parameters with the
string base attribute, the default size is one more than the length of the passed
COBOL argument. The size(value) base modifier attribute (see page 103) may be
used to modify the default size as necessary.

Modifying COBOL Data Areas

CodeBridge allows two ways of modifying COBOL data areas. Y ou can use the out
direction attribute to tell CodeBridge to convert a C output (or input/output)
parameter and store the resultsin the COBOL argument. Alternatively, you can pass
the address of the COBOL data areato a C pointer.

The preferred method is using the out direction attribute to have CodeBridge store
the result in the COBOL argument dataitem. The alternative method of passing the
address requires the C function to know the details of COBOL data formats, thus
negating one of the major benefits of using CodeBridge. Passing the address of the
COBOL argument dataitem to your C function alows the C function to directly
modify the value of the COBOL argument, even for input parameters.

40 CodeBridge User's Guide
First Edition

Modifying COBOL Data Areas
Chapter 2: Concepts

Using the out Direction Attribute

Using the out direction attribute, possibly in conjunction with the in direction
attribute, is the preferred method of modifying COBOL data areas. It provides all the
flexibility of CodeBridge data conversion as well as the safety afforded by
CodeBridge error checking and data validation. There are, however, several waysin
which you may not get the results you were expecting.

By way of review, the CodeBridge-generated code performs the following steps
when a COBOL program calls a C function:

1. If requested, the code performs input argument validation.

2. For parameters with the in direction attribute specified or assumed, CodeBridge
converts input arguments from COBOL to C data formats (performing error
checks in the process) and stores the result in atemporary C dataitem.

3. CodeBridge calls the C function, passing to each parameter either the value or
address of itstemporary C dataitem.

4. If requested, the code performs output parameter validation.

For parameters with the out direction attribute specified, CodeBridge converts
the final value for the temporary C dataitem from C to COBOL data format
(performing error checks in the process) and stores the result in the COBOL
argument.

There are several reasons that the C function will fail to change the value of the
COBOL argument:

e Thefirstisthat if step 3 passes the temporary C dataitem “by value’ tothe C
function, the function cannot change the value of the temporary C dataitem,
which will, therefore, be unchanged even if it is stored in step 5.

e Thesecondisthat if the parameter does not have the out direction attribute
specified, step 5 is skipped and any change to the temporary C dataitemis
discarded.

e Thethirdisthat if the COBOL program passed the COBOL argument using the
BY CONTENT phrase (analogousto a C call “by value”), then step 5 will
modify the contents of the temporary COBOL data area for the argument, which
will then be discarded, |eaving the original COBOL argument value unchanged.

o Thefourthisthat if the CALL statement omits the argument (either by
specifying the OMITTED reserved word or specifying fewer arguments than
expected) or if the COBOL argument is a null-valued pointer passed to a
numeric or string parameter, step 5 has no place to store the modified value.
(However, the CodeBridge Builder does not currently allow the optional base
modifier attribute with the out direction attribute.)

CodeBridge User's Guide 41
First Edition

Modifying COBOL Data Areas
Chapter 2: Concepts

In summary, you must do al of the following to modify a COBOL argument with the
C function:

1. Inthe COBOL CALL statement, pass the COBOL argument BY REFERENCE
rather than BY CONTENT. Sincethe BY REFERENCE phrase is the default
for RM/COBOL, it does not have to be explicitly specified unless a preceding
BY CONTENT phrase has overridden the default. RM/COBOL always passes
the argument in the GIVING (RETURNING) phrase BY REFERENCE.

Also, do not pass anull-valued pointer (see page 27) or omit the argument (see

page 30).

2. Inthe CodeBridge template file, specify the out direction attribute for the
C parameter. For the function return value, out is assumed.

3. Inthe C function, specify the parameter as called “by reference” so that the
address of the temporary C dataitemis passed in step 3. In the following
example, the first parameter is passed “by value” (as the value of an integer),
while the second is passed “ by reference” (as apointer to an integer):

fn(int byvalue, int *byReference);

Passing the Address of COBOL Data

There are times when you may choose to pass the address of the argument or the
address of memory that is accessible by the COBOL run unit through a pointer data
item. CodeBridge provides three base attributes that may be used for this purpose.

e Using the addr ess base attribute passes the address of a COBOL argument to the
C function as the parameter value and allows the C function to modify the
COBOL dataareadirectly. Inthe case of a pointer argument, the addr ess base
attribute returns the address of the pointer data item, which is not the address
referred to by the pointer dataitem. Thelength base attribute may be used to
determine the size of the COBOL argument.

e Using the pointer_addr ess base attribute passes the effective address (base
address plus offset) of a COBOL pointer argument to the C function as the
parameter value and allows it to manipulate the contents of the block of memory
directly. However, using the pointer _addr ess base attribute preventsthe C
function from changing the value of the COBOL pointer. The pointer_length
base attribute may be used to determine the effective length (size minus offset)
of the memory block.

e Using the pointer_base base attribute passes the base address component value
of aCOBOL pointer argument to the C function as the parameter value and
allows the C function to change the value of the pointer base address component
as well as the contents of the block of memory. The pointer _offset and
pointer_size base attributes may be used to manipulate the offset and size
components of the COBOL pointer argument.

Note The C function may save in static storage the address obtained by using any
of the three base attributes described above. The saved address may then be used
in subsequent calls. It isthe developer’s responsibility to avoid use of a saved
address that pointsto a dataitem in a COBOL program that has been canceled

or to adynamically allocated memory block that the COBOL program has
subsequently deall ocated.

42 CodeBridge User's Guide

First Edition

Using P-Scaling
Chapter 2: Concepts

Passing Buffer Addresses

In some existing APIs, it is necessary to pass a buffer addressto a C function. Later,
that buffer address is used by another C function in the API to store aresult value as
aC dataitem. Insuch cases, the preferred method of using the out direction attribute
cannot be used and the address of the buffer must be passed instead. CodeBridge
may still be used in such cases to convert the C dataitem to a COBOL data format
after the result has been stored in the buffer. See Example 6: Converting Buffered C
Data (on page 70) for details on the CodeBridge solution to this problem for aC
string result in the buffer.

Using P-Scaling

In COBOL, P-scaling is used when working with large integers that have several
trailing zero digits before the decimal point or with small fractions that have several
leading zero digits after the decimal point. It iscommonly used to store values
representing thousands, millions, or billions. For example, the PICTURE clause
“PIC 9(4)P(3)” isused to represent all integers from 0 to 9,999,000 in units of 1000.
The value 1,234,000 would be stored as 1,234, but would continue to mean
1,234,000.

For input conversions of P-scaled humbers, CodeBridge supplies the missing zero
digits. For output conversions, the extra digits are eliminated by truncation or
rounding. Continuing with the example in the preceding paragraph and using the
atribute list [[float in out rounded]] for theinput conversion, CodeBridge
would convert the stored value (1,234) and pass the floating-point representation of
1,234,000 to the C function. If the C function added 999 to its parameter, then the
output conversion would round 1,234,999 to 1,235,000 and store 1,235 in the
COBOL argument. Adding any number up to 499 would leave the COBOL
argument unchanged. When the rounded base modifier attribute is not present,
CodeBridge truncates the result on output, converting 1,234,999 to 1,234,000 and
storing 1,234 in the COBOL argument.

P-scaling also affects the scale base attribute. Because of P-scaling, the scale of the
COBOL argument in our example is minusthree (-3). Asanother example, the
PICTURE character-string “VP(3)9(3)” has a scale of six (6), even though the digit
count is only three (3).

Any P-scaling specified in the PICTURE character-string is counted in the digit
length used by CodeBridge when allocating a conversion string buffer for a
parameter described with the general_string or numeric_string base attribute. That
is, the digit length used by CodeBridge is the sum of the number of 9 and P symbols
specified in the PICTURE character-string used to describe the argument dataitem.

Working with Arrays

Data items having numeric or string base attributes may be one-dimensional arrays.
Data items with string base attributes may be arrays of char *, which are similar to
two-dimensional arrays.

CodeBridge User's Guide 43
First Edition

Working with Arrays
Chapter 2: Concepts

Numeric Arrays

For simple numeric types, such asinteger or floating-point, the implementation is
straightforward. Examples of valid C numeric array parameters are as follows:

fn(char P1[10],
char *P2,
int P3[40],
float *P4,
float P5[]);

Thefirst two parameters, which use the char datatype, are normally used to
represent character strings. However, you can have a numeric array of characters.
The difference is how the called function interprets the data.

To specify the template file for the preceding C function prototype, you might start
with the following, for example:

fn([[integer in]] char P1[10],
[[integer in]l] char *P2,
[[integer in]] int P3[40],
[[float in]] float *P4,

[[float in]] float P5[]);

Although the attribute lists for the variables P2, P4, and P5 are valid C code,
CodeBridge needs to know the size of the array. Y ou could modify the template file
by changing the following:

char *pP2 to char P2[20]
float *P4 to float P4[20]
float P5[] to float P5[10]

However, the template file would no longer match the C function prototype.

An aternate method is to specify an occurs count in the attribute list by modifying
the template file as follows:

fn([[integer in occurs(10)]] char P1[10],
[[integer in occurs(20)]] char *P2,
[[integer in occurs(20)]] int P3[40],
[[float in occurs(20)]] float *P4,
[[float in occurs(10)]] float P5[]);

The attribute lists for variables P2, P3, and P4 now have an array size of 20 elements.
For variables P1 and P3, the occur s(value) base modifier attribute overrides the
value specified in the function prototype. For variables P2, P4, and P5, the

occur s(value) base modifier attribute provides a value that was missing in the
function prototype. Note that the attribute list for variable P1 did not change the
size of the array, while the attribute list for variable P3 reduced the size of the array.
Reducing the size of the array isrequired if the COBOL program passes a smaller
array since CodeBridge will convert the number of array elementsindicated by

the templ ate.

44 CodeBridge User's Guide

First Edition

Working with Arrays
Chapter 2: Concepts

String Arrays

The implementation of these types of arraysis more complex because strings are
already arrays of characters. One-dimensional arrays of C parameters with astring
base attribute are allowed (this means that, as a special case, two-dimensional arrays
of characters are allowed). Examples of valid C string array parameters are as
follows:

fn(char *P1[10],
char *P2[],
char **P3);

To specify the template file for the preceding C function prototype, you might start
with the following, for example:

fn([[string in]] char *P1[10],
[[numeric_string in]] char *P2[],
[[general_string in]] char **P3);

Note that a difference between string and numeric_string attribute listsis how the
dataisinterpreted by the called function. However, both provide null-terminated
arrays of characters. A general_string base attribute may be used to allow numeric
and non-numeric arguments to be converted to null-terminated arrays of characters.
A general_string base attribute applies the rules for the numeric_string base
attribute when the argument is numeric and applies the rules for the string base
attribute when the argument is non-numeric.

Y ou must modify the attribute list for the variables P2 and P3 because CodeBridge
must know how many string pointersto allocate. Add an occur s(value) base
modifier attribute for variables P2 and P3 and then modify the C function prototype
to make it work correctly (note that you need to make these changes only in the
template file, not in the actual C header file). For example, modify the template file
asfollows:

fn([[string in 1] char *P1[10],
[[numeric_string in occurs(10)]] char *P2[],
[[general_string in occurs(10)]] char *P3[]);

For variables P2 and P3, the occur s(value) base modifier attribute provides
information needed to allocate the string pointer arrays. The definition of parameter
P3 was changed from “char **P3” to the equivalent form “char * P3[]".

CodeBridge allocates memory for strings (or arrays of strings) with asingle memory
allocation call. The generated code contains declarations in the form;

char *P1[10];
char *P2[10];
char *P3[10];

Each element of the array isinitialized to point to the correct offset within the
allocated block.

The number of elementsin the array and the size of each element determine the size
of the allocated block. For anumeric_string, the size of each element is equal to
four more than the digit length of the COBOL argument. For astring, the size of
each element is equal to one more than the length of the COBOL argument. For a

CodeBridge User's Guide 45
First Edition

Working with Arrays
Chapter 2: Concepts

general_string, the size of each element is equal to the greater of four more than the
digit length and one more than the length of the COBOL argument.

Y ou may override these default element sizes by using the size(value) base modifier
attribute as follows:

fn([[string in size(30)]] char *P1[10],
[[numeric_string in occurs(10) size(35)]] char *P2[],
[[general_string in occurs(10) size(20)]] char *P3[1D);

COBOL Array References

When passing an array reference from COBOL to C, you must pass the first item of
the COBOL array. For example:

CALL "fn™ USING Data-ltem (1).

The OCCURS information for a COBOL dataitem is not passed to anon-COBOL
subprogram. This means that CodeBridge cannot determine the number of elements
ina COBOL array from the COBOL descriptor for that item. Thisistrue for both
the maximum number of occurrences (the value in the TO phrase of the OCCURS
clause) and, for a variable occurrence item, the current number of occurrences (the
value of the dataitem in the DEPENDING phrase of the OCCURS clause). If
desired, the COBOL program could pass either of these values as separate
parameters. The COBOL special registers COUNT, COUNT-MAX, and COUNT-
MIN may be used to obtain the current number of occurrences, the maximum number
of occurrences specified in the COBOL OCCURS clause, and the minimum number
of occurrences specified in the COBOL OCCURS clause.

CodeBridge converts the number of COBOL occurrences specified in the template
file regardless of the number of actual occurrencesin the COBOL program or any
occurrence count parameter. Therefore, the COBOL program that calls the function
described by the template must always pass an array that has at least as many
occurrences as specified by the template. If the COBOL program defines fewer
occurrences than specified in the template, CodeBridge will convert data following
the array argument in the COBOL dataarea. In such cases, output conversion will
overwrite data following the array argument, possibly destroying the integrity of the
COBOL program.

CodeBridge only handles COBOL table references that are not SYNCHRONIZED.
That is, Data-Item in the preceding example must be described with the OCCURS
clause and must not be described with the SYNCHRONIZED (SYNC) clause.
CodeBridge supports only singly dimensioned tables of COBOL arguments. A
multidimensional table may be passed, but only the last subscript will be varied by
CodeBridge. Further, the table must contain contiguous elementary items. That is,
the last subscript must be for an OCCURS clause in the argument item description
rather than a group item that contains the argument item.

46 CodeBridge User's Guide
First Edition

CodeBridge Builder
Chapter 2: Concepts

CodeBridge Builder

This section describes the CodeBridge Builder, which reads a template file as input
and generates C source as output. This generated source provides the interface
between the COBOL program and the C function by calling functionsin the
CodeBridge Library to convert between COBOL arguments and C parameters, as
needed, before and after calling the target C function.

For each C function prototype in the template file, a corresponding function is
generated in the dynamic-link library (DLL) interface code. Each function contains
all of the logic needed to do the following:

e Produce an exportable dynamic-link library (DLL) function
e Optionally perform input argument validation

e Convert input arguments from COBOL to C

e Cadll the Cfunction

e Optionally perform output parameter validation

e Convert output parameters from C to COBOL

Using the CodeBridge Builder

The CodeBridge Builder is a command line program (for Windows, a console
application). The application program fileis named cbridge.exe.

To start the CodeBridge Builder from the command line, enter:
cbridge <input file> [<output file>] [-f (-F)]

where

<input file> is the pathname of the template file. This parameter is required.
If you do not supply an extension, the CodeBridge Builder will add the
extension .tpl.

<output file> is the pathname for the generated source file. This parameter is
optional. If it is not specified, the value of <input file> will be used with the
extension changed to .c.

-f (or -F) isa command line option that may be used to force the CodeBridge
Builder to generate C source code, even if errors are encountered. This
parameter isoptional. If itisspecified, any error messages will be concatenated
to the end of the generated source in addition to appearing in the error file. The
error fileis always generated, regardless of whether the -f option is specified.

Note The generated C source contains a#include C preprocessor directive that
refersto the additional header files. rmc85cal.h, rmport.h, rtarg.h, rtcallbk.h, and
standdef.h. All of thesefiles are installed with CodeBridge.

If errors are encountered, an error fileis generated. For more details, see
CodeBridge Builder Error Messages (on page 49). The error file uses the same
pathname as <output file> with the extension changed to .err.

CodeBridge User's Guide 47
First Edition

CodeBridge Builder
Chapter 2: Concepts

For example, the command:
cbridge src\myfile.tpl
reads src\myfile.tpl, writes the generated source to src\myfile.c, and writes any error

messages to src\myfile.err.

The command:
cbridge tpl\myfile src\myfile.src

reads tpl\myfile.tpl, writes the generated source to src\myfile.sr ¢, and writes any
error messages to src\myfile.err.

The CodeBridge Builder checksfor errorsin the template file and if any errors are
present, it produces afile that contains diagnostic information. If there are errorsin
the template file, however, no output file will be generated. When there are errorsin
the template, the resultant source file should be considered unusable even though aC
compiler might compile it without errors.

Note The CodeBridge Builder exit codes are also described in Appendix A:
CodeBridge Errors (on page 49).

48 CodeBridge User's Guide
First Edition

CodeBridge Builder Error Messages
Appendix A: CodeBridge Errors

Appendix A: CodeBridge

Errors

This appendix lists and describes the messages that can be generated during the use
of either the CodeBridge Builder or the CodeBridge Library. These messages also

include the CodeBridge Builder exit codes.

CodeBridge

Builder Error Messages

The CodeBridge Builder error messages have the following form:

<file>(<line>) <severity> - <message number>: <message text>

where, severity can either be “inform” or “error”.

Table 1 lists the error messages produced by the CodeBridge Builder.

Table 1: CodeBridge Builder Error Messages

Message Number
100010
100020
100030
100040
100045
100050
100060
100070
100080
100090
100100
100110
100120

Message Text

The template element is not correctly formed.
The #include directive is not correctly formed.
The user function is not correctly formed.

The attribute is not correctly formed.

The attributes are not correctly formed.

The attribute expression’s element is not correctly formed.
The attribute value clause is not correctly formed.
The attribute clause is not correctly formed.

The C function’s header is not correctly formed.
The name declaration is not correctly formed.
The array declaration is not correctly formed.
The argument list is not correctly formed.

The argument is not correctly formed.

CodeBridge User's Guide
First Edition

49

CodeBridge Builder Error Messages
Appendix A: CodeBridge Errors

50

Table 1: CodeBridge Builder Error Messages (Cont.)

Message Number
100130
100140
100150

100160

100180

100190

100210
100220
100230
100240
100250

100260
100270
100280
100285
100290
100300

Message Text
Thereisno such attribute [[attribute_name]].
The attribute [[attribute_name]] cannot have avalue.

The attributes [[attribute_name]] and [[attribute_name]]
are incompatible.

One of the minimal attribute combinations must be present:
[[attribute combinations]].

Either the [[arg_num]] or [[ret_val]] attribute must not be
used, since it wasn't used on a previous parameter.

Either the [[arg_num]] or [[ret_val]] attribute must be used,
since it was used on a previous parameter.

The global attributes are not correctly formed.

The global attribute is not correctly formed.

Thereis no such global attribute [[attribute_name]].

The attribute [[attribute_name]] must have number value(s).

The global attribute’s convention value clause is not correctly
formed.

The global attribute’s replace value clause is not correctly formed.
The global attribute’s normal value clause is not correctly formed.
The global name declaration is not correctly formed.

Duplicate global attribute: [# attribute_name #].

Thereis no such diagnostic value: (value).

The number of the argument with [[repeat]] attribute is not
the highest.

The CodeBridge Builder uses the following datafiles: dllgen.in, dligen.out,
dligen.p01, and dllgen.sym. Occasionally, if these files are write-protected, the
CodeBridge Builder may not be able to open them, and an error message similar to
the following will be displayed:

C:\TOOLS\SCANNER.EXE: FAILURE
- Unable to open file "C:\TOOLS\DLLGEN.xxx".

If this occurs, modify the attributes of these four files so that they are not

write-protected.

CodeBridge User's Guide

First Edition

CodeBridge Builder Exit Codes
Appendix A: CodeBridge Errors

CodeBridge Builder Exit Codes

The CodeBridge Builder will return a completion status (or exit code). This status
can be interrogated by the batch stream or shell script. Table 2 lists the CodeBridge
Builder exit codes.

Table 2: CodeBridge Builder Exit Codes

Code Description
0 Normal program termination with no diagnostic messages produced.
1 Normal program termination with some diagnostic messages
produced.
253 Abnormal program termination—error creating temporary file.
254 Abnormal program termination—error executing program.
255 Abnormal program termination—an internal error occurred.

CodeBridge

Library Error Messages

An execution error in the CodeBridge Library causes the called C subprogram to exit
and the COBOL run unit to terminate.

When a CodeBridge Library function detects an error during conversion or
validation, it displays an error message before returning to the calling program.

Note The errors displayed by the CodeBridge Library are in addition to errors that
may subsequently be displayed by the RM/COBOL runtime system. See Appendix A:
Runtime Messages in the RM/COBOL User’s Guide.

A CodeBridge Library error message contains the following information:

Function: <calling function name>

Argument Number: <number> (or Argument: Return Vaue)
Operation: <library function name>

Error: <error number> - <message text>

where

<calling function name> is the Name parameter from the last call to
ConversionStartup (on page 159).

<number> is the one-based argument number of the argument in the USING
phrase. When the aternative, Return Value, is shown, it indicates the argument
inthe GIVING (RETURNING) phrase.

<library function name> is the conversion or validation operation specified as
one of the names listed in the “ Function Name” column of Table 7 in the section
Library Functions Overview (on page 123). For example, Cobol Tolnteger (on
page 146), would be specified if the error occurred during conversion of a
COBOL numeric argument to a C integer parameter.

<Error number> isthe “Error Code” and <message text> isthe “Error Text”
listed in Table 3on page 53.

CodeBridge User's Guide 51
First Edition

CodeBridge Library Error Messages
Appendix A: CodeBridge Errors

For Windows platforms, a message box with the error message is displayed. Figure
1 shows an example of a CodeBridge Library error message on Windows:

CodeBridge Library Ermor

Function: COS
Argument: Retum¥sbos
Crparaticn CobolToFlosl

Eeror: 517 - Humerc date expected

Figure 1: Library Error Message Box

For UNIX platforms, the message iswritten to stderr. The following shows an
example of a CodeBridge Library error message on UNIX:

CodeBridge Library Error

Function: CINT2INTEGER

Argument Number: 2

Operation: CobolToString

Error: 515 - Non-numeric data expected

52 CodeBridge User's Guide
First Edition

CodeBridge Library Error Messages
Appendix A: CodeBridge Errors

Table 3: CodeBridge Library Errors

Error
Code

501

502

503

504

505

506

507

508

509

510

511
512

513

514

Error Text

Digits count too large

Digits count too small

Initialization needed

Integer data expected

Internal logic —
Argument setup

Internal logic — Datatype

Internal logic —
Parameter setup

Invalid argument number

Invalid C numeric string

Invalid datatype

Invalid sign specification
Length too large

Length too small

Memory allocation error

Description

One of the base modifier attributes (assert_digits,
assert_digits left, or assert_digits right) was
specified and the corresponding number of digitsin
the passed COBOL argument was greater than the
indicated maximum.

One of the base modifier attributes (assert_digits,
assert_digits left, or assert_digits right) was
specified and the corresponding number of digitsin
the passed COBOL argument was less than the
indicated minimum.

A call was made to a CodeBridge Library function
prior to calling the ConversionStartup function. This
error should never occur when using the CodeBridge
Builder.

Theinteger_only base modifier attribute was
specified and the COBOL argument contains digits
to the right of the decimal point.

Thisindicates an incompatibility between the
RM/COBOL compiler and runtime. The descriptor
of the COBOL argument contained unexpected
values.

This indicates an incompatibility between the
RM/COBOL compiler and runtime. Thetype of the
COBOL argument contained an unexpected value.

Thisindicates alogic error in the CodeBridge
Library. While setting up a description of the C
parameter, an unexpected condition was
encountered.

The argument number supplied was not valid. This

could indicate an internal error with the CodeBridge
Builder or that the devel oper used a bad value when
calling a CodeBridge Library function directly.

[[numeric_string out]] was specified and the
C string is not numeric.

The COBOL argument contains an unsupported
datatype.

The COBOL argument contains an invalid sign.

The assert_length base modifier attribute was
specified and the corresponding length of the passed
COBOL argument was greater than the indicated
maximum.

The assert_length base modifier attribute was
specified and the corresponding length of the passed
COBOL argument was less than the indicated
minimum.

The CodeBridge Library attempted to allocate
memory and encountered an error.

CodeBridge User's Guide 53
First Edition

CodeBridge Library Error Messages
Appendix A: CodeBridge Errors

54

Table 3: CodeBridge Library Errors (Cont.)

Error
Code
515
516

517

518

519

520

521

522

523

524

525

CodeBridge User's Guide

First Edition

Error Text

Non-numeric data
expected

Null pointer not allowed

Numeric data expected

Omitted argument not
alowed

Pointer data expected

Signed argument
expected

Size error

Size not supported

Unsigned argument
expected

Version level mismatch

Effective_length occurs
too large

Description

A numeric COBOL argument was used with the
string base attribute.

The COBOL program passed a null pointer when the
no_null_pointer base modifier attribute was used.

A non-numeric COBOL argument was used with
one of the following numeric base attributes: float,
integer, or numeric_string.

The COBOL argument was omitted for an argument
that was not optional .

The COBOL argument was not a POINTER when a
pointer base attribute was used.

An unsigned numeric COBOL argument was used
when the signed base modifier attribute was set.

A size error occurred during numeric data
conversion and the no_size error base modifier
attribute was not set.

The size of the C parameter does not conform to one
of the supported C numeric datatypes, such asint or
float.

A signed numeric COBOL argument was used when
the unsigned base modifier attribute was set.

This version of the CodeBridge Library does not
support the minimum level of conversion and
validation features indicated by the Version
parameter of the ConversionStartup call.

The occurs count for an effective_length base
attribute is larger than the occurs count for the C
parameter associated with the same argument
number. The occurs count for the effective_length
base attribute must be less than or equal to the
occurs count for the associated C parameter.

Example 1: Calling a Standard C Library Function
Appendix B: CodeBridge Examples

Appendix B: CodeBridge
Examples

This appendix contains examples that use the typical CodeBridge devel opment
procedure outlined in Chapter 1: Introduction (on page 7). The examples build from
simple to complex, as a means of introducing CodeBridge concepts, which are
discussed in Chapter 2: Concepts (on page 17).

In addition to these examples, there are several CodeBridge sample programs that are
included with the development system in the CodeBridge samples subdirectory
(cbridge on Windows and chsample on UNIX). Seethe appropriate README file
(and the samples.txt file on Windows) for additional information about the
CodeBridge sample programs that are included.

Note 1 In the following example template files, bold type is used to indicate the first
instance of a CodeBridge attribute that is being introduced. Detailed information
about attributes and attribute listsis provided in Appendix D: Global Attributes (on
page 89) and Appendix E: Parameter Attributes (on page 93).

Note2 Unlike COBOL, C isa case-sensitive programming language. Thus, the case
issignificant for words in these example template files.

Example 1: Calling a Standard C Library Function

This example demonstrates calling a standard C library function without writing any
C code. Parameter attribute lists are also presented. See the details of this example
in the topic Typical Development Example (on page 14).

CodeBridge User's Guide 55
First Edition

Example 2: Calling a Windows API Function
Appendix B: CodeBridge Examples

56

Example 2: Calling a Windows API Function

This example demonstrates calling a Windows API function to display a message
box. Both global attribute lists and parameter attribute lists are used.

Note Sincethis example deals with a Windows API function, it isfully elaborated
only for Windows, where the ODBC API isreadily available from Microsoft.
However, the CodeBridge techniques illustrated are general in nature and may be
instructive to devel opers creating templates for C subprograms on UNIX systems.

1

2.

CodeBridge User's Guide
First Edition

Start with the function prototype for the Windows API function, MessageBox:

WINUSERAPI int WINAPI MessageBox(HWND hwnd,
LPCSTR IpText, LPCSTR IpCaption, UINT uType);

Create atemplate file named mbox.tpl in the src directory that consists of the
following lines:

#include <windows.h>
#include <winuser.h>

[# replace_type(LPCSTR; char *)
convention(WINUSERAPI)
convention(WINAPI) #]

[[integer out]] WINUSERAPI

int WINAPI MessageBox(
[[windows_handle]] HWND hwnd,
[[string in trailing_spaces]] LPCSTR IpText,
[[string in trailing_spaces]] LPCSTR IpCaption,
[[integer in unsigned]] UINT uType);

The template file needs #include C preprocessor directives for files that

contain any required defined data types (using macros defined with the #define
C preprocessor directives and C data types defined with typedef statements). In
this example, the windows.h and winuser .h header files are included.

Global attribute lists (for example, [# replace_type(LPCSTR; char *)
#]) are constructed by placing the attributes between the characters [# and #].
The two global attributes used in this example are replace type and
convention.

Thereplace_type global attribute causes CodeBridge to replace a defined

C type with the specified value. In this example, thetype LPCSTR isreplaced
with the value char *, which is required whenever the definition of a pointer is
hidden within a defined type. The number of levels of indirection (indicated by
asterisks) in a C data type tells the CodeBridge Builder how to correctly build
calsto the C function.

The convention global attribute informs the CodeBridge Builder that a
particular text string represents a calling convention to a C function.
CodeBridge must preserve the calling convention in the constructed external
reference to the C function while removing it from the definition of the
generated variable used to hold the function return value.

Severa new parameter attributes are introduced. Theinteger base attributeis
used when the type of the C parameter is an integer (such as char, short, int,
unsigned, or long). The string base attribute is used when the type of the

Example 2: Calling a Windows API Function
Appendix B: CodeBridge Examples

C parameter isastring (an array of characters) and the type of the COBOL
argument is non-numeric.

Some parameter base attributes do not obtain information directly from a
COBOL argument. One of theseisthe windows_handle base attribute, which
obtainsits value from the Windows handle associated with the calling program
(in this case, the Windows handle of the RM/COBOL runtime system).

There are two input stringsin this example. The attributelist [[string in
trailing_spaces]] isused for both of them. When an input string is
encountered, a conversion buffer is allocated to contain the string. The datais
copied from the COBOL argument and atrailing null is appended. The
trailing_spaces base modifier attribute causes trailing spaces to be removed
before the null character is added for input conversions (for output conversions,
the null character is removed and trailing spaces are appended).

One of the C parametersis of type UINT, which has a value of unsigned integer.
The unsigned base modifier attribute ensures that the CodeBridge Library treats
the data as unsigned.

Invoke the CodeBridge Builder by using the following command line;
cbridge src\mbox.tpl

This command reads the input file from src\mbox.tpl and writes its output file
to src\mbox.c. Any errors would be written to file src\mbox.err

Compile and link the non-COBOL subprogram library with the C compiler of
your choice, using commands similar to the following:

cl -c -MD -Zp1 src\mbox.c

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:mbox.dll
mbox.obj kernel32.lib user32.lib

CodeBridge User's Guide 57
First Edition

Example 2: Calling a Windows API Function
Appendix B: CodeBridge Examples

5. CreateaCOBOL programin afile named mbox.cbl that contains the following
source fragments:

77 NUMBER-1 PIC 99.
77 NUMBER-2 PIC 99.
77 NUMBER-3 PIC 99.
77 NUMBER-4 PIC 99.
77 NUMBER-5 PIC 99.
77 NUMBER-6 PIC 99.
77 TEXT-1 PIC X(256).
77 RESULT PIC 99.

78 CR-LF Value X"ODOA™.

78 MB-OK-BUTTON Value O.

78 MB-INFO-ICON Value 64.

78 MB-STYLE Value MB-OK-BUTTON + MB-INFO-1CON.
78 MB-CAPTION Value "LOTTERY".

STRING "Today"s winning lottery numbers"™ CR_LF
NUMBER-1 "™ — " NUMBER-2 " — " NUMBER-3 "™ — "
NUMBER-4 ™ — ' NUMBER-5 " — ' NUMBER-6
DELIMITED BY SIZE INTO TEXT-1.

CALL "MessageBox' USING TEXT-1 MB-CAPTION MB-STYLE

GIVING RESULT.

The COBOL code creates a message box containing the text, “ Today’ s winning
lottery numbers xx — Xx — Xx — XX — XX — XX", where xx represents one of the six
lottery numbers. (The code for setting NUMBER-1 through NUMBER-6 is not
shown.)

Note The value of the Windows handle parameter, named hwnd, is supplied by
the RM/COBOL runtime system. It does not have an associated COBOL
argument.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mbox
7. Run the application with the following command line:

runcobol mbox -1 mbox.dll

58 CodeBridge User's Guide
First Edition

Example 3: Accommodating a Variable Number of Parameters
Appendix B: CodeBridge Examples

Example 3: Accommodating a Variable Number of

Parameters

This example uses an aternate method to create the same message box that was
presented in Example 2. 1t also demonstrates calling a C function that accepts a
variable number of parameters.

Note Since this example deals with a Windows API function, it isfully elaborated
only for Windows. However, the CodeBridge techniquesiillustrated are general in
nature and may be instructive to devel opers creating templates for C subprograms on
UNIX systems.

1. Create aC function, message box (which calls the Windows APl function,
MessageBox), in afile named mbox2fn.c in the src directory that consists of the
following lines:

#include <windows.h>
#include <winuser.h>

int message_box(HWND hwnd, int ArgCount,

{

}

int Options, char *Title, char *Text, ...)

int i;
char MessageText[512];
va_list Marker;

strcpy(MessageText, Text);

va_start(Marker, Text);

for (i = 4; i <= ArgCount; i++)
strcat(MessageText, va_arg(Marker, char*));

va_end(Marker);

return(MessageBox(hWnd, MessageText, Title, Options));

Note 1 The function has a variable number of string parameters (represented on
the function prototype by the ellipsis“...”), which are concatenated to form a
singletext string. Thisalows the calling COBOL program to pass these strings
separately instead of using a STRING statement to concatenate them as was
donein Example 2.

Note 2 Although it would seem logical to name the file that contains the
message box function mbox2.c and the file that contains the template
mbox2.tpl, the CodeBridge Builder names its output file mbox2.c and thus
would overwrite the file containing message box were it also named mbox2.c.

CodeBridge User's Guide 59
First Edition

Example 3: Accommodating a Variable Number of Parameters

Appendix B: CodeBridge Examples

60

2.

CodeBridge User's Guide
First Edition

Create atemplate file named mbox2.tpl in the src directory that consists of the
following lines:

[[integer out]] int message_box(

[[windows_handle]] HWND hwWwnd,
[[arg_count]] int ArgCount,
[[integer in unsigned]] int Options,

[[string in trailing_spaces]] char *Title,
[[general_string in

trailing_spaces

leading_minus repeat(20)]] char *Text, ...);

The arg_count base attribute (such as the windows_handle base attribute
introduced in Example 2) is not associated with a COBOL argument. It is used
to pass the actual number of COBOL arguments to the C function. Thisalows
the message _box function to determine, for each call, how many strings have
been passed.

CodeBridge offers several ways to pass a string to a C function:

e Thestring base attribute is used when the COBOL argument is non-
numeric.

e Thenumeric_string base attribute is used when the COBOL argument is
numeric.

e Thegeneral_string base attribute is used in those cases when it is desirable
to allow a C string parameter to accept either a numeric COBOL argument
or anon-numeric COBOL argument. When a numeric argument is passed
to a parameter described with the general_string base attribute, the
argument is converted asif the parameter were described with the
numeric_string base attribute; otherwise, the argument is converted as if
the parameter were described with the string base attribute. An attribute list
containing the general_string base attribute allows any additional attributes
that may be used with either a string base attribute or anumeric_string
base attribute. For each call and for each argument passed to a parameter
within a set of avariable number of parameters, attributes that do not apply
to the COBOL argument actually passed are ignored for the conversion of
that argument. That is, for a numeric argument, base modifier attributes not
applicable to the numeric_string base attribute are ignored and for a non-
numeric argument, base modifier attributes not applicable to the string base
attribute are ignored.

In this example, when a non-numeric argument is passed to the parameter named
Text, thetrailing_spaces base modifier attribute will be acted upon and the
leading_minus base modifier attribute will be ignored. When a numeric
argument is passed, the opposite will occur.

The leading_minus base modifier attribute is used in numeric_string and
general_string parameter attribute lists to specify that a minus sign character
should be placed before the digits of the parameter value when the COBOL
argument is a negative number. For more information, see the discussion of the
leading_minus base modifier attribute in Base Modifiers that Apply to Numeric
Base Attributes (on page 98).

The repeat(value) base modifier attribute provides partial support for

C functions with a variable number of parameters. The message box function
usesthe ellipsis (...) to indicate that it can accept any number of parameters
following the parameter named Text. While the CodeBridge Builder does not

Example 3: Accommodating a Variable Number of Parameters
Appendix B: CodeBridge Examples

allow an unspecified number of trailing parameters, it does support afixed
number of extra parameters (in this example, repeat(20) specifies up to 20 extra
string parameters, which may be associated with numeric or non-numeric
arguments because of the general_string base attribute).

Invoke the CodeBridge Builder by using the following command line:
cbridge src\mbox2.tpl

This command reads the input file from src\mbox2.tpl and writes its output file
to src\mbox2.c. Any errors would be written to file src\mbox2.err.

Compile and link the non-COBOL subprogram library with the C compiler of
your choice. There are now two C files to compile:

e Themessage box function (created in step 1) in the file named mbox2fn.c.

e Thefile named mbox2.c (created in step 3 by the CodeBridge Builder when
it processed the file named mbox2.tpl, created in step 2).

Use commands similar to the following:

cl -c -MD -Zpl src\mbox2fn.c
cl -c -MD -Zpl src\mbox2.c

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:mbox.dll
mbox2.obj mbox2fn.obj kernel32_1ib user32_1ib

Create a COBOL program in afile named mbox2.cbl that contains the following
source fragments:

77 NUMBER-1 PIC 99.
77 NUMBER-2 PIC 99.
77 NUMBER-3 PIC 99.
77 NUMBER-4 PIC 99.
77 NUMBER-5 PIC 99.
77 NUMBER-6 PIC 99.
77 TEXT-1 PIC X(256).
77 RESULT PIC 99.

78 CR-LF Value X"ODOA™.

78 MB-OK-BUTTON Value O.

78 MB-INFO-ICON Value 64.

78 MB-STYLE Value MB-OK-BUTTON + MB-INFO-1CON.
78 MB-CAPTION Value "LOTTERY'.

CALL "message_box" USING MB-STYLE MB-CAPTION
"Today"s winning lottery numbers' CR-LF
NUMBER-1 ™ — ' NUMBER-2 " — " NUMBER-3 ™ — ™
NUMBER-4 " — ' NUMBER-5 ' — ' NUMBER-6
GIVING RESULT.

The COBOL code creates a message box containing the text, “ Today’ s winning
lottery numbers xx — Xx — Xx — Xx — XX — XX", where xx represents one of the six
lottery numbers. (The code for setting NUMBER-1 through NUMBER-6 is
not shown.)

Note The parameters to message box have been reordered so that the variable
parameters occur at the end. For this reason, the arguments of the COBOL

CodeBridge User's Guide 61
First Edition

Example 3: Accommodating a Variable Number of Parameters
Appendix B: CodeBridge Examples

CALL have been similarly reordered. Values for the Windows handle and
argument count parameters, named hwnd and ArgCount, respectively, are
supplied by the RM/COBOL runtime system.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mbox2
7. Run the application with the following command line:

runcobol mbox2 -1 mbox2.dll

62 CodeBridge User's Guide
First Edition

Example 4: Accessing COBOL Pointer Arguments
Appendix B: CodeBridge Examples

Example 4: Accessing COBOL Pointer Arguments

This example shows how to access data described by pointer dataitems and
demonstrates how dynamic memory management can be implemented. It also
illustrates that a COBOL pointer argument can be used with both the C function
return value and a C parameter. Finaly, it shows the use of more than one attribute
list for asingle C parameter.

Note While the C functionsillustrated in this example could be used for providing
dynamic memory allocation, RM/COBOL supplies the subprograms
C$MemoryAllocate and C$MemoryDeallocate in its subprogram library, as
described in Appendix F: Subprogram Library of the RM/COBOL User's Guide.
Those subprograms, in most circumstances, should be used to provide dynamic
memory allocation in RM/COBOL.

A COBOL pointer data item describes ablock of memory. It contains three
components: base address, offset, and size. When apointer dataitem isinitialized,
the base address contains the starting address of the block, the offset is set to 0, and
the size contains the total length of the block.

CodeBridge pointer base attributes are used when COBOL pointer arguments are
being passed to the C function. CodeBridge provides two approaches for accessing
data described by a pointer dataitem. The first approach is used when the C function
only needs to access the data referenced by the pointer. The second approach is used
when the C function also needs to access the components of the pointer argument
itself. The following example demonstrates the second approach.

1. Start with the function prototypes for the standard C library memory allocation
functions, free, malloc, and realloc:

void free(void *memblock);
void *malloc(size_t size);
void *realloc(void *memblock, size_t size);

2. Create atemplate file named mem.tpl in the src directory that consists of the
following lines:

#include <stdlib.h>
#include <malloc.h>

void free(
[[pointer_base in]] void *memblock);

[[pointer_base out
pointer_reset_offset
ret_val]] void *malloc(
[[integer in arg_num(1)]1]
[[pointer_size out ret_val]] size_t size);

[[pointer_base out ret_val]] void *realloc(

[[pointer_base in arg_num(1)]1] void *memblock,
[[integer in arg_num(2)]1]
[[pointer_size out ret_val]] size_t size);

Thearg _num and ret_val argument number attributes are used to refer to
COBOL arguments when they are passed by the calling program in an order that
differs from the parameter order of the C function. For more information on

CodeBridge User's Guide 63
First Edition

Example 4: Accessing COBOL Pointer Arguments

Appendix B: CodeBridge Examples

64

CodeBridge User's Guide
First Edition

associating C parameters with COBOL arguments, see Associating C Parameters
with COBOL Arguments (on page 33).

Note When the arg_num or ret_val argument number attributes are used for
any attribute list, they must be used for every attribute list of that function.

The pointer _base and pointer_size base attributes refer to the base address
component and size component, respectively, of a COBOL pointer argument.
The pointer_reset_offset base modifier attribute is used with the pointer_base
base attribute to set the offset component to zero.

The free function, which deallocates memory, uses the pointer_base base
attribute to describe an input parameter that provides the base address of the
memory block that will be freed.

The malloc function, which allocates memory, uses the pointer _base base
attribute to describe an output parameter that receives the base address of the
allocated memory using the function return value. The pointer_reset_offset
base modifier attribute sets the offset component to zero. The malloc function
also uses the pointer _size base attribute to describe an output parameter that sets
the pointer size component from the input parameter named size.

Therealloc function, which changes the size and possibly the address of the
block of memory, differs from the malloc function in three ways. It does not
reset the pointer offset component to zero (the old value isretained). It aso
expects the address of the current memory block as an input parameter (in this
case, the pointer _base base attribute is used with argument 1 to satisfy this
expectation).

Finally, the parameter named size has two attribute lists. The first attribute list
supplies the new block size from the second COBOL argument in the USING
phrase to the size parameter. The second attribute list sets the size component of
the argument in the GIVING (RETURNING) phrase from the size parameter.

Invoke the CodeBridge Builder by using the following command line:
cbridge src\mem.tpl

This command reads the input file from src\mem.tpl and writes its output file to
src\mem.c. Any errors would be written to file src\mem.err.

Example 4: Accessing COBOL Pointer Arguments
Appendix B: CodeBridge Examples

4. Compile and link the non-COBOL subprogram library with the C compiler of
your choice, using commands similar to the following:

For Windows

cl -c -MD -Zpl src\mem.c

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:mem_dll
mem.obj kernel32_lib user32._1lib

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
modul e with the RM/COBOL runtime system. For additional information, see
Preparing C Subprograms for UNIX (on page 202).

To compile:
cc -c src/mem.c

Note Some compilers may require that the ELF (Executable and Linking
Format) object file be specified, as follows:

cc -b elf -c src/mem.c
To link:
cc -G -0 mem.so mem.o

5. CreateaCOBOL programin afile named mem.cbl that contains the following
source fragments:

01 Pointer-1 USAGE POINTER.
01 Pointer-2 USAGE POINTER.

CALL "malloc'" USING 4096 GIVING Pointer-1.
CALL "realloc" USING Pointer-1 8192 GIVING Pointer-2.
IF Pointer-2 NOT = NULL
SET Pointer-1 TO Pointer-2
END-1IF.
CALL "free" USING Pointer-1.

The COBOL code allocates a block of memory that is 4096 bytes long. After
the malloc call, the base address component of Pointer-1 contains the address of
the allocated memory block (or NULL if malloc was unable to allocate the
memory). The offset component of Pointer-1 is zero and its size component is
4096. Next, therealloc call increases the size of the memory block to 8192
bytes (or possibly allocates a new block, copies the data, and frees the original
block; also, aNULL may be returned if the request cannot be satisfied). Finally,
the free call deallocates the 8192-byte block of memory (or the original 4096-
byte block if the call to realloc fails).

CodeBridge User's Guide 65
First Edition

Example 4: Accessing COBOL Pointer Arguments
Appendix B: CodeBridge Examples

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol mem
7. Runthe application, specifying the name of the COBOL program and the name

of the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate
file extension. The following two commands illustrate how to specify a
Windows dynamic-link library (DLL) or aUNIX shared object (generally
referred to as optional support modules). Since the COBOL program and the
non-COBOL subprogram have the same root name (mem), it is necessary to
specify the correct file extension.

For Windows

runcobol mem -1 mem.dll

For UNIX

runcobol mem -1 mem.so

If the preceding examples had used different root names for the COBOL
program and the non-COBOL subprogram, it would not be necessary to specify
the file extension. For example, if the COBOL program were named “myprog”,
then the following command could be used for either Windows or UNIX:

runcobol myprog -1 mem

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

66 CodeBridge User's Guide
First Edition

Example 5: Packing and Unpacking Structures
Appendix B: CodeBridge Examples

Example 5: Packing and Unpacking Structures

When a C function uses structures or unions as parameters, you must use an
intermediate function that packs scalars into structure and union parameters. This
exampleillustrates that process. No new attributes or attribute lists are presented.

1. Start with the function prototypes for the two standard C library functions, time
and locatime:

time_t time(time_t *timer);
struct tm *localtime(const time_t *timer);

The return value for localtimeis a C structure named tm, which is defined as:

struct tm {int tm_sec; //seconds [0,59]
int tm_min; //minutes [0,59]
int tm_hour; //hours [0,23]
int tm_mday; //day of month [1,31]
int tm_mon; //month [0,11]
int tm_year; //years since 1900!
int tm_wday; //day of week [0,6]
int tm_yday; //day of year [0,365]

int tm_isdst; //daylight savings flag};

Create a C function, time_function, in afile named timefn.c in the src directory
that consists of the following lines:

#include <time.h>

time_function(short *sec, short *min, short *hour)

{
time_t time_of _day;
struct tm *tmbuf;
time_of _day = time(NULL);
tmbuf = localtime(&time_of _day);
*sec = tmbuf->tm_sec;
*min = tmbuf->tm_min;
*hour = tmbuf->tm_hour;
b

Thisfunction callstime and localtime and extracts the structure members
named tm_sec, tm_min, and tm_hour, into scalar output parameters named sec,
min, and hour.

2. Create atemplate file named mytime.tpl in the src directory that consists of the
following lines:

time_function(

[[integer out]] short *sec,
[[integer out]] short *min,
[[integer out]] short *hour);
CodeBridge User's Guide 67

First Edition

Example 5: Packing and Unpacking Structures
Appendix B: CodeBridge Examples

3. Invokethe CodeBridge Builder by using the following command line:
cbridge src\mytime.tpl
This command reads the input file from src\mytime.tpl and writes its output file

to src\mytime.c. Any errors would be written to file src\mytime.err.

4. Compile and link the non-COBOL subprogram library with the C compiler of
your choice. There aretwo C filesto compile:

e Thetime_function function (created in step 1) in the file named timefn.c.

e Thefile named mytime.c (created in step 3 by the CodeBridge Builder
when it processed the file named mytime.tpl, created in step 2).

Use commands similar to the following:

For Windows
cl -c -MD -Zp1l src\timefn.c
cl -c -MD -Zpl src\mytime.c

link -nologo -machine:1X86 -section:.edata,RD —dll
-subsystem:windows -out:mytime.dll
mytime.obj timefn.obj kernel32_1ib user32._lib

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
Preparing C Subprograms for UNIX (on page 202).

To compile:

cc -c src/mytime.c
cc -c src/timefn.c

Note Some compilers may require that the ELF (Executable and Linking
Format) object file be specified, as follows:

cc -b elf -c src/mytime.c
cc -b elf -c src/timefn.c

To link:

cc -G -o mytime.so mytime.o timefn.o

68 CodeBridge User's Guide
First Edition

Example 5: Packing and Unpacking Structures
Appendix B: CodeBridge Examples

5. Create a COBOL programin afile named mytime.cbl that contains the
following source fragments:

01 GROUP-1.
02 TM-SEC PIC 9(2).
02 TM-MIN PIC 9(2).
02 TM-HOUR PIC 9(2).

CALL "time_function™ USING TM-SEC TM-MIN TM-HOUR.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol mytime
7. Runthe application, specifying the name of the COBOL program and the name

of the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate
file extension. The following two commands illustrate how to specify a
Windows dynamic-link library (DLL) or aUNIX shared object (generally
referred to as optional support modules). Since the COBOL program and the
non-COBOL subprogram have the same root name (mytime), it is necessary to
specify the correct file extension.

For Windows

runcobol mytime -1 mytime.dll

For UNIX

runcobol mytime -1 mytime.so

If the preceding examples had used different root names for the COBOL
program and the non-COBOL subprogram, it would not be necessary to specify
the file extension. For example, if the COBOL program were named “myprog”,
then the following command could be used for either Windows or UNIX:

runcobol myprog -1 mytime

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

CodeBridge User's Guide 69
First Edition

Example 6: Converting Buffered C Data
Appendix B: CodeBridge Examples

70

Example 6:

Converting Buffered C Data

When an existing C APl uses one C function to establish a buffer address and
another C function to store data into the buffer, the preferred method of using the out
direction attribute to modify COBOL data areas cannot be used. For more
information, see Modifying COBOL Data Areas (on page 40).

Note Thisexampleisfully elaborated only for Windows, where the ODBC API is
readily available from Microsoft. However, the CodeBridge techniquesillustrated
are genera in nature and may be instructive to developers creating templates for

C subprograms on UNIX, including use of the ODBC API provided by other
companies for some UNIX systems.

An example of this situation occurs in the Microsoft ODBC API. A buffer location
is established with the function SQLBindCol, which binds a result set column to a
storage location. Later, acall to the function SQL Fetch obtains data from the result
set and returns the data for each column previously bound to a storage location with
the function SQLBIndCol. The data obtained by the function SQL Fetch is stored as
C format data, not COBOL format data. For example, a string would be stored as a
null-terminated C string. If a COBOL program is using CodeBridge to make the
callsto the functions, SQLBindCol and SQL Fetch, a method is needed to convert the
C format datato COBOL format data. Such a conversion function can be written
using CodeBridge and aminimal C function supplied by the developer.

This example illustrates a conversion routine that converts a C null-terminated string
into a space-filled COBOL alphanumeric data item.

1. Start by writing asimple C function that copies one C string to another:
#include <string.h>

void cstring2text(char *plnput, char *pOutput)
{ (void)strcpy(pOutput, plnput);
}

2. Create atemplate file named strevt.tpl in the src directory that consists of the
following lines:

void cstring2text(
[[address]] char *plnput,
[[string out trailing_spaces]] char *pOutput);

Invoke the CodeBridge Builder by using the following command line;
cbridge src\strcvt.tpl

This command reads the input file from src\strevt.tpl and writesits output file
to src\strevt.c. Any errors would be written to file src\strevt.err.

The CodeBridge Builder generates a C function from the template file. The
generated C function will add trailing space characters to the output string
argument because of the trailing_spaces base modifier attribute specified in the
template file. All thework of the conversion is performed in the call to
StringToCobol (on page 173) in the generated function.

CodeBridge User's Guide

First Edition

Example 6: Converting Buffered C Data
Appendix B: CodeBridge Examples

3. Compile and link the non-COBOL subprogram library with the C compiler of
your choice, using commands similar to the following:

cl -c -MD -Zpl src\strcvt.c
link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:strcvt.dll

strcvt.obj kernel32_1ib user32._1lib

4. Create aCOBOL program in afile named strcvt.cbl that contains the following

source fragments:
01 IN-STRING PIC X(257).
01 OUT-STRING PIC X(256).

CALL "cstring2text”™ USING IN-STRING OUT-STRING.

In this example, it is assumed that the address of IN-STRING was passed to a
C function, for example, the function SQL BindCol, and then subsequently a

C function was called that used this address to store a string, for example, the
function SQLFetch. See Passing the Address of COBOL Data (on page 42) for
an explanation of how the address of a dataitem is passed using CodeBridge.
These fragments of the COBOL program are not illustrated here. In this
exampl e the data item named IN-STRING would contain a null-terminated C
string and thus should not be used by the COBOL program other than in the call
to the function that uses it as a buffer address and to the conversion function,
cstring2text.

5. Compile the COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol strcvt
6. Run the application with the following command line:

runcobol strcvt -1 strcvt.dll

CodeBridge User's Guide 71
First Edition

Example 7: Calling C++ Libraries from CodeBridge
Appendix B: CodeBridge Examples

72

Example 7: Calling C++ Libraries from CodeBridge

The following example demonstrates how to resolve external references between the
ways that C external names and C++ external names are represented.

The special techniques described in this example are necessary because the external
function and variable names generated by C and C++ compilers do not match.

C++ embeds type information in the external name that C cannot use. Thistype
information is present even in C++ code that does not use C++ features. The linker,
therefore, cannot resolve a call from C into C++ unless the C++ function or variable
declaration explicitly specifies that the function or variable be made compatible
with C.

To correct this situation, the C++ function definition in the C++ library must include
the notation extern ""C' inthe definition. For example, modifying

int FunctionName (...)
to
extern"C" int FunctionName (...)

instructs the C++ compiler to generate a function name that is compatible with both
C and C++.

In many instances, the CodeBridge developer will not have access to the source for
libraries that are written in C++. In such cases, it is necessary to create intermediate
or mapping functions that include the extern *'C' notation.

Within this example, a naming convention is used. Entitiesthat are a part of the
C++ library have names that begin with libfunc or LibFunction, while entities that
are related to the C++ intermediate functions that you write have names that begin
with maplib or MapFunction. The normal C/C++ file extension name convention is
followed throughout this example (that is, .cpp indicates a C++ file; .c indicates a
Cfile).

This example, athough rudimentary, illustrates how you can use CodeBridge
to call programs that are written in C++. Since the C++ programming language
is not the same as C, some expertise in C++ on the developer’ s part will be
required. In practice, the intermediate or mapping functions that you write will
be “driver” functions that perform several steps. When dealing with C++ class
libraries or methods, the intermediate program will have to deal with these C++
language constructs.

CodeBridge User's Guide

First Edition

1.

Example 7: Calling C++ Libraries from CodeBridge
Appendix B: CodeBridge Examples

In this example, the following C++ source files represent the C++ library. The
files named libfunc.cpp and libfunc.h represent components of the C++ library.
The C++ library contains functions named LibFunction1 and LibFunction2.

Thefilelibfunc.cpp represents the source code that is used to build a C++
library and contains the following lines:

int LibFunctionl()
{
return(1);
}
i

nt LibFunction2()

P

return(2);
}

Thefile libfunc.h makes function definitions available externally and contains
the following lines:

int LibFunctionl();
int LibFunction2();

Create a C++ source file that will map the function from C++ namesto C names.
Thefile maplib.cpp contains the following lines:

#include "libfunc.h"
extern "C" int MapFunctionl()

{
return(LibFunctionl1());

}
extern "C" int MapFunction2()

{
return(LibFunction2());

}

Create atemplate file named maplibcb.tpl that consists of the following lines:

[[integer out]] int MapFunctionl();
[[integer out]] int MapFunction2();

Additionally, create a COBOL program in afile named mypr og.cbl that calls
the functions “MapFunctionl” and MapFunction2”. Thisfile would include the
following lines:

CALL "MapFunctionl™ GIVING Result
CALL "MapFunction2"™ GIVING Result

4. Invoke the CodeBridge Builder by using the following command line;

cbridge maplibcb._tpl

CodeBridge User's Guide 73
First Edition

Example 7: Calling C++ Libraries from CodeBridge
Appendix B: CodeBridge Examples

5. Compile and link the non-COBOL subprogram library with the C and C++
compilers, using commands similar to the following:

For Windows

cl —c -MD —-Zp1l src\maplibcb.c
cl —c -MD —-Zp1 src\maplib.cpp
cl —c -MD —Zp1 src\libfunc.cpp

link —nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:MapLib.dll
maplib.obj libfunc.obj maplibcb.obj

For UNIX

A makefileis provided with the RM/COBOL development and runtime systems
that can be used or modified to build a shared object to be used as a support
modul e with the RM/COBOL runtime system. For additional information, see
Preparing C Subprograms for UNIX (on page 202).

To compile:
cc -c src/maplibcb.c

CC -c src/maplib.cpp
CC -c src/libfunc.cpp

Note Some compilers may require that the ELF (Executable and Linking
Format) object file be specified, as follows:

cc -b elf -c src/maplibcb.c
CC -b elf -c src/maplib.cpp
CC -b elf -c src/libfunc.cpp

Tolink:

cc -G -o maplib.so maplibcb.o maplib.o libfunc.o
Note Uppercase CC is used to represent the name of the C++ compiler. On
some systems, it may be CC (uppercase) while on othersit may be cc

(lowercase). For Gnu C++, the nameis g++. Be sureto check your system
documentation for the name used on your system.

6. Compile the COBOL program myprog.cbl that calls “MapFunctionl” and
“MapFunction2” by using the following command line:

rmcobol myprog

7. Run the application, specifying the name of the COBOL program and the name
of the non-COBOL subprogram library, with the following command line:

runcobol myprog -1 maplib

This example assumes that both the COBOL program and the non-COBOL
subprogram are located in the current directory.

74 CodeBridge User's Guide
First Edition

Example 8: Using errno
Appendix B: CodeBridge Examples

Example 8:

Using errno

This example demonstrates how to use the error base attribute, errno. Theerrno
attribute supports obtaining the value of the external variable errno that was set by a
call to aC library function. It allows return of the error information by editing the
CodeBridge template instead of the generated code.

1. Start with the function prototype for the C standard library function, mkdir.

For Windows

int _mkdir(const char *dirname);
For UNIX

int mkdir (const char *filename, mode_t mode);

2. Create atemplate file named mkdir .tpl in the src directory that consists of the
following lines:

For Windows

[[integer out]] int _mkdir(
[[string in trailing_spaces]] const char *DirName
[Lerrnoll);

For UNIX

[[integer out]] int _mkdir(
[[string in trailing_spaces]] const char *DirName,
[[integer inl] mode_t Mode
LLerrnoll);

The errno error base attribute associates a COBOL argument with the value
associated with the external C global variable errno. There is no corresponding
parameter in the underlying C function parameter list.

Note In this example, the errno error base attribute is placed after the last
C parameter. Thisisalegal operation. The attribute could also have been
placed anywhere any other attribute could have been placed.

3. Invokethe CodeBridge Builder by using the following command line:

cbridge src\mkdir.tpl

CodeBridge User's Guide 75
First Edition

Example 8: Using errno
Appendix B: CodeBridge Examples

4. Compile and link the non-COBOL subprogram library with the C compiler of
your choice, using commands similar to the following:

For Windows

cl —c -MD —-Zpl src\mkdir.c
link —nologo —machine:1X86 —section:.edata,RD —dll

-subsystem:windows —out:mkdir.dll
mkdir.obj kernel32_lib user32._lib

For UNIX

cc —c src/mkdir.c

cc -G —o mkdir.so makdir.o

5. CreateaCOBOL program in afile named mkdir.cbl that contains the following
source fragments:

For Windows

01 Err-No PIC S9(9).-
01 File-Name PIC X(64) Value "TempFile".
01 Return-Status PIC S9(9).

CALL "_mkdir"
USING File-Name Err-No
GIVING Return-Status.

For UNIX
01 Err-No PIC S9(9).
01 File-Name PIC X(64) Value "TempFile".
01 Mode PIC S9(9) Value 1638.

01 Return-Status PIC S9(9).
CALL "mkdir"
USING File-Name Mode Err-No
GIVING Return-Status.

6. Compilethe COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol src\mkdir

76 CodeBridge User's Guide
First Edition

Example 8: Using errno
Appendix B: CodeBridge Examples

Run the application, specifying the name of the COBOL program and the name
of the non-COBOL subprogram library.

Y ou may specify the name of the non-COBOL subprogram with the appropriate
file extension. The following two commands illustrate how to specify a
Windows dynamic-link library (DLL) or aUNIX shared object (generally
referred to as optional support modules). Since the COBOL program and the
non-COBOL subprogram have the same root name (mkdir), it is necessary to
specify the correct file extension.

For Windows
runcobol src\mkdir.cob —1 mkdir.dll
For UNIX

runcobol src/mkdir.cob —1 mkdir.so

CodeBridge User's Guide 77
First Edition

Example 9: Using get_last_error
Appendix B: CodeBridge Examples

78

Example 9:

Using get_last_error

This example demonstrates how to usethe get_last_error error base attribute. The
get_last_error attribute supports obtaining the value returned by the Windows API
function GetL astError called immediately after another Windows API function has
been called.

Note The following discussion applies to using this attribute on the Windows
platform only. Some Windows APIs have been ported to UNIX. In such cases, it
may be appropriate to use the get_last_error attribute on UNIX. (The CodeBridge
Builder does support the get_last_error attribute on UNIX.) However, if the

Setl astError and GetlL astError functions are not available, the generated program
probably will not compile and certainly would not link without errors.

1. Start with the function prototype for the Windows API function,
CreateDirectory.

WINBASEAPI BOOL WINAPI CreateDirectory(LPCTSTR DirName,
LPSECURITY_ATTRIBUTES SecAttr);

2. Create atemplate file named Dir .tpl in the src directory that consists of the
following lines:

#include <windows.h>

[# replace_type(LPCTSTR; char *)

replace_type(LPSECURITY_ATTRIBUTES; void *)
convention(WINBASEAPI)
convention(WINAPI) #]

[[integer out]] WINBASEAPI BOOL WINAPI CreateDirectory(
[[string in trailing_spaces]] LPCTSTR DirName,
[[string in trailing_spaces value_if_omitted(NULL)]]

LPSECURITY_ATTRIBUTES SecAttr

[[get_last_error]]);

The get_last_error error descriptor attribute associates a COBOL argument
with the value associated with the GetL astError Windows function. Thereisno
corresponding parameter in the underlying C function parameter list.

Note Inthisexample, theget_last_error attribute is placed after the last
C parameter. Thisisalegal operation. The attribute could also have been
placed anywhere any other attribute could have been placed.

3. Invokethe CodeBridge Builder by using the following command line:

cbridge src\Dir_tpl

CodeBridge User's Guide

First Edition

Example 9: Using get_last_error
Appendix B: CodeBridge Examples

Compile and link the non-COBOL subprogram library with the C compiler of
your choice, using commands similar to the following:

cl —c -MD —-Zp1l src\Dir.c
link —nologo —machine:1X86 —section:.edata,RD —dll
-subsystem:windows —out:Dir._dll

Dir.obj kernel32_.1ib user32._1ib

Create a COBOL program in afile named Dir.cbl in the src directory that
contains the following source fragments:

01 Last-Error PIC 9(9).
01 File-Name PIC X(64) Value "TempFile".
01 Return-Status PIC S9(9).
CALL "CreateDirectory"
USING File-Name Last-Error
GIVING Return-Status.

Compile the COBOL program with the RM/COBOL compiler by using the
following command line;

rmcobol src\Dir
Run the application with the following command line:

runcobol src\Dir.cob —I Dir.dll

CodeBridge User's Guide 79
First Edition

Example 9: Using get_last_error
Appendix B: CodeBridge Examples

80 CodeBridge User's Guide
First Edition

Understanding C Language Concepts
Appendix C: Useful C Information

Appendix C: Useful C
Information

To develop applications using CodeBridge, it is necessary to have afundamental
understanding of certain C concepts as well as the ability to use a C compiler and
linker. The information provided in this appendix isintended to serve as a starting
point for those developers who may not be proficient with C programming and who
wish to call existing C function libraries without writing any additional C code. This
meaterial should not be viewed as aformal or complete definition of the language.
The ideas and concepts presented here are in an informal format. The developer is
encouraged to acquire additional C reference information, as necessary.

The topics presented include:
e Understanding C language concepts (see the following topic)

e Compiling and linking C functions (on page 85)

Understanding C Language Concepts

In order to construct atemplate file, you must understand the concept of a C function
prototype. Thetemplatefileis based on a“marked-up” C function prototype.
Conceptually, a C function prototype is similar to a COBOL LINKAGE SECTION.
While the LINKAGE SECTION describes the interface to a COBOL subprogram, a
function prototype describes the interface to a C function.

When using C, it isthe preferred practice to use header files to contain the function
prototypes (along with other information that is needed to describe the interface to a
function). Header files are similar to copy filesin COBOL. Providers of C function
libraries will normally provide one or more header filesto describe the interface to
their libraries. Typically, a header filename will have a suffix of .h. For example, a
provider of a statistics package may provide a header file named statistics.h. Header
files are included in the source to be compiled with the #include C preprocessor
directive and are thus sometimes referred to as include files.

Before discussing function prototypes (on page 84) in more detail, let’'s explain
several concepts that are integral to the construction of function prototypes. These
topicsinclude case sensitivity, data types, data declarations, type definitions and
macros, and calling conventions.

CodeBridge User's Guide 81
First Edition

Understanding C Language Concepts
Appendix C: Useful C Information

82

Case Sensitivity

The COBOL programming language is mostly case-insensitive. With afew
exceptions (such as non-numeric literas), the uppercase and lowercase
representations of agiven letter are treated as equivalent. On the other hand, the

C programming language is predominately case-sensitive. The attribute keywords
used in the template file are also case-sensitive. This means that the uppercase and
lowercase representations of a given letter are not equivalent.

For example, the following names are treated as separate entities by C, but treated as
the same entity by COBOL: name, Name, and NAME.

Data Types

C includes predefined data types that may be categorized as integer, floating-point,
pointer, and void.

Integer datatypes include char, short, int and long. These data types may be
prefixed with the keywords signed or unsigned. Normally, integer types default to
signed. Asashorthand notation, when signed or unsigned appear without the
corresponding integer data type, thenint isimplied (that is, unsigned is the same as
unsigned int).

C aso includes the floating-point data types float and double. Floating-point isthe
computer representation of scientific notation. It allows numbers with alarge scale
or small scale to be represented with an approximate value. For the IEEE
representation of floating-point, the float type is normally limited to about 6 or 7
digits of precision with an exponent (scale) of —38 to +38. Also, the doubletypeis
normally limited to about 15 or 16 digits of precision with an exponent (scale) of
—308 to +308.

A pointer data type contains the address of atyped dataitem and is represented by
the asterisk character (*) in the data declaration or type definition (these terms are
described in the following sections).

The void data type, void, is used to represent untyped or sometimes omitted data.

Note that other keywords, such asfar and near also exist, although their meaning is
mostly historical. Depending on the compiler, one or two underscore characters may
precede some keywords (_far or __far instead of far).

CodeBridge User's Guide

First Edition

Understanding C Language Concepts
Appendix C: Useful C Information

Data Declarations

A data declaration associates data type information with the name of avariable.
For example:

int P1

declares avariable named P1 with atype of int. Additional examples are shown in
the following table.

Declaration Variable Name Type

unsigned short P2; P2 unsigned short

float P3; P3 float

int * P4; P4 pointer to an int

char P5[30]; P5 array of char (30 elementsin the array)
void * P6; P6 pointer to avoid (that is, a generic pointer)

When an array is passed to a C function, the address of (pointer to) the array is used.
In a C function prototype, a pointer reference and an array reference are equivalent.
That is, char P5[30] is treated the same as char * P5 (with the exception that the
compiler can do some compile time range checking if the number of elementsin the
array is explicitly declared).

Type Definitions and Macros

In addition to the standard data types described previously, you can define additional
types that are based on combinations of existing types. Two techniques are used:
type definitions (typedef) and macros.

A typedef defines anew datatype. Consider the following examples:

typedef int INT;
typedef unsigned char UCHAR;
typedef char * CHARPTR;

Thefirst definition defines INT to be equivalent to int. That is, the two definitions
of INT and int areidentical. The second definition defines UCHAR to be equivalent
to unsigned char. Thethird definition defines CHARPTR to be equivalent to char *
(apointer to achar).

A typedef renames the underlying data type so that programs are more portable,
because only the typedef needs to be changed when the underlying datatypeis
changed. Type definitions can aso provide better self-documentation of the program
when the new type name in the typedef statement is chosen carefully.

Although amacro is similar to atypedef, there are some important, yet subtle,
differences. Thefirst two previous examples may be defined as macros with the
#define C preprocessor directive, as follows:

#define INT int
#define UCHAR unsigned char

Macros are implemented as part of the C compiler preprocessor. If INT isdefined in
amacro, the compiler will never see INT as a datatype; it will already have been
replaced with int.

CodeBridge User's Guide 83
First Edition

Understanding C Language Concepts
Appendix C: Useful C Information

84

Additionally, macros provide a powerful text replacement feature that can be used
for more than type redefinition. Macros may contain parameters and can be used to
implement inline functions. For example:

#define MAX(A,B) (A+B)/2 + abs(A-B)/2

Macros are presented here to familiarize you with concepts that might occur in a
header file. Since complex macros tend to be fragile, it is recommended that the
modification of these macros be done with care.

Calling Conventions

A calling convention defines additional type information. It directs how the compiler
generates function-calling sequences and is an optional part of a function prototype.
Examplesinclude _ cdecl (or RM_CDECL when writing code for both Windows
and UNIX), _stdcall, and __pascal. Often acalling convention is hidden with a
type definition or amacro. For example, the following macro definition defines the
macro, SQL_API to bethe _ stdcall calling convention:

#define SQL_API _ stdcall

Function Prototypes

A function prototype may contain or refer to any of the concepts that have been
previously presented (data types, data declarations, type definitions and macros, and
calling conventions).

A function prototype consists of the function name and alist of parameter names.
The name of the function and the name of each parameter are prefaced with type
information to form a data declaration. For example:

double RM_CDECL pow(double X, double Y);

In this example, the type of the function is double, which indicates that the function
returns avalue of type double. The parameters are also of type double. Notice that
the calling convention RM_CDECL is included with the function type information.

An older style of prototype may be encountered. In this case, the function prototype
omits the parameter names since they are only placeholders. The prototype for the
function presented above may appear as follows (depending on platform and
compiler):

double pow(double, double);

Placeholder names must be provided in the template file that is based on one of these
older style prototypes. Any unique (to the function) nameswill do. For example:

[[float out rounded]] double pow(
[[float in rounded]] double X,
[[float in rounded]] double Y);

CodeBridge User's Guide

First Edition

Compiling and Linking C Functions
Appendix C: Useful C Information

Compiling and Linking C Functions

Throughout the CodeBridge manual, examples of compiling and linking are
presented. The syntax of the Windows examples uses Microsoft’s compiler and
linker conventions to generate 32-bit Windows dynamic-link libraries (DLLS). The
syntax of the UNIX examples uses conventions that are common to many compilers
and linkers on UNIX to generate shared objects.

Note A makefileis provided with the RM/COBOL development and runtime
systems that can be used or modified to build a shared object to be used as a support
module with the RM/COBOL runtime system. For additional information, see
Preparing C Subprograms for UNIX (on page 202).

This section a so includes an example of how to generate multiple template files.

Compiling on Windows

The following illustrates an example of invoking Microsoft’s Visual C++ compiler to
generate Windows object files:

cl -c -MD -Zpl src\trig.c

where
cl indicates the name of the compiler.
-C suppresses the implicit call to LINK that normally occurs.

-M D selects the Multithread and DLL options. The devel oper may choose -
MDd in order to select the debugging option also.

-Zp1 specifies structure member alignment of 1 byte.

Note A structureisthe C equivalent of a COBOL group. The-Zpl optionis
recommended because the ARGUMENT_ENTRY structure passed from the
RM/COBOL runtime system is built using the -Zp1 option.

srcltrig.c indicates the name of the C source program to be compiled.

Note This example uses the hyphen (-) character to denote compiler options.
Microsoft’s Visual C++ compiler also alows aforward slash (/) character to be
used (for example, /c instead of —c).

Compiling on UNIX

The following illustrates an example of producing object files on UNIX:
cc -c src/trig.c

where
cc indicates the name of the compiler/linker.

-C suppresses the linking stage and does not produce an executablefile.

src/trig.c indicates the name of the C source program to be compiled.

CodeBridge User's Guide 85
First Edition

Compiling and Linking C Functions
Appendix C: Useful C Information

Linking on Windows

The following shows an example involving the Microsoft linker to generate a
Windows DLL:

link -nologo -machine:1X86 -section:._edata,RD —dll
-subsystem:windows -out:trig.dll trig.obj

where
link indicates the name of the linker.
-nologo suppresses the startup banner.

-machine: 1 X86 specifies the target platform. While this option is not required,
it isgood practicetoincludeit. (It also eliminates a warning message.)

-section:.edata,RD specifies Section Attributes, which force the linker to
include the edata section in the generated DLL. The RM/COBOL runtime
system uses thisinformation to load the DLL.

-dll buildsaDLL asthe main output file.

-subsystem:windows specifies the subsystem being supported.

-out:trig.dll names the output file.

trig.obj specifies the name of the object file that is to be included in the link.

Note In addition to naming the object file(s) that are to be included, the
necessary libraries also should be included. The names of the libraries are
normally provided by the provider of the library functions or by the C compiler.
The default link libraries for Win32 DLLs include:

e kernel32.lib e shell32lib

e user32lib e ole32lib

e di32lib e oleaut32lib
e winspool.lib e uuid.lib

e comdig32.lib e odbc32.lib

o advapi32.lib e odbccp32.lib

Note This example uses the hyphen (-)character to denote compiler options.
Microsoft’slinker also allows aforward slash (/) character to be used.

86 CodeBridge User's Guide
First Edition

Compiling and Linking C Functions
Appendix C: Useful C Information

Linking on UNIX

The following illustrates an example of linking a shared object on UNIX:

cc -G -0 trig.so trig.o -Im

where
cc indicates the name of the compiler/linker.
-G produces a shared object.
-0 trig.so names the output file.
trig.o specifies the name of the object file that isto beincluded in the link.
-Im indicates that the math library isto beincluded in the link.

Multiple Template Files

The normal practice isto generate only one template file for each non-COBOL
subprogram library that is being constructed. However, some developers may
choose to generate more than one template file.

For Windows platforms, the source generated by the CodeBridge Builder contains a
definition for DIIMain. If the CodeBridge Builder generates multiple files, then
errorsin linking the DLL will occur because of multiple definitions. This can be
resolved by defining the symbol RM_NO_DLL_MAIN for al but one of the
compilations of generated sourcefiles.

For example:
cl -1 -MD -Zp1 src\cbfuncl.c

cl -1 -MD -Zpl -DRM_NO_DLL_MAIN src\cbfunc2.c
cl -1 -MD -Zpl -DRM_NO_DLL_MAIN src\cbfunc3.c

CodeBridge User's Guide 87
First Edition

Compiling and Linking C Functions
Appendix C: Useful C Information

88 CodeBridge User's Guide
First Edition

Global Attributes Overview
Appendix D: Global Attributes

Appendix D: Global Attributes

This appendix provides detailed descriptions of the attributes used in a global
attribute list in atemplate file. For more information about the basic components of
atemplate file, see Chapter 2: Concepts (on page 17). The attributesused in a
parameter attribute list are discussed in Appendix E: Parameter Attributes (on
page 93). More information about C language concepts and terms may be found in
Appendix C: Useful C Information (on page 81).

Note Asyou read through this manual, keep in mind that the term “ parameter
attribute” is a shorthand notation for an attribute that occurs in a parameter attribute
list. Likewise, “global attribute” indicates that the attribute can be found in a global
attribute list.

Global Attributes Overview

A global attribute list provides information about one or more C function prototypes
that is not specific to any given parameter. Thisinformation also could be used to
modify the default behavior of the CodeBridge Builder.

A global attribute takes effect from the point at which it occursin atemplate file and
remains in effect until another global attribute in that template file alters those
settings. There arefive global attributes: banner, convention, diagnostic,
load_message, and replace_type.

Attributes are case-sensitive and must be entered as shown.

Note The discussions and examples of the global attributes, replace type and
convention, use SQL_API and SQLPOINTER, which are a macro and data type,
respectively, defined in the Microsoft Visual C++ header file, sgltypes.h. Their
definitions are;

#define SQL_API __ stdcall
typedef void * SQLPOINTER
SQL_API isacaling convention macro defined by the C preprocessor directive,

#define. SQLPOINTER is a datatype defined by a C type definition (that is, a
typedef statement).

CodeBridge User's Guide 89
First Edition

banner Attribute

Appendix D: Global Attributes

90

banner Attribute

Use the banner global attribute to display atext string when a non-COBOL
subprogram built with CodeBridge is loaded by the RM/COBOL runtime system.

The format of the banner global attribute is as follows:

[# banner(value) #]
where, valueis acharacter string. For example:

[# banner('Copyright (c) 2000, by me."™) #]
Such banners are displayed only on UNIX systems when the K Option of the
RM/COBOL Runtime Command (runcobol) is not specified or configured. For
example:

runcobol myprog -1 ./mylib._so
This causes amessage similar to the following to be displayed:

Copyright (c) 2000, by me.

No banner message is produced by the RM/COBOL for Windows runtime.

convention Attribute

Use the convention attribute to declare C calling conventions (for example,
SQL_API). Calling conventions cannot be placed in the CodeBridge-generated
declarations of variables; however, they must be preserved in the external function
prototype that is used to call the C function.

The format of the convention global attribute is as follows:
[# convention(name) #]

where, name is the name of acall convention.

SQL_API can beresolved asfollows:
[# convention(SQL_API) #]

SQL_API isremoved from variable declarations, but is preserved as part of the
external function prototype.

CodeBridge User's Guide

First Edition

diagnostic Attribute
Appendix D: Global Attributes

diagnostic Attribute

Use the diagnostic attribute to control error reporting.

The format of the diagnostic global attribute is asfollows:
[# diagnostic(value) #]

where, value may be one of the following:

e silent. Usethesilent valueto instruct CodeBridge not to display diagnostic
messages.

e verbose. Usethe verbose valueto instruct CodeBridge to display diagnostic
messages even if the silent base modifier attributeis set for an individual
parameter attribute list.

e normal. Usethe normal valueto instruct CodeBridge to display diagnostic
messages unless the silent base modifier attribute is specified for an individual
parameter attribute list.

For more information about the silent base modifier, see Base Modifiers Common to
Base Attributes (on page 95).

load _message Attribute

Use the load_message attribute to display atext string when anon-COBOL
subprogram built with CodeBridge isloaded by the RM/COBOL runtime system.

The format of the load_message global attribute is asfollows:

[# load_message(value) #]
where, valueis a character string. For example:

[# load_message(*'My math package - Version 1.13") #]
L oad messages are displayed only on UNIX systems when the V Option of the
RM/COBOL Runtime Command (runcobol) is specified or configured. For
example:

runcobol myprog -v -1 _/mylib.so

This causes a message similar to the following to be displayed:

RM/COBOL: Dynamic library loaded - ./mylib.so - My math
package - Version 1.13

No load message is produced by the RM/COBOL for Windows runtime.

CodeBridge User's Guide 91
First Edition

replace_type Attribute
Appendix D: Global Attributes

92

replace_type Attribute

The CodeBridge Builder program does not resolve C datatypes. Frequently,
necessary data type information may be hidden in amacro or atype definition
construct (as shown in the definitions above). Specifically, CodeBridge must know
whether adataitem is apointer datatype. It isnecessary, therefore, for the template
file to resolve some type definitions for CodeBridge.

Usethereplace type globa attribute to allow CodeBridge to resolve pointer data
declarations that hide the C unary pointer operator (*) within the data type name (for
example, SQLPOINTER).

Y ou may choose to use thereplace type attribute as aform of self-documentation
to expand any defined data type, even if the expansion does not reveal any levels
of indirection.

The format of thereplace type global attribute is asfollows:
[# replace_type(hame;value) #]

where, value is the character string that replaces the data type specified by name.
The SQLPOINTER data type can be resolved as follows:

[# replace_type(SQLPOINTER; void *) #]

The user-supplied entry for name must be a single token. The user-supplied entry for
value may be any string of characters. The following are al equivalent:

[# replace_type(SQLPOINTER;void*) #]
[# replace_type(SQLPOINTER;void *) #]

[# replace_type(SQLPOINTER; void *) #]

CodeBridge User's Guide

First Edition

Parameter Attributes Overview
Appendix E: Parameter Attributes

Appendix E: Parameter
Attributes

This appendix provides detailed descriptions of the attributes used in a parameter
attribute list in atemplate file. See Chapter 2: Concepts (on page 17) for more
information about the basic components of atemplate file. The attributesused in a
global attribute list are discussed in Appendix D: Global Attributes (on page 89).
More information about C language concepts and terms may be found in Appendix C:
Useful C Information (on page 81).

Note Asyou read through this manual, keep in mind that the term * parameter
attribute” is a shorthand notation for an attribute that occurs in a parameter attribute
list. Likewise, “global attribute” indicates that the attribute can be found in aglobal
attribute list.

Parameter Attributes Overview

The parameter attributes are organized into the following three groups:
e Argument number attributes (on page 94)
e Direction attributes (on page 94)

e Base and base modifier attributes (on page 95)

Each group is described in the following sections. An alphabetical summary of all
available parameter attributesis shown in Table 5 beginning on page 113.

Attributes are case-sensitive and must be entered as shown.

CodeBridge User's Guide 93
First Edition

Argument Number Attributes

Appendix E: Parameter Attributes

94

Argument Number Attributes

The two argument number parameter attributes, arg_num(value) and ret_val,
specify explicitly the COBOL argument number. Thisinvokes the explicit method
of associating C parameters with COBOL arguments rather than using the default
automatic association method.

Inthearg_num(value) argument number attribute, value specifies the argument
number as 1 for the first argument in the USING phrase, 2 for the second argument
in the USING phrase, and so forth. The value must be specified as an integer
constant; amacro or constant expression may not be specified here.

Theret_val argument number attribute specifies the argument in the GIVING
(RETURNING) phrase.

For more information, see Associating C Parameters with COBOL Arguments (on
page 33).

Direction Attributes

The direction attributes are in and out. Thein direction attribute specifies an input
parameter to the C function. The out direction attribute specifies an output
parameter from the C function.

Both the in and out direction attributes may be specified in a parameter attribute list.
Within a parameter attribute list, you may present the attributesin any order. For
example, [[integer in]]isthesameas[[in integer]]. When aparameter is
used for both input and output, both the in and out direction attributes are specified
in either order.

The direction attributes may be used to protect the calling COBOL program from
unintended modification of data. For example, when the out direction attribute is not
used, then the datain the C parameter is not converted to COBOL format, and the
datais not placed in the address space of the COBOL program.

For agiven parameter, if none of its attribute lists contain the in direction attribute,
an uninitialized value may be passed to the function. No more than one attribute list
(for any given parameter) should be used for input; however, several output attribute
lists may be assigned to the same parameter.

Some base attributes imply a direction and thus do not allow either of the direction
attributes. The error base attributes (on page 110), errno and get_last_error, imply
the out direction attribute. The descriptor base attributes (on page 107), two of the
pointer base attributes (on page 106), pointer _addressand pointer_length, and the
string length base attributes (on page 104) imply the in direction attribute.

CodeBridge User's Guide

First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

Base and Base Modifier Attributes

Base attributes may be categorized as follows:

Numeric. The numeric base attributes (on page 97) are used when passing
COBOL numeric arguments to the C function.

String. The string base attribute (on page 101) is used when passing COBOL
non-numeric arguments to the C function.

String Length. The string length base attributes (on page 104) are used when
passing the length of a string or numeric string parameter as a separate C
parameter.

Pointer. The pointer base attributes (on page 106) are used when passing
COBOL pointer dataitemsto the C function.

Descriptor. The descriptor base attributes (on page 107) are used when passing
a component of a COBOL data descriptor, the argument count, the COBOL
initial state flag, or the Windows handle to the C function.

Error. Theerror base attributes (on page 110) are used to retrieve error
information from a C library or Windows API function that is returned
separately from the calling C function.

Note 1l The numeric_string base attribute (see page 40) is unique because it
associates a C string parameter, rather than a C numeric parameter, with a COBOL
numeric argument. This base attribute refersto a COBOL numeric argument (whose
USAGE clause specifies DISPLAY, PACKED-DECIMAL, BINARY, and so forth)
and is, therefore, a numeric base attribute. However, the argument valueis
represented as an ASCII character string in the C function.

Note2 Thegeneral_string base attribute (on page 104) converts numeric and non-
numeric arguments to null-terminated arrays of characters. If the COBOL argument
is numeric, the conversion behaves as if numeric_string had been specified as the
base attribute. 1f the COBOL argument is non-numeric, the conversion behaves as if
string had been specified as the base attribute.

Base attributes can be supplemented with additional information by specifying base
modifier attributes. While some base modifier attributes are common to severa
categories of base attributes, as discussed in the following section, others are specific
to a base attribute category. The latter are described in each base attribute category
section to which they apply.

Base Modifiers Common to Base Attributes

Two base modifier attributes, silent and alias(name), are common to several
categories of base attributes:

silent. The silent base modifier is used with any base attribute to prevent
CodeBridge from displaying diagnostic messages during CodeBridge Library
calls generated for that attribute list. The global attribute, diagnostic(value),
may be used to alter default behavior for every CodeBridge Library call. For
more information, see diagnostic Attribute (on page 91).

alias(name). The alias(name) base modifier is used in any parameter attribute
list that refersto the function return value (that is, it should not be used with
function parameters). The alias(name) base modifier may be used in a

CodeBridge User's Guide 95
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

96

CodeBridge User's Guide
First Edition

parameter attribute list with other attributes, or it may be the only attribute in an
attribute list.

If it isthe only attribute in a parameter attribute list, no value will be returned to
the calling COBOL program.

Normally, the CodeBridge Builder generates its interface function name from
the C function name. The alias(name) base modifier attribute makes it possible
for the COBOL program to call the C function using adifferent name. The
following example shows how to implement two functions, INTEGER_PART
and FRACTION_PART, from the standard C library function, modf.

Use the following template file to construct an interface to the standard C library
function, modf. Thisfunction returnsthe integer part of A in IntPart and the
fraction part of A asthe return value.

[[float out]] double modf(
[[float in]] double A,
[[float in out]] double *IntPart);

Use the following template file to return only the integer part:

double modf(
[[float in arg_num(1)]1] double A,
[[float out ret_vall]] double *IntPart);

A problem with this exampleis that the COBOL program must call modf
instead of integer_part. To resolve this problem, use the alias(name) base
modifier attribute as follows:

[[alias(integer_part)]] double modf(
[[float in arg_num(1)]1] double A,
[[float out ret_val]] double *IntPart);

A similar function, called fraction_part, uses the return value of the modf
function, asfollows:

[[alias(fraction_part)
float out]] double modf(
[[float in]] double A,
double *IntPart);

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

Numeric Base Attributes

Three numeric base attributes are used to convert between COBOL numeric data
items and C dataitems:

integer. Usetheinteger base attribute with C integer data types (such as char,
short, int, and long).

On input, the COBOL numeric argument is converted to an integer C parameter.
If the argument value contains a fractional component after application of the
scaled(value) base modifier attribute, if specified, it will be truncated (or
rounded, if the rounded base modifier isused). On output, the C parameter is
converted to a COBOL numeric argument. If the argument is described using P-
scaling (on page 43), truncation may occur (or rounding, if the rounded base
modifier is used).

float. Usethefloat base attribute with C floating-point data types (float and
double).

On input, the COBOL numeric argument is converted to a floating-point

C parameter. If the argument contains more trailing digits than are supported by
the floating-point representation, it istruncated (or rounded if the rounded base
modifier isused). On output, the C parameter is converted to a COBOL numeric
argument. Truncation may occur (or rounding, if the rounded base modifier
isused).

numeric_string. Usethe numeric_string base attribute to pass COBOL
numeric arguments to null-terminated C string parameters, called a numeric
string in this document.

A numeric string is created in adynamically allocated buffer. By default, the
buffer length is four more than the digit length of the COBOL argument. This
ensures enough room in the buffer to contain the numeric value, the decimal
point character, one or two sign characters, and atrailing null character. This
default length may be overridden using the size(value) base modifier attribute.

Note Numeric base attributes may be used with arrays. For more information, see
Numeric Arrays (on page 44).

Numeric String Formatting and Conversion Rules

A numeric string parameter is a parameter for which either the numeric_string or
the general_string base attribute has been specified and for which the COBOL
argument is numeric. For use with a C function, anumeric string is formatted
according to the following rules:

1
2.

The string is composed of two parts. an optional sign and a numeric value.

The sign may be aleading sign (occurring before the numeric value) or atrailing
sign (occurring after the numeric value). A leading sign may be asingle
character (either “+” or “-"). A trailing sign may be either one character (either
“+" or “-") or two characters (the debit symbol “DB” or the credit symbol
“CR").

Note On input conversion before calling the C function, the sign representation
will be placed in the string according to the leading or trailing sign base
modifiers that are selected. On output conversion (after returning from the

C function), any supported sign representation is allowed. See“leading or
trailing signs’ on page 101 for the supported sign representations.

CodeBridge User's Guide 97
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

98

The numeric value is represented as a string of numeric characters (‘0" through
‘9") with an embedded decimal point character, as needed.

Note On input conversion, if the data item contains an integer value, the
resultant numeric string does not contain a decimal point character or trailing
zero characters. Also, on input conversion, if the dataitem contains only a
fraction value (the absolute value of the dataitem is non-zero and less than 1),
the resultant numeric string will contain aleading zero character followed by a
decimal point character.

Space characters may occur before and after both the numeric value and the
sign. They areignored.

Note On input conversion to the C function, CodeBridge will not place any
space charactersin anumeric string. On output conversion from the C function,
CodeBridge will tolerate embedded spaces.

Some examples of numeric strings are:
vq o
no_q o
" 2.34 CR"

T

Base Modifiers that Apply to Numeric Base Attributes

Numeric base attributes can be supplemented with additional information by the base
modifier attributes that are listed below. Some of the base modifier attributes apply
to all numeric base attributes, while others apply only to a particular numeric base
attribute.

The following base modifier attributes may be used with any numeric base attributes:

CodeBridge User's Guide
First Edition

alias(name). For adescription of this base modifier, see page 95. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

assert_digits(min;max). Use this base modifier attribute to verify that the digit
length of the passed COBOL argument is within the range specified by min and
max. For example, [[integer out assert digits(5;5)]] indicatesthat
the COBOL dataitem must contain exactly five digits.

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example,
all of the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a
dataitem with a digit length of eight for CodeBridge.

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

assert_digits left(min;max). Use this base modifier attribute to verify that the
number of digitsto the left of the decimal point in the passed COBOL argument
iswithin the range specified by min and max. For example, [[float
assert_digits_left(5;~0)]] indicates that the COBOL dataitem must
contain five or more digits to the left of the decimal point, or equivalently, no
less than five digits before the decimal point.

Note The C construct, ~0, denotes a pattern of all ones and represents the
largest positive value that can be stored in adataitem. Thisusageis preferable
to other choices such as Oxffff (which requires knowing the number of f'sto
write) and —1 (which is not allowed C for unsigned data types).

The use of P-scaling in the COBOL program will increase the number of digits
to the left of the decimal point by the number of P symbols specified in the
PICTURE character-string that occur to the |eft of the decimal point. For
example, both of the PICTURE character-strings 9(8) and 9(5)P(3) describe a
dataitem with eight digits to the left of the decimal point for CodeBridge.

assert_digits right(min;max). Use this base modifier attribute to verify that the
number of digitsto the right of the decimal point in the passed COBOL
argument is within the range specified by min and max. For example, [[float
assert_digits_right(0;2)]] indicates that the COBOL dataitem must
contain no more than two digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of digits
to theright of the decimal point by the number of P symbols specified in the
PICTURE character-string that occur to the right of the decimal point. For
example, both of the PICTURE character-strings V9(8) and VP(3)9(5) describe
adataitem with eight digits to the right of the decimal point for CodeBridge.

assert_length(min;max). Use this base modifier attribute to verify that the
actual length of the passed COBOL argument is within the range specified by
min and max. For example, [[integer out assert_length(10;~0)]1]
indicates that the COBOL data item must contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the
largest positive value that can be stored in adataitem. Thisusageis preferable
to other choices such as Oxffff (which requires knowing the number of f'sto
write) and —1 (which is not allowed C for unsigned data types).

assert_signed. Use this base modifier attribute to verify that the passed COBOL
argument contains a sign.

assert_unsigned. Use this base modifier attribute to verify that the passed
COBOL argument does not contain a sign.

no_null_pointer. The calling COBOL program may pass a pointer with anull
value as an argument either by specifying the figurative constant NULL
(NULLS) or by specifying a COBOL pointer argument that has been set to
NULL (NULLS). Inthiscase, CodeBridge would normally pass a null pointer
as aparameter to the C function. If theno_null_pointer base modifier attribute
isused, an error condition will be generated instead.

no_size error. During conversion (either COBOL to C or Cto COBOL), it is
possible that leading digitswill belost. If this occurs, the normal behavior isto
generate an error condition. If theno_size error base modifier attributeis used,
the error condition will be ignored.

CodeBridge User's Guide 99
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

e occurs(value). Arraysof COBOL numeric arguments may be passed to aC
function. Use the occur s(value) base modifier attribute to specify the array size.
If the C function prototype specifies the array size, it is not necessary to use the
occur s(value) base modifier attribute unless you need to override the value
specified in the function prototype.

e optional. Thecaling COBOL program may omit the associated argument, in
which case CodeBridge would normally generate an error condition. For more
information on omitted arguments and this attribute, see Managing Omitted
Arguments (on page 30). If the optional base modifier attribute is used, then a
default value is generated and passed to the C function. The default value
associated with an integer or float base attribute is anumeric zero. The default
value associated with ageneral_string or numeric_string base attributeis an
empty string (the first character of the string isanull character). If avalue other
than the CodeBridge supplied default valueis desired, see the
value if_omitted(value) base modifier attribute description.

Note The current implementation of the CodeBridge Builder only allowsinput
optional parameters. Output parameters are required by default.

o repeat(value). Usethisbase modifier attribute with the C parameter before the
ellipsis when a variable number of C parametersisused. valueindicates the
maximum number of additional C parameters.

e rounded. Usethisbase modifier attribute to cause rounding in those cases
where truncation would normally occur (on either input or output). Rounding is
performed using COBOL rounding rules.

e dilent. For adescription of this base modifier, see page 95.

o value if omitted(value). Usethisbase modifier attribute to specify avalue to
be used when the calling COBOL program omits the associated argument. For
more information on omitted arguments and this attribute, see Managing
Omitted Arguments (on page 30). When this attribute is used, it is not necessary
to also use the optional base modifier attribute. Aninteger attribute list must
specify an integer value (for example, value_if_omitted(3)); afloat
attribute list must specify afloating-point value (for example,
value_if_omitted(3.0)); and anumeric_string attribute list must specify a
string value (for example, value_if_omitted(*'3.0")).

In addition to the base modifier attributes that apply to all numeric base attributes,
the following modifiers are specific to the integer base attribute:

e integer_only. Usethisbase modifier attribute to verify that the passed COBOL
argument represents an integer value (that is, no digits are allowed to the right of
the decimal point). This attributeis equivalent to the assert_digits right(0;0)
base modifier attribute specification.

e scaled(value). Use thisbase modifier attribute to scale integer values during the
conversion process. On input, the COBOL argument is multiplied by 104, On
output, the C parameter is divided by 10",

For example, if the attribute list is [[integer in out scaled(2)]] andthe
COBOL program supplied avalue of 1.53, the C function would receive avalue
of 153. If the C function changed the value to 4, the COBOL program would
receive .04 back.

100 CodeBridge User's Guide
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

e unsigned. Use thisbase modifier attribute to force CodeBridge to treat the
C parameter as unsigned. The default isto treat C parameters as signed.

In addition to the modifiers that apply to al numeric base attributes, the following
modifiers are specific to the numeric_string base attribute:

o size(value). Use thisbase modifier attribute with the numeric_string base
attribute to specify a value that overrides the default length when the conversion
string buffer is dynamically allocated.

e leadingor trailing signs. One of the following leading or trailing sign base
modifier attributes may be used with for the numeric_string base attribute. The
default base modifier attribute isleading_sign.

Attribute Sign if positive Sign if negative
leading_sign ‘4
leading_minus none
trailing_sign ‘4
trailing_minus none
trailing_credit none “CR"
trailing_debit none “DB”

string Base Attribute

C strings are anull-terminated array of characters. Although there are many standard
C library functions that deal with C strings, there is no corresponding COBOL data
type. The string base attribute is used to convert between COBOL non-numeric
arguments and null-terminated C string parameters.

Oninput, datais copied to adynamically allocated buffer and atrailing null character
isadded. On output, datais copied from the buffer and the trailing null character is
removed. By default, the data buffer is one byte larger that the length of the COBOL
argument so that there isroom for the trailing null character. This default may be
overridden using the size(value) base modifier attribute.

On Windows, a conversion rather than a simple copy is required when the runtime
native character set and the character set expected or returned by the C function do
not match. The base modifier attributes c_data is ansi and c_data is oem can be
used to declare the character set used by the C function. When one of these attributes
is specified, CodeBridge will provide the necessary conversion when the runtime
native character set does not match.

Note 1 On Windows platforms, CodeBridge allocates the intermediate buffer using
the SysAllocStringBytel en function. This places additional overhead information
before the start of the string. The SysStringBytel en function may be used to obtain
the length of the buffer. Use the standard C library function, strlen, to retrieve the
length of the string in the buffer.

Note2 A string base attribute may be used with arrays. For more information, see
String Arrays (on page 45).

CodeBridge User's Guide 101
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

102

CodeBridge User's Guide

First Edition

Base Modifiers that Apply to the String Base Attribute

One leading character and one trailing character base modifier attribute may be
specified for each parameter. On input, leading and/or trailing characters are
removed as specified. On output, trailing characters (if selected) are added to left-
justified dataitems, while leading characters (if selected) are added to right-justified
dataitems.

The string base attribute can be supplemented with additional information by the
base modifier attributes that are listed below.

The following base modifier attributes may be used with the string base attribute:

alias(name). For adescription of this base modifier, see page 95. Note that the
alias base modifier attribute is allowed only when the parameter attribute list
precedes the function name.

assert_length(min;max). Use this base modifier attribute to verify that the
actual length of the passed COBOL argument is within the range specified by
min and max. For example, [[string out assert_length(10;~0)]1]
indicates that the COBOL dataitem must contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the
largest positive value that can be stored in adataitem. Thisusageis preferable
to other choices such as Oxffff (which requires knowing the number of f'sto
write) and —1 (which is not allowed C for unsigned data types).

c _data is ansi. Usethisbase modifier attribute to specify that the C function
string characters have code points that are interpreted as being from the
Windows ANSI codepage. If this attribute is specified and the runtime native
character set is OEM, input arguments will be converted from OEM to ANSI
and output arguments will be converted from ANSI to OEM. On Windows, no
conversion is done unless one of the attributes ¢_data is ansi or

¢ _data is oem is specified. Thec data is ans attributeis mutually exclusive
with the c_data is oem attribute. This attributeisignored on UNIX.

Note Windows functions generally expect ANSI character data. Thus, the
c_data is_ans base modifier attribute should usually be specified in templates
defining an interface to Windows functions if the COBOL programs that use the
interface do not use the C$ConvertOemToAnsi and C$ConvertAnsiToOem
library subprograms to perform the conversions themselves. (See Appendix F:
Subprogram Library of the RM/COBOL User's Guide.) For historical reasons,
the RM/COBOL runtime default native character set on Windows is OEM.

c_data is oem. Use thisbase modifier attribute to specify that the C function
string characters have code points that are interpreted as being from the
Windows OEM codepage. If this attribute is specified and the runtime native
character set is ANSI, input arguments will be converted from ANSI to OEM
and output arguments will be converted from OEM to ANSI. On Windows, no
conversion is done unless one of the attributes ¢ _data is ansi or

c_data is oem is specified. Thec_data is oem attribute is mutually exclusive
with the c_data is ansi attribute. Thisattribute isignored on UNIX.

leading_spaces. Use this base modifier attribute to instruct CodeBridge to
remove leading space characters on input, and for right-justified arguments, add
leading space characters on output.

leading(value). Thisbase modifier attribute is the same as the leading_spaces
base modifier, except that the character represented by value is used instead of a
space character.

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

no_null_pointer. Thecaling COBOL program may pass a pointer with anull
value as an argument either by specifying the figurative constant NULL
(NULLS) or by specifying a COBOL pointer argument that has been set to
NULL (NULLS). Inthis case, CodeBridge would normally pass a null pointer
as aparameter to the C function. If theno_null_pointer base modifier attribute
isused, an error condition will be generated instead.

occur s(value). Arrays of COBOL non-numeric arguments may be passed to a
C function. Use the occur s(value) base modifier attribute to specify the array
size. If the C function prototype specifiesthe array size, it is not necessary to
use the occur s(value) base modifier attribute unless you need to override the
value specified in the function prototype.

optional. The calling COBOL program may omit the associated argument, in
which case, CodeBridge would normally generate an error condition. For more
information on omitted arguments and this attribute, see Managing Omitted
Arguments (on page 30). If the optional base modifier attribute is used, then a
default value is generated and passed to the C function. The default value
associated with ageneral_string or string base attribute is an empty string (the
first character of the string isanull character). If avalue other than the
CodeBridge supplied default value is desired, see the value_if _omitted(value)
base modifier attribute description.

Note The current implementation of the CodeBridge Builder only allows input
optional parameters. Output parameters are required by default.

repeat(value). Use this base modifier attribute with the C parameter before the
ellipsis when avariable number of C parametersisused. value indicates the
maximum number of additional C parameters.

silent. For adescription of this base modifier, see page 95.

size(value). Use this base modifier attribute with the string base attribute to
specify avalue that overrides the default length when the conversion string
buffer is dynamically allocated.

trailing_spaces. Use this base modifier attribute to instruct CodeBridge to
remove trailing space characters on input and, for left-justified arguments, add
trailing space characters on output.

trailing(value). Thisbase modifier attribute is the same asthetrailing_spaces
modifier, except that the character represented by value is used instead of a
space character.

value if_omitted(value). Use this base modifier attribute to specify avalueto
be used when the calling COBOL program omits the associated argument. For
more information on omitted arguments and this attribute, see Managing
Omitted Arguments (on page 30). When this base modifier attribute isused, it is
not necessary to also use the optional base modifier attribute. A string attribute
list must specify a string value (for example,
value_if_omitted("'Default™)).

CodeBridge User's Guide 103
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

104

general_string Base Attribute

The general_string base attribute is used in those cases when it is desirable to allow
a C string parameter to accept either a numeric COBOL argument or a non-numeric
COBOL argument. When a numeric argument is passed to a parameter described
with the general_string base attribute, the argument is converted as if the parameter
were described with the numeric_string base attribute; otherwise, the argument is
converted as if the parameter were described with the string base attribute. An
attribute list containing the general_string base attribute allows any additional
attributes that may be used with either a string base attribute or anumeric_string
base attribute. For each call and for each argument passed to a parameter within a set
of avariable number of parameters, attributes that do not apply to the COBOL
argument actually passed are ignored for the conversion of that argument. That is,
for a numeric argument, base modifier attributes not applicable to the
numeric_string base attribute are ignored and for a non-numeric argument, base
modifier attributes not applicable to the string base attribute are ignored. For further
information, refer to Numeric Base Attributes (on page 97) and string Base Attribute
(on page 101).

In general_string attribute lists, base modifier attributes that apply to a
numeric_string or string base attribute may be used together. Those base modifier
attributes that do not apply for a given passed argument are ignored (for example,
trailing_sign for a non-numeric COBOL argument).

String Length Base Attributes

The string length base attributes, buffer _length and effective_length, are used

to pass length information about a string parameter as a separate parameter to a

C function. Attribute lists formed with these base attributes are used with the
attribute lists formed with the general_string, numeric_string, and string base
attributes. By default, these length attributes refer to the same COBOL argument
number as the base attribute in the preceding attribute list. If the length attribute list
does not immediately follow the associated attribute list, then the arg_num(value)
argument number attribute must be used, where value must be the same as used in an
arg_num(value) attribute of the associated general_string, numeric_string, or
string base attribute.

The string length base attributes include the following:

o buffer_length. The buffer_length base attribute describes a C numeric
parameter and instructs CodeBridge to pass the length of the conversion buffer
to the C function as the value of the parameter. The length of the buffer is
determined by the base attribute that is used to describe the string parameter
associated with the same argument, as follows:

— For the string base attribute, the buffer length defaults to one more than the
length of the passed COBOL argument, which allows space for the
characters of the argument value and a null-termination character.

— For thenumeric_string base attribute, the buffer length defaults to four
more than the digit length of the passed COBOL argument, which allows
space for the digits of the argument value and the sign, decimal point, and
null-termination characters.

— Forthegeneral_string base attribute, the buffer length defaults to the
greater of one more than the length of the passed COBOL argument and

CodeBridge User's Guide

First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

four more than the digit length of the passed COBOL argument, which
allows space for either anon-numeric or numeric argument conversion.

The default values for buffer_length may be overridden by using the size(value)
base modifier attribute in the attribute list that contains the string,
numeric_string, or general_string base attribute that is associated with the
same argument as buffer_length.

effective_length. The effective_length base attribute returns the actual number
of characters stored in the conversion string buffer after the input conversion
processis complete. (Thisissimilar to the standard C library function, strlen.)
This base attribute is used for obtaining the length of input string parameters
denoted by general_string, numeric_string, or string base attributes.

Note To obtain the length of the COBOL argument, use the length base attribute, as
described on page 108.

Base Modifiers that Apply to String Length Base Attributes

The following base modifier attributes may be used with the string length base
attributes:

occur s(value). Arrays of COBOL non-numeric arguments (or numeric
arguments converted by numeric_string) may be passed to a C string parameter.
Use the occur s(value) base modifier attribute to specify the array size. If the

C function prototype specifies the array size, it is not necessary to use the

occur s(value) base modifier attribute unless you need to override the value
specified in the function prototype.

Note Thearray size for the string length base attributes must be less than or
equal to the array size of the C string parameter associated with the same
argument number.

silent. For adescription of this base modifier, see page 95.

CodeBridge User's Guide 105
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

106

Pointer Base Attributes

Pointer base attributes are used when passing a component of a COBOL pointer
argument to the C function. These attributes are associated with the RM/COBOL
POINTER datatype. A COBOL pointer describes ablock of memory and has three
components: base address, offset, and size. When apointer dataitem isinitialized,
the base address contains the starting address of the block of memory, the offset is set
to zero, and the size contains the total length of the block. The offset may be
modified in an RM/COBOL program by using the Format 6 SET statement (see the
RM/COBOL Language Reference Manual).

CodeBridge provides two approaches for accessing data described by a COBOL
pointer dataitem. The first method is useful when the C function wishes to access or
modify memory referenced by the pointer. This approach uses the following two
pointer base attributes, both of which are defined for input to the C function but not
for output:

e pointer_address. Usethe pointer_address base attribute to pass the effective
address (base address plus offset) of apassed COBOL pointer argument to the
C function.

e pointer_length. Usethepointer_length base attribute to pass the effective
length (size minus offset) of a passed COBOL pointer argument to the
C function. Thisisthe amount of data between the current value of the pointer
and the end of the block of memory described by the pointer.

The second approach is useful if the C function wishes to access the components of
the COBOL pointer dataitem directly. This method is useful when the C function
wishes to change one of the components of a COBOL pointer.

Note Although CodeBridge provides the ability to change the value of COBOL data
areas or COBOL pointers, caution should be used due to the potential risk of
corrupting the COBOL program.

The second approach uses the following three pointer base attributes, all of which
may be used for both input and output:

e pointer_base. Usethe pointer_base base attribute to pass the base address
component of a passed COBOL pointer argument to and from the C function.

e pointer_offset. Usethe pointer_offset base attribute to pass the offset
component of apassed COBOL pointer argument to and from the C function.

e pointer_size. Usethe pointer_size base attribute to pass the size component of
apassed COBOL pointer argument to and from the C function.

Note A COBOL pointer dataitem with a zero base address component is always a
null pointer, regardless of the offset and size values. If the base address of a pointer
is set to a zero value or remains a zero value, the pointer offset and size components
cannot be set to non-zero values. When a COBOL pointer data item with azero
base address component is stored, the pointer offset and size components will be set
to zero.

CodeBridge User's Guide

First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

Base Modifiers that Apply to Pointer Base Attributes

In addition to the alias(name) and silent base modifier attributes (see page 95), two
other base modifier attributes are available for the second approach described above:

e pointer_max_size. Use thisbase modifier attribute when either the
pointer _base or pointer_offset base attribute is used for output to force the
pointer size component to avalue of all ones.

e pointer_reset_offset. Usethisbase modifier attribute when either the
pointer _base or pointer_size base attribute is used for output to force the
pointer_offset component to avalue of zero. For an example of using
pointer_reset_offset, see Example 4: Accessing COBOL Pointer Arguments

(on page 63).

Descriptor Base Attributes

Sometimes it may be necessary to passindividual data descriptor components for a
COBOL argument, aswell as the argument count, the COBOL initial state flag, or
the Windows handle, directly as C parameters. See Passing COBOL Descriptor Data
(on page 28) and Passing Miscellaneous Information (on page 30).

The following lists the descriptor base attributes:

e address. Usethe address base attribute when passing the address of a passed
COBOL argument to the C function. By using this attribute, the C function may
modify the COBOL data areadirectly. When the address of a COBOL dataitem
is passed in thisway, the C function is responsible for any parameter conversion
that isrequired. The address may be saved by the C function and used by this or
other functions in the non-COBOL subprogram later in the run unit. However, if
the address refers to adataitem in a COBOL program that islater canceled, the
saved address may no longer be valid. It isthe programmer’s responsibility to
prevent such situations.

e arg_count. Usethe arg_count base attribute to pass the actual number of
COBOL argumentsto the C function. Thearg_count base attribute does not
refer to a COBOL argument.

The argument count is the number of actual arguments specified in the USING
phrase of the CALL statement, including any arguments explicitly specified by
the OMITTED keyword. The count does not include the argument specified in
the GIVING (RETURNING,) phrase.

Note When using the explicit argument association method, it isan error to
specify the argument number attribute, arg_num(value), with the arg_count
base attribute since this base attribute does not refer to a COBOL argument.

o digits. Usethedigits base attribute when passing the digit count, that is, the
number of 9'sin the PICTURE character-string, of a passed COBOL numeric
argument to the C function. If the item is not numeric, the results are undefined.

e initial_state. Usetheinitial_state base attribute to pass the COBOL initid state
flag to the C function. The initial_state base attribute does not refer to a
COBOL argument. It returns information about the state of the called program
within the run unit.

When the COBOL initial state flag is zero, the C function may choose to
reinitialize any “state” variablesit contains. When it is non-zero, the C function
uses the current values of any “state” variables. For more information, seeitem

CodeBridge User's Guide 107
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

number 4 in the section, Parameters Passed to the C Subprogram on Windows
(on page 179).

Note1l A “state” variable is one whose contents are normally preserved between
function calls.

Note 2 When using the explicit argument association method, it isan error to
specify the argument number attribute, arg_num(value), with theinitial_state
base attribute since this base attribute does not refer to a COBOL argument.

e length. Usethelength base attribute when passing the length (in bytes) of a
passed COBOL argument to the C function. Thelength attribute may be used
for the same argument as the addr ess base attribute to allow a C function to
modify the COBOL data area directly. Other usesalso exist; for example, the
length base attribute may be used for the same argument as the string base
attribute to pass the maximum size that a string may occupy (it does not include
space for the trailing null character).

e scale. Usethe scale base attribute when passing the digit count of the number of
digitsto theright of the decimal point in a passed COBOL numeric argument to
the C function. If theitem is not numeric, the results are undefined. The scale
valueisthe arithmetic complement of the scale value in the COBOL argument
descriptor.

Note If the COBOL dataitem uses P-scaling, the scaling factor may be
negative. For example, for aPIC 9(7)P(3) dataitem, using this attribute will
pass -3 to the C function; for aPIC P(3)9(7) dataitem, using this attribute will
pass 10 to the C function.

e type. Usethetype base attribute when passing the type code of a passed
COBOL argument to the C function. Type codes, which are defined in the
header file rmc85cal.h, are included in Table 4 for easy reference. Note that
some values are classified as “reserved” in the “Classification” column. They
either refer to internal formats that are not used by CodeBridge or to values that
arereserved for future use.

108 CodeBridge User's Guide
First Edition

Table 4: Type Attribute Codes

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

Name Value Classification Description
RM_NSE 0 Numeric Numeric String Edited
RM_NSU 1 Numeric Display String Unsigned
RM_NTS 2 Numeric Display Trailing Separate
RM_NTC 3 Numeric Display Trailing Combined
RM_NLS 4 Numeric Display Leading Separate
RM_NLC 5 Numeric Display Leading Combined
RM_NCS 6 Numeric Comp (unpacked) Signed
RM_NCU 7 Numeric Comp (unpacked) Unsigned
RM_NPP 8 Numeric Packed Positive
RM_NPS 9 Numeric Packed Signed
RM_NPU 10 Numeric Packed Unsigned
RM_NBS 11 Numeric Binary Signed
RM_NBU 12 Numeric Binary Unsigned or |ndex
13-15 Reserved
RM_ANS 16 Non-numeric Alphanumeric String
RM_ANSR 17 Non-numeric Alphanumeric (Right Justified)
RM_ABS 18 Non-numeric Alphabetic String
RM_ABSR 19 Non-numeric Alphabetic (Right Justified)
RM_ANSE 20 Non-numeric Alphanumeric String Edited
RM_ABSE 21 Non-numeric Alphabetic String Edited
RM_GRPF 22 Non-numeric Group
23-24 Reserved
RM_PTR 25 Pointer COBOL Pointer
RM_NBSN 26 Numeric Binary Signed Native
RM_NBUN 27 Numeric Binary Unsigned Native
28-31 Reserved
RM_OMITTED @ 32 Omitted Omitted argument

e windows handle. Usethewindows _handle base attribute to pass the Windows
handle associated with the run unit to the C function. This attribute, which is
available only for Windows systems, is useful when calling some Windows

APIs. For example, when opening a new window, it may be necessary to supply
the handle of the parent’swindow. The windows_handle base attribute does
not refer to a COBOL argument.

Note 1 Thewindows _handle base attribute is not available on UNIX platforms
asit can cause compilation errors.

Note 2 When using the explicit argument association method, it is an error to
specify the argument number attribute, arg_num(value), with the
windows_handle base attribute since this base attribute does not refer to a
COBOL argument.

CodeBridge User's Guide 109
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

110

Base Modifier that Applies to Descriptor Base Attributes

Only one base modifier attribute, silent, is used with descriptor base attributes. For a
description of the silent base modifier, see page 95.

Error Base Attributes

Occasionaly, either the C library or one of the Windows API functionswill return
error information that must be retrieved separately from the C function that is called.

The C library often places error information in the external variable, errno. If the
called function returns avalue of —1, then in the calling program value of the external
variable errno is the error code.

Some Windows APIs return error information that must be retrieved by calling the

C function, GetL astError. If the called function returns a status of FAL SE (numeric
zero), then the calling program must call the function GetL astError to obtain the error
number. In many cases, however, the value that would have been returned by
GetLastError likely will be modified by the RM/COBOL runtime between
successive calls from the COBOL program, making it impossible to call

GetLastError as a separate function.

Error base attributes associate with a COBOL argument for which there is no
corresponding C function return or parameter. Two error base attributes have been
added to CodeBridge that deal with these situations:

e errno. Usetheerrno base attribute to retrieve the contents of the external
variable, errno. Specifying the base attribute errno is similar to specifying
integer out, except that it does not associate with a C function return or
parameter. While this attribute does not associate with the C function return or
any parameter, the position of the attribute list within the C function prototypein
which it appears is significant for determining the COBOL argument number
when automatic argument association isused. For more information, see
Automatic Association (on page 34). The external variable errno, which isthe
source item for the attribute errno, has the C type of int, which issigned. The
assumed direction attribute is out; adirection attribute is not allowed with the
attribute errno.

e et last error. Usetheget last_error base attribute to retrieve the contents
returned by the C function, GetL astError. Specifying get_last_error issimilar
to specifying integer out unsigned, except that it does not associate with a
C function return or parameter. While this attribute does not associate with
the C function return or any parameter, the position of the attribute list within the
C function prototype in which it appearsis significant for determining the
COBOL argument number when automatic argument association isused. For
further details, see Automatic Association (on page 34). The return value of
GetL astError, which is the source item for the attribute get_last_error, hasthe
Windows type of DWORD, which isunsigned. The assumed direction attribute
isout; adirection attribute is not allowed with the attribute get_last_error.

Error base attributes refer to an argument in the COBOL CALL statement, but do not
refer to any C function return value or parameter. These attributes cause the
CodeBridge Builder to generate separate code sequences to return the value of the
external variable errno or the return value of the Windows GetLastError function.
For additional information, see Returning C Error Values (on page 31).

CodeBridge User's Guide

First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

Error base attributes are, in a certain sense, the opposite of descriptor base

attributes (these include arg_count, initial_state, and windows_handle). The error
base attributes describe a COBOL argument for which there is no corresponding

C parameter, because the source item for these attributesis not described in the

C function prototype, and are output (to the COBOL argument) only. The descriptor
base attributes are used to develop input values for C parameters from a source other
than a COBOL argument or from the description of a COBOL argument.

Base Modifiers that Apply to Error Base Attributes

The error base attributes may be used in an attribute list with the same base modifier
attributes as for the base attribute integer with the following exception:

e Theunsigned attributeis not allowed. It would be incorrect for errnoandis
implied for get_last_error.

The error base attributes can be supplemented with additional information by the
base modifier attributes listed below:

o alias(name). For adescription of this base modifier, see page 95. Note that the
alias base modifier attribute is only allowed when the parameter attribute list
precedes the function name.

e assert_digits(min;max). Use thisbase modifier attribute to verify that the digit
length of the passed COBOL argument is within the range specified by min and
max. For example, [[errno assert_digits(9;18)]] indicates that the
COBOL data item must contain from 9 to 18 digits.

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example,
all of the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe a
dataitem with adigit length of eight for CodeBridge.

o assert_digits left(min;max). Usethisbase modifier attribute to verify that the
number of digitsto the left of the decimal point in the passed COBOL argument
iswithin the range specified by min and max. For example,

[[get_last _error assert digits_ left(5;~0)]] indicatesthat the
COBOL dataitem must contain five or more digits to the left of the decimal
point, or equivalently, no less than five digits before the decimal point.

Note The C construct, ~0, denotes a pattern of all ones and represents the
largest positive value that can be stored in adataitem. Thisusageis preferable
to other choices such as Oxffff (which requires knowing the number of f’sto
write) and —1 (which is not allowed C for unsigned data types).

The use of P-scaling in the COBOL program will increase the number of digits
to the left of the decimal point by the number of P symbols specified in the
PICTURE character-string that occur to the |eft of the decimal point. For
example, both of the PICTURE character-strings 9(8) and 9(5)P(3) describe a
dataitem with eight digits to the left of the decimal point for CodeBridge.

e assert_digits right(min;max). Use this base modifier attribute to verify that the
number of digitsto the right of the decimal point in the passed COBOL
argument is within the range specified by min and max. For example, [[errno
assert_digits_right(0;0)]] indicatesthat the COBOL dataitem must
contain no digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of digits
to the right of the decimal point by the number of P symbols specified in the

CodeBridge User's Guide
First Edition

Base and Base Modifier Attributes
Appendix E: Parameter Attributes

PICTURE character-string that occur to the right of the decimal point. For
example, both of the PICTURE character-strings V9(8) and VP(3)9(5) describe
adataitem with eight digits to the right of the decimal point for CodeBridge.

e assert_length(min;max). Use this base modifier attribute to verify that the
actual length of the passed COBOL argument is within the range specified by
min and max. For example, [[get_last_error assert_length(10;~0)]1]
indicates that the COBOL dataitem must contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents the
largest positive value that can be stored in adataitem. Thisusageis preferable
to other choices such as Oxffff (which requires knowing the number of f’'sto
write) and —1 (which is not allowed C for unsigned data types).

e assert_signed. Usethisbase modifier attribute to verify that the passed COBOL
argument contains a sign.

e assert_unsigned. Use thisbase modifier attribute to verify that the passed
COBOL argument does not contain a sign.

e no_size error. During conversion (either COBOL to C or Cto COBOL), itis
possible that leading digits will belost. If this occurs, the normal behavior isto
generate an error condition. If theno_size error base modifier attributeis used,
the error condition will be ignored.

e rounded. Usethisbase modifier attribute to cause rounding in those cases
where truncation would normally occur (on either input or output). Rounding is
performed using COBOL rounding rules.

e scaled(value). Use thisbase modifier attribute to scale integer values during the
conversion process. On output, the C value is divided by 10",

For example, if the attribute list is [[errno scaled(2)]] and the C function
changed the value of the external variable errno to 123, the COBOL program
would receive 1.23 back.

e silent. For adescription of this base modifier, see page 95.

112 CodeBridge User's Guide
First Edition

Parameter Attributes Summary
Appendix E: Parameter Attributes

Parameter Attributes Summary

Table 5 lists all available parameter attributes in alphabetical order. The “Attribute
Category” column contains the category of the parameter attribute as one of the
categories: Argument Number, Direction, Base or Base Modifier, as discussed in
earlier sections. The “Modifier Usage” column indicates whether base modifier
attributes affect the COBOL argument, the C dataitem, or the C function name.

The “Description” column presents a brief overview of the function of the parameter

attribute.

Table 5: Parameter Attributes Summary

Parameter
Attribute

address

alias(name)

arg_count

Arg_num(value)

Assert_digits
(min; max)

Assert_digits left
(min; max)

Assert_digits right
(min; max)

Assert_length
(min; max)

Assert_signed

Attribute
Category

Base
(Descriptor)

Base
Modifier

Base
(Descriptor)

Argument
Number

Base
Modifier

Base
Modifier

Base
Modifier

Base
Modifier

Base
Modifier

Modifier
Usage

C Function
Name

COBOL
Argument

COBOL
Argument

COBOL
Argument

COBOL
Argument

COBOL
Argument

Description

Passes the address of a passed COBOL
argument to the C function. See
page 107.

Changes the generated function name to
be the name specified by name. See

page 95.

Passes the actual number of COBOL
arguments to the C function. See
page 107.

Explicitly specifies the COBOL
argument number of an argument in the
USING phrase rather than accepting the
default argument association. See

page 94.

Insures that the number of digitsin the
passed COBOL argument iswithin the
range specified by min and max. This
modifier is used with numeric base
attributes. See page 98.

Insures that the number of digitsto the
left of the decimal point in the passed
COBOL argument is within the range
specified by min and max. This modifier
is used with numeric base attributes. See
page 99.

Insures that the number of digitsto the
right of the decimal point in the passed
COBOL argument is within the range
specified by min and max. This modifier
is used with numeric base attributes. See
page 99.

Insures that the length of the passed
COBOL argument is within the range
specified by min and max. This modifier
is used with numeric or string base
attributes. See pages 99 and 102.

Insures that the passed COBOL argument
issigned. Thismodifier is used with
numeric base attributes. See page 99.

CodeBridge User's Guide 113
First Edition

Parameter Attributes Summary
Appendix E: Parameter Attributes

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

assert_unsigned

buffer_length

c_data is_ansi

c_data is_oem

digits

effective_length

errno

float

114 CodeBridge User's Guide
First Edition

Attribute
Category

Base
Modifier

Base
(String
Length)

Base
Modifier

Modifier

Base
(Descriptor)

Base
(String
Length)

Base
(Error)

Base
(Numeric)

Modifier
Usage

COBOL
Argument

COBOL
Arguments

COBOL
Arguments

Description

Insures that the passed COBOL argument
isunsigned. This modifier isused with
numeric base attributes. See page 99.

Passes the size (in bytes) of the string
buffer to the C function. buffer_length
is one greater than the length of a non-
numeric COBOL argument or four
greater than the digit length of anumeric
COBOL argument. See page 104.

Indicates that the C function expects
character data represented in the system
ANSI codepage on Windows. If the
runtime native character set is OEM,
CodeBridge will convert COBOL
character datafrom OEM to ANSI for
input arguments and ANSI to OEM for
output arguments. This attributeis
mutually exclusive with the
c_data_is oem attribute. Thismodifier
is used with string base attributes. See
page 101.

Indicates that the C function expects
character data represented in the system
OEM codepage on Windows. If the
runtime native character setis ANS!,
CodeBridge will convert COBOL
character datafrom ANS| to OEM for
input arguments and OEM to ANSI for
output arguments. This attributeis
mutually exclusive with the

c_data_is ansi attribute. Thismodifier
is used with string base attributes. See
page 101.

Passes the number of digitsin a passed
COBOL numeric argument to the C
function. See page 107.

Passes the effective size (in bytes) of the
string buffer to the C function. Thisis
similar to the standard C library function,
strlen. See page 105.

Causes the external variable errno to be
set to zero before the function call and
the value of the external variable errno
after the function call to be returned to a
COBOL numeric argument. See

page 110.

Converts COBOL numeric arguments to
C floating-point parameters (such as float
or double). See page 97.

Parameter Attributes Summary
Appendix E: Parameter Attributes

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

general_string

Get_last_error

In

Initial_state

Integer

Integer_only

Leading(value)

Leading_minus

Leading_sign

Leading_spaces

Length

Attribute
Category

Base
(Numeric
or String)

Base
(Error)

Direction

Base
(Descriptor)

Base
(Numeric)

Base
Modifier

Base
Modifier

Base
Modifier

Base
Modifier

Base
Modifier

Base
(Descriptor)

Modifier
Usage

COBOL
Argument

C Parameter

C Parameter

C Parameter

C Parameter

Description

Converts numeric and non-numeric
COBOL arguments to null-terminated

C strings. Numeric COBOL arguments
aretreated asif the numeric_string base
attribute were specified. Non-numeric
COBOL arguments are treated asif the
string base attribute were specified. See
page 104.

Causes the Windows error code to be set
to zero by acall to SetLastError before
the function call and the value returned
from acall to GetLastError after the
function call to be returned to a COBOL
numeric argument. See page 110.

Specifies an input parameter to the C
function. See page 94.

Passes the COBOL initid state flag to the
C function. See page 107.

Converts COBOL numeric arguments to
C integer parameters (such as char, short,
int, or long). See page 97.

Insures that the passed COBOL argument
isan integer (no digits are allowed to the
right of the decimal point). This modifier
is used with the integer base attribute.
See page 100.

Specifies the use of leading strip/fill
charactersindicated by value. This
modifier is used with the string base
attribute. See page 102.

Forces aminus sign character (“-") to be
placed before the numeric value when the
valueis negative. Positive values do not
contain asign character. This modifier is
used with the numeric_string base
attribute. See page 101.

Forces a sign character, either aplus
(“+") or aminus (“-"), depending on the
sign of the value, to be placed before the
numeric value. This modifier isused
with the numeric_string base attribute.
See page 101.

Specifies the use of leading strip/fill
space characters. This modifier is used
with the string base attribute. See
page 102.

Passes the size (in bytes) of a passed
COBOL argument to the C function. See
page 108.

CodeBridge User's Guide 115
First Edition

Parameter Attributes Summary
Appendix E: Parameter Attributes

Table 5: Parameter Attributes Summary (Cont.)

Parameter Attribute Modifier

Attribute Category Usage Description

no_null_pointer Base COBOL Returns an error if the COBOL program

Modifier Argument passes a pointer with anull value as an

argument. Thismodifier is used with
numeric or string base attributes. See
pages 99 and 103.

no_size error Base COBOL Causes numeric conversion errorsto be

Modifier Argument ignored. This modifier is used with
numeric base attributes. See page 99.

numeric_string Base Converts COBOL numeric arguments to
(Numeric) null-terminated C strings. See page 40.

occurs(value) Base C Parameter = Specifies that the parameter is an array
Modifier containing value elements. This modifier

is used with numeric or string base
attributes. It is also used with the
buffer_length and effective_length base
attributes. See pages 100 and 103.

optional Base COBOL Allowsthe COBOL program to omit an
Modifier Argument input argument even though aC
parameter is associated with that
argument. Thismodifier is used with
numeric or string base attributes. See
pages 100 and 103.

out Direction Specifies an output parameter from the
C function and causes an output
conversion into the associated COBOL
argument. See page 94.

pointer_address Base Passes the effective address (base address
(Pointer) component plus offset component) of a
passed COBOL pointer argument to the
C function. See page 106.

pointer_base Base Passes the base address component of a
(Pointer) passed COBOL pointer argument to the
C function. See page 106.
pointer_length Base Passes the effective length (size
(Pointer) component minus offset component) of a

passed COBOL pointer argument to the
C function. See page 106.

pointer_max_size Base COBOL Sets the size component of a passed
Modifier Argument COBOL pointer argument to the
maximum value (all ones) on output.
This modifier is used with the
pointer_base or pointer_offset base
attributes. See page 107.

pointer_offset Base Passes the offset component of a passed
(Pointer) COBOL pointer argument to the
C function. See page 106.

116 CodeBridge User's Guide
First Edition

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

pointer_reset_offset

pointer_size

repeat(value)

ret_val

rounded

scale

scaled(value)

silent

size(value)

string

trailing(value)

Attribute
Category

Base
Modifier

Base
(Pointer)

Base
Modifier

Argument
Number

Base
Modifier

Base
(Descriptor)

Base
Modifier

Base
Modifier

Base
Modifier

Base
(String)

Base
Modifier

Modifier
Usage

COBOL
Argument

C Parameter

COBOL
Argument

C Parameter

C Parameter

C Parameter

C Parameter

Parameter Attributes Summary
Appendix E: Parameter Attributes

Description

Sets the offset component of a passed
COBOL pointer argument to zero on
output. This modifier is used with the
pointer_base or pointer_size base
attributes. See page 107.

Passes the size component of a passed
COBOL pointer argument to the
C function. See page 106.

Used when the C function expects a
variable number of parameters. This
modifier is used for numeric or string
base attributes. See pages 100 and 103.

Explicitly specifies the COBOL
argument in the GIVING (RETURNING)
phrase rather than accepting the default
argument association. See page 94.

Causes rounding (instead of truncation)
to occur during parameter conversion
when trailing digits must be removed.
This modifier is used with numeric base
attributes. See page 100.

Passes the scale of a passed COBOL
numeric argument to the C function. If a
COBOL argument had a picture of

999V 99, the scale used by COBOL is-2.
Thisvalue is negated and passed as +2 to
the C function. If the picture contains
“P’ characters, this value may appear
unusual. See page 108.

On input, multiplies the passed COBOL
argument by a 104, On output, divides
the C parameter by a 10/*®. This
modifier is used with theinteger base
attribute. See page 100.

Suppresses display of errors detected
during conversion or validation. See

page 95.

Used with numeric_string and string base
attributes to override the default length
(its size or precision) of the passed
COBOL argument. See pages 101

and 103.

Converts COBOL non-numeric
arguments to null-terminated C strings.
See page 101.

Specifies the use of trailing strip/fill
charactersindicated by value. This
modifier is used with the string base
attribute. See page 103.

CodeBridge User's Guide 117
First Edition

Parameter Attributes Summary
Appendix E: Parameter Attributes

Table 5: Parameter Attributes Summary (Cont.)

Parameter Attribute
Attribute Category
trailing_credit Base
Modifier
trailing_debit Base
Modifier
trailing_minus Base
Modifier
trailing_sign Base
Modifier
trailing_spaces Base
Modifier
type Base
(Descriptor)
unsigned Base
Modifier
value if_omitted Base
(value) Modifier
windows_handle Base
(Descriptor)

118 CodeBridge User's Guide
First Edition

Modifier
Usage

C Parameter

C Parameter

C Parameter

C Parameter

C Parameter

C Parameter

COBOL
Argument

Description

Forces a credit symbol (“CR”) to be
placed after the numeric value when the
valueis negative. Positive values do not
contain asign representation. This
modifier is used with the numeric_string
base attribute. See page 101.

Forces a debit symbol (“DB”) to be
placed after the numeric value when the
value is negative. Positive values do not
contain asign representation. This
modifier is used with the numeric_string
base attribute. See page 101.

Forces aminus sign character (“-") to be
placed after the numeric value when the
valueis negative. Positive values do not
contain asign character. This modifier is
used with the numeric_string base
attribute. See page 101.

Forces sign character, either aplus (“+”
or aminus (“-") sign character,
depending on the sign of the value, to be
placed after the numeric value. This
modifier is used with the numeric_string
base attribute. See page 101.

Specifies the use of trailing strip/fill
space characters. This modifier is used
with the string base attribute. See
page 103.

Passes the type-code of a passed
COBOL argument to the C function. See
page 108.

Indicates that the C parameter is
unsigned. If thisattributeis not used, all
integer C parameters are treated as
signed. This modifier is used with the
integer base attribute. See page 101.

Assigns a default value when the
COBOL program omits the associated
argument. This modifier is used with the
numeric or string base attributes. See
pages 100 and 103.

Passes the Windows handle of the current
COBOL CALL tothe Cfunction. This
attribute is available only for Windows
systems. See page 109.

Parameter Attribute Combinations
Appendix E: Parameter Attributes

Parameter Attribute Combinations

The CodeBridge Builder recognizes various parameter attribute combinations.
Table 6 isaquick reference that lists the allowed combinations. For instance, some
base modifier attributes make sense only for input or output. In those cases, there are

separate rows for “in only” and “out only”.

Note When the “Direction” column contains “in (assumed)”, the direction is always
assumed to be “in”, but the in direction attribute is not allowed.

Table 6: Parameter Attribute Combinations

Base

address
arg_count
buffer_length
digits
effective_length
errno

float

general_string

Direction

in (assumed)
in (assumed)
in (assumed)
in (assumed)
in (assumed)
out (assumed)

out (assumed)

inonly
out only
either

inonly

out only

Argument
Number

arg_num
none
arg_num
arg_num
arg_num
ret_val

arg_num

ret_val
arg_num

ret_val

Modifiers

silent

silent

occurs

silent

occurs

dias
assert_digits
assert_digits _left
assert_digits_right
assert_length
assert_signed

assert_digits
assert_digits left
assert_digits _right
assert_length
assert_signed
optional

alias

assert_digits
assert_digits left
assert_digits_right
assert_length
assert_signed
assert_unsigned
leading_minus
leading_sign
optional
trailing_credit

dias

silent

silent
assert_unsigned
no_size error
rounded

scaled

silent

assert_unsigned
no_size error
rounded

scaled

silent

value if_omitted

no_null_pointer
no_size error
occurs

repeat

rounded

silent
trailing_debit
trailing_minus
trailing_sign
value_if_omitted

CodeBridge User's Guide 119

First Edition

Parameter Attribute Combinations
Appendix E: Parameter Attributes

Table 6: Parameter Attribute Combinations (Cont.)

Base

get_last_error

initial_state
integer

length
numeric_string

pointer_address

120 CodeBridge User's Guide
First Edition

Direction

either

out (assumed)

out (assumed)

in (assumed)
inonly

out only
either

in (assumed)
inonly
out only

either

in (assumed)

Argument
Number

arg_num

ret_val

arg_num

none

ret_val
arg_num

arg_num

ret_val

arg_num

arg_num

Modifiers

assert_digits
assert_digits _left
assert_digits _right
assert_length
assert_signed
assert_unsigned
c_data is_ansi
c_data is_oem
leading
leading_spaces
alias

assert_digits
assert_digits _left
assert_digits_right
assert_length
assert_signed

assert_digits
assert_digits _left
assert_digits_right
assert_length
assert_signed

silent

integer_only
optional

alias

assert_digits
assert_digits _left
assert_digits_right
assert_length
assert_signed
assert_unsigned
no_null_pointer

silent

leading_minus
leading_sign
optional
trailing_credit
alias
assert_digits
assert_digits _left
assert_digits_right
assert_length
assert_signed
assert_unsigned
no_null_pointer

silent

no_null_pointer
no_size error
occurs

repeat

rounded

silent

size

trailing
trailing_spaces

assert_unsigned
no_size error
rounded

scaled

silent

assert_unsigned
no_size error
rounded

scaled

silent

value_if_omitted

no_size error
occurs

repeat
rounded
scaled

silent
unsigned

trailing_debit
trailing_minus
trailing_sign
value if_omitted

no_size error
occurs

repeat
rounded
silent

size

Parameter Attribute Combinations
Appendix E: Parameter Attributes

Table 6: Parameter Attribute Combinations (Cont.)

Argument
Base Direction Number Modifiers
pointer_base inonly
out only ret_val dias pointer_reset_offset
pointer_max_size
either arg_num silent
pointer_length in (assumed) arg_num silent
pointer_offset inonly
out only ret_val aias pointer_max_size
either arg_num silent
pointer_size inonly
out only ret_val dias pointer_reset_offset
either arg_num silent
scale in (assumed) arg_num silent
string inonly optional value if_omitted
out only ret_val dias
either arg_num assert_length occurs
c_data is_ansi repeat
c_data is_oem silent
leading size
leading_spaces trailing
no_null_pointer trailing_spaces
type in (assumed) arg_num silent
windows_handle = in (assumed) none silent
(This attribute is
available only
for Windows
systems. See
page 109.)

CodeBridge User's Guide 121
First Edition

Parameter Attribute Combinations
Appendix E: Parameter Attributes

122 CodeBridge User's Guide
First Edition

Library Functions Overview
Appendix F: CodeBridge Library Functions

Appendix F: CodeBridge
Library Functions

The CodeBridge Library is a collection of functions that are included in the
RM/COBOL runtime system. These functions are used to convert input data from
COBOL argumentsto C parameters on entry and from C parameters to COBOL
arguments just prior to exit. The CodeBridge Library also contains functions that
perform data range and integrity checks.

This appendix describes each function in the CodeBridge Library. These
descriptions will help you understand the C code generated by the CodeBridge
Builder. Information on specifying the Flags parameter is also covered. The
information in this appendix will also prove useful if you are debugging applications
developed using CodeBridge.

Note Theinformation presented here assumes a working knowledge of the
C programming language. The material in Appendix C: Useful C Information (on
page 81), is not comprehensive enough to provide this necessary background.

Library Functions Overview

The CodeBridge Library consists of the conversion and validation functions as
shown in Table 7. (These functions are described in detail beginning on page 128.)
Input functions are called before the C function is called. Output functions are called
after the C function is called but before returning to the calling COBOL program.

Note Each of these routines returns FALSE if an error condition occurs. Logicin
the C source code file (generated by the CodeBridge Builder) will terminate the
dynamic-link library (DLL) and return an error to the RM/COBOL runtime system,
which will terminate the calling COBOL program. See CodeBridge Library Error
Messages (on page 51) for atable listing these errors.

CodeBridge User's Guide 123
First Edition

Library Functions Overview

Appendix F: CodeBridge Library Functions

Table 7: CodeBridge Library Functions

Function Name
AssertDigits
(on page 128)

AssertDigitsL eft
(on page 129)
AssertDigitsRight
(on page 130)

AssertLength
(on page 131)

AssertSigned
(on page 132)

AssertUnsigned
(on page 133)

BufferLength
(on page 134)

Cobol ArgCount
(on page 135)

CobolDescriptorAddress
(on page 136)

Cobol DescriptorDigits
(on page 137)

Cobol DescriptorLength
(on page 138)

CobolDescriptorScale
(on page 139)

CobolDescriptorType
(on page 140)

CobollInitial State
(on page 141)

Cobol ToFloat
(on page 142)

Cobol ToGenera String
(on page 144)

Cobol Tol nteger
(on page 146)

Cobol ToNumericString
(on page 148)

Cobol ToPointerAddress
(on page 150)

Cobol ToPointerBase
(on page 151)

Cobol ToPointerLength
(on page 152)

Cobol ToPointerOffset
(on page 153)

Cobol ToPointerSize
(on page 154)

124 CodeBridge User's Guide

First Edition

Input or Output
Either

Either

Either

Either

Either

Either

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Input

Used For

[[numeric assert_digits]]
[[numeric assert_digits_left]]
[[numeric assert_digits_right]]
[[numeric assert_length]] or
[[string assert_length]]
[[numeric assert_signed]]
[[numeric assert_unsigned]]
[[buffer_length]]
[[arg_count]]

[[address]]

[digits]]

[[length]]

[[scale]]

[[type]]

[[initial_state]]

[[float]]

[[general_string]]

[[integer]]

[[numeric_string]]
[[pointer_address]]
[[pointer_base in]]
[[pointer_lengthl]
[[pointer_offset in]]

[[pointer_sizein]]

Library Functions Overview
Appendix F: CodeBridge Library Functions

Table 7: CodeBridge Library Functions (Cont.)

Function Name Input or Output Used For

Cobol ToString Input [[string]]

(on page 155)

CobolWindowsHandle Input [[windows_handl€]]
(on page 157)

ConversionCleanup Neither Cleanup during conversion exit.
(on page 158)

ConversionStartup Neither Initialization of conversion process.
(on page 159)

DiagnosticM ode Global [# diagnostic(flag) #]
(on page 160)

Effectivelength Input [[effective_length]]
(on page 161)

FloatToCobol Output [[float out]]

(on page 162)

Genera StringToCobol Output [[general_string out]]
(on page 163)

GetCallerinfo Neither Obtaining information about the calling
(on page 165) COBOL program.
Integer ToCobol Output [[integer out]]

(on page 166)

NumericStringToCobol Output [[numeric_string out]]
(on page 168)

PointerBaseToCobol Output [[pointer_base out]]
(on page 170)

PointerOffsetToCobol Output [[pointer_offset out]]
(on page 171)

PointerSizeToCobol Output [[pointer_size out]]
(on page 172)

StringToCobol Output [[string out]]

(on page 173)

The series of functions that begin with “ Assert” are designated as “Either” in the
Input or Output column. It is recommended that these functions be called prior to the
execution of the C function.

The ConversionStartup, ConversionCleanup, and GetCallerInfo functions are
designated as “Neither” in the Input or Output column. The ConversionStartup
function should be called once just after entry from COBOL. The
ConversionCleanup function should be called once just prior to returning to COBOL .
The GetCallerInfo function may be called at any time; it is usually called after an
error is detected in order to add calling program information to an error message.

The DiagnosticMode function is designated as “ Global” in the Input or Output
column. Thisfunction may be called at any time, including multiple times, after the
call to ConversionStartup and prior to the call to ConversionCleanup.

CodeBridge User's Guide 125
First Edition

Specifying the Flags Parameter

Appendix F: CodeBridge Library Functions

126

Specifying the Flags Parameter

The behavior of the CodeBridge Library conversion and validation functions is
determined by flag settings in the Flags parameter. In some cases, the behavior
requested by aflag requires that additional information be passed in another
parameter. For example, when passing an array, you must set both the PF OCCURS
flag and pass the array size in the Occurs parameter.

Vauesfor the Flags parameter, which is used with most of the CodeBridge Library
functions, are defined in cbridge.h. These values correspond to the base modifier
attributes that can be specified in template files. See Table 8 for alist of flag
definitions.

Normally, the PF_IN flag is used only for documentation purposes. However, when
aNumeric or String output conversion function (FloatToCoboal,

General StringToCobol, IntegerToCobol, NumericStringToCobol, and
StringToCobol) is used, the corresponding Numeric or String input conversion
function (Cobol ToFloat, Cobol ToGeneral String, Cobol Tolnteger,

Cobol ToNumericString, and Cobol ToString) must also be called. Thisistrue even
when the COBOL argument is not used as an input to the C function. For these
reasons, the setting of the PF_IN flag is critical for Numeric and String input
conversions. When the PF_IN flag is not set, initialization of the C dataitemis not
performed, but the initialization necessary for the output conversion is performed.

The PF_OCCURS, PF_OUT, and PF_RETURN_VALUE flags are not used in the
current implementation of the CodeBridge Library and, therefore, are used only for
documentation purposes. However, because of possible changes to future versions of
the CodeBridge Library, we recommend that these flags be set whenever appropriate.
That is, calls to the CodeBridge Library output functions (FloatToCobol,

General StringToCobol, IntegerToCobol, NumericStringToCobol,
PointerBaseToCobol, PointerOffsetToCobol, PointerSizeToCobol, and
StringToCobol) should set the PF_OUT flag. When associated with the C function
return value, calls to these same output functions should set the
PF_RETURN_VALUE flag in addition to the PF_OUT flag. The PF_OCCURS flag
should be set whenever an array is specified.

Although the following masks are neither used nor required in any CodeBridge
Library call, they are provided for convenience and completeness:

e PF_LEADING. Thismask isacombination of the PF_LEADING_SPACES
flag and the PF_LEADING_VALUE flag.

e PF_TRAILING. Thismask isacombination of the PF_TRAILING_SPACES
flag and the PF_TRAILING_VALUE flag.

e PF_NUMERIC_STRING_MASK. Thismask may be used to isolate the
following flags: PF_LEADING_MINUS, PF_LEADING_SIGN,
PF_TRAILING_CREDIT, PF_TRAILING_DEBIT, PF_TRAILING_MINUS,
and PF_TRAILING_SIGN.

CodeBridge User's Guide

First Edition

Table 8: CodeBridge Library Flag Definitions

Name
PF_ASSERT_SIGNED
PF_ASSERT_UNSIGNED
PF_C_DATA_IS ANSI
PF_C_DATA_IS OEM
PF_IN
PF_INTEGER_ONLY
PF_LEADING
PF_LEADING_MINUS
PF_LEADING_SIGN
PF_LEADING_SPACES
PF_LEADING_VALUE
PF_NO_NULL_POINTER
PF_NO_SIZE_ERROR
PF_NUMERIC_STRING_MASK
PF_OCCURS
PF_OPTIONAL

PF_OUT
PF_POINTER_MAX_SIZE
PF_POINTER_RESET_OFFSET
PF_REPEAT
PF_RETURN_VALUE
PF_ROUNDED
PF_SCALED

PF_SILENT
PF SIZE

PF_TRAILING
PF_TRAILING_CREDIT
PF_TRAILING_DEBIT
PF_TRAILING_MINUS
PF_TRAILING_SIGN
PF_TRAILING_SPACES
PF_TRAILING_VALUE
PF_UNSIGNED
PF_VALUE_IF_OMITTED

Value

0x00000008
0x00000010
0x04000000
0x08000000
0x00000020
0x00000040
0x00000180
0x00000001
0x00000000
0x00000080
0x00000100
0x00000200
0x00000400
0x00000007
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000

0x00100000
0x00200000
0x00C00000
0x00000006
0x00000007
0x00000005
0x00000004
0x00400000
0x00800000
0x01000000
0x02000000

Specifying the Flags Parameter
Appendix F: CodeBridge Library Functions

Description

COBOL argument must be signed.
COBOL argument must be unsigned.
C characters are from ANSI codepage.
C characters are from OEM codepage.
Input argument for C function.
COBOL argument must be an integer.
Mask for leading strip/fill.

Place “-" before negative value.

Place “+" or “-" before value.
Strip/fill leading spaces.

Strip/fill leading value.

Disallow NULL value for pointer.
Ignore numeric size errors.
numeric_string sign handling mask.
Parameter is an array.

Parameter is optional.

Output parameter from C function.
Maximize pointer size (all ones).
Clear pointer offset.

Parameter repeated multiple times.
Return value of the C function.
Round last digit if lost precision.

On input, multiply by 10va:
on output, divide by 104,

Suppress error message display.
Override default size of string.
Mask for trailing strip/fill.

Place “CR” after negative value.
Place “DB” after negative value.
Place “-" after negative value.
Place“+" or “-” after value
Strip/fill trailing spaces.
Strip/fill trailing value.

C parameter is unsigned.

Override value for omitted argument.

CodeBridge User's Guide
First Edition

127

AssertDigits
Appendix F: CodeBridge Library Functions

128

AssertDigits

AssertDigits returns TRUE if the number of digits for the COBOL argument isin the
range specified by MinValue and MaxValue; otherwise, the function returns FAL SE.
This function also returns FALSE if the argument is not numeric.

If the COBOL CALL statement omits an argument, the value that is substituted for
the omitted argument is not checked by this function. See the discussion on
managing omitted arguments (on page 30).

The use of P-scaling in the COBOL program will increase the digit length by the
number of P symbols specified in the PICTURE character-string. For example, all of
the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5) describe adataitem
with adigit length of eight for CodeBridge.

Calling Sequence

int _rmdll_RtCall->pAssertDigits
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values for AssertDigits are:
PF_OPTIONAL, PF_SILENT, and PF_VALUE_IF_OMITTED. SeeTable8on
page 127.

The value of the PF_OPTIONAL and PF_ VALUE_IF_ OMITTED flags must be the
same as the corresponding conversion call, such as Cobol ToFloat (on page 142) or
FloatToCobol (on page 162), for that argument.

MaxValue is the maximum allowed length, in digits.
MinValueis the minimum allowed length, in digits.
Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge User's Guide

First Edition

AssertDigitsLeft
Appendix F: CodeBridge Library Functions

AssertDigitsLeft

AssertDigitsLeft returns TRUE if the number of digitsto the left of the decimal point
for the COBOL argument is in the range specified by MinValue and MaxValue;
otherwise, the function returns FALSE. This function also returns FALSE if the
argument is not numeric.

If the COBOL CALL statement omits an argument, the value that is substituted for
the omitted argument is not checked by this function. See the discussion on
managing omitted arguments (on page 30).

The use of P-scaling in the COBOL program will increase the number of digits to the
left of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the left of the decimal point. For example, both of the
PICTURE character-strings 9(8) and 9(5)P(3) describe a data item with eight digits
to the | eft of the decimal point for CodeBridge.

Calling Sequence

int _rmdll_RtCall->pAssertDigitsLeft
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values for AssertDigitsL eft
are. PF_OPTIONAL, PF_SILENT, and PF_VALUE_IF_OMITTED. See Table8
on page 127.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call, such as Cobol ToFloat (on page 142) or
FloatToCobol (on page 162), for that argument.

MaxValue is the maximum allowed digits to the |eft of the decimal point.
MinValue is the minimum allowed digits to the left of the decimal point.
Note 1 The C construct, ~0, may be used to indicate avalue of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge User's Guide 129
First Edition

AssertDigitsRight
Appendix F: CodeBridge Library Functions

130

AssertDigitsRight

AssertDigitsRight returns TRUE if the number of digits to the right of the decimal
point for the COBOL argument isin the range specified by MinValue and MaxValue;
otherwise, the function returns FALSE. This function also returns FALSE if the
argument is not numeric.

If the COBOL CALL statement omits an argument, the value that is substituted for
the omitted argument is not checked by this function. See the discussion on
managing omitted arguments (on page 30).

The use of P-scaling in the COBOL program will increase the number of digits to the
right of the decimal point by the number of P symbols specified in the PICTURE
character-string that occur to the right of the decimal point. For example, both of the
PICTURE character-strings V9(8) and VP(3)9(5) describe a data item with eight
digitsto the right of the decimal point for CodeBridge.

Calling Sequence

int _rmdll_RtCall->pAssertDigitsRight
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short MinvValue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values for
AssertDigitsRight are: PF_OPTIONAL, PF_SILENT, and
PF_ VALUE_IF_OMITTED. See Table 8 on page 127.

The value of the PF_OPTIONAL and PF_VALUE_IF_ OMITTED flags must be the
same as the corresponding conversion call, such as Cobol ToFloat (on page 142) or
FloatToCobol (on page 162), for that argument.

MaxValue is the maximum allowed digits to the right of the decimal point.
MinValue is the minimum allowed digits to the right of the decimal point.
Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge User's Guide

First Edition

AssertLength
Appendix F: CodeBridge Library Functions

AssertLength

AssertLength returns TRUE if the length of the COBOL argument (in bytes) isin the
range specified by MinValue and MaxValue; otherwise, the function returns FAL SE.

If the COBOL CALL statement omits an argument, the value that is substituted for
the omitted argument is not checked by this function. See the discussion on
managing omitted arguments (on page 30).

Calling Sequence

int _rmdll_RtCall->pAssertLength
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags,
unsigned short MaxValue,
unsigned short Minvalue);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values for AssertLength are:
PF_OPTIONAL, PF_SILENT, and PF_VALUE_IF_OMITTED. SeeTable8on
page 127.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be the
same as the corresponding conversion call, such as Cobol ToFloat (on page 142) or
FloatToCobol (on page 162), for that argument.

MaxValue is the maximum allowed length, in bytes.
MinValueis the minimum allowed length, in bytes.
Note 1 The C construct, ~0, may be used to indicate avalue of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The function will
reverse their values if necessary.

CodeBridge User's Guide 131
First Edition

AssertSigned
Appendix F: CodeBridge Library Functions

132

AssertSigned

AssertSigned returns TRUE if the COBOL argument is signed; otherwise, the
function returns FALSE.

If the COBOL CALL statement omits an argument, the value that is substituted for
the omitted argument is not checked by this function. See the discussion on
managing omitted arguments (on page 30).

Calling Sequence

int _rmdll_RtCall->pAssertSigned
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values for AssertSigned are:
PF_OPTIONAL, PF_SILENT, and PF_ VALUE_IF OMITTED. SeeTable8on
page 127.

The value of the PF_OPTIONAL and PF_VALUE_IF_ OMITTED flags must be the
same as the corresponding conversion call, such as Cobol ToFloat (on page 142) or
FloatToCobol (on page 162), for that argument.

CodeBridge User's Guide

First Edition

AssertUnsigned
Appendix F: CodeBridge Library Functions

AssertUnsigned

AssertUnsigned returns TRUE if the COBOL argument is unsigned; otherwise, the
function returns FALSE.

If the COBOL CALL statement omits an argument, the value that is substituted for
the omitted argument is not checked by this function. See the discussion on
managing omitted arguments (on page 30).

Calling Sequence

int _rmdl1_RtCall->pAssertUnsigned
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments,
int Flags);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of datavalidation. Valid flag values for AssertUnsigned
are: PF_OPTIONAL, PF SILENT, and PF_ VALUE IF OMITTED. SeeTable8
on page 127.

The value of the PF_OPTIONAL and PF_VALUE_IF_ OMITTED flags must be the
same as the corresponding conversion call, such as Cobol ToFloat (on page 142) or
FloatToCobol (on page 162), for that argument.

CodeBridge User's Guide 133
First Edition

BufferLength
Appendix F: CodeBridge Library Functions

134

BufferLength

BufferLength obtains the length (in bytes) of the data buffer that has been allocated
for conversion to and from the COBOL argument. For COBOL non-numeric
arguments, this normally would be one more than the length of the argument. For
COBOL numeric arguments, this normally would be four more than the digit length
of the argument. This function returns TRUE if it is successful and FALSE if there
isan error.

Note The BufferLength function may be used only in combination with one of the
input string functions: Cobol ToGeneral String (on page 144),

Cobol ToNumericString (on page 148), or Cobol ToString (on page 155). ArgNumber
must have the same value in the BufferL ength function call and the corresponding
input string function call. The call to BufferLength may precede or follow the call to
the corresponding input string function.

Calling Sequence

int _rmdl1_RtCall->pBufferLength

(short ArgCount,

short ArgNumber,

CONV_TABLE *ConvTable,

int Flags,

int Occurs,

void *Parameter,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinternal conversion table allocated by the ConversionStartup (on
page 159) function.

Flags modify the behavior of the conversion. Valid flag values for BufferLength are:
PF_OCCURSand PF_SILENT. See Table 8 on page 127.

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

Note For any given argument, the buffer length is a constant regardless of whether
the argument isascalar or an array. Thus, if you are writing you own C routine,
there is no reason to have a buffer length parameter that is an array, even when the
related C string parameter is an array.

Parameter is the address of the C parameter where the buffer length will be stored.
Szeisthe size of the C parameter.

CodeBridge User's Guide

First Edition

CobolArgCount
Appendix F: CodeBridge Library Functions

CobolArgCount

Cobol ArgCount obtains that actual number of arguments passed from the calling
COBOL program. Thisfunction returns TRUE if it is successful and FALSE if there
isan error.

Note The CobolArgCount function isone of the trivial conversion functions. See
the discussion on trivial conversions (on page 216).

Calling Sequence

int _rmdll1_RtCall->pCobolArgCount
(short ArgCount,
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

Flags modify the behavior of the conversion. The only valid flag value for
CobolArgCount isPF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C parameter where the argument count will be stored.

Szeisthe size of the C parameter.

CodeBridge User's Guide 135
First Edition

CobolDescriptorAddress
Appendix F: CodeBridge Library Functions

CobolDescriptorAddress

Cobol DescriptorAddress obtains the address of the COBOL argument. This function
returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll1_RtCall->pCobolDescriptorAddress
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobholDescriptorAddressis PF_SILENT. See Table 8 on page 127.

Parameter is the address of the C pointer where the address of the COBOL argument
will be stored.

136 CodeBridge User's Guide
First Edition

CobolDescriptorDigits
Appendix F: CodeBridge Library Functions

CobolDescriptorDigits

CobolDescriptorDigits obtains the digit count for the COBOL argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll_RtCall->pCobolDescriptorDigits
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorDigitsis PF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C parameter where the digit count will be stored.
Szeisthe size of the C parameter.

CodeBridge User's Guide 137
First Edition

CobolDescriptorLength
Appendix F: CodeBridge Library Functions

CobolDescriptorLength

Cobol DescriptorL ength obtains the length (in bytes) of the COBOL argument. This
function returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll1_RtCall->pCobolDescriptorLength
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorLength is PF_SILENT. See Table 8 on page 127.

Parameter is the address of the C parameter where the length will be stored.
Szeisthe size of the C parameter.

138 CodeBridge User's Guide
First Edition

CobolDescriptorScale
Appendix F: CodeBridge Library Functions

CobolDescriptorScale

Cobol DescriptorScal e obtains the scale (the number of digitsto the right of the
decimal point) of the COBOL argument. Thisfunction returns TRUE if itis
successful and FALSE if thereisan error.

Calling Sequence

int _rmdll_RtCall->pCobolDescriptorScale
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CoholDescriptorScaleis PF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C parameter where the scale will be stored. The
scale value returned is the arithmetic complement of the value in the COBOL
descriptor.

Szeisthe size of the C parameter.

CodeBridge User's Guide 139
First Edition

CobolDescriptorType

Appendix F: CodeBridge Library Functions

140

CobolDescriptorType

Cobol DescriptorType obtains the type of the COBOL argument. This function
returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdll_RtCall->pCobolDescriptorType
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorTypeis PF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C parameter where the COBOL argument type value
will be stored. Seethe discussion of String Arrays (on page 45).

Szeisthe size of the C parameter.

CodeBridge User's Guide

First Edition

CobollnitialState
Appendix F: CodeBridge Library Functions

CobollnitialState

Caobollnitial State obtains the value of theinitial state flag from the current COBOL
CALL. Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

Note The Cobollnitial State function is one of the trivial conversion functions. See
the discussion on trivial conversions (on page 216).

When State is zero, the C function may choose to (re)initialize any “state” variables
it contains. When Sate is hon-zero, the C function may choose to use the current
values of any “state” variables.

Note A “state” variable is one whose contents are normally preserved between
function calls.

Calling Sequence

int _rmdll_RtCall->pCobollnitialState
(int Flags,
void *Parameter,
int Size),
short State);

Flags modify the behavior of the conversion. The only valid flag value for
CobholInitial Stateis PF_SILENT. See Table 8 on page 127.

Parameter is the address of the C parameter where theinitial state flag will be stored.
It may also be the address of an array of floating-point valuesif the PF_ OCCURS
flagis set.

Szeisthe size of the C parameter.
Sateistheinitial state flag for the current COBOL CALL.

CodeBridge User's Guide 141
First Edition

CobolToFloat
Appendix F: CodeBridge Library Functions

142

CobolToFloat

Cobol ToFloat converts the COBOL numeric argument to a C floating-point value.
Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the FloatToCobol (on

page 162) function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to this function may perform memory
management operations that are not needed for output-only conversions, this call
may be omitted.

Calling Sequence

int _rmdll_RtCall->pCobolToFloat

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

double Omitted,

void **Parameter,

int Repeat,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for Cobol ToFloat are:

e PF_ASSERT_SIGNED e PF_OPTIONAL

e PF_ASSERT_UNSIGNED e PF REPEAT

e PFIN e PF_ROUNDED

e PF_NO NULL_POINTER e PF SILENT

e PF_NO_SIZE ERROR e PF VALUE_IF OMITTED
e PF_OCCURS

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

CodeBridge User's Guide

First Edition

CobolToFloat
Appendix F: CodeBridge Library Functions

Omitted isthe default value for omitted argumentsif either of the PF_OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is a pointer to the address of the C parameter where the floating-point
value will be stored.

Repeat isthe repeat count if PF_REPEAT is set.

Szeisthe size of the C parameter.

CodeBridge User's Guide 143
First Edition

CobolToGeneralString
Appendix F: CodeBridge Library Functions

CobolToGeneralString

Cobol ToGeneral String converts the COBOL argument to a null-terminated C string.
For COBOL numeric arguments, this function has the same behavior as

Cobol ToNumericString (on page 148). For COBOL non-numeric arguments, this
function has the same behavior as Cobol ToString (on page 155). Thisfunction
returns TRUE if it is successful and FALSE if thereisan error.

By convention, this function should be called prior to the Genera StringToCobol (on
page 163) function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to this function may perform memory
management operations that are not needed for output-only conversions, this call
may be omitted.

Calling Sequence

int _rmdll_RtCall->pCobolToGeneralString

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
CONV_TABLE *ConvTable,

int Flags,

int Occurs,

char *Omitted,

void **Parameter,

int Repeat,

int Size,

short Valuel,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinterna conversion table alocated by ConversionStartup (on
page 159).

144 CodeBridge User's Guide
First Edition

CobolToGeneralString
Appendix F: CodeBridge Library Functions

Flags modify the behavior of the conversion. The flags available for

Cobol ToGeneral String are the union of the flags for Cobol ToNumericString and
CobolToString. Some flags, such as PF_LEADING_MINUS, areignored for
non-numeric strings. Other flags, such as PF_LEADING_SPACES are ignored
for numeric strings. Valid flag values (see Table 8 on page 127) for

Cobol ToGeneral String are:

e PF_ASSERT_SIGNED e PF_OPTIONAL

e PF_ASSERT_UNSIGNED o PF _REPEAT

e PF._C DATA_IS ANSI e PF_ROUNDED

e PF_C DATA_IS OEM e PF SILENT

e PFIN e PF SIZE

e PF_LEADING_MINUS e PF_TRAILING_CREDIT
e PF_LEADING_SIGN e PF_TRAILING_DEBIT
e PF_LEADING_SPACES e PF_TRAILING_MINUS
e PF_LEADING VALUE e PF_TRAILING_SIGN

e PF_NO_NULL_POINTER e PF_TRAILING_SPACES
e PF_NO_SIZE_ERROR e PF_TRAILING_VALUE
e PF_OCCURS e PF_VALUE_IF_ OMITTED

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_OCCURS flag be set, although it is for documentation
purposes only.

Omitted isthe default value for omitted argumentsif either of the PF_OPTIONAL or
PF_VALUE_IF_ OMITTED flagsis set.

Parameter isthe address of the C pointer where the address of the string will be
stored. It may also be the address of an array of string valuesif the PF_OCCURS
flagis set.

Repeat isthe repeat count if the PF_ REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one
more than the length of the COBOL argument and four more than the digit length of
the COBOL argument. The digit length of a COBOL argument is the sum of the
number of 9 and P symbols used in its PICTURE character-string.

Valuel is the strip/fill character valueif the PF_LEADING_VALUE flag is set.
Value? isthe strip/fill character value if the PF_TRAILING_VALUE flag is set.

CodeBridge User's Guide 145
First Edition

CobolTolnteger
Appendix F: CodeBridge Library Functions

146

CobolTolnteger

Cobol Tolnteger converts the COBOL numeric argument to a C integer value. This
function returns TRUE if it is successful and FALSE if thereis an error.

By convention, this function should be called prior to the IntegerToCobol (on
page 166) function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to this function may perform memory
management operations that are not needed for output-only conversions, this call
may be omitted.

Calling Sequence

int _rmdl1_RtCall->pCobolTolnteger

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

long Omitted,

void **Parameter,

int Repeat,

int Scale,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for Cobol Tolnteger are:

e PF_ASSERT_SIGNED e PF_OPTIONAL

e PF_ASSERT_UNSIGNED e PF_REPEAT

e PFIN e PF_ROUNDED

e PF_INTEGER ONLY e PF_SCALED

e PF_NO_NULL_POINTER e PF SILENT

e PF_NO_SIZE ERROR e PF_UNSIGNED

e PF_OCCURS e PF_VALUE_IF_ OMITTED

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

CodeBridge User's Guide

First Edition

CobolTolnteger
Appendix F: CodeBridge Library Functions

Omitted isthe default value for omitted argumentsif either of the PF_OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter is a pointer to the address of the C parameter where the integer value will
be stored. It may also be the address of an array of integer valuesif the
PF_OCCURSflag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Scaleisthe scale value if the PF_SCALED flag isset. It represents the power of ten
by which to multiply the COBOL argument.

Szeisthe size of the C parameter.

CodeBridge User's Guide 147
First Edition

CobolToNumericString
Appendix F: CodeBridge Library Functions

148

CobolToNumericString

Cobol ToNumericString converts the COBOL numeric argument to a null-terminated
C string. Thisfunction returns TRUE if it is successful and FALSE if thereis

an error.

By convention, this function should be called prior to the NumericStringToCobol (on
page 168) function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to this function may perform memory
management operations that are not needed for output-only conversions, this call

may be omitted.

Calling Sequence

int Flags,
int Occurs,

int Repeat,
int Size);

char *Omitted,
void **Parameter,

int _rmdll1_RtCall->pCobolToNumericString
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
CONV_TABLE *ConvTable,

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the

zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinterna conversion table alocated by ConversionStartup (on

page 159).

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on

page 127) for Cobol ToNumericString are:

CodeBridge User's Guide
First Edition

PF_ASSERT_SIGNED
PF_ASSERT_UNSIGNED
PF_IN
PF_LEADING_MINUS
PF_LEADING_SIGN
PF_NO_NULL_POINTER
PF_NO_SIZE_ERROR
PF_OCCURS
PF_OPTIONAL

PF_REPEAT
PF_ROUNDED
PF_SILENT

PF_SIZE
PF_TRAILING_CREDIT
PF_TRAILING_DEBIT
PF_TRAILING_MINUS
PF_TRAILING_SIGN
PF_VALUE_IF_ OMITTED

CobolToNumericString
Appendix F: CodeBridge Library Functions

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_OCCURS flag be set, although it is for documentation
purposes only.

Omitted is the default value for omitted arguments if either of the PF_ OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter isthe address of the C pointer where the address of the string will be
stored. It may also be the address of an array of string valuesif the PF_ OCCURS
flagis set.

Repeat is the repeat count if the PF_ REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length isthe greater of one
more than the length of the COBOL argument and four more than the digit length of
the COBOL argument. The digit length of a COBOL argument is the sum of the
number of 9 and P symbols used in its PICTURE character-string.

CodeBridge User's Guide 149
First Edition

CobolToPointerAddress
Appendix F: CodeBridge Library Functions

CobolToPointerAddress

Cobol ToPointerAddress obtains the effective address of the COBOL pointer
argument by adding its offset and base address components. This function returns
TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdll_RtCall->pCobolToPointerAddress
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
Cobol ToPointerAddressis PF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C pointer where the effective address of the COBOL
pointer argument will be stored.

150 CodeBridge User's Guide
First Edition

CobolToPointerBase
Appendix F: CodeBridge Library Functions

CobolToPointerBase

Cobol ToPointerBase obtains the base address component of the COBOL pointer

argument. Thisfunction returns TRUE if it is successful and FALSE if thereis
an error.

Calling Sequence

int _rmdll_RtCall->pCobolToPointerBase
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values for
CobolToPointerBase are: PF_IN and PF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C pointer where the base address component of the
COBOL pointer argument will be stored.

CodeBridge User's Guide 151
First Edition

CobolToPointerLength

Appendix F: CodeBridge Library Functions

152

CobolToPointerLength

Cobol ToPointerL ength obtains the effective length of the COBOL pointer argument
by subtracting its offset component from its size component. This function returns
TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdl1_RtCall->pCobolToPointerLength
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolToPointerLengthis PF_SILENT. See Table 8 on page 127.

Parameter isthe address of the C parameter where the effective length of the
COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

CodeBridge User's Guide

First Edition

CobolToPointerOffset
Appendix F: CodeBridge Library Functions

CobolToPointerOffset

Cobol ToPointerOffset abtains the offset component of the COBOL pointer

argument. Thisfunction returns TRUE if it is successful and FALSE if thereisan
error.

Calling Sequence

int _rmdl1_RtCall->pCobolToPointerOffset
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values for
Cobol ToPointerOffset are: PF_IN and PF_SILENT. See Table 8 on page 127.

Parameter is a pointer to the address of the C parameter where the offset component
of the COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

CodeBridge User's Guide 153
First Edition

CobolToPointerSize
Appendix F: CodeBridge Library Functions

CobolToPointerSize

Cobol ToPointerSize obtains the size component of the COBOL pointer argument.
Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

Calling Sequence

int _rmdl1_RtCall->pCobolToPointerSize
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values for
CobolToPointerSize are: PF_IN and PF_SILENT. See Table 8 on page 127.

Parameter is a pointer to the address of the C parameter where the size component of
the COBOL pointer argument will be stored.

Szeisthe size of the C parameter.

154 CodeBridge User's Guide
First Edition

CobolToString
Appendix F: CodeBridge Library Functions

CobolToString

Cobol ToString converts the COBOL non-numeric argument to a null-terminated
C string. Thisfunction returns TRUE if it is successful and FALSE if thereis
an error.

By convention, this function should be called prior to the StringToCobol (on

page 173) function for the same argument number. Do not set the PF_IN flag for

output-only conversions. Because the call to this function may perform memory
management operations that are not needed for output-only conversions, this call
may be omitted.

Calling Sequence

int Flags,
int Occurs,

int Repeat,
int Size,
short Valuel,

int _rmdll_RtCall->pCobolToString
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
CONV_TABLE *ConvTable,

char *Omitted,
void **Parameter,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTableistheinterna conversion table alocated by ConversionStartup
(on page 159).

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on

page 127) for Cobol ToString are;

PF_C DATA_IS ANSI
PF_C_DATA_IS OEM
PF_IN
PF_LEADING_SPACES
PF_LEADING_VALUE
PF_NO_NULL_POINTER
PF_OCCURS

PF_OPTIONAL
PF_REPEAT

PF_SILENT

PF_SIZE
PF_TRAILING_SPACES
PF_TRAILING_VALUE
PF_VALUE_IF_OMITTED.

CodeBridge User's Guide
First Edition

155

CobolToString
Appendix F: CodeBridge Library Functions

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_OCCURS flag be set, although it is for documentation
purposes only.

Omitted is the default value for omitted arguments if either of the PF_ OPTIONAL or
PF_VALUE_IF_OMITTED flagsis set.

Parameter isthe address of the C pointer where the address of the string will be
stored. It may also be the address of an array of string valuesif the PF_ OCCURS
flagis set.

Repeat is the repeat count if the PF_ REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is one more than the
length of the COBOL argument.

Valuel isthe strip/fill character value if the PF_LEADING_VALUE flag is set.
Value? isthe strip/fill character value if the PF_TRAILING_VALUE flag is set.

156 CodeBridge User's Guide
First Edition

CobolWindowsHandle
Appendix F: CodeBridge Library Functions

CobolWindowsHandle

CobolWindowsHandl e obtains the Windows handle of the current COBOL CALL.
Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

Note The CobolWindowsHandle function is one of the trivial conversion functions.
See the discussion on trivial conversions (on page 216).

Calling Sequence

int _rmdll_RtCall->pCobolWindowsHandle
(int Flags,
void *Parameter,
int Size,
HWND WindowsHandle);

Flags modify the behavior of the conversion. The only valid flag value for
CobolWindowsHandleis PF_SILENT. see Table 8 on page 127.

Parameter isthe address of the C parameter where the Windows handle will be
stored.

Szeisthe size of the C parameter.

WindowsHandle is the Windows handle for the current COBOL CALL. This
attribute is not available on UNIX platforms asit can cause compilation errors.

CodeBridge User's Guide 157
First Edition

ConversionCleanup
Appendix F: CodeBridge Library Functions

158

ConversionCleanup

ConversionCleanup must be called just prior to returning to the calling COBOL
program. It releases all memory that has been allocated by other conversion
functions.

Note ConversionCleanup must be called for every exit back to the calling COBOL
program when the C function has multiple return paths.

Calling Sequence

void _rmdll_RtCall->pConversionCleanup
(short ArgCount,
CONV_TABLE *ConvTable);

ArgCount is the argument count for the current COBOL CALL.

ConvTableistheinterna conversion table alocated by ConversionStartup (on
page 159).

CodeBridge User's Guide

First Edition

ConversionStartup
Appendix F: CodeBridge Library Functions

ConversionStartup

ConversionStartup must be called once at the beginning of the C function called
from COBOL and should precede all calls to other conversion functions. It allocates
ablock of memory for each COBOL argument (based on the value of ArgCount).
This block contains information that must be preserved between calls to other
conversion functions. This function returns TRUE if it is successful and FAL SE if
thereisan error.

Calling Sequence

int _rmdl1_RtCall->pConversionStartup
(short ArgCount,
CONV_TABLE **ConvTable,
char *Name,
short Version);

ArgCount is the argument count for the current COBOL CALL.

ConvTableisthe address of a C pointer where the address of the interna conversion
table will be stored.

Name is name of the C function that was called by the COBOL program.

Version is the minimum version of the CodeBridge Library that can provide all the
conversion and validation features required by the C function. For example, to
specify that the CodeBridge Library for RM/COBOL version 9 isrequired, the value
for Version should be 0x900.

CodeBridge User's Guide 159
First Edition

DiagnosticMode
Appendix F: CodeBridge Library Functions

160

DiagnosticMode

DiagnosticM ode controls the display of error messages during execution. If Flag
contains the value, DF_SILENT, no error messages will be displayed. If Flag
contains the value, DF_VERBOSE, error messages will always be displayed. If Flag
contains the value, DF_NORMAL, the display of error messages is governed by the
PF_SILENT flag in each call to the CodeBridge Library.

Note DiagnosticMode has global scope. It affectsall conversion and validation calls
until another DiagnosticMode call is made. Before thefirst call to DiagnosticM ode,
the display of error messagesis governed by the PF_SILENT flag in each call to the
CodeBridge Library asif DiagnosticMode had been called with the DF_ NORMAL
flag value.

Calling Sequence

void _rmdll_RtCall->pDiagnosticMode
(short Flag);

Flag modifies the display of the error message. Valid flag values for
DiagnosticM ode are the following:

Name Value Description
DF_SILENT -1 Diagnostic messages are never displayed.
DF_NORMAL 0 Diagnostic messages are displayed unless the

PF_SILENT flag is set in the CodeBridge
Library function call.

DF_VERBOSE 1 Diagnostic messages are always displayed.

CodeBridge User's Guide

First Edition

EffectiveLength
Appendix F: CodeBridge Library Functions

EffectiveLength

Effectivel ength obtains the length of the C string after conversion from the COBOL
argument. Thisincludes removal of leading and/or trailing characters. Thevaueis
the same as the value that would be returned by the C library function, strlen. This
function returns TRUE if it is successful and FALSE if thereisan error.

Note The Effectivel ength function may be used only in combination with one of
theinput string functions: Cobol ToGeneral String (on page 144),

Cobol ToNumericString (on page 148), or Cobol ToString (on page 155). ArgNumber
must have the same value in the Effectivelength function call and the corresponding
input string function call. The cal to Effectivel ength may precede or follow the call
to the corresponding input string function.

Calling Sequence

int _rmdl1_RtCall->pEffectivelLength

(short ArgCount,

short ArgNumber,

CONV_TABLE, *ConvTable,

int Flags,

int Occurs,

void *Parameter,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

ConvTableistheinternal conversion table allocated by ConversionStartup (on
page 159).

Flags modify the behavior of the conversion. Valid flag values for Effectivel ength
are. PF_OCCURS and PF_SILENT. See Table 8 on page 127.

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

Parameter isthe address of the C parameter where the effective length will be stored.
Szeisthe size of the C parameter.

CodeBridge User's Guide 161
First Edition

FloatToCobol
Appendix F: CodeBridge Library Functions

FloatToCobol

FloatToCobol converts from a C floating-point value to the COBOL numeric
argument. Thisfunction returns TRUE if it is successful and FALSE if thereis
an error.

By convention, the Cobol ToFloat (on page 142) function should be called prior to
this function for the same argument number. Do not set the PF_IN flag for output-
only conversions. Because the call to the Cobol ToFloat function may perform
memory management operations that are not needed for output-only conversions, this
call may be omitted.

Calling Sequence

int _rmdll_RtCall->pFloatToCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for FloatToCobol are:

e PF_ASSERT_SIGNED e PF REPEAT

e PF_ASSERT_UNSIGNED e PF _RETURN_VALUE
e PF NO_SIZE ERROR e PF_ROUNDED

e PF_OCCURS e PF SILENT

e PF OUT

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are allowed, but are treated as equivalent to zero. If the valueis greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

Parameter isthe address of the C parameter. It may also be the address of an array
of floating-point valuesif the PF_ OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Szeisthe size of the C parameter.

162 CodeBridge User's Guide
First Edition

GeneralStringToCobol
Appendix F: CodeBridge Library Functions

GeneralStringToCobol

General StringToCobol converts a null-terminated C string to the COBOL argument.
For COBOL numeric arguments, this function has the same behavior as
NumericStringToCobol (on page 168). For COBOL non-numeric arguments, this
function has the same behavior as StringToCaobol (on page 173). Thisfunction
returns TRUE if it is successful and FALSE if thereisan error.

By convention, the Cobol ToGeneral String (on page 144) function should be called
prior to this function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to the Cobol ToGeneral String function
may perform memory management operations that are not needed for output-only
conversions, this call may be omitted.

Calling Sequence

int _rmdll_RtCall->pGeneralStringToCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Size,

short Valuel,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge User's Guide 163
First Edition

GeneralStringToCobol
Appendix F: CodeBridge Library Functions

Flags modify the behavior of the conversion. The flags available for

General StringToCobol are the union of the flags for NumericStringToCobol and
StringToCobol. Some flags, such as PF_LEADING_MINUS, areignored for
non-numeric strings. Other flags, such as PF_LEADING_SPACES are ignored
for numeric strings. Valid flag values (see Table 8 on page 127) for

General StringToCobol are:

e PF_ASSERT_SIGNED e PFOUT
e PF_ASSERT_UNSIGNED e PF_REPEAT
e PF_C DATA_IS ANSI PF_RETURN_VALUE

e PF C DATA IS OEM e PF_ROUNDED

« PEIN e PF SILENT

e PF_LEADING_SPACES e PF SIZE

e PF LEADING VALUE e PF _TRAILING_SPACES
e PF NO_SIZE ERROR e PF TRAILING_ VALUE

e PF_OCCURS

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

Parameter isthe address of the C parameter. It may also be the address of an array
of string valuesif the PF_ OCCURS flag is set.

Repeat isthe repeat count if the PF_ REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length isthe greater of one
more than the length of the COBOL argument and four more than the digit length of
the COBOL argument. The digit length of a COBOL argument is the sum of the
number of 9 and P symbols used in its PICTURE character-string. The setting of the
PF_SIZE flag and the value of the Sze parameter must be the same as specified in
the call to Cobol ToGeneral String (on page 144) for the same argument.

Valuel isthe strip/fill character value if the PF_LEADING _VALUE flagis set.
Value2 isthe strip/fill character value if the PF_TRAILING _VALUE flagis set.

164 CodeBridge User's Guide
First Edition

GetCallerinfo
Appendix F: CodeBridge Library Functions

GetCallerinfo

GetCallerInfo obtains information about the calling COBOL program. Such
information is particularly useful in error messages because it helps identify the
offending CALL statement. Thisfunction returns a pointer to a structure that
contains the information about the calling program.

Calling Sequence

CALLER_INFO* _rmdll_RtCall->pGetCallerinfo();

The function has no arguments.

The structure pointed to by the return value is described by atype definition in the
supplied header file rtcallbk.h, which isincluded by the supplied header file
cbridge.h. For reference, the structureis asfollows:

typedef struct tagCallerinfo{

BIT16 Version;
BIT16 Flags;
ProgramLocation; / line number of CALL or

char

char
char

char

/* structure version; 0x0001 is first version */
/* flags; see #define CIF_... below */

segment/offset of statement after CALL */

ProgramName; / calling program name */
ProgramFileName; / calling program object file name

(including pathname) */

ProgramDateTime; / calling program date and time compiled */
} CALLER_INFO;

The Flagsfieldsin the CALLER_INFO structure have the following meanings (as
defined in rtcallbk.h):

#define CIF_LOCATION_ADDRESS 0x8000 /* indicates ProgramLocation

is segment/offset */

#define CIF_NESTED_PROGRAM 0x4000 /* indicates calling program

is a nested program */

The CIF_LOCATION_ADDRESS flag is set when the calling program was
compiled with the Q Compile Command Option, thus making line numbers
unavailable at runtime. In this case, the ProgramLocation entry points to a string
giving the segment/offset of the return location for the CALL statement as shownin
the DEBUG column of acompilation listing. When the flag is not set, the
ProgramL ocation entry points to a string giving the source line number of the
CALL statement.

Note Thereisno global or parameter attribute that can be placed in atemplate fileto
cause the CodeBridge Builder to produce acall to GetCallerInfo. The CodeBridge
Library will automatically call GetCallerInfo when displaying any error messages
caused by conversion errors. A user-written function, whether or not it uses other
CodeBridge Library calls, may call GetCallerinfo to add this information to its own
€rror Mmessages.

CodeBridge User's Guide 165
First Edition

IntegerToCobol
Appendix F: CodeBridge Library Functions

166

IntegerToCobol

IntegerToCobol converts from a C integer value to the COBOL numeric argument.
Thisfunction returns TRUE if it is successful and FALSE if thereis an error.

By convention, the Cobol Tolnteger (on page 146) function should be called prior to
this function for the same argument number. Do not set the PF_IN flag for output-
only conversions. Because the call to the Cobol Tolnteger function may perform
memory management operations that are not needed for output-only conversions, this
call may be omitted.

Calling Sequence

int _rmdll_RtCall->plIntegerToCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Scale,

int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for IntegerToCobol are:

e PF_ASSERT_SIGNED e PF _RETURN_VALUE
e PF_ASSERT UNSIGNED e PF_ROUNDED

e PF_NO_SIZE ERROR e PF_SCALED

e PF_OCCURS e PF SILENT

e PF OUT e PF_UNSIGNED

e PF REPEAT

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

CodeBridge User's Guide

First Edition

IntegerToCobol
Appendix F: CodeBridge Library Functions

Parameter isthe address of the C parameter. It may also be the address of an array
of integer valuesif the PF_ OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Scaleisthe scale value if the PF_SCALED flag isset. It represents the power of ten
by which to divide the C parameter.

Szeisthe size of the C parameter.

CodeBridge User's Guide 167
First Edition

NumericStringToCobol

Appendix F: CodeBridge Library Functions

168

NumericStringToCobol

NumericStringToCobol converts a null-terminated C string to the COBOL numeric
argument. Thisfunction returns TRUE if it is successful and FALSE if thereis
an error.

By convention, the Cobol ToNumericString (on page 148) function should be called
prior to this function for the same argument number. Do not set the PF_IN flag for
output-only conversions. Because the call to the Cobol ToNumericString function
may perform memory management operations that are not needed for output-only
conversions, this call may be omitted.

Calling Sequence

int _rmdll_RtCall->pNumericStringToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
int Occurs,
void *Parameter,
int Repeat,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for NumericStringToCobol are:

e PF_ASSERT_SIGNED e PF REPEAT

e PF_ASSERT_UNSIGNED e PF RETURN_VALUE
e PF NO_SIZE ERROR e PF_ROUNDED

e PF_OCCURS e PF SILENT

« PF_OPTIONAL e PF SIZE

e PF OUT

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

CodeBridge User's Guide

First Edition

NumericStringToCobol
Appendix F: CodeBridge Library Functions

Parameter isthe address of the C parameter. It may also be the address of an array
of string valuesif the PF_OCCURS flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is the greater of one
more than the length of the COBOL argument and four more than the digit length of
the COBOL argument. The digit length of a COBOL argument is the sum of the
number of 9 and P symbols used in its PICTURE character-string. The setting of the
PF_SIZE flag and the value of the Size parameter must be the same as specified in
the call to Cobol ToNumericString (on page 148) for the same argument.

CodeBridge User's Guide 169
First Edition

PointerBaseToCobol

Appendix F: CodeBridge Library Functions

170

PointerBaseToCobol

PointerBaseToCobol modifies the COBOL pointer argument. The contents of the

C pointer are moved to the base address component. If the PF_ POINTER_MAX_SIZE
flag is set, binary ones are moved to the size component. If the
PF_POINTER_RESET_OFFSET flag is set, avalue of 0 is moved to the offset
component. This function returns TRUE if it is successful and FALSE if thereisan
error.

Calling Sequence

int _rmdll_RtCall->pPointerBaseToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void **Parameter);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for PointerBaseToCobol are:

e PF OUT e PF_RETURN_VALUE
e PF_POINTER MAX_SIZE e PF SILENT
e PF_POINTER_RESET_OFFSET

Parameter isthe address of the C pointer.

CodeBridge User's Guide

First Edition

PointerOffsetToCobol
Appendix F: CodeBridge Library Functions

PointerOffsetToCobol

PointerOffsetToCobol modifiesthe COBOL pointer argument. The contents of the
C parameter are moved to the offset component. If the PF_ POINTER_MAX_SIZE
flag is set, binary ones are moved to the size component. This function returns
TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdlI_RtCall->pPointerOffsetToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for PointerOffsetToCobol are:

e PF_OUT e PF_RETURN_VALUE
e PF_POINTER_MAX_SIZE e PF_SILENT

Parameter isthe address of the C parameter.

Szeisthe size of the C parameter.

CodeBridge User's Guide 171
First Edition

PointerSizeToCobol

Appendix F: CodeBridge Library Functions

172

PointerSizeToCobol

PointerSizeToCobol modifies the COBOL pointer argument. The contents of the

C parameter are moved to the size component. If the PF_ POINTER_RESET_OFFSET
flag is set, avaue of zero is moved to the offset component. This function returns
TRUE if it is successful and FALSE if thereisan error.

Calling Sequence

int _rmdll1_RtCall->pPointerSizeToCobol
(short ArgCount,
short ArgNumber,
struct ARGUMENT_ENTRY Arguments[],
int Flags,
void *Parameter,
int Size);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for PointerSizeToCobol are:

e PF_OUT e PF_RETURN_VALUE
e PF_POINTER_RESET_OFFSET e PF SILENT

Parameter isthe address of the C parameter.

Szeisthe size of the C parameter.

CodeBridge User's Guide

First Edition

StringToCobol
Appendix F: CodeBridge Library Functions

StringToCobol

StringToCobol converts a C null-terminated string to the COBOL non-numeric
argument. Thisfunction returns TRUE if it is successful and FALSE if thereisan
error.

By convention, the Cobol ToString (on page 155) function should be called prior to
this function for the same argument number. Do not set the PF_IN flag for output-
only conversions. Because the call to the Cobol ToString function may perform
memory management operations that are not needed for output-only conversions, this
call may be omitted.

Calling Sequence

int _rmdll_RtCall->pStringtoCobol

(short ArgCount,

short ArgNumber,

struct ARGUMENT_ENTRY Arguments[],
int Flags,

int Occurs,

void *Parameter,

int Repeat,

int Size,

short Valuel,

short Value2);

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is-1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8 on
page 127) for StringToCobol are:

e PF_C DATA_IS ANSI e PF REPEAT

e PF C DATA IS OEM e PF RETURN_VALUE
e PF LEADING_SPACES e PF SILENT

e PF LEADING VALUE e PF SIZE

e PF_OCCURS e PF TRAILING_SPACES
e PF OUT e PF TRAILING VALUE

Occursisthe array sizeif the C parameter isan array. A vaue of zero may be
specified if the C parameter is a scalar; negative values for the Occurs parameter
are alowed, but are treated as equivalent to zero. If the value is greater than 1,
we recommend the PF_ OCCURS flag be set, although it is for documentation
purposes only.

CodeBridge User's Guide 173
First Edition

StringToCobol
Appendix F: CodeBridge Library Functions

174

Parameter isthe address of the C parameter. It may also be the address of an array
of string valuesif the PF_OCCURS flag is set.

Repeat isthe repeat count if the PF_REPEAT flag is set.

Szeisthe conversion buffer length override when the PF_SIZE flag is set. If the
PF_SIZE flag is not set, the default conversion buffer length is one more than the
length of the COBOL argument. The setting of the PF_SIZE flag and the value of
the Sze parameter must be the same as specified in the call to Cobol ToString (on
page 155) for the same argument.

Valuel isthe strip/fill character value if the PF_LEADING VALUE flagis set.
Value? isthe strip/fill character value if the PF_TRAILING _VALUE flagis set.

CodeBridge User's Guide

First Edition

C Subprograms for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

Appendix G: Non-COBOL
Subprogram Internals for
Windows

This appendix describes the internal details of how anon-COBOL subprogram is
called from an RM/COBOL program running under 32-bit Windows. Whileitis
possible to write non-COBOL subprograms that directly use this information to
handle COBOL argument conversions, it is highly recommended that CodeBridge be
used for this purposeinstead. This appendix also provides information on preparing
anon-COBOL subprogram for use by an RM/COBOL program on 32-bit Windows.
(For additional information, see the* CALL Statement” section of Chapter 6:
Procedure Division Satements in the RM/COBOL Language Reference Manual.)

Note Theinformation presented here assumes a working knowledge of the
C programming language. The material in Appendix C: Useful C Information (on
page 81) is not comprehensive enough to provide this necessary background.

C Subprograms for Windows

To modify or write a C subprogram that can be called from the RM/COBOL runtime
system requires an understanding of the fundamental tasksinvolved. First, in order
to access C language subprograms from the RM/COBOL runtime system, you must
build adynamic-link library (DLL), normally referred to as an “optional support
module.” (For more information on DLLs and optional support modules, see
Appendix D: Support Modules (Non-COBOL Add-Ons) of the RM/COBOL

User’'s Guide.)

CodeBridge User's Guide 175
First Edition

Methods of Using Non-COBOL Subprograms
Appendix G: Non-COBOL Subprogram Internals for Windows

176

Methods of Using Non-COBOL Subprograms

Two methods of using non-COBOL subprograms are supported:

1. A single subprogram can be dynamically loaded by the Runtime Command
(runcobol) when that subprogram is called from the RM/COBOL program.
The subprogram remains resident until canceled by the RM/COBOL program
or until the end of the run unit. This method is sometimes referred to asthe
“call-by-filename” method since the program is loaded because its file name
matches the called program name.

2. Oneor more subprograms can be linked into a non-COBOL subprogram library
(DLL) and loaded by the Runtime Command upon run unit initialization. The
library isloaded either because it is referenced in an L Runtime Command
Option or because it is present in the rmautold subdirectory of the execution
directory. The library remains resident until the end of the run unit.

Calling C Subprograms from COBOL for Windows

This section describes the COBOL CALL syntax and explains how a C programmer
can write a subprogram that can be called from RM/COBOL. The COBOL CALL
statement explains the use of the non-COBOL subprogram from the COBOL
programmer’ s perspective while the other topics describe the structures and the
function prototype that the C programmer needs to understand.

CodeBridge User's Guide

First Edition

Calling C Subprograms from COBOL for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL programis as
follows:

identifier-2
[BY REFERENCE] {OMITTED }
identifier-2
USING { BY CONTENT 1 literal-2
dentifier-1 OMITTED
raenttier- -
CALL {Iiteral-l }

identifier-2
literal-2 cee

OMITTED

{GIVING

RETURNING } identifier-3

[ON EXCEPTION imperative-statement-1 |

[NOT ON EXCEPTION imperative-statement-2 |

[END-CALL]

The value of the contents of the data item specified by identifier-1 or the value of
literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the called
program. If the BY CONTENT phrase applies to an argument, a temporary copy of
the itemis passed, thus preventing the subprogram from modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the purposes
of returning aresult to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-name
specified by literal-1 or the value of the dataitem referenced by identifier-1. Seethe
discussion of “ Subprogram Loading” in Chapter 8: RM/COBOL Features of the
RM/COBOL User’s Guide, for additional information on locating subprograms.

The subprogram also must be a dynamic-link library file (.dll) and is loaded with the
Windows LoadLibrary function.

CodeBridge User's Guide 177
First Edition

Calling C Subprograms from COBOL for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

178

C Subprogram Name Table Structure on Windows

The RM/COBOL runtime system can locate the C subprograms only if their names
are exported and either (1) their names appear in the subprogram name table, or (2)
the DLL contains an .EDATA section. The subprogram name tableis an array of
name table entries. Each nametable entry is a C structure that is defined as follows:

typedef struct EntryTable

{

EntryPointCobolName; / name of subroutine as in call */
(*EntryPointAddress)(); /* entry point address */
EntryPointName; / name of entry point in object */

} ENTRYTABLE;

Character-strings must be null terminated. The last array entry must consist of
NULLs. The name of the subprogram name table must be RM _EntryPoints and
this name must be exported, but an .EDATA section is not required in the DLL when
the subprogram name table exists. When the subprogram name table exists, any
.EDATA sectioninthe DLL, if present, isignored.

The RM/COBOL runtime system does not use the EntryPointAddress entry in this
structure. Instead, the EntryPointName entry is used to find the procedure address
for the procedure that has the given name. Thus, each value supplied in an
EntryPointName entry must match that of an exported symbol inthe DLL. When the
DLL isloaded, the runtime system looks up the procedure address for each entry
using the supplied name; if the name is not found, an error occurs and the runtime
system is terminated with an appropriate message. The exported symbol may be
different than the function name in the C source when a .def file is used during
linking since .def files can contain an exports list that specifies different names to be
exported for the C functions.

RM _EntryPointsis one of the predefined symbolsin an optional support module.
For complete information about all of the predefined symbols, see Special Entry
Points for Support Modules on Windows (on page 186).

Note The ENTRY TABLE typedef is defined in rmce85cal.h, which is provided with
RM/COBOL systems. This header file should be included (with a preprocessor
#include statement) in the C source that defines COBOL -callable subprograms.
Inclusion of this header file will also cause RM_EntryPoints symbol to be exported.
Other header files (rtarg.h, standdef.h, and rmport.h) are referenced by
rmc85cal.h. Thesefiles are also provided with RM/COBOL systems. When using
CodeBridge Library functions, it is generally sufficient to include cbridge.h, which
includes these other header files.

CodeBridge User's Guide

First Edition

Calling C Subprograms from COBOL for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

Example RM_EntryPoints for Windows

ENTRYTABLE RM_EntryPoints[] =

{
{""SUB1NAME", subl, "'subl"},
{"SUB2NAME"", sub2, "'sub2"},
{NULL, NULL, NULL 3}

};

In this example, “ SUBINAME” and “SUB2NAME” are the COBOL -callable program-
names, subl and sub2 are the addresses of the C subprograms (functions), and
“subl” and “sub2” are the exported names of the C subprograms (functions). Inthis
example, it isassumed that a.def file, if used, does not rename the C functionsin the
exports list.

Parameters Passed to the C Subprogram on
Windows

The RM/COBOL runtime system passes six parameters on the stack to the called
C subprogram. The following is a sample COBOL -callable C subprogram function
prototype:

RM_DLLEXPORT int RM_CDECL subl
(

char *name, /* paraml */
unsigned short arg_count, /* param2 */
ARGUMENT_ENTRY arg_vector[], /* param3 */
unsigned short initial_state /* param4 */

RM_HWND window_handle, /* param5 */
RUNTIME_CALLS_TABLE callbacktable /* param6 */
)

The six parameters are described as follows:

1. Pointer to the called program-name, which is a null-terminated ASCI| string
containing the name used by the run unit to identify the called subprogram. The
called program-name is always uppercase-only, regardless of the case of the
namein the calling COBOL program.

2. Argument count, which is the number of arguments, including arguments
explicitly specified with the OMITTED keyword, specified in the USING phrase
of the CALL statement. The argument in the GIVING (RETURNING) phrase,
if specified, is not included in the count.

3. Pointer to the argument array, which is an array of structures describing each
of the actual arguments passed in the GIVING (RETURNING) and USING
phrases of the CALL statement. The structure of an argument description
entry is described in COBOL Argument Entry Structure for C on Windows (on
page 181) and is defined in the rmc85cal.h header file, which is provided with
RM/COBOL systems.

CodeBridge User's Guide
First Edition

179

Calling C Subprograms from COBOL for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

180

4. Initia state flag, which contains a zero to indicate that the subprogram is being
called for the first time in the run unit or the first time since a CANCEL
statement has been executed for the subprogram name. A nonzero value
indicates that the subprogram should remain in its last used state. It isthe
responsibility of the called subprogram (rather than the runtime system) to
examine theinitial state flag and decide which variables need to be reinitialized.
In any case, on each call, all C automatic variables are reallocated on the stack
without being initialized to any particular value (that is, C automatic variables
have arbitrary values).

5. Windows handle of the calling program window (runtime window), which is
needed for some calls to the Windows Application Programming Interface
(API).

6. Pointer to the runtime call-back table, which is a structure that contains the size
of the table, the version number of the table, and alist of subprogram addresses
in the runtime. The CodeBridge Builder uses the call-back table to obtain access
to some utility subprograms in the runtime system. The description of thistable
isavailablein cbridge.h, a header file provided with CodeBridge. Thetableis
named RUNTIME_CALLS TABLE.

Note The fifth and sixth parameters are optional. Although the runtime system will
always pass these values, the called subprogram does not have to declare them. The
prototype for the called function may omit the sixth or both the fifth and sixth
parameters. The runtime call-back tableis required if the subprogram uses any of the
CodeBridge Library functions.

The called subprogram must set an integer return value before returning control to
the runtime system. A value of RM_FND (defined as 0 in rmc85cal.h) indicates that
the subprogram was found and that the runtime should continue executing the
COBOL program. A value of RM_STOP (defined as 1 in rmc85cal.h) indicates that
the subprogram terminated because of afatal error, such asincorrect parameters, and
that the runtime should terminate the run unit. An explicit return statement should be
used to set the return value since otherwise the run unit might be unintentionally
terminated. The subprogram must not terminate with the system function exit(),
since the runtime could not do an orderly shutdown of the run unit in this case.

The argument entry table (arg_vector) contains descriptions of the actual arguments
specified in the CALL statement. The arg_vector[0] entry describes the first actual
argument in the USING phrase of the CALL statement. The arg_vector[arg_count -
1] entry describes the last actual argument in the USING phrase of the CALL
statement. The arg_vector[-1] entry describes the argument specified in the GIVING
(RETURNING) phrase of the CALL statement. If the GIVING (RETURNING)
phrase is omitted from the CALL statement, or if any actual argument is specified as
OMITTED in the USING phrase of the CALL statement, the corresponding
arg_vector entry contains atype value 32 (OMITTED, as shown in Table 9 on

page 182) and the remaining fields are zero.

C subprograms that access the GIVING argument in arg_vector[-1] will function
correctly only for RM/COBOL version 7 (or later) runtimes because prior runtimes
did not make a GIVING argument entry availablein arg_vector[-1]. A subprogram
that uses the GIVING argument should verify that it is available by use of the version
number in the runtime call-back table, the address of which is provided by the sixth
parameter to the subprogram. The version number must be 0x0700 or greater for a
GIVING argument to be available.

CodeBridge User's Guide

First Edition

Calling C Subprograms from COBOL for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

COBOL Argument Entry Structure for C on
Windows

To asubprogram written in C, an argument entry is defined by the following
structure, which isincluded in the rmc85cal.h header file:

typedef struct ArgumentEntry

{
char *a_address; /* pointer to start of argument */
unsigned long a_length; /* length of argument */
short a_type; /* type of argument (RM/COBOL data type) */
char a_digits; /* digit count (0-30) */
char a_scale; /* implied decimal location (signed) */
char *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest addressed byte of the argument.
a_length specifies the number of bytes allocated to the argument.

a_type specifies the RM/COBOL data type as a number from Table 9 (see page 182).
Names for these type numbers are defined in rmc85cal.h. (For an explanation of the
data type abbreviations and a description of the RM/COBOL datatypes listed in
Table 9, see Table 28: Valid Data Typesin Chapter 9: Debugging and Appendix C:
Internal Data Formats of the RM/COBOL User’s Guide.)

a digits specifies the actual number of digitsin a numeric dataitem (where the type
of argument isin the range 0 through 12). It is set to zero for nonnumeric dataitems.

a_scale specifies the power of 10 by which the digitsin a numeric dataitem (where
the type of argument isin the range 0 through 12) must be multiplied to obtain the
numeric value of the dataitem. The power of 10 isrepresented asasigned, 2's
complement number. It is set to zero for nonnumeric data items.

a picture specifies the lowest addressed byte of the encoded picture for edited items
(type of argument equals 0, 20 or 21). It isset to zero for al other types.

CodeBridge User's Guide 181
First Edition

Calling C Subprograms from COBOL for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

Table 9: RM/COBOL Data Types as Numbers

Type Number RM/COBOL Data Type Type Number RM/COBOL Data Type
0 NSE 16 ANS

1 NSU 17 ANS (justified right)

2 NTS 18 ABS

3 NTC 19 ABS (justified right)

4 NLS 20 ANSE

5 NLC 21 ABSE

6 NCS 22 GRP (fixed length)

7 NCU 23 GRPV (variable length)
8 NPP 25 PTR

9 NPS 26 NBSN

10 NPU 27 NBUN

11 NBS 32 OMITTED

12 NBU

Note The datatype GRPV (23) does not occur when C$CARG is called with the
formal argument name or when C$DARG is called with an actual argument number
that corresponds to an argument that is a variable-length group. In al other cases,
RM/COBOL passes variable-length group actual arguments asif they were a fixed-
length group of the maximum length. (See Appendix F: Subprogram Library of the
RM/COBOL User's Guide.)

182 CodeBridge User's Guide
First Edition

Preparing C Subprograms for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

Preparing C Subprograms for Windows

One or more dynamic-link libraries (DLLs) may be loaded and called by the
RM/COBOL runtime system. The DLL may be specified on the command line by
using the L Runtime Command Option, described in the section “ Runtime Command
Options’ in Chapter 7: Running of the RM/COBOL User's Guide. DLL files may
also be placed in the rmautold subdirectory of the execution directory for automatic
loading when the runtime system is started. The runtime system readsthe DLL,
locates the entry points, and makes each entry point available to be called as a
subprogram.

If aprogram-name used in a CALL statement cannot be resolved as a COBOL
routine and is not found in any already loaded non-COBOL library, a search is made
for afile with that name and an extension of .dll. If such afileisfound, it isloaded
and one of the following occurs:

o |f the DLL exports either of the symbols RM_EnumEntryPoints or
RM _EntryPoints, then the first specified entry point is called. For adefinition
of these symbols, see Special Entry Points for Support Modules on Windows (on
page 186). Any additional entry points that these symbols may define are
ignored when the DLL isloaded by this method,;

e Otherwise, if the DLL contains an .EDATA section that specifies an entry point
exported as nonresident ordinal one, then that entry point iscalled. Any other
exported entry points are ignored when the DLL is loaded by this method;

e Otherwise, aprocedure error 204 occurs.

This method of loading aDLL is sometimes referred to as “ call-by-filename” to
contrast it with the method of calling a program-name defined in alibrary loaded
because an L Runtime Command Option refersto it or the presence of thelibrary in
the rmautold subdirectory of the execution directory.

Note Old 16-bit DLLs are still supported for backward compatibility, on Windows
9x-class operating systems; however, some of the new features discussed in this
appendix do not apply to 16-bit DLLs. Specifically, the special entry points,
described in Special Entry Points for Support Modules on Windows (on page 186),
are not recognized in a 16-bit DLL. To make use of the special entry points, the
DLL must be rewritten asa 32-bit DLL. A 16-bit DLL may be loaded by any of the
three methods discussed in this appendix, including its being present in the
RmAutoL d subdirectory of the execution directory.

CodeBridge User's Guide 183
First Edition

Preparing C Subprograms for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

The following steps may be used to prepare a non-COBOL subprogram for calls
from a COBOL program (compiler-specific comments are included):

1. Generate anon-COBOL source file(s) containing one or more subprograms that
will serve as entry points for the COBOL program. Entry points that are
normally associated withaDLL, such asLibMain (or DIIMain or
DIllEntryPoint), should be defined and may contain minimal code. These entry
points and the additional entry points that you define must be exported in the
manner described for your compiler.

Use C calling conventions (instead of PASCAL conventions). Stack-based
parameter passing also should be used.

2. Trandatethe sourcefileinto avalid object file (.obj) with your compiler.

3. Create the dynamic-link library using the linker in your C development system.
Use linker optionsto assign an ordinal value of one to an entry point. The
RM/COBOL runtime system will associate the DLL filename with entry point
one. The proceduresin the DLL are now ready to be called as a subprogram
from RM/COBOL.

Note While some C compilers produce case-insensitive entry point names,
others produce case-sensitive entry point names. In addition, some C compilers
may pre-pend or append an underscore character to the entry point name.

Parameters are passed to the DLL, as described in Parameters Passed to the C
Subprogram on Windows (on page 179).

The following code sequences illustrate how a COBOL -callable DLL may be written
in C. Include the standdef.h header file (provided by Liant) to access RM/COBOL
standard definitions. On Windows systems, inclusion of standdef.h will cause
inclusion of the Microsoft windows.h file, which provides access to Windows
operating system functions such as MessageBox(). Define RMLittleEndian with a
value of 1 for the Intel 80x86 architecture. Include the rmc85cal.h header file to
obtain ARGUMENT_ENTRY structure definition, various type definitions, and
LDLONG, LDSHORT, STLONG, STSHORT macros. Include the cbridge.h header
fileif the CodeBridge Library is used by the subprogram. Since cbridge.h includes
standdef.h and rmc85cal .h, it is not necessary to include these header files when
cbridge.h isincluded.

Thefollowing is a sample RM/COBOL-callable DLL filewrittenin C,
named msghbox.c.

184 CodeBridge User's Guide
First Edition

Preparing C Subprograms for Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

#include '‘standdef.h"

#define RMLittleEndian 1

#include "rmc85cal .h"

RM_DLLEXPORT int RM_CDECL
MsgBox(char *Name, unsigned short ArgCount, ARGUMENT_ENTRY *ArgEntry,
unsigned short State)

{

short sButton;
long IButton;
char Buf[64];

short i;
char *p;
short n;

if (ArgCount != 2)
return (RM_STOP);

/* -- check arguments */
switch (ArgEntry[0].a_type)

/* -- various displayable types */
case RM_ANS: case RM_ANSR:
case RM_ABS: case RM_ABSR:
case RM_NSE:
case RM_GRPF:
break;
defaul t:
return (RM_STOP);
3
switch (ArgEntry[1].a_type)
{
/* -- only return binary types size 2 or 4 */
case RM_NBS: case RM_NBU:
if ((ArgEntry[1].a_length == 2)
Il (Argéntry[1].a_length == 4))
break;
defaul t:
return (RM_STOP);
3
p = ArgEntry[0].a_address;
n = (short) ArgEntry[0].a_length;

for (i = 0; 1 < n; i++)
Buf[i] = *p++;
Buf[i] = "\0";

1Button =

sButton = MessageBox(NULL, Buf, NULL, MB_YESNO |
MB_1CONQUESTION |
MB_SETFOREGROUND) ;

/* -- return value in second argument */

p = ArgEntry[1].a_address;

ifT (ArgéEntry[1l].a_length == 4)
STLONG (lButton, p);

else if (ArgEntry[1].a_length == 2)
STSHORT (sButton, p);

return (RM_FND);

CodeBridge User's Guide 185
First Edition

Special Entry Points for Support Modules on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

This sample DLL can be compiled using the 32-bit Microsoft Visual C++ compiler
with the following command:

cl msgbox.c -Zpl /link -out:msgbox.dll -dIl -

export:MsgBox, @1
-section: .edata, IRD user32.1lib

It also can be built using the 32-bit Watcom C compiler, version 10.6 or later, with
the following command:

wclX86 -1=nt_dll -bd msgbox.c -"export MSGBOX.1l=_ MsgBox"

The following source fragments from a COBOL program could be used to call
theDLL:

DATA DIVISION.

WORKING-STORAGE SECTION.

01 RETURN-BINARY PIC 9(4) Binary(2) Value Zero.

01 DISPLAY-TEXT PIC X(24) Value "Do you wish to continue?".

PROCEDURE DIVISION.
CALL "MSGBOX'™ USING DISPLAY-TEXT RETURN-BINARY.

Special Entry Points for Support Modules on
Windows

When the runtime system (or other RM/COBOL component) loads an optional
support module, it looks for certain predefined symbols (entry points and variable
names), and varies its actions based on the presence or absence of these symbols.
One such variable name isRM_EntryPoints. Thisisdiscussed in C Subprogram
Name Table Structure on Windows (on page 178). The example subprogram,
msgbox.c, which is distributed with the RM/COBOL system, contains examples of
all of these entry points and symbols, except for RM_EnumEntryPoints. This
example can be used as a starting point when developing optional support modules
for Windows.

The complete list of these special namesis asfollows:

e RM_AddOnBanner (on page 187)

e RM_AddOnCancelNonCOBOL Program (on page 187)

e RM_AddOnInit (on page 187)

e RM_AddOnL oadMessage (on page 188)

e RM_AddOnTerminate (on page 188)

e RM_AddOnVersionCheck (on page 189)

¢ RM_EntryPoints and RM_EnumEntryPoints (on page 190)

Note On Windows, all these entry points are optional if the DLL islinked such that
an .EDATA section isproduced. If the DLL islinked without producing an .EDATA

186 CodeBridge User's Guide
First Edition

Special Entry Points for Support Modules on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

section, the RM _EntryPoints or RM_EnumEntryPoints symbols must be defined
for there to be any COBOL callable routinesinthe DLL.

The following sections describe these entry points and special variables.

RM_AddOnBanner

Thisentry point, if present, should return a pointer to a character string. This
character string will be displayed along with the runtime system banner message.
The support module banner may be used to display any required copyright notice.
The support module banner is displayed only if the K Option of the Runtime
Command is not present.

Note The Windows runtime supports the “call-by-filename” loading of DLLSs, as
described in Methods of Using Non-COBOL Subprograms (on page 176). For DLLs
loaded in this manner, the RM_AddOnBanner entry point is not called and no banner
isproduced. The entry point is called and a banner is produced if the DLL isloaded
because of the L Runtime Command Option or because the DLL is present in the
rmautold subdirectory of the execution directory.

Function declaration for RM_AddOnBanner:

char* RM_AddOnBanner(void);

RM_AddOnCancelNonCOBOLProgram

This entry point, if present, is called by the runtime system when a CANCEL verbis
executed for a program-name that is defined in the optional support module. It
allows the support module to do any cleanup actions that may be necessary. For
example, this entry point might be specified to allow the support module to close any
open files when the COBOL program cancels the associated non-COBOL
subprogram. The program-name of the non-COBOL subprogram for which a
CANCEL has been performed is passed as a parameter to the entry point.

Function declaration for RM_AddOnCancel NonCOBOL Program:

void RM_AddOnCance INonCOBOLProgram(char* ProgramName) ;

RM_AddOnInit

This entry point, if present, is called to initiaize the optiona support module. All
support modules will beinitialized (if initialization is requested) before the runtime
system begins executing the first COBOL program, except that DLLs|loaded by the
“call-by-filename” method will be initialized when they are loaded at the time they
arereferenced by a CALL statement. For more information, see Methods of Using
Non-COBOL Subprograms (on page 176).

The entry point should return zero to indicate successful initialization or a non-zero
value to indicate that the support module initialization failed. If the initidization
fails, the runtime system will display an appropriate message and then terminate.

Note If the support module determines that successful initialization is not possible,
the support module should produce appropriate messages to allow the user to correct
the problem.

CodeBridge User's Guide 187
First Edition

Special Entry Points for Support Modules on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

188

The support module is passed the Runtime Command line arguments in the
arguments Argc (the argument count) and Argv (the argument vector). The support
module is also passed a pointer to the runtime call back table.

Function declaration for RM_AddOnl nit:

int RM_AddOnlInit(int Argc,
char** Argv,
RUNTIME_CALLS_TABLE *pRtCall);

RM_AddOnLoadMessage

This entry point, if present, should return a pointer to a character string that is
displayed along with the load messages of other optional support modules. These
load messages allow the user to verify which support modules the runtime system
has loaded. The message may contain text to identify the support module and, if
desired, the version number or the build date. Load messages are displayed only if
the V Runtime Command Option is present, the V=DISPLAY keyword-value pair is
specified in the RUN-OPTION configuration record, or the
RM_DYNAMIC_LIBRARY_TRACE environment variable is defined.

If load messages are being displayed, the runtime system generates aload message
consisting of the complete pathname for the support module regardl ess of whether
the RM_AddOnL oadM essage entry point is defined or not defined in the support
module. If the RM_AddOnL oadM essage entry point is defined, the returned string
is appended to the pathname in this load message.

Note The Windows runtime supports the “call-by-filename” loading of DLLSs, as
described in Methods of Using Non-COBOL Subprograms (on page 176). For DLLs
loaded in this manner, the RM_AddOnL cadM essage entry point is not called and no
load message is produced. The entry point is called and aload message is produced
if the DLL isloaded because of the L Runtime Command Option or because the DLL
is present in the rmautold subdirectory of the execution directory.

Function declaration for RM_AddOnL oadM essage:

char* RM_AddOnLoadMessage(void);

RM_AddOnTerminate

This entry point, if present, is called by the runtime system during termination.
Execution of all COBOL programs is compl ete when the runtime system calls this
entry point. It allows the optional support module to perform any cleanup actions
that may be necessary.

Note The Windows runtime supports the “call-by-filename” loading of DLLSs, as
described in Methods of Using Non-COBOL Subprograms (on page 176). DLLs
loaded with this method will be unloaded when a CANCEL statement references
them. In this case, the RM_AddOnTerminate entry point is called just prior to
unloading the DL L, after having called RM_AddOnCancelNonCOBOL Program,
and the runtime system is not necessarily about to terminate.

The RM_AddOnTerminate function is called when the module is unloaded,

even if theRM_AddOnlnit function (on page 187) for the module did not succeed.
Thus, the code for this function must not depend on the success of the

RM _AddOnl nit function.

CodeBridge User's Guide

First Edition

Special Entry Points for Support Modules on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

Function declaration for RM_AddOnTerminate:

void RM_AddOnTerminate(void);

RM_AddOnVersionCheck

This entry point, if present, provides a method of verifying that the runtime system
and the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to
support the current interface version of the runtime system that calls the support
module.

If RM_AddOnVersionCheck is present, it will be passed aversion string, two
support module interface versions, and a pointer for the support module to store a
desired interface version. The version string (for example, 9.0n.nn) is defined by the
VERSION macro in the header file version.h (provided with the RM/COBOL
system). The runtime support module interface versions indicate the minimum and
maximum versions that the runtime system can support. The RM/COBOL runtime
system (version 7.50 or later) supports support module interface versions 1 and 2.
For Windows, these two interface versions are identical. In the future, the runtime
system may support other, partially or completely incompatible, interface versions.

It isthe responsibility of the support module to verify that it supports one of the
interface versions supported by the runtime system and to return the interface version
it supports. If the support module does not support any of the interfaces supported
by the runtime system, the support module should return FALSE (0). In this case, or
if the support module returns an invalid interface version, the runtime system will
display an appropriate message and then terminate. Returning TRUE (1) and an
interface version in the range supported by the runtime system allows the runtime
system to continue. The support module may use the current interface version by
returning the value CURRENT_SUPPORT_MODULE _INTERFACE_VERSION
(defined in the supplied header file, rmc85cal.h).

The support module may aso use the value of the version string to verify
compatibility with the runtime system. If the support module determines that it is not
compatible with the runtime system, it should return FALSE. In this case, the
support module might display a meaningful message before the runtime system
displays its message and terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM_AddOnVersionCheck(char* Version,
int MinRuntimelnterfaceVersion,
int MaxRuntimelnterfaceVersion,
int* DesiredInterfaceVersion);

CodeBridge User's Guide 189
First Edition

Special Entry Points for Support Modules on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

190

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the exported
symbols RM_EntryPoints and RM _EnumEntryPoints to determine whether the
support module contains any COBOL -callable functions. Each optiona support
modul e defines only those COBOL -callable functions defined in that support module
using either the RM _EntryPoints symbol declaration or the
RM_EnumEntryPoints entry point. If neither of these symbolsis exported, then
the runtime system looks for an .EDATA sectioninthe DLL. If the EDATA section
is found, the exported names listed in the .EDATA section are considered to be
COBOL-callable functions; otherwise, the DLL is considered not to contain any
COBOL-cdlable functions.

The use of the subprogram nametable RM_EntryPointsis described in the section
C Subprogram Name Table Structure on Windows (on page 178).

If the entry point RM_EnumEntryPointsisfound, it is called repeatedly to obtain
the COBOL -callable names, function addresses, and function names of the COBOL-
callable functions in the support module. This function should return a pointer to a
structure that is equivalent to one entry in the RM_EntryPointstable. The end of
the entry pointsisindicated by returning anull pointer or a structure whose first
pointer isNULL. Theindex parameter starts at zero for thefirst call and is
incremented for each subsequent call.

If both symbols are present, RM_EnumEntryPoints takes precedence.

See the example RM_EntryPoints for Windows (on page 179) for the symbol
declaration for RM_EntryPaints.

Function declaration for RM_EnumEntryPoints:

ENTRYTABLE* RM_EnumEntryPoints(int index);

CodeBridge User's Guide

First Edition

Debugging C Subprograms on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

Debugging C Subprograms on Windows

Non-COBOL subprograms can be debugged using the debugger supplied with the
C compiler used to build the DLL.

In order to include debugging information in the DLL, use the following command
for the 32-bit Microsoft Visual C++ compiler:

cl msgbox.c -Zpl -Zi /link -out:msgbox.dll -dIl -
export:MsgBox, @1
-section: .edata, IRD user32._lib

Alternatively, use the following command for the 32-bit Watcom C compiler, version
10.6 or later:

wclX86 -1=nt_dll -bd -d2 msgbox.c -"export MSGBOX.1l=_ MsgBox"

After creating aversion of the DLL containing debugging information, start the
debugger on runcobol.exe. The Microsoft debugger allows you to add both
runcobol.exe and the DLL file to aproject and then set a breakpoint in the DLL
before beginning execution.

The Watcom debugger allows you to set a breakpoint that is triggered when the
module containing the DLL isloaded. Once it has been loaded, the source for the
module can be viewed and additional breakpoints can be set. For more information,
see the documentation supplied with the debugger you are using.

CodeBridge User's Guide 191
First Edition

Calling a CodeBridge Subprogram Library on Windows
Appendix G: Non-COBOL Subprogram Internals for Windows

192

Calling a CodeBridge Subprogram Library on

Windows

It is possible to use non-COBOL subprogram libraries built using CodeBridge and
call them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by RM/COBOL.
These generated functions then call the C functions that are described in the template
file. The name of the generated function is the same as the C function name with a
prefix of “RMDLL" added to it. For example, if the name of the C functionis
MessageBox, the name of the generated function is RMDLL MessageBox.

Itispossible for a C function that calls the CodeBridge Library functions directly
also to call functions that were built by the CodeBridge Builder. A C function could
call RMDLLMessageBox directly either by using the ARGUMENT_ENTRY
structure that was passed from RM/COBOL or by constructing one that suited the
needs of the C function.

One use of this capability would be to hide conversions of C dataitemsto COBOL
dataitems. Example 6: Converting Buffered C Data (on page 70) describesacase in
which such conversions are necessary even though CodeBridge is being used. In that
example, the function cstring2text is called from COBOL to convert data stored in a
buffer by a C function call. This conversion could be hidden from the RM/COBOL
program by embedding the conversion in a C function that first calls the C function
to store the datain the buffer and then also calls the generated C function,

RMDLL cstring2text.

CodeBridge User's Guide

First Edition

C Subprograms for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

Appendix H: Non-COBOL
Subprogram Internals for UNIX

This appendix describes the internal details of how anon-COBOL subprogram is
called from an RM/COBOL program running under UNIX. Whileitis possibleto
write non-COBOL subprograms that directly use thisinformation to handle COBOL
argument conversions, it is highly recommended that CodeBridge be used for this
purpose instead. This appendix also provides information on preparing a non-
COBOL subprogram for use by an RM/COBOL program on UNIX. (For additional
information, see the “CALL Statement” section of Chapter 6: Procedure Division
Satements in the RM/COBOL Language Reference Manual.)

Note Theinformation presented here assumes aworking knowledge of the
C programming language. The material in Appendix C: Useful C Information (on
page 81) is not comprehensive enough to provide this necessary background.

C Subprograms for UNIX

To modify or write a C subprogram that can be called from the RM/COBOL runtime
system requires an understanding of the fundamental tasksinvolved. First, in order
to access C language subprograms from the RM/COBOL runtime system, you must
build a shared object, normally referred to as an “optional support module.” (For
more information on shared objects and optional support modules, see Appendix D:
Support Modules (Non-COBOL Add-Ons) of the RM/COBOL User’s Guide.) The
shared object must then be placed so that the RM/COBOL runtime system can locate
it, either by looking in a special subdirectory (rmcobolso) of the runtime execution
directory (normally /usr/bin) or by using the L Option on the Runtime Command.
Finally, you must provide information about what entry points you wish the runtime
system to use.

CodeBridge User's Guide 193
First Edition

Calling C Subprograms from COBOL for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

194

Calling C Subprograms from COBOL for UNIX

This section describes the COBOL CALL syntax and explains how a C programmer
can write a subprogram that can be called from RM/COBOL. The COBOL CALL
statement explains the use of the non-COBOL subprogram from the COBOL
programmer’ s perspective while the other topics describe the structures and the
function prototype that the C programmer needs to understand.

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL programis as
follows:

[BY REFERENCE] {'de”“f'er'z}m

OMITTED

identifier-2
USING { BY CONTENT ! literal-2
OMITTED

identifier-2
literal-2 cee

OMITTED

CALL { |dent|f|er-1}

literal-1

GIVING
RETURNING

} identifier-3

[ON EXCEPTION imperative-statement-1 |

[NOT ON EXCEPTION imperative-statement-2 |

[END-CALL |

The value of the contents of the data item specified by identifier-1 or the value of
literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the called
program. If the BY CONTENT phrase applies to an argument, a temporary copy of
the itemis passed, thus preventing the subprogram from modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the purposes
of returning aresult to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-name
specified by literal-1 or the value of the data item referenced by identifier-1. Seethe
discussion of “ Subprogram Loading” in Chapter 8: RM/COBOL Features of the
RM/COBOL User's Guide, for additional information on locating subprograms.

CodeBridge User's Guide

First Edition

Calling C Subprograms from COBOL for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

C Subprogram Name Table Structure on UNIX

The RM/COBOL runtime system can locate the C subprograms only if their names
appear in the subprogram name table. The subprogram name tableis an array of
name table entries. Each name table entry isa C structure that is defined as follows:

typedef struct EntryTable

{
char *EntryPointCobolName; /* name of subroutine as in call */
int (*EntryPointAddress)(); /* entry point address */
char *EntryPointName; /* name of entry point in object */

} ENTRYTABLE;

Character strings must be null terminated. The last array entry must consist of
NULLs. The name of the subprogram name table must be RM_EntryPoints.

The RM/COBOL runtime system does not use the EntryPointAddress entry in this
structure. Instead, the EntryPointName entry is used to find the procedure address
for the procedure that has the given name. Thus, each value supplied in an
EntryPointName entry must match that of an external symbol in the shared object.
When the shared object is loaded, the runtime system looks up the procedure address
for each entry using the supplied name; if the name is not found, an error occurs and
the runtime system is terminated with an appropriate message.

RM _EntryPointsis one of the predefined symbolsin an optiona support module.
For complete information about all of the predefined symbols, see Special Entry
Points for Support Modules on UNIX (on page 204).

Note The ENTRY TABLE typedef is defined in rmc85cal.h, which is provided with
RM/COBOL systems. This header file should be included (with a preprocessor
#include statement) in C source that defines COBOL -callable subprograms. Other
header files (rtarg.h, standdef.h, and rmport.h) are referenced by rmc85cal.h.
Thesefiles are also provided with RM/COBOL systems.

Example RM_EntryPoints for UNIX

ENTRYTABLE RM_EntryPoints[] =

{
{""SUBINANME", subl, "subl"},
{"'SUB2NAME™, sub2, "sub2"},
{NULL, NULL, NULL 3}

¥

In this example, “SUBINAME” and “SUB2NAME” are the COBOL -callable program-
names, subl and sub?2 are the addresses of the C subprograms (functions), and
“subl” and “sub2” are the names of the C subprograms (functions).

CodeBridge User's Guide 195
First Edition

Calling C Subprograms from COBOL for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

196

Parameters Passed to the C Subprogram on UNIX

The RM/COBOL runtime system passes six parameters on the stack to the called
C subprogram. The following is a sample COBOL -callable C subprogram function
prototype:

int subl

(
char *name, /* paraml */
unsigned short arg_count, /* param2 */

ARGUMENT_ENTRY arg_vector[], /* param3 */
unsigned short initial_state, /* param4 */
void *reserved, /* param5 */
RUNTIME_CALLS_TABLE callbacktable /* param6 */

):

Note The above function prototype does not work on Windows. See Declaring the
C Function Return Value and Parameters (on page 212) for afunction that does work
for either Windows or UNIX.

The six parameters are described as follows:

1. Pointer to the called program-name, which is a null-terminated ASCI| string
containing the name used by the run unit to identify the called subprogram. The
called program-name is always uppercase-only, regardless of the case of the
name in the calling COBOL program.

2. Argument count, which is the number of arguments, including arguments
explicitly specified with the OMITTED keyword, specified in the USING phrase
of the CALL statement. The argument in the GIVING (RETURNING) phrase,
if specified, is not included in the count.

3. Pointer to the argument array, which is an array of structures describing each of
the actual arguments passed in the GIVING (RETURNING) and USING phrases
of the CALL statement. The structure of an argument description entry is
described in COBOL Argument Entry Structure for C on UNIX (on page 198)
and is defined in the rtar g.h header file, which is provided with RM/COBOL
systems.

4. Initial state flag, which contains a zero to indicate that the subprogram is being
called for the first time in the run unit or the first time since a CANCEL
statement has been executed for the subprogram name. A nonzero value
indicates that the subprogram should remain in its last used state. It isthe
responsibility of the called subprogram (rather than the runtime system) to
examinetheinitial state flag and decide which variables need to be reinitialized.
In any case, on each call, all C automatic variables are reallocated on the stack
without being initialized to any particular value (that is, C automatic variables
have arbitrary values).

5. Pointer value NULL (for compatibility with Windows non-COBOL
subprograms).

6. Pointer to the runtime call-back table, which is a structure that contains the size
of the table, the version number of the table, and alist of subprogram addresses
in the runtime system. The CodeBridge Builder uses the call-back table to
obtain access to some utility subprograms in the runtime system. The

CodeBridge User's Guide

First Edition

Calling C Subprograms from COBOL for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

description of thistableisavailablein rtcallbk.h, aheader file provided with
RM/COBOL systems. Thetableisnamed RUNTIME_CALLS TABLE.

Note The fifth and sixth parameters are optional. Although the runtime system will
always pass these values, the called subprogram does not have to declare them. The
prototype for the called function may omit the sixth or both the fifth and sixth
parameters. The runtime call-back tableis required if the subprogram uses any of the
CodeBridge Library functions.

The called subprogram must set an integer return value before returning control to
the runtime system. A value of RM_FND (defined as 0 in rtarg.h) indicates that the
subprogram was found and that the runtime system should continue executing the
COBOL program. A value of RM_STOP (defined as 1 in rtarg.h) indicates that the
subprogram terminated because of afatal error, such asincorrect parameters, and that
the runtime system should terminate the run unit. An explicit return statement
should be used to set the return value since otherwise the run unit might be
unintentionally terminated. The subprogram must not terminate with the system
function exit(), since the runtime system could not do an orderly shutdown of the run
unit in this case.

Once an optional support moduleisloaded, it remains loaded until the runtime
system terminates. Use of the CANCEL statement to cancel a C subprogram sets the
initial flag to zero on the next entry into the subprogram, but has no effect on the
values of the external and static variables used in the C subprogram.

The argument entry table (arg_vector) contains descriptions of the actual arguments
specified in the CALL statement. The arg_vector[0] entry describes the first actual
argument in the USING phrase of the CALL statement. The arg_vector[arg_count -
1] entry describes the last actual argument in the USING phrase of the CALL
statement. The arg_vector[-1] entry describes the argument specified in the GIVING
(RETURNING) phrase of the CALL statement. If the GIVING (RETURNING)
phrase is omitted from the CALL statement, or if any actual argument is specified as
OMITTED in the USING phrase of the CALL statement, the corresponding
arg_vector entry contains atype value 32 (OMITTED, as shown in Table 10 on

page 182) and the remaining fields are zero.

C subprograms that access the GIVING argument in arg_vector[-1] will function
correctly only for RM/COBOL version 7 (or later) runtimes because prior runtimes
did not make a GIVING argument entry available in arg_vector[-1]. A subprogram
that uses the GIVING argument should verify that it is available by use of the version
number in the runtime call-back table, the address of which is provided by the sixth
parameter to the subprogram. The version number must be 0x0700 or greater for a
GIVING argument to be available.

CodeBridge User's Guide 197
First Edition

Calling C Subprograms from COBOL for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

198

COBOL Argument Entry Structure for C on UNIX

To asubprogram written in C, an argument entry is defined by the following
structure, which isincluded in the rtarg.h header file:

typedef struct ArgumentEntry

{

char
BIT32
BIT16
char
char
BYTE

a_address; / pointer to start of argument */

a_length; /* length of argument */

a_type; /* type of argument (RM/COBOL data type) */
a_digits; /* digit count (0-30) */

a_scale; /* implied decimal location (signed) */

a_picture; / pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest address byte of the argument.
a length specifies the number of bytes allocated to the argument.

a_type specifies the RM/COBOL data type as a number from Table 10 (see

page 182). Names for these type numbers are defined in rtarg.h. (For an
explanation of the data type abbreviations and a description of the RM/COBOL data
types listed in Table 10, see Table 28: Valid Data Typesin Chapter 9: Debugging
and Appendix C: Internal Data Formats of the RM/COBOL User's Guide.)

a digits specifies the actual number of digitsin a numeric dataitem (where the type
of argument isin the range 0 through 12). It is set to zero for nonnumeric dataitems.

a_scale specifies the power of 10 by which the digitsin a numeric dataitem (where
the type of argument isin the range 0 through 12) must be multiplied to obtain the
numeric value of the dataitem. The power of 10 isrepresented asasigned, 2's
complement number. It is set to zero for nonnumeric data items.

a picture specifies the lowest addressed byte of the encoded picture for edited items
(type of argument equals 0, 20 or 21). It isset to zero for al other types.

CodeBridge User's Guide

First Edition

Calling C Subprograms from COBOL for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

Table 10: RM/COBOL Data Types as Numbers

Type Number

© 0 N o o~ W N P O

PR
N RO

NSE
NSU
NTS
NTC
NLS
NLC
NCS
NCU
NPP
NPS
NPU
NBS
NBU

RM/COBOL Data Type

Type Number
16
17
18
19
20
21
22
23
25
26
27
32

RM/COBOL Data Type
ANS

ANS (justified right)
ABS

ABS (justified right)
ANSE

ABSE

GRP (fixed length)
GRPV (variable length)
PTR

NBSN

NBUN

OMITTED

Note The datatype GRPV (23) does not occur when C$CARG is called with the
formal argument name or when C$DARG is called with an actual argument number
that corresponds to an argument that is a variable-length group. In al other cases,
RM/COBOL passes variable-length group actual arguments asif they were a fixed-
length group of the maximum length. (See Appendix F: Subprogram Library of the

RM/COBOL User's Guide.)

For example, suppose a CALL statement specifies one argument in its USING list
and this argument refers to a three-byte numeric unsigned (NSU) dataitem with a
PICTURE character-string of 99V 9. The following is adiagram of the structure

inC.

argument address
argument length
type

digit count

implied decimal

picture address

NULL

. pointer to char
" argument [3]

CodeBridge User's Guide 199

First Edition

Accessing C Subprograms from UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

200

Accessing C Subprograms from UNIX

Y ou can access a C language subprogram from the RM/COBOL runtime system by
either of the following two methods:

e Giveeach C subprogram a unique name and entry point. Source module
usrsub.c (delivered with the RM/COBOL system) provides an example of
this method.

e Give each C subprogram a unique name and share the same entry point.

In the second case, it is necessary to determine which C subprogram has been called.
The following example illustrates one way this might be accomplished.

CodeBridge User's Guide

First Edition

Accessing C Subprograms from UNIX

Appendix H: Non-COBOL Subprogram Internals for UNIX

#include "rmc85cal .h"

int library

(
char *name,
unsigned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state
):

ENTRYTABLE RM_EntryPoints[] =
{

{'suBA", (int () O)library, "library"
{'suBB", (int (*))library, "library"

{NULL, (int (*)Q)NULL, NULL
¥

int library

(
char *name,
unsigned short arg_count,
ARGUMENT_ENTRY arg_vector[],
unsigned short initial_state
)
{
int entry_no;
const int MAX_ENTRIES =
(sizeof(RM_EntryPoints)/sizeof(RM_EntryPoints[0])) - 1;
for (entry_no = 0; entry_no < MAX_ENTRIES; entry_no++)
{
if (
Istrcmp
(
RM_EntryPoints[entry_no].EntryPointCobolName, name
)
)
break; /* matching name found */
3
switch (entry_no)
{
case 0: /* "SUBA" called */
/*
* "SUBA"™ code goes here
*/
return RM_FND;
case 1: /* "SUBB" called */
/*
* "SUBB" code goes here
*/
return RM_FND;
default:
return RM_STOP; /* logic error, stop run unit */
3
¥

CodeBridge User's Guide 201
First Edition

Preparing C Subprograms for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

202

Preparing C Subprograms for UNIX

This section explains how to create an optional support module using either a new
C subprogram or an existing object for a C subprogram that was previously being
linked into the RM/COBOL runtime system using the customiz script.

Creating a Support Module from a C Source

C subprograms must be compiled and linked to produce a shared object to be used as
asupport module. In the discussion below, C source files are assumed to have an
extension of .c and C object files are assumed to have an extension of .0. Optional
support modules must have an extension of .so.

A makefileis provided with the RM/COBOL devel opment and runtime systems that
can be used or modified to build a shared object. Y ou may modify the makefile by
adding a new target for your support module or you may modify module usrsub.c
(delivered with the RM/COBOL system). The makefile includes the C compiler
options used by Liant Software to build the optional support modules shipped with
the RM/COBOL release on your particular platform.

Note These C compiler options in the makefile may not be appropriate or correct for
your C compiler. In order to build a shared object to be used as a support module
with the RM/COBOL runtime system, you must specify options to tell the compiler
and linker that you want to produce an EL F (Executable and Linking Format) object
file (for example, -b €elf), that you want to produce a dynamically-linked executable
(for example, -d y), and that you want the linker to produce a shared object (for
example, -G).

Producing a support module for use on HP-UX and later requires that you specify
an additional C compiler option to generate position-independent code. Other
UNIX systems do not require position-independent code for support modules. The
makefile includes the appropriate compiler option to generate position-independent
code on HP-UX.

Linking a support module for IBM AlX requires both an “import” file,
runcobol.imp, to make RM/COBOL runtime system symbols available and an
“export” file to make support module symbols available. The runcobol.imp fileis
supplied with the RM/COBOL development and runtime systems for IBM AlX. The
“export” file must be provided by the user. A sample export file, libusr.exp, isalso
provided with the RM/COBOL release as an example of what the user must provide.
The makefile includes appropriate |oader optionsto use the import and export files
when building support modules on IBM AlX.

A separate “samples’ makefileis provided with the RM/COBOL devel opment
system in the cbhsample subdirectory. This makefile has targets that are called by the
various script files used to demonstrate CodeBridge. Additional information about
the CodeBridge samples may be found in the READM E.txt file in the CodeBridge
samples directory. For the remainder of this section, makefile refers to the makefile
that is present in the main installation directory (normally, /usr/rmcaobol) rather than
the special CodeBridge “samples’ makefile.

CodeBridge User's Guide

First Edition

Preparing C Subprograms for UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

Assuming a C source file named usr sub.c, the following command generates the
subprogram object file and links a shared object to be used as an optional support
modul e with the runtime system:

make libusr MODULES=usrsub.o

The makefile compiles and links the default subprogram module usrsub.c. The
resulting optional support module libusr.so is then copied into the r mcobolso
subdirectory of the current directory. The following describes each of the files
involved in the process:

e usrsub.cisyour C subprogram source file that will be compiled to produce
usrsub.o.

e usrsub.oisthe C subprogram object file that is linked to create libusr .so.

e libusr.soisthe resulting shared object (optional support module). Althoughitis
unnecessary to name your support module libusr.so, the name chosen must have
an extension of .so.

Note Filenames of optional support modules must be unique even if the modules are
located in different directories. The runtime system assumes that support modules
with the same name are the same and, therefore, ignores all subsequent support
modul es with the same name as one aready |oaded.

If your optiona support module uses functions from the C library that are not also
used by the runtime system, you will see amessage similar to the following when the
runtime system tries to load the support module:

dynamic linker: runcobol: relocation error: symbol not found: symbol

Y ou will need to add the C library name to the compile/link command (for example,
cc). Depending on your particular support module, other library names may also
need to be added.

Y ou can test the newly built shared object by using the L (Library) Option on the
RM/COBOL Runtime Command (see Chapter 7: Running in the RM/COBOL User’s
Guide) to specify the location of the support module in the test subdirectory. After
testing is complete, you should copy the support module into the rmcobolso
subdirectory of the executable directory (normally /usr/bin) so that the runtime
system will automatically load your support module. Once this has been done, your
support module will be available for use in production mode.

CodeBridge User's Guide 203
First Edition

Special Entry Points for Support Modules on UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

204

Creating a Support Module from a C Object (No
Source)

If you have old C subprograms that you have been linking into the runtime system,
but no longer have the source (to be able to build a shared object), it may still be
possible to build a shared object from the old object (.0) file. You will need to write
a C wrapper module. You can use usrsub.c as a starting point, which is the method
used in the remainder of thistopic. Modify the entry points table to include the
COBOL -callable name(s) of the C functions you wish to access in the old object.
Then modify the entry points table to reference the proper C function(s) name(s) (the
UNIX command nm may help you determine the function names). Finally, include
an extern declaration for the C function namesin the usr sub.c source as follows:

extern int oldcfunction();
Use the following command to build the shared object:
make libusr MODULES="usrsub.o oldcobject.o"
If you want to modify the makefile to change the name of the shared object, simply

duplicate the libusr section of the makefile and change the names as appropriate or
rename file libusr.so to the desired filename.

Special Entry Points for Support Modules on UNIX

When the runtime system (or other RM/COBOL component) loads an optional
support module, it looks for certain predefined symbols (entry points and variable
names), and varies its actions based on the presence or absence of these symbols.
One such variable nameis RM_EntryPaints, as discussed in C Subprogram Name
Table Structure on UNIX (on page 195). The example subprogram, usr sub.c, which
is distributed with the RM/COBOL system, contains examples of al of these entry
points and symbols. It can be used as a starting point when developing optional
support modules.

The complete list of these special namesis as follows:

e RM_AddOnBanner (on page 205)

e RM_AddOnCancelNonCOBOL Program (on page 205)

e RM_AddOnInit (on page 205)

e RM_AddOnL oadMessage (on page 206)

e RM_AddOnTerminate (on page 206)

e RM_AddOnVersionCheck (on page 206)

e RM_EntryPoints and RM_EnumEntryPoints (on page 207)

Note On UNIX, only the RM_EntryPoints symbol declaration (or the

RM_EnumEntryPoints entry point) is required for an optional support module.
All other entry points are optional.

The following sections describe these entry points and special variables.

CodeBridge User's Guide

First Edition

Special Entry Points for Support Modules on UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

RM_AddOnBanner

This entry point, if present, should return a pointer to a character string that will be
displayed along with the runtime system banner message. The support module
banner may be used to display any required copyright notice. The support module
banner is displayed only if the K Option of the Runtime Command is not present.

Function declaration for RM_AddOnBanner:

char* RM_AddOnBanner ();

RM_AddOnCancelNonCOBOLProgram

This entry point, if present, is called by the runtime system when a CANCEL verbis
executed for a program-name that is defined in the optional support module. It
allows the support module to do any cleanup actions that may be necessary. For
example, this entry point might be specified to alow the support module to close any
open files when the COBOL program cancels the associated non-COBOL
subprogram. The program-name of the non-COBOL subprogram for which a
CANCEL has been performed is passed as a parameter to the entry point.

Function declaration for RM_AddOnCancel NonCOBOL Program:

void RM_AddOnCanceINonCOBOLProgram (char* ProgramName);

RM_AddOnInit

This entry point, if present, is called to initialize the optional support module. All
support modules will beinitialized (if initialization is requested) before the runtime
system begins executing the first COBOL program. The entry point should return
zero to indicate successful initialization or anon-zero value to indicate that the
support moduleinitiaization failed. If theinitiaization fails, the runtime system will
display an appropriate message and then terminate.

Note If the support module determines that successful initialization is not possible,
the support module should produce appropriate messages to allow the user to correct
the problem.

The support module is passed the shell command line arguments in the arguments
Argc (the argument count) and Argv (the argument vector). The support moduleis
also passed a pointer to the runtime call back table if the support module interface
versionisset to 2.

Function declaration for RM_AddOnl nit for interface version 1:
int RM_AddOnlInit (int Argc, char** Argv);

Function declaration for RM_AddOnl nit for interface version 2:
int RM_AddOnInit(int Argc,

char** Argv,
RUNTIME_CALLS_TABLE *pRtCall);

CodeBridge User's Guide 205
First Edition

Special Entry Points for Support Modules on UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

206

RM_AddOnLoadMessage

This entry point, if present, should return a pointer to a character string that is
displayed along with the load messages of other optional support modules. These
load messages allow the user to verify which support modules the runtime system
has loaded. The message may contain text to identify the support module and, if
desired, the version number or the build date. Load messages are displayed only if
the V Runtime Command Option is present, the V=DISPLAY keyword-value pair is
specified in the RUN-OPTION configuration record, or the
RM_DYNAMIC_LIBRARY_TRACE environment variable is defined.

If load messages are being displayed, the runtime system generates aload message
consisting of the complete pathname for the support module regardless of whether
the RM_AddOnL oadM essage entry point is defined or not defined in the support
module. If the RM_AddOnL oadM essage entry point is defined, the returned string
is appended to the pathname in this load message.

Function declaration for RM_AddOnL cadM essage:

char* RM_AddOnLoadMessage ();

RM_AddOnTerminate

This entry point, if present, is called by the runtime system during termination.
Execution of all COBOL programs is compl ete when the runtime system calls this
entry point. It allows the optional support module to perform any cleanup actions
that may be necessary.

The RM_AddOnTerminate function is called when the module is unloaded,
even if the RM_AddOnlInit function (see page 205) for the module did not
succeed. Thus, the code for this function must not depend on the success of
RM _AddOnl nit function.

Function declaration for RM_AddOnTerminate:

void RM_AddOnTerminate ();

RM_AddOnVersionCheck

This entry point, if present, provides a method of verifying that the runtime system
and the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed
to support the current interface version of the runtime system that cals the
support module.

If RM_AddOnVersionCheck is present, it will be passed aversion string, two
support module interface versions, and a pointer for the support module to store a
desired interface version. The version string (for example, 8.0n.nn) is defined by the
VERSION macro in the header file version.h (provided with the RM/COBOL
system). The runtime support module interface versions indicate the minimum and
maximum versions that the runtime system can support. The RM/COBOL runtime
system (version 7.50 or later) supports support module interface versions 1 and 2.
For UNIX, these two interface versions differ only in the arguments passed to
RM_AddOnlnit, as documented in the description of that special entry point (see

CodeBridge User's Guide

First Edition

Special Entry Points for Support Modules on UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

page 205). Interface version 1 was the support module interface version supported
by the version 7.10 runtime system. Interface version 2 isthe new current support
modul e interface version supported by version 7.50 or later runtime systems. In the
future, the runtime system may support other, partially or completely incompatible,
interface versions.

It isthe responsibility of the support module to verify that it supports one of the
interface versions supported by the runtime system and to return the interface version
it supports. If the support module does not support any of the interfaces supported
by the runtime system, the support module should return FALSE (0). In this case, or
if the support module returns an invalid interface version, the runtime system will
display an appropriate message and then terminate. Returning TRUE (1) and an
interface version in the range supported by the runtime system allows the runtime
system to continue. The support module may use the current interface version by
returning the value CURRENT_SUPPORT_MODULE_INTERFACE_VERSION
(defined in the supplied header file, rmc85cal.h).

The support module may aso use the value of the version string to verify
compatibility with the runtime system. |If the support module determines that it is not
compatible with the runtime system, it should return FALSE. In this case, the
support module might display a meaningful message before the runtime system
displays its message and terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM_AddOnVersionCheck (char* Version,
int MinRuntimelnterfaceVersion,
int MaxRuntimelnterfaceVersion,
int* DesiredInterfaceVersion);

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the symbols
RM _EntryPointsand RM_EnumEntryPoints to determine whether the support
module contains any COBOL -callable functions. Each optional support module
defines only those COBOL -callable functions defined in that support module using
either the RM_EntryPoints symbol declaration or the RM_EnumEntryPoints
entry point.

The use of the subprogram name table RM _EntryPointsis described in C
Subprogram Name Table Structure on UNIX (on page 195).

If the entry point RM_EnumEntryPointsisfound, it is called repeatedly to obtain
the COBOL -callable names, function addresses, and function names of the COBOL -
callable functions in the support module. This function should return a pointer to a
structure that is equivalent to one entry in the RM_EntryPointstable. The end of
the entry pointsisindicated by returning anull pointer or a structure whose first
pointer isNULL. Theindex parameter starts at zero for thefirst call and is
incremented for each subsequent call.

If both symbols are present, RM_EnumEntryPoints takes precedence.

See the example RM_EntryPoints for UNIX (on page 195) for the symbol
declaration for RM_EntryPoints.

CodeBridge User's Guide 207
First Edition

Calling a CodeBridge Subprogram Library on UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

208

Function declaration for RM_EnumEntryPoints:

ENTRYTABLE* RM_EnumEntryPoints (int index);

Calling a CodeBridge Subprogram Library on UNIX

It is possible to use non-COBOL subprogram libraries built using CodeBridge and
call them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by RM/COBOL.
These generated functions then call the C functions that are described in the template
file. The name of the generated function is the same as the C function name with a
prefix of “RMDLL” added to it. For example, if the name of the C function is
MessageBox, the name of the generated function is RMDLL MessageBox.

Itispossible for a C function that calls the CodeBridge Library functions directly
also to call functions that were built by the CodeBridge Builder. A C function could
call RMDLLMessageBox directly either by using the ARGUMENT_ENTRY
structure that was passed from RM/COBOL or by constructing one that suited the
needs of the C function.

One use of this capability would be to hide conversions of C dataitemsto COBOL
dataitems. Example 6: Converting Buffered C Data (on page 70) describesacase in
which such conversions are necessary even though CodeBridgeis being used. In that
example, the function cstring2text is called from COBOL to convert data stored in a
buffer by a C function call. This conversion could be hidden from the RM/COBOL
program by embedding the conversion in a C function that first calls the C function
to store the datain the buffer and then also calls the generated C function,
RMDLLcstring2text.

C Subprograms Performing Terminal I/O

The RM/COBOL runtime system changes terminal characteristics before passing
control to a C language subprogram. |If any processing requiring terminal 1/0
occurred (including operating system commands that use the terminal), you must
reset the terminal to its original state by making a call to the routine r esetunit(). If
resetunit() was caled, acall to setunit() must be made before control is returned to
the run unit. Both functions are part of the runtime system and are described in
Runtime Functions for Support Modules (on page 209).

CodeBridge User's Guide

First Edition

Debugging C Subprograms on UNIX
Appendix H: Non-COBOL Subprogram Internals for UNIX

Debugging C Subprograms on UNIX

It is recommended that subprogramsinitialy be tested using a C main program that
sets up the RM/COBOL argument entries and calls the subprogram. Once the
subprograms are functioning properly, you can then build the shared object and test
with the COBOL program.

C Subprogram Example

The C subprogram usr sub.c has been provided with your distribution media as an
example of the predefined symbols and entry points used in creating optional support
modules (shared objects). Asdistributed, usrsub.c does nothing of interest, but does
serve as atemplate for developing an optional support module of your own.
Remember, only the RM _EntryPoints symbol declaration (or the
RM_EnumEntryPoints entry point) isrequired. All other entry points are optional.

Note The specia entry points, SY STEM, DELETE, and RENAME, which were
included in the C source sub.c on previous releases of RM/COBOL, are not present
inusrsub.c. These COBOL-callable functions are now part of the runtime system
and are fully documented in Appendix F: Subprogram Library of the RM/COBOL
User’s Guide.

Runtime Functions for Support Modules

RM/COBOL provides user-supplied C subprograms with entry pointsto some
COBOL functions. The following routines use the standard C calling and parameter
passing conventions:

e RmForget (intyl, int x1, int y2, int x2). Thisfunction marks the indicated
area of screen memory as unknown. By doing so, the next COBOL display to
that areawill not be optimized based on the screen contents. Thisallows
COBOL output to be correctly displayed over C subprogram output, which is not
stored in the in-memory screen image.

This routine requires four int parameters (two line and position pairs), which
specify the upper-left (y1,x1) and lower-right (y2,x2) coordinates of the area of
the screen to be marked as unknown. Valid values range from 0 to the line or
position limit of the screen. Passing zero values mark the entire screen as being
unknown. See C$Forget in Appendix F of the RM/COBOL User's Guide for
more information. The function returns an int value of O for success.

e RmRepaintScreen(). Thisfunction causesthe RM/COBOL runtime system to
redraw the entire current screen from an in-memory image. C routine output is
erased. Thisfunction requires no parameters and does not return avalue. See
the REPAINT-SCREEN keyword of the CONTROL phrase in Chapter 8:
RM/COBOL Features of the RM/COBOL User's Guide for more information.

CodeBridge User's Guide 209
First Edition

Runtime Functions for Support Modules
Appendix H: Non-COBOL Subprogram Internals for UNIX

210

CodeBridge User's Guide
First Edition

RmRefreshCwd(). Thisfunction causes the RM/COBOL runtime system to
refresh itsinternal copy of the current working directory. Thisinternal copy is
used to construct complete filenames from any filename that is not fully
qualified. Thisfunction should be called before returning to the COBOL
program if anon-COBOL subprogram changes the current working directory
with the chdir () C library routine. The RmRefreshCwd() routine has no
parameters and does not return avalue.

setunit(). Thisfunction restores the terminal to the state the RM/COBOL
runtime system requires for terminal 1/0. If theresetunit() functionis called,
the setunit() function must be called before returning to the runtime system.
This function requires no parameters and does not return avalue.

resetunit(). Thisfunction placestheterminal ina“normal state” (that is, the
state before the RM/COBOL runtime system was executed). This function
should be used if any terminal 1/O is going to be performed, including operating
system commands that use the terminal. This function requires no parameters
and does not return avalue.

Overview
Appendix I: Calling the CodeBridge Library Directly

Appendix I. Calling the
CodeBridge Library Directly

This appendix provides guidelines for calling the CodeBridge Library directly
rather than having the CodeBridge Builder generate the interface code from a
template file. In order to call the CodeBridge Library directly, you must use an
alternate method for preparing non-COBOL subprograms, as described either in
Appendix G: Non-COBOL Subprogram Internals for Windows (on page 175) or
Appendix H: Non-COBOL Subprogram Internals for UNIX (on page 193).

Note Theinformation presented here assumes aworking knowledge of the
C programming language. The material in Appendix C: Useful C Information (on
page 81) is not comprehensive enough to provide this necessary background.

Overview

In describing direct calls to the CodeBridge Library, the following topics are
covered:

e Including cbridge.h (on page 212)

e Declaring the C function return value and parameters (on page 212)
e Specifying the COBOL argument number (on page 213)

e Declaring C dataitems used in the conversion process (on page 213)
e |nitializing and terminating the conversion process (on page 216)

e Converting COBOL arguments to C data items (on page 217)

e Converting C dataitems to COBOL arguments (on page 219)

e Validating properties of COBOL arguments (on page 221)

Following these discussions, an example of calling the CodeBridge Library directly
is given on page 222.

CodeBridge User's Guide 211
First Edition

Including cbridge.h
Appendix |: Calling the CodeBridge Library Directly

212

Including cbridge.h

Instead of including rmc85cal.h, include cbridge.h (which includes rmc85cal.h).
cbridge.h defines the following:

e Valuesfor the Flags parameter used for most CodeBridge Library functions
e CodeBridgeinterna conversion table (CONV_TABLE)

e Runtime entry point table (RUNTIME_CALLS TABLE)

e Function prototype of each CodeBridge Library function

e |nitialization and termination logic for the generated interface DLL (for
Windows)

Declaring the C Function Return Value and

Parameters

The function is called with six parameters. The function should have the form
specified either in Parameters Passed to the C Subprogram on Windows (on
page 179) or in Parameters Passed to the C Subprogram on UNIX (on page 196).
The following form may be used if the function is to work under either Windows
or UNIX:

RM_DLLEXPORT int RM_CDECL

FunctionName(char *pCal ledName,
unsigned short ArgCount,
ARGUMENT_ENTRY Arguments[],
unsigned short InitialState,
RM_HWND hRtWindow,
RUNTIME_CALLS_TABLE *pRtCall)

{

/* function implementation goes here */
return RM_FND;

}

FunctionName is the name of the C function. The function return value must be
declared as an int. The value returned to the calling COBOL program must be either
RM_FND or RM_STOP (see pages 180 and 197).

pCalledName is the Name parameter used for the ConversionStartup (on page 159)
CodeBridge Library function.

ArgCount is the ArgCount parameter used for most CodeBridge Library functions.
Arguments is the Arguments parameter used for most CodeBridge Library functions.

Initial Sate could be used as the Flags parameter for the CobolInitial State (on
page 141) CodeBridge Library function, but normally would be used directly by
the code.

hRtWindow is the window handle for the runtime on Windows and could be used as
the WindowsHandl e parameter for the Cobol WindowsHandle (on page 157)

CodeBridge User's Guide

First Edition

Specifying the COBOL Argument Number
Appendix I: Calling the CodeBridge Library Directly

CodeBridge Library function, but normally would be used directly by the code. On
UNIX, hRtWindow is a placeholder that should not be used since there is no window
handle on UNIX.

pRtCall points to the runtime entry point table and is used to locate CodeBridge
Library functions. For example, you could call DiagnosticMode (on page 160) as
follows:

pRtCall->pDiagnosticMode(DF_SILENT);

The C subprogram table structure, which defines the COBOL -callable entry points,
references the function name as follows:

RM_DLLEXPORT ENTRYTABLE RM_EntryPoints[]=

{
{""ProgramName", (int (RM_CDECL *)())FunctionName,

"FunctionName'"},
{NULL, (int (RM_CDECL *)()) NULL, NULL}

}:

ProgramName is the name used in the COBOL program to call the C function. For
more information on the C subprogram name table, see C Subprogram Name Table
Structure on Windows (on page 178) or C Subprogram Name Table Structure on
UNIX (on page 195).

Note ThemacrosRM_DLLEXPORT, RM_CDECL, and RM_HWND, are defined
in rmc85cal.h (which isincluded by cbridge.h) to aid in writing code that will
compile on both Windows and UNIX.

Specifying the COBOL Argument Number

The value of the Arguments parameter used for most CodeBridge Library functionsis
zero-relative. Thefirst argument in the USING phrase of the RM/COBOL CALL
statement is argument zero. RM/COBOL allows up to 255 argumentsin the USING
phrase (numbered 0 through 254). The argument in the GIVING (RETURNING)
phrase of the RM/COBOL CALL statement is argument -1 (minus one).

Declaring C Data Items Used in the Conversion

Process

This section describes requirements for declaring a C dataitem that will receive a
converted COBOL argument value or whose converted value will be returned to a
COBOL argument.

CodeBridge User's Guide 213
First Edition

Declaring C Data Items Used in the Conversion Process
Appendix |: Calling the CodeBridge Library Directly

214

Numeric Conversions

C numeric data items can receive and supply values for Numeric conversions. See
the Cobol ToFloat (on page 142), Cobol Tolnteger (on page 146), FloatToCobol (on
page 162), and IntegerToCobol (on page 166) CodeBridge Library functions. For
C numeric data items, you must define both the data item and a pointer to the data
item. The pointer must be initialized with the address of the dataitem as follows:

type Name; type *pName = &Name;

where
type is a C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric dataitem.
pName is the name of the pointer to the C numeric dataitem.

The pointer is required so that null-valued COBOL pointers can be passed to the
C function and converted properly.

Note Because of the way numeric dataitems are declared (to handle null-valued
pointers), you must adjust the way you pass C numeric data items by reference to
other C functions. Normally you would pass & Name, but when using CodeBridge
you must pass pName instead.

If an array of numbersisto be passed, you must define anumeric array. To pass an
array of fivelong integers, use the following definition:

long MyLongArray[5]; long *pMyLongArray = MyLongArray;

String Conversions

C strings can receive and supply values for String conversions. See the

Cobol ToGeneral String (on page 144), Cobol ToNumericString (on page 148),

Cobol ToString (on page 155), General StringToCobol (on page 163),
NumericStringToCobol (on page 168), and StringToCaobol (on page 173)
CodeBridge Library functions. To use C stringsin the conversion process, define an
uninitialized string pointer as follows:

type *pString;

where
typeisa C string type (such as char, signed char, or unsigned char).
pString is the name of the string pointer.

Because the actual storage for each C string is allocated dynamically by the
CodeBridge Library, it is not necessary to define storage for the string.

If an array of stringsisto be passed, you must define an array of string pointers. To
pass an array of five strings, use the following definition:

char *pMyStringArray[5];

CodeBridge User's Guide

First Edition

Declaring C Data Items Used in the Conversion Process
Appendix I: Calling the CodeBridge Library Directly

Address Conversions

C pointers can receive and supply values for Address conversions. See the
Cobol DescriptorAddress (on page 136), Cobol ToPointerAddress (on page 150),
Cobhol ToPointerBase (on page 151), and PointerBaseToCobol (on page 170)
CodeBridge Library functions. For Address conversions, define a C pointer as
follows:

type *pCobolData;

where
type isthe C data type used for references to the COBOL data.
pCobolData is the name of the pointer to the COBOL data.

Note Be careful when using Address conversions. The address returned in
pCobolData may be used to directly manipulate COBOL data. It is better to use
Numeric and String conversions, which require less knowledge of COBOL data
formats to accomplish the same purpose.

Pointer Numeric Component Conversions

Pointer Numeric Component conversions, which include the Cobol ToPointerOffset
(on page 153), Cobol ToPointerSize (on page 154), PointerOffsetToCobol (on

page 171), and PointerSizeToCobol (on page 172) CodeBridge Library functions,

do not convert to and from COBOL arguments. Instead, they obtain (or set) auxiliary
information about the components of RM/COBOL pointer arguments. They are
handled in the same manner as Numeric conversions (on page 214). For Pointer
Numeric Component conversions, define both a C dataitem and a pointer to the data
item asfollows:

type Name; type *pName = &Name;

where
type isa C numeric type (such asint, unsigned short, or double).
Name is the name of the C numeric dataitem.

pName is the name of the pointer to the C numeric dataitem.

Other Conversions

Other conversions, such asthe BufferLength (on page 134), CobolDescriptorDigits
(on page 137), Cobol DescriptorLength (on page 138), Cobol DescriptorScale (on
page 139), Cobol DescriptorType (on page 140), Cobol ToPointerLength (on

page 152), and Effectivel_ength (on page 161) CodeBridge Library functions, do not
convert to and from COBOL arguments. Instead, they obtain (or set) auxiliary
information about COBOL arguments or components of RM/COBOL pointer
arguments. They are handled in the same manner as Numeric conversions without
requiring the additional pointer definition.

CodeBridge User's Guide
First Edition

215

Initializing and Terminating the Conversion Process
Appendix |: Calling the CodeBridge Library Directly

216

To use these other conversions, define a C numeric data item as follows:
type Name;

where
type is a C numeric type (such asint, unsigned short, or double).

Name is the name of the C numeric dataitem.

BufferLength and Effectivelength conversions allow arrays to be passed.

Trivial Conversions

Y ou can call the CodeBridge Library conversion functions, Cobol ArgCount (on
page 135), CobolInitial State (on page 141), or CobolWindowsHandle (on page 157),
to convert ArgCount, InitialState, or hRtWindow to a C dataitem. However, thisisa
trivial conversion because you must pass the value to the corresponding CodeBridge
Library function so that the function can storeit in the C dataitem you provide. For
example:

short WindowsHandle2;

if (IRtCall->pCobolWindowsHandle (O,
(void *)WindowsHandle2,
sizeof (WindowsHandle2),
WindowsHandle))
{ RtCall->pConversionCleanup(ArgCount, pConvTable);
return(RM_STOP) ;

}
is equivalent to (though slower and more difficult to understand than):

short WindowsHandle2 = hRtWindow;
The only benefit to using the conversion routines in this situation is that size error
checking may be performed. In the example above, a short data type is used instead

of HWND. If the actual value of the handle does not fit into a short data item, then
an error would be returned.

Initializing and Terminating the Conversion Process

CodeBridge uses a dynamically allocated table to hold information about the
conversion process. The size of this table depends on the actual number of
arguments (ArgCount) passed from COBOL to C. Thetableisallocated by the
ConversionStartup (on page 159) and deallocated by the ConversionCleanup (on
page 158) CodeBridge Library functions. Several other CodeBridge Library
functions use thistable. The C function must declare alocal variable to hold a
pointer to thistable as follows:

CONV_TABLE *pConvTable;

CodeBridge User's Guide

First Edition

Converting COBOL Arguments to C Data Items
Appendix I: Calling the CodeBridge Library Directly

Initialization

Before calling any other CodeBridge Library functions, the C function must initialize
the conversion process by calling ConversionStartup as follows:

iT(IRtCall->pConversionStartup(ArgCount, &pConvTable,
pCalledName, Version))
return(RM_STOP) ;

Note Version isthe CodeBridge Library version (for example, for version 9,
use 0x900).

The ConversionStartup call illustrates two general properties of calling CodeBridge
Library functions. First, CodeBridge Library functions are called indirectly through
pointersin the RUNTIME_CALLS TABLE, RtCal. Adding the prefix “p” to the
CodeBridge Library function name forms the name of the pointer. In the code above,
the full referenceis:

RtCall->pConversionStartup(..)

Second, most CodeBridge Library functions return TRUE to indicate success or
FALSE to indicate failure. A failure condition indicates that processing should not
continue. Hence, the previously listed sequence:

if(IRtCall->pConversionStartup(..))
return(RM_STOP) ;

Termination

Just before returning to the calling COBOL program, the C function must terminate
the conversion process by calling ConversionCleanup as follows:

RtCall->pConversionCleanup(ArgCount, pConvTable);
Note Because a program may have many exits, be sure that ConversionCleanup is
called prior to each exit.
For example, the code will typically contain sequences such as:
if(IRtCall->pCodeBridgelLibraryFunction(..))

{ RtCall->pConversionCleanup(ArgCount, pConvTable);
return(RM_STOP);

}

Converting COBOL Arguments to C Data Items

The CodeBridge Library input conversion functions are used to initialize C data
items with information from the calling COBOL program. For more information,
see Declaring C Data Items Used in the Conversion Process (on page 213). For input
conversions, the input conversion function must be called before the C function uses
the target C dataitem.

CodeBridge User's Guide 217
First Edition

Converting COBOL Arguments to C Data Items
Appendix |: Calling the CodeBridge Library Directly

218

For Numeric conversions (on page 214) and String conversions (on page 214), the
input conversion function must be called if the corresponding output conversion
function will be called. This allows CodeBridge to handle null-valued COBOL
pointer arguments and to supply default values for omitted COBOL arguments. Note
that for String conversions, a buffer is alocated to hold the string. 1f only output
conversion is needed, do not set the PF_IN flag for the input conversion call.

Specifying the ArgCount, ArgNumber, and
Arguments Parameters
The ArgCount and Arguments parameters are presented and described in Declaring

the C Function Return Value and Parameters (on page 212). The ArgNumber
parameter is explained in Specifying the COBOL Argument Number (on page 213).

Specifying the Parameter Parameter

For Cobol ToFloat, Cobol Tolnteger, Cobol ToPointerOffset, and Cobol ToPointerSize
conversions, the Parameter parameter must be:

(void **) &pName /* address of pointer to C data item */
where, pName is defined, as described in Numeric Conversions (on page 214) and
Pointer Numeric Component Conversions (on page 215).

For Cobol ToGeneral String, Cobol ToNumericString, and Cobol ToString
conversions, the Parameter parameter must be:

(void **) &pString /* address of C string pointer */

where, pSring is defined, as described in String Conversions (on page 214).
For Cobol DescriptorAddress, Cobol ToPointerAddress, and Cobol ToPointerBase
conversions, the Parameter parameter must be:

(void **) &pCobolData /* address of C pointer to COBOL data*/

where, pCobolData is defined, as described in Address Conversions (on page 215).

For all other input conversions, the Parameter parameter must be;
(void *) &Name /* address of C numeric data item */

where, Name is defined, as described in Other Conversions (on page 215).

Specifying the Size Parameter

When the target C dataitem is numeric, CodeBridge supports multiple C numeric
data types with each input conversion function. For instance, Cobol Tolnteger can
store aconverted COBOL numeric argument value in any C integer datatype
supported by the C compiler. The CodeBridge Library conversion routines
determine the size of the C data item using the value of the Sze parameter, typically
sizeof(Name). For example, to store a COBOL numeric argument in the C dataitem,
short MyShort, call CobolTolnteger specifying the Sze parameter as
sizeof(MyShort).

CodeBridge User's Guide

First Edition

Converting C Data Items to COBOL Arguments
Appendix I: Calling the CodeBridge Library Directly

If thetarget C dataitem isastring, the Sze parameter overrides the default string
size when the PF_SIZE flag is set. The default size for numeric stringsis four more
than the digit length of the COBOL argument; for non-numeric strings, it is one more
than the length of the COBOL argument.

Specifying Other Parameters

Input String conversion functions, as well as BufferLength and Effectivel ength,
require that pConvTable, the pointer to the CodeBridge conversion table be passed in
the ConvTable parameter. For more information, see Initializing and Terminating
the Conversion Process (on page 216).

For adiscussion of the Flags parameter, see Specifying the Flags Parameter (on
page 126).

For conversion functions that support passing arrays, the Occurs parameter isthe
array size. The PF_OCCURS flag should be set if the value of this parameter is
greater than one.

For Numeric and String conversions, the Omitted parameter is the default value for
omitted COBOL arguments when the PF_VALUE_IF_OMITTED flag is set.
Otherwise, if the PF_OPTIONAL flag is set, the default value for Numeric
conversionsis zero and the default value for String conversions is the empty
string("™"). If neither the PF_VALUE_IF_OMITTED flag nor the PF_OPTIONAL
flag is set, an error occurs for an omitted argument.

For Numeric and String conversions, the Repeat parameter specifies the repeat count
when the PF_REPEAT flag is set.

See the Cobol Tolnteger (on page 146) CodeBridge Library function for a discussion
of the Scale parameter.

For non-numeric String conversions, the Valuel parameter specifies the strip/fill
character when the PF_LEADING_VALUE flagisset. Likewise, the Value2
parameter specifies the strip/fill character when the PF_TRAILING_VALUE flag
isset.

Converting C Data Items to COBOL Arguments

The CodeBridge Library output conversion functions are used to pass information
from C dataitems back to the calling COBOL program. For more information, see
Declaring C Data ltems Used in the Conversion Process (on page 213). For output
conversions, the output conversion function must be called after the C function last
uses the source C data item and before returning to the calling COBOL program.

Specifying the ArgCount, ArgNumber, and
Arguments Parameters
The ArgCount and Arguments parameters are presented and described in Declaring

the C Function Return Value and Parameters (on page 212). The ArgNumber
parameter is explained in Specifying the COBOL Argument Number (on page 213).

CodeBridge User's Guide 219
First Edition

Converting C Data Items to COBOL Arguments
Appendix |: Calling the CodeBridge Library Directly

220

Specifying the Parameter Parameter

For FloatToCobol and IntegerToCobol conversions, the Parameter parameter
must be:

(void *) pName /* value of pointer to C data item */

where, pName is defined, as described in Numeric Conversions (on page 214).

For General StringToCaobol, NumericStringToCobol, and StringToCobol
conversions, the Parameter parameter must be:

(void *) pString /* value of C string pointer */

where, pSring is defined, as described in String Conversions (on page 214).

For PointerBaseToCobol conversions, the Parameter parameter must be:
(void *) pCobolData /* value of C pointer to COBOL data*/

where, pCobolData is defined, as described in Address Conversions (on page 215).

For PointerOffsetToCobol and PointerSizeToCobol conversions, the Parameter
parameter must be:

(void *) pName /* value of C numeric data item */

where, pName is defined, as described in Pointer Numeric Component Conversions
(on page 215).

Specifying the Size Parameter

When the source C dataitem is numeric, CodeBridge supports multiple C numeric
data types with each output conversion function. For instance, IntegerToCobol can
convert any C integer data type supported by the C compiler to a COBOL numeric
argument. The CodeBridge Library conversion routines determine the size of the

C dataitem using the value of the Size parameter, typically sizeof (Name). For
example, to convert the C dataitem, short MyShort, to a COBOL numeric
argument, call IntegerToCobol specifying the Sze parameter as sizeof(MyShort).

If the source C dataitem is a string, the Size parameter overrides the default string
sizewhen the PF_SIZE flag is set. The default size for numeric strings is four more
than the digit length of the COBOL argument; for non-numeric strings, it is one more
than the length of the COBOL argument.

Specifying Other Parameters

For adiscussion of the Flags parameter, see Specifying the Flags Parameter (on
page 126).
For conversion functions that support passing arrays, the Occurs parameter isthe

array size. The PF_OCCURS flag should be set if the value of this parameter is
greater than one.

For Numeric and String conversions, the Repeat parameter specifies the repeat count
when the PF_REPEAT flag is set.

CodeBridge User's Guide

First Edition

Validating Properties of COBOL Arguments
Appendix I: Calling the CodeBridge Library Directly

See the IntegerToCobol (on page 166) CodeBridge Library function for adiscussion
of the Scale parameter.

For non-numeric String conversions, the Valuel parameter specifies the stripffill
character when the PF_L EADING_VALUE flag isset. Likewise, the Value2
parameter specifies the strip/fill character when the PF_TRAILING_VALUE flag
isset.

Validating Properties of COBOL Arguments

In addition to the input and output conversion functions, the CodeBridge Library also
contains functions to validate properties of COBOL arguments. These include the
following:

o AssertDigits (on page 128) validates the number of digitsin a COBOL numeric
argument.

o AssertDigitsLeft (on page 129) validates the number of digits before the decimal
point.

e AssertDigitsRight (on page 130) validates the number of digits after the decimal
point.

o AssertLength (on page 131) validates the number of bytesin a COBOL
argument.

o AssertSigned (on page 132) verifiesthat a COBOL argument is signed.
e AssertUnsigned (on page 133) verifies that a COBOL argument is unsigned.

These functions may be used with either input or output arguments. The functions
can be called anytime after the call to ConversionStartup (on page 159) and before
ConversionCleanup (on page 158).

Follow the guidelines for conversion functions when specifying parameters for
validation functions, as described in Converting COBOL Argumentsto C Data ltems
(on page 217) and Converting C Data Itemsto COBOL Arguments (on page 219).

Note Instead of calling AssertSigned or AssertUnsigned, the following functions
may set the PF_ASSERT_SIGNED or PF_ASSERT_UNSIGNED flags to verify that
the COBOL argument is signed or unsigned: Cobol ToFloat, Cobol ToGenera String,
Cobol Tolnteger, Cobol ToNumericString, FloatToCobol, General StringToCobol,
IntegerToCobol, and NumericStringToCobol.

CodeBridge User's Guide 221
First Edition

Example
Appendix |: Calling the CodeBridge Library Directly

Example

The following example illustrates calling the CodeBridge Library directly.

#include "cbridge.h"
#define CLEANUP pRtCall->pConversionCleanup(ArgCount, pConvTable)
extern void DoTestOl(int *Outlnteger, char *InOutString);
RM_DLLEXPORT int RM_CDECL TestOl(char *pCalledName,
unsigned short ArgCount,
ARGUMENT_ENTRY Arguments[],
unsigned short InitialState,
RM_HWND hRtWindow,
RUNTIME_CALLS_TABLE *pRtCall)
{ int Outlnteger; int *pOutlnteger = &Outlnteger;
char *InQOutString;
CONV_TABLE *pConvTable;

if (pRtCall->table_version < 700)
return RM_STOP;

if(IpRtCall->pConversionStartup(ArgCount, &pConvTable,
pCalledName, 0x900))
return RM_STOP;

if(IpRtCall->pCobolTolnteger(ArgCount, 0, Arguments, PF_IN, O, O,
(void **) &pOutinteger, 0, O,
sizeof(Outlinteger)))

{ CLEANUP; return RM_STOP; }

if(IpRtCall->pCobolToString(ArgCount, 1, Arguments, pConvTable,
(PF_IN | PF_TRAILING_SPACES), 0, ("),
(void **) &InQOutString, O,
0, *\0", "\0"))

{ CLEANUP; return RM_STOP; }

DoTestO1(pOutinteger, InOutString);

if(IpRtCall->plIntegerToCobol (ArgCount, 0, Arguments, PF_OUT, O,
(void *) pOutinteger, 0, O,
sizeof(Outlinteger)))

{ CLEANUP; return RM_STOP; }

if(IpRtCall->pStringToCobol (ArgCount, 1, Arguments,
(PF_OUT | PF_TRAILING_SPACES), O,
InOutString, 0, 0, *"\0", "\0"))
{ CLEANUP; return RM_STOP; }

CLEANUP; return RM_FND;

222 CodeBridge User's Guide
First Edition

Version 8 Enhancements
Appendix J: Summary of Enhancements

Appendix J: Summary of
Enhancements

This appendix provides a history and summary of the enhancements from earlier
releases of CodeBridge, beginning with the most recent previous rel ease.

Version 8 Enhancements

Version 8 of CodeBridge included several defect corrections, and the product
complies with the RM/COBOL version 8 release level.

Version 7.5 Enhancements

Version 7.5 of CodeBridge, Liant Software’s cross-language call system, has
been enhanced to handle 64-bit integers on most UNIX platforms, providing the
C compiler on the platform supports 64-bit integers.

A new runtime callback, GetCallerInfo, has been added to the CodeBridge Library.
This function allows CodeBridge non-COBOL subprograms to obtain information
about the calling COBOL program. Such information is particularly useful in error
messages because it helps identify the offending CALL statement. See Appendix F:
CodeBridge Library Functions (on page 123), for more information.

Two new parameter attributes, called error base attributes, have been added to
CodeBridge for retrieving error information set by C library and Windows API
functions. The[[errno]] attribute supports obtaining the value of the external
variable errno that was set by acall to aC library function. The[[get_last_error]]
attribute supports obtaining the value returned by the Windows API function

GetL astError called immediately after another Windows API function has been
called. Prior to version 7.5, such error information was not available to the COBOL
program because the runtime system uses C library and Windows APl functions
during the process of returning from the CodeBridge-called C function to the
COBOL program. Editing of generated code is undesirable and requires advanced
knowledge of the C language. The new error base attributesin version 7.5 allow
return of the error information by editing the CodeBridge template instead of the
generated code. For additional information on error attributes, see Returning C Error

CodeBridge User's Guide 223
First Edition

Version 7.1 Enhancements
Appendix J: Summary of Enhancements

Values (on page 31) in Chapter 2: Concepts, and Error Base Attributes (on
page 110) in Appendix E: Parameter Attributes, of this manual.

Version 7.1 Enhancements

New to CodeBridge version 7.1 is support for UNIX. CodeBridge, Liant Software’s
cross-language call system, isin the RM/COBOL version 7.1 system. The
CodeBridge Builder uses atemplate file to produce a C source file. The C sourcefile
provides the COBOL/C interface that may be used in an optional support module
callable from COBOL programs.

The CodeBridge Builder generates C source modules that are platform-independent.
Thus, you can use the CodeBridge Builder on a Windows platform to generate
C sourcefiles that may be used on either a Windows or UNIX system.

Version 7.0 of the CodeBridge Builder produced C source code if the template file
contained errors. Version 7.1 will not unless the -f (force) option is specified.

Version 7.0 Enhancements

The initial release of CodeBridge, version 7.0 for Windows, allows RM/COBOL
programs to call non-COBOL subprograms built from external Application
Programming Interfaces (APIs) or custom-developed C libraries without introducing
“foreign” language data dependencies into either the COBOL program or the called
C functions. This means that developers can write COBOL-callable C functions
using C data types as usual, without worrying about the complexities of COBOL
calling conventions or data types.

224 CodeBridge User's Guide
First Edition

Glossary of Terms

Glossary of Terms

The glossary explains the terminology used in CodeBridge.

Terminology and Definitions

API. Application programming interface.

Argument. In CodeBridge documentation, the term “argument” refersto the
COBOL dataitem specified in the USING or GIVING phrase of a CALL statement.
(Contrast with the term parameter.)

Argument number attribute: An attribute that specifies how the lexically-
associated C parameter in atemplate prototype attribute list relates to a specific
COBOL argument by referring to the position of the argument in the USING phrase
of the CALL statement (arg_num) or to an argument in the GIVING phrase of the
CALL statement (ret_val). Argument number attributes can frequently be omitted
since there is a CodeBridge default method of associating COBOL arguments with
C parameters, which generally associates them in aleft-to-right lexical order.

Attribute. Theindividual descriptors used to construct an attribute list in atemplate
file for the CodeBridge Builder.

Attributelist. A block of information in atemplate file that providesinformation
to the CodeBridge builder regarding the relationship between a COBOL CALL
statement and a C function prototype. There are two kinds of attribute list, global
and parameter.

Base attribute. The main attribute to be used in a C parameter attribute list, which
generally specifies the data type of the associated COBOL argument. A few base
attributes access properties of a COBOL argument instead of the argument value.

Base modifier attribute. An attribute that specifies additional information to
modify a base attribute.

Call convention. A specification of how a C function iscaled. Call conventions
for C functions called from RM/COBOL require the use of the convention global
attribute in atemplate file.

CodeBridge Builder. The component of CodeBridge that takes atemplate file as
input and produces the C code that can be compiled and linked to produce a support
module for the RM/COBOL runtime.

CodeBridge User's Guide 225
First Edition

Glossary of Terms

226

CodeBridge Library. The set of functionsin the RM/COBOL runtime that
implement data conversion for a support module. Calls to these functions can be
generated using a template file as input to the CodeBridge Builder or can be written
manually by the user.

Datatype. The declaration of the form a particular data item takesin computer
storage and how the value isto be interpreted. CodeBridge supports basic COBOL
data types such as numeric, non-numeric, and pointer dataitems and C data types
such as integer (int, char, short, long), floating-point (float, double), and null-
terminated strings (char *). Because of information available to the CodeBridge
Library at execution time, the specific data type modifiers of a numeric COBOL
argument, such asits usage (BINARY, PACKED-DECIMAL, DISPLAY, and

so forth), and any accompanying precision and scale are not needed by the
CodeBridge Builder.

Direction attribute. An attribute that specifies the conversion direction for
aparameter attributelist: in or out. Both can be specified in the case of an
input-output parameter. Thein attribute means the COBOL argument is an input to
the C parameter. The out attribute means the COBOL argument receives an output
from the C parameter. In some cases, such as certain base attributes, adirection
attribute isimplied and cannot be specified.

DLL. Dynamic-Link Library, the Microsoft Windows form of a dynamically-
loadabl e support module.

Global attribute. An attribute used in aglobal attribute list, such as the convention
attribute used to specify acall convention.

Global attributelist. An attribute list that is specified independent of a C function
prototype in order to specify global information to the CodeBridge Builder rather
than information specific to a given C parameter. Global attribute lists are delimited
by “[#" and “#]”. (Contrast with the term parameter attributelist.)

Omitted argument. A COBOL argument that is not supplied in the CALL
statement, either because it is specified as OMITTED or is omitted from the end of
the list of possible arguments that could be specified in the USING phrase of the
CALL statement.

Parameter. In CodeBridge documentation, the term “parameter” refersto the C data
item specified in the C function header and prototype. Thereturn valueisalso
considered a parameter. (Contrast with the term argument.)

Parameter attribute. An attribute used in a parameter attribute list. There are four
categories of parameter attribute: argument number, base, base modifier, and
direction,

Parameter attributelist. An attribute list associated with a parameter or return
value of a C function prototype and specific to that parameter or return value. A
parameter attribute list is delimited by “[[“ and “]]”. (Contrast with the term global
attribute list.)

P-scaling. The effect of using the P symbol in the PICTURE character-string of a
COBOL dataitem.

Prototype. The C definition of the manner in which afunction is called, including
the return data type, name, and parameter data types for the function. A calling
convention may also be included.

Shared object. The UNIX form of a dynamically-loadable support module. Shared
object files usually have the extension .so.

CodeBridge User's Guide

First Edition

Glossary of Terms

Support module. A dynamically-loadable extension to the runtime. Support
modules may be provided by Liant or an independent software vendor. They are
provided on WindowsasaDLL file (.dll) and on UNIX as a shared object file (.s0).
CodeBridge isatool for aiding the development of support modules.

Templatefile. The source file created by adeveloper to specify to the CodeBridge
Builder how to call aC function from COBOL. Attribute lists are specified within
modified C function prototypes in the template file.

CodeBridge User's Guide 227
First Edition

Glossary of Terms

228 CodeBridge User's Guide
First Edition

Index

Special Characters

[] (brackets), use of
in COBOL syntax 4
in global attribute lists 18
in parameter attribute lists 18
... (ellipsis), use of, in variable number of C
parameters 39, 100, 103
/ (forward slash), use of, in C compiler options 85
- (hyphen), use of
in C compiler options 85
optional, in RM/COBOL compilation and
runtime options 5
(pound sign), use of
in global attribute lists 18
#include C preprocessor directives 12, 47, 49, 81

A

ACCEPT statement, Terminal 1-O

CONTROL phrase

REPAINT-SCREEN keyword 209

address base attribute

defined 107

managing omitted arguments 31

passing COBOL descriptor data 28

passing the address of the COBOL data 42
Address component, COBOL pointer argument 21, 26,

42, 106

alias(name) base modifier

defined 95

for error base attributes 111

for numeric base attributes 98

for pointer base attributes 107

for the string base attribute 102
All caps, as adocument convention 4
arg_count base attribute

associating an implied argument 35

passing information to a C function 30
arg_num(value) argument number attribute

associating C parameters with COBOL

arguments 19, 34
defined 94

Index

Argument number attributes 19
arg_num(value) 94
associating C parameters with COBOL
arguments 19, 34
ret_val 94
Arguments, COBOL
argument number attributes 19, 94
argument properties, passing to a C function
COBOL descriptor data 28
string length information 29, 108
C parameters, associating with 19, 94
automatic 34
examples of 35
explicit 34
defined 11
digit length 29, 40, 46
group
fixed-length 26
variable-length 26
miscellaneous information, passing to a C function 30
omitted arguments, managing 30
passing to a C function
non-numeric arguments 24
null-valued pointer arguments 27
numeric arguments 22
pointer arguments 26, 106
Arrays
converting C
floating-point parameters 23
integer parameters 22
numeric string parameters 24
string parameters 25
working with
COBOL array references 46
numeric 44, 97
string 45
assert_digits(min,max) base modifier, defined 98
assert_digits_left(min,max) base modifier, defined 99
assert_digits_right base modifier, defined 99, 111
assert_length(min,max) base modifier, defined
for error 112
for numeric 99
for string 102
assert_signed base modifier, defined 99
assert_unsigned base modifier, defined 99
AssertDigits library function 128
AssertDigitsLeft library function 129
AssertDigitsRight library function 130
AssertLength library function 131
AssertSigned library function 132
AssertUnsigned library function 133
Associating C parameters with COBOL arguments
33, 94. See also Argument number attributes.
automatic 34
examples of 35
explicit 34

CodeBridge User's Guide 229
First Edition

Index

Attribute lists. See also Global attributes; Parameter
attributes.
associating C parameters with COBOL arguments 33
association of arguments and parameters
missing lists 39
multiple lists 37
attributes
defined 18
use of, in attribute lists 18
modifying COBOL data areas 40
passing information to a C function 21
types
global 18, 20, 89
parameter 18, 93
use of, in template files 18. See also Templatefiles.
using P-scaling 43
working with a variable number of C parameters 39
working with arrays 43
Attributes. See also Attribute lists; Globa Attributes;
Parameter attributes.
defined 18
use of, in attribute lists 18

B

banner global attribute 90
Banner messages 90, 187, 205
Base attributes 18, 95. See also Base modifiers;
Parameter attributes.
descriptor 28, 30, 95, 107
error 31, 95
error base attributes 110
genera_string 22, 23, 24, 25, 27, 40, 104
numeric 22, 23, 39, 95, 97
numeric_string 22, 23, 24, 27, 40
pointer 26, 95, 106
string 22, 24, 25, 40, 95
string length 24, 95, 104
Base modifiers 19, 95, 124, 125. See also Base
attributes; Parameter attributes.
common, for several base attributes 95
converting C
floating-point parameters 23
integer parameters 22
numeric string parameters 24
for error base attributes 111
for numeric base attributes 22, 23, 24, 98
for pointer base attributes 27, 107
for string length base attributes 105
bat filename extension 10
Bold type, use of
as a document convention 4
in CodeBridge examples 55
Brackets ([]), use of
in COBOL syntax 4
in global attribute lists 18
in parameter attribute lists 18
Buffer addresses
converting buffered C data, example of 70
passing 43

CodeBridge User's Guide
First Edition

buffer_length base attribute
converting
C numeric string parameters 24
C string parameters 25
defined 104
passing string length information 29
BufferLength library function 134

C

C Compile Command Option, RM/COBOL 165
C compiler 12, 81-87, 184
C datatypes. See Datatypes, C.
C entry pointsfor COBOL functions
resetunit() 210
RmForget(int y1, int x1, int y2, int x2) 209
RmRefreshCwd() 210
RmRepaintScreen() 209
setunit() 210
c filename extension 12, 47
C functions 11, 21, 81, 85. See also Function prototypes.
C parameters. See Parameters, C.
C$CARG subprogram 182, 199
C$Forget subprogram 209
C$MemoryAllocate subprogram 63
C$MemoryDeallocate subprogram 63
c_data is_ansi base modifier, defined 102
c_data is_oem base modifier, defined 102
CALL statement
GetCallerinfo library function 165
GIVING (RETURNING) phrase 12, 30, 94, 179, 196
linking C language subprograms into the runtime
system 204
non-COBOL subprograms 177, 194
USING phrase 12
OMITTED keyword 30, 179, 196
Calling conventions 7, 84. See also convention global
attribute.
Calling non-COBOL programs from RM/COBOL
programs 177, 194
Case sensitivity 18, 82, 89, 93
cbl filename extension 10
cbridge subdirectory 14, 19, 55
cbridge.h header file 126, 184, 212
cbsample subdirectory 14, 55
Character sets 101
COBOL array references, working with 46
CobolArgCount library function 135
CobolDescriptorAddress library function 136
CobolDescriptorDigits library function 137
Cobol DescriptorLength library function 138
CobolDescriptorScale library function 139
CobolDescriptorType library function 140
Cobollnitial State library function 141
Cobol ToFloat library function 142
Cobol ToGeneral String library function 144
Cobol Tolnteger library function 146
Cobol ToNumericString library function 148
Cobol ToPointerAddress library function 150
Cobol ToPointerBase library function 151
Cobol ToPointerLength library function 152
Cobol ToPointerOffset library function 153

Cobol ToPointerSize library function 154
Cobol ToString library function 155
CobolWindowsHandle library function 157
CodeBridge
benefits 8
components
CodeBridge Builder 8, 12, 47, 49-54
CodeBridge Library 8, 51, 123, 211
concepts
associating C parameters with COBOL
arguments 33, 94
automatic 34
examples of 35
explicit 34
managing omitted arguments 30
modifying COBOL data areas
passing the address 42
using the out direction attribute 41
passing information to a C function 21
miscellaneous information 30
null-valued pointer arguments 27
returning C error values 31
using P-scaling 97, 108
using template file components 17
attribute lists 18, 89, 93
attributes 18
using the CodeBridge Builder 8, 12, 47, 49-54
working with a variable number of C parameters 39
numeric 39
string 40
working with arrays. See also Arrays.
numeric 97
string 101
development process, overview
building (compiling and linking) the non-COBOL
subprogram library 12
compiling the COBOL program 13
creating atemplatefile 11, 17, 47. Seealso
Template files.
example 14. See also Examples.
invoking CodeBridge Builder program 12, 47. See
also CodeBridge Builder.
modifying or creating a COBOL program 12
running the application 13
selecting the C functions 11
dynamic-link libraries (DLLSs) 7, 16, 47, 66, 69, 74, 77,
85, 177, 178, 183, 186
enhancements 1, 223
error messages 49, 51
examples 55
non-COBOL subprogram internals
UNIX 193
Windows 175
overview 7
preparing non-COBOL subprograms, alternate
method 175, 193
regquirements 9
support modules 7, 16, 175, 178, 183, 186, 193, 195,
200, 202, 204
using this manual 9

Index

CodeBridge Builder 8, 12, 47

error messages 49

exit codes 51

using template files 17
CodeBridge Library 8, 51, 123. See also Library

functions.

caling directly 211

Flags parameter, specifying 126, 219, 220

RtCall table, reference to 160
Comments 11, 17
Compile Command, RM/COBOL, options,

specify object file pathname (O) 165
Configuration records, RUN-OPTION 188, 206
convention global attribute 21, 90
Conventions and symbols 4. See also Special
Characters.

Conversion 21

input 24, 25, 27, 29, 34, 43

output 24, 25, 27, 29, 34, 41, 43, 46
ConversionCleanup library function 158
ConversionStartup library function 159
Converting

C floating-point parameters 23

C integer parameters 22

C numeric string parameters 23

C string parameters 25

structures and unions 67
COUNT specid register 46
COUNT-MAX specia register 46
COUNT-MIN special register 46
customiz script 202

D

Data areas, COBOL, modifying 40
Data declarations 83
Data descriptors, COBOL 28
Datatypes, C 82
floating-point 23, 44
integer 22, 44
string 23, 25, 45
Datatypes, COBOL
non-numeric 24
numeric 22
numeric edited 22
Debugging an application 123
def filename extension 12
Descriptor base attributes 30, 95, 107. Seealso
Descriptor base modifier; Parameter attributes.
address 107
associating C parameters with COBOL arguments 35
length 108
managing omitted arguments 31
passing
COBOL descriptor data 28
string length information 29
the address of the COBOL data 42
scale 108
using P-scaling 43
Descriptor base modifier
silent 95

CodeBridge User's Guide 231
First Edition

Index

232

diagnostic global attribute 91, 95, 125
DiagnosticMode library function 160
Digit length 40, 43, 46, 97, 98, 104
for error base attributes 111
for general_string base attribute 29
for numeric_string base attribute 29
digits base attribute
managing omitted arguments 31
passing COBOL descriptor data 29
Direct (by value) 22, 23, 41
Direction attributes 19, 94. See also in direction
attribute; out direction attribute; Parameter
attributes.
DISPLAY statement

CONTROL phrase, REPAINT-SCREEN keyword 209

dll filename extension 16, 66, 69, 74, 77

DLLs. SeeDynamicllink libraries (DLLS).

Dynamic-link libraries (DLLS) 7, 16, 47, 66, 69, 74, 77,
85, 175, 177, 178, 183, 186

E

effective_|length base attribute
converting
C numeric string parameters 24
C string parameters 25
defined 105
passing string length information 30
EffectiveLength library function 161
ELF. See Executable and Linking Format (ELF)
object file.
Ellipsis(...), use of, in variable number of C parameters
39, 100, 103
Embedded spaces 98
Enhancements to CodeBridge 1, 223
Entry point table 211-13
Entry points
for UNIX 209
special for support modules 195, 200, 204
for Windows 183-84
specia for support modules 178, 186
Environment variable,
RM_DYNAMIC_LIBRARY_TRACE 188, 206
err filename extension 47
errno base attribute
defined 110
returning C error values 32
Error base attributes 31, 95, 110. See also Error base
modifiers, Parameter attributes.
errno 110
get_last_error 110
Error base modifiers. See also Error base attributes.
alias(name) 95, 98, 102, 107, 111,
assert_digits(min,max) 111
assert_digits _left(min,max) 111
assert_digits right 111
assert_length(min,max) 112
assert_signed 112
assert_unsigned 112
no_size error 112
rounded 112

CodeBridge User's Guide
First Edition

scaled(value) 112
silent 91, 95, 100, 103, 105, 107, 112
Error message reporting
DiagnosticMode library function 160
GetCallerInfo library function 165
Error messages 49-54
control reporting of, diagnostic global attribute 91
Examples
accessing COBOL pointer arguments 63
accommodating a variable number of parameters 59
associating C parameters with COBOL arguments 35
calling astandard C library function 14
caling aWindows API function 56
caling C++ libraries from CodeBridge 72
converting buffered C data 70
packing and unpacking structures 67
using errno error base attribute 75
using get_last_error error base attribute 78
Executable and Linking Format (ELF) object file 15, 65,
68, 74, 202
Exit codes, CodeBridge Builder 51
extern declaration 204

F

Figurative constant, NULL (NULLS) 27, 99, 103
Filenames, conventions for 4
Flags parameter, specifying 126, 212
float base attribute
and direction attributes 19
associating the C function return value 34
converting C floating-point parameters 23
defined 97
passing null-valued pointer arguments 27
working with a variable number of C parameters 39
working with arrays 44
Floating-point parameters 23
FloatToCaobol library function 162
Forward slash (/), use of, in C compiler options 85
Function prototypes 17, 81, 84. See also C functions.

G

genera_string base attribute
and direction attributes 19
and numeric edited data items 22, 24
associating the C function return value 34
converting
C numeric string parameters 23
C string parameters 25
defined 95, 104
passing null-valued pointer arguments 27
working with a variable number of C parameters 40
working with arrays, string 45
Genera StringToCobol library function 163
get_last_error base attribute
defined 110
returning C error values 32
GetCallerInfo library function 165
GIVING (RETURNING) phrase, CALL statement 12,
30, 94, 179, 196

Global attributes. See also Parameter attributes.
banner 90

convention 21, 90

diagnostic 91, 95, 125

load_message 91

overview 89

replace type 21, 92

use of, in global attribute lists 18

H

h filename extension 81

Header files 11

cbridge.h 126, 184, 212

defined 81

rmc85cal.h 47, 178, 180, 184, 195, 197, 212

rmport.h 47, 178, 195

rtarg.h 47, 178, 195

rtcallbk.h 47, 197

standdef.h 47, 178, 195

version.h 189, 206

Hyphen (-), use of

in C compiler options 85

optional, RM/COBOL compilation and runtime
options 5

in direction attribute 19
convertingto C
floating-point parameters 23
integer parameters 22
numeric string parameters 24
string parameters 25
defined 94
Includefiles. See Header files.
Indirect (by reference) 22, 23, 25, 42
Initial entry flag 141
Initial state flag 180, 196
initial_state base attribute
associating an implied argument 35
passing information to a C function 30
integer base attribute 100
and direction attributes 19
associating the C function return value 34
converting C integer parameters 22
defined 97
passing null-valued pointer arguments 27
working with a variable number of C parameters 39

L

Index

L Runtime Command Option, RM/COBOL 13, 183, 193

leading signs base modifiers
converting C, numeric string parameters 24
defined, for numeric_string only 101
leading(value) base modifier
defined 102
leading_spaces base modifier
defined 102
Length
assert_length(min,max) base modifier 99, 102, 112
BufferLength library function 134
EffectiveLength library function 161
length base attribute 108
numeric_string base attribute 97
passing
COBOL descriptor data 28
pointer length 26
string length information 29
size(value) base modifier 101, 103
string length base attributes 95
buffer_length 104
effective_length 105
length base attribute
converting
C numeric string parameters 24
C string parameters 25
defined 108
managing omitted arguments 31
passing string length information 29

Library functions 123. See also CodeBridge Library.

AssertDigits 128
AssertDigitsLeft 129
AssertDigitsRight 130
AssertLength 131
AssertSigned 132
AssertUnsigned 133
BufferLength 134
CobolArgCount 135
CobolDescriptorAddress 136
Cobol DescriptorDigits 137
Cobol DescriptorLength 138
Cobol DescriptorScale 139
CobolDescriptorType 140
Cobollnitial State 141

Cobol ToFloat 142

Cobol ToGenera String 144
Cobol Tolnteger 146

Cobol ToNumericString 148

working with arrays 44 Cobol ToPointerAddress 150
Integer parameters 22 . . , Cobol ToPointerBase 151
integer_only base modifier, defined, for integer numeric Cobol ToPointerLength 152

only 100 _ Cobol ToPointerOffset 153
IntegerToCobol library function 166 Cobol ToPointerSize 154
Italic, as a document convention 4 Cobol ToString 155

CobolWindowsHandle 157
K ConversionCleanup 158

ConversionStartup 159
DiagnosticM ode 160
EffectivelLength 161
FloatToCaobol 162

K Runtime Command Option, RM/COBOL 90, 187, 205
Key combinations, document convention for 4

CodeBridge User's Guide 233
First Edition

Index

234

Genera StringToCobol 163
GetCallerlnfo 165
IntegerToCobol 166
list of 124, 125
NumericStringToCobol 168
PointerBaseToCobol 170
PointerOffsetToCobol 171
PointerSizeToCobol 172
RtCall table, reference to 160
StringToCobol 173

Linking 12, 86

load_message global attribute 91

M

Macros 83
Makefile 9
Messages
error 49, 51
exit codes, CodeBridge Builder 51
Modifying COBOL data areas 40

N

no_null_pointer base modifier
defined
for numeric 99
for string 103
passing null-valued pointer arguments 27
no_size error base modifier
defined
for numeric 99
Non-COBOL subprograms
under UNIX
accessing 200
calling a CodeBridge non-COBOL subprogram
library 208
calling sequence 194
debugging 209
preparing C programs 202
restrictions to C subprograms performing
terminal 1/0 208
runtime functions for support modules 209
special entry points 204
under Windows
calling a CodeBridge non-COBOL subprogram
library 192
calling sequence 177
debugging 191
methods of use 176
preparing 183
special entry points 186
NULL (NULLS) figurative constant 27, 99, 103
Null-valued pointers 22-25, 27
Numeric base attributes 95. See also Numeric base
modifiers; Parameter attributes.
float 97
integer 97, 100
numeric_string 97, 101
working with arrays 44

CodeBridge User's Guide
First Edition

Numeric base modifiers 98. See also Numeric base
attributes; Parameter attributes.
alias(name) 95
assert_digits(min,max) 98
assert_digits_left(min,max) 99
assert_digits_right 99
assert_length(min,max) 99
assert_signed 99
assert_unsigned 99
integer_only 100
leading signs 101
no_null_pointer 99
no_size error 99
occurs(value) 100
optional 100
repeat(value) 100
rounded 100
scaled(value) 100
silent 95
size(value) 97, 101
trailing signs 101
unsigned 101
value if_omitted(value) 100
Numeric edited dataitems 22, 24
Numeric string parameters 23
passing COBOL numeric arguments 22
numeric_string base attribute
and direction attributes 19
and numeric edited dataitems 22, 24
associating the C function return value 34
base modifiers, specific to 101
converting C numeric string parameters 23
defined 95, 97
passing null-valued pointer arguments 27
working with a variable number of C parameters 40
working with arrays 45
NumericStringToCobol library function 168

O

occurs(value) base modifier
defined
for numeric 100
for string 103
for string length 105
working with arrays
numeric 44
string 45
Offset component, COBOL pointer argument 21, 26, 42,
106
Omitted arguments 30, 100, 103, 179, 196
OMITTED keyword, USING phrase, CALL statement
30, 179, 196
Online services 5
optional base modifier
defined
for numeric 100
for string 103
managing omitted arguments 30
Organization of this manual 2, 9

out direction attribute 19
associating the C function return value 34
converting from C
floating-point parameters 23
integer parameters 22
numeric string parameters 24
string parameters 25
defined 94
modifying COBOL data areas 41

P

Packing and unpacking structures or unions,
example of 67
Parameter attributes. See also Global attributes.
categories
argument number 19
arg_num(value) 94
ret_ val 94
base 18, 95
descriptor 28, 30, 95, 107
address 107
length 108
scale 108
error 31, 95
errno 110
get_last_error 110
general_string 95, 104
numeric 95
float 97
integer 97
numeric_string 95, 97
pointer 95
pointer_address 106
pointer_base 106
pointer_length 106
pointer_offset 106
pointer_size 106
string 95
string length 95
buffer_length 104
effective_length 105
base modifiers 19
common, for several base attributes 95
dias(name) 95
silent 95
for descriptor base attributes
silent 95
for error base attributes
dias 111
aias(name) 95
assert_digits(min,max) 111
assert_digits_|eft(min,max) 111
assert_digits_right(min,max) 111
assert_length(min,max) 112
assert_signed 112
assert_unsigned 112
no_size error 112
rounded 112
scaled(value) 112
silent 95, 112

for numeric base attributes
dias(name) 95
assert_digits(min,max) 98
assert_digits_|eft(min,max) 99
assert_digits_right(min,max) 99
assert_length(min,max) 99
assert_signed 99
assert_unsigned 99
integer_only 100
leading signs 101
no_null_pointer 99
no_size error 99
occurs(value) 100
optional 100
repeat(value) 100
rounded 100
scaled(value) 100
silent 95
size(value) 101
trailing signs 101
unsigned 101
value_if_omitted(value) 100

for pointer base attributes
pointer_max_size 107
pointer_reset_offset 107

for string length base attributes
occurs(vaue) 105
silent 95

for the string base attribute
dias(name) 95
assert_length(min,max) 102
C data is ansi 102
c_data is oem 102
leading(value) 102
leading_spaces 102
no_null_pointer 103
occurs(vaue) 103
optional 103
repeat(value) 103
silent 95
size(value) 103
trailing(value) 103
trailing_spaces 103
value_if_omitted(value) 103

direction 19
in 94
out 94

use of, in parameter attribute lists 18
Parameters, C
associating with COBOL arguments 94

automatic 34
examples of 35
explicit 34

defined 11
working with a variable number of 39, 59
Pointer arguments, accessing, example 63

CodeBridge User's Guide
First Edition

Index

235

Index

Pointer base attributes 26, 95. See also Parameter
attributes; Pointer base modifiers.
passing
and modifying pointer components 26
null-valued pointer arguments 28
pointer address and pointer length 26
the address of COBOL data 42
pointer_address 26, 28, 42, 106
pointer_base 27, 28, 42, 106
pointer_length 26, 42, 106
pointer_offset 27, 28, 42, 106
pointer_size 27, 28, 42, 106
Pointer base modifiers
alias(name) 95
passing and modifying pointer components 27
pointer_max_size 27, 107
pointer_reset_offset 27, 107
silent 95
Pointer data types
passing COBOL pointer arguments 26
pointer base attributes 95, 106
pointer_address base attribute
defined 106
passing
null-valued pointer arguments 28
pointer address and pointer length 26
the address of the COBOL data 42
pointer_base base attribute
and direction attributes 19
associating the C function return value 34
defined 106
passing
and modifying pointer components 27
null-valued pointer arguments 28
the address of the COBOL data 42
pointer_length base attribute
defined 106
passing pointer address and pointer length 26
passing the address of the COBOL data 42
pointer_max_size base modifier
defined 107
passing and modifying pointer components 27
pointer_offset base attribute
and direction attributes 19
associating the C function return value 34
defined 106
passing
and modifying pointer components 27
null-valued pointer arguments 28
the address of the COBOL data 42
pointer_reset_offset base modifier
defined 107
passing and modifying pointer components 27
pointer_size base attribute
and direction attributes 19
associating the C function return value 34
defined 106
passing
and modifying pointer components 27
null-valued pointer arguments 28
the address of the COBOL data 42

236 CodeBridge User's Guide
First Edition

PointerBaseToCaobol library function 170
PointerOffsetToCobol library function 171
Pointers

COBOL 26

null-valued 22-25

null-valued 27

pointer base attributes 26, 95, 106
PointerSizeToCobol library function 172
Pound sign (#), use of, in global attribute lists 18
P-scaling 43, 97, 108

R

Registration 5
Related publications 3
REPAINT-SCREEN keyword, CONTROL phrase,
ACCEPT and DISPLAY statements 209
repeat(value) base modifier
defined
for numeric 100
for string 103
working with a variable number of C parameters 39
replace_type global attribute 21, 92
ret_val argument number attribute
associating C parameters with COBOL arguments 19,
34
defined 94
RETURNING phrase (CALL statement) See GIVING
(RETURNING) phrase, CALL statement.
RM/COBOL
development system 8, 47
runtime, CodeBridge Library functions 8, 123
RM_AddOnBanner entry point 187, 205
RM_AddOnCancel NonCOBOL Program entry point
187, 205
RM_AddOninit entry point 187, 205
RM_AddOnL cadM essage entry point 188, 206
RM_AddOnTerminate entry point 188, 206
RM_AddOnVersionCheck entry point 189, 206
RM_DYNAMIC_LIBRARY_TRACE environment
variable 188, 206
RM_EntryPoints entry point 178, 186, 190, 195,
204, 207
RM_EnumEntryPoints entry point 190, 207
rmc85cal.h header file 47, 178, 180, 184, 197, 212
rmport.h header file 47, 178, 195
rounded base modifier
defined, for numeric 100
used with integer base attribute 97
using P-scaling 43
Rounding 43, 97, 100
rtarg.h header file 47, 178, 195
RtCall table, reference to 160
rtcallbk.h header file 47, 197
runcobol (Runtime Command), RM/COBOL 13, 90, 91,
183, 187, 188, 193, 205, 206
RUN-OPTION configuration record
V keyword 188, 206

Runtime Command, RM/COBOL
options

banner and STOP RUN message suppression (K)
90, 187, 205

list support modules loaded by the runtime (V)
91, 188, 206

object or non-COBOL program libraries (L)
13, 183, 193

S

scale base attribute
defined 108
managing omitted arguments 31
passing COBOL descriptor data 29
using P-scaling 43
scaled(value) base modifier, defined, for integer
numeric only 22, 97, 100, 112
Shared objects 7, 9, 16, 193, 202, 204. See also Support
modules.
Signs, in numeric strings. See leading signs base
modifiers; trailing signs base modifiers.
silent base modifier
defined 95
for numeric base attributes 100, 112
for pointer base attributes 107
for string length base attributes 105
for the string base attribute 103
using with diagnostic global attribute 91
Size component, COBOL pointer argument 21, 26,
42, 106
size(value) base modifier
defined
for numeric_string only 97, 101
for string 103
passing string length information 30
working with a variable number of C parameters 40
so filename extension 13, 16, 66, 69, 77, 202
Source modules
creating from a C object (no source) 204
creating from a C source 202
Specid registers
COUNT 46
COUNT-MAX 46
COUNT-MIN 46
standdef.h header file 47, 178, 195
string base attribute. See also Parameter attributes;
String base modifiers.
String base attribute 95
and direction attributes 19
and numeric edited data items 22, 24
associating the C function return value 34
converting C string parameters 25
passing null-valued pointer arguments 27
working with a variable number of C parameters 40
working with arrays 45
String base modifiers. See also string base attribute.
alias(name) 95
assert_length(min,max) 102
c data is ansi 102
c_data is_oem 102
leading spaces 102

Index

leading(value) 102
no_null_pointer 103
occurs(value) 103
optional 103
repeat(value) 103
silent 95
size(value) 103
trailing spaces 103
trailing(value) 103
value_if_omitted(value) 103
String length base attributes 29, 95. See also Parameter
attributes; String length base modifiers.
buffer_length 104
effective_length 105
passing string length information 29
String length base modifiers. See also String length base
attributes.
occurs(value) 105
silent 95
String parameters 25
and COBOL groups 26
StringToCobol library function 173
Structures or unions, as parameters 21
example of packing and unpacking 67
Subprogram loading 177, 194
Support modules 7, 9, 16, 175, 193
special entry points 186, 204
Support services, technical 5
Symbols and conventions 4. See also Specia
Characters.

T

Technical support services 5
Templatefiles
associating C parameters with COBOL arguments 33
attribute lists. See also Global attributes; Parameter
attributes.
attribute lists
global 18, 20, 89
parameter 18, 93, 113
samples of 19, 20
attributes, defined 18
comments 11, 17
creating 11, 17, 47
examples of 14
accessing COBOL pointer arguments 63
accommodating a variable number of parameters 59
calling aWindows API function 56
converting buffered C data 70
packing and unpacking structures or unions 67
resolving external differences between C and C++
external hames 72
using errno error base attribute 75
using get_last_error error base attribute 78
function prototypes 17
generating multiple 87
tpl filename extension 12
trailing signs base modifiers
converting C, numeric string parameters 24
defined, for numeric_string only 101
trailing spaces base modifier, defined, for string 103

CodeBridge User's Guide 237
First Edition

Index

trailing(value) base modifier, defined, for string 103
type base attribute

managing omitted arguments 31

passing COBOL descriptor data 29
Type definitions (typedef) 11, 56, 83, 89, 178, 181, 195
typedef statements 11, 56, 83, 89, 178, 181, 195

U

Unions or structures, as parameters 21
example of 67
unsigned base modifier, defined, for integer numeric
only 101
USING phrase, CALL statement 12, 94
OMITTED keyword 179, 196
Using this manual 9

\%

V keyword
RUN-OPTION configuration record 188, 206
V Runtime Command Option, RM/COBOL 91, 188, 206
value_if_omitted(value) base modifier
defined
for numeric 100
for string 103
managing omitted arguments 30
version.h header file 189, 206

w

Website 5

Windows 9x class 4

Windows NT class 4

windows_handle base attribute
associating an implied argument 35
passing information to a C function 30

238 CodeBridge User's Guide
First Edition

	CodeBridge User's Guide
	Copyright
	Documentation Release History
	Contents
	Preface
	Chapter 1: Introduction
	Chapter 2: Concepts
	Appendix A: CodeBridge Errors
	Appendix B: CodeBridge Examples
	Appendix C: Useful C Information
	Appendix D: Global Attributes
	Appendix E: Parameter Attributes
	Appendix F: CodeBridge Library Functions
	Appendix G: Non-COBOL Subprogram Internals for Windows
	Appendix H: Non-COBOL Subprogram Internals for UNIX
	Appendix I: Calling the CodeBridge Library Directly
	Appendix J: Summary of Enhancements
	Glossary of Terms
	Index
	List of Figures
	List of Tables

	Preface
	Welcome to CodeBridge
	What's New in CodeBridge 9
	Who Should Use CodeBridge
	Organization of Information
	Related Publications
	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Introduction
	What is CodeBridge?
	CodeBridge Components
	Benefits of Using CodeBridge
	Requirements for Developing Applications Using CodeBridge

	Using this Manual
	Developers Who are New to C Programming
	Developers Who are Evaluating CodeBridge
	Developers Who Wish to Use Existing C Libraries or Write New Non-COBOL Subprograms
	Developers Who Have Written Non-COBOL Subprograms for Previous Versions of RM/COBOL
	Developers Who Need Assistance in Testing and Debugging

	Typical Development Procedure
	Typical Development Example
	Example 1: Calling a Standard C Library Function

	Chapter 2: Concepts
	Using Template File Components
	Attributes
	Attribute Lists
	Parameter Attribute Lists
	Sample Template File Using Parameter Attribute Lists

	Global Attribute Lists
	Sample Template File Using Global Attribute Lists

	Passing Information to a C Function
	Passing COBOL Arguments
	Passing COBOL Numeric Arguments
	Numeric Arguments with C Integer Parameters
	Numeric Arguments with C Floating-Point Parameters
	Numeric Arguments with C Numeric String Parameters

	Passing COBOL Non-Numeric Arguments
	Non-Numeric Arguments with C String Parameters
	Groups with C String Parameters

	Passing COBOL Pointer Arguments
	Method 1: Passing Pointer Address and Pointer Length
	Method 2: Passing and Modifying Pointer Components

	Passing Null-Valued Pointer Arguments

	Passing COBOL Argument Properties
	Passing COBOL Descriptor Data
	Passing String Length Information

	Passing Miscellaneous Information
	Managing Omitted Arguments

	Returning C Error Values
	Consistent Return Values
	Specifying Both errno and get_last_error
	Function Return Value (Status) Versus Error Values

	Associating C Parameters with COBOL Arguments
	Explicit Association
	Automatic Association
	Automatic Association of the C Function Return Value with a COBOL Argument
	Automatic Association of C Parameters with COBOL Arguments
	Automatic Association with an Implied Argument
	Automatic Association with the Next Argument
	Automatic Association with the Current Argument

	Examples of Associating Parameters with Arguments
	Example 1: Automatic Versus Explicit Association
	Example 1a: Automatic Association
	Example 1b: Optional Explicit Association
	Example 1c: Required Explicit Association

	Example 2: Multiple Attribute Lists for a C Parameter
	Example 2a: Associating a Parameter with Multiple Arguments
	Example 2b: In Direction Attribute for Multiple Attribute Lists
	Example 2c: Compatibility between Multiple Attribute Lists

	Example 3: No Attribute List for a C Parameter

	Working with a Variable Number of C Parameters
	Repeating C Numeric Parameters
	Repeating C String Parameters
	numeric_string
	general_string
	string

	Modifying COBOL Data Areas
	Using the out Direction Attribute
	Passing the Address of COBOL Data
	Passing Buffer Addresses

	Using P-Scaling
	Working with Arrays
	Numeric Arrays
	String Arrays
	COBOL Array References

	CodeBridge Builder
	Using the CodeBridge Builder

	Appendix A: CodeBridge Errors
	CodeBridge Builder Error Messages
	CodeBridge Builder Exit Codes
	CodeBridge Library Error Messages

	Appendix B: CodeBridge Examples
	Example 1: Calling a Standard C Library Function
	Example 2: Calling a Windows API Function
	Example 3: Accommodating a Variable Number of Parameters
	Example 4: Accessing COBOL Pointer Arguments
	Example 5: Packing and Unpacking Structures
	Example 6: Converting Buffered C Data
	Example 7: Calling C++ Libraries from CodeBridge
	Example 8: Using errno
	Example 9: Using get_last_error

	Appendix C: Useful C Information
	Understanding C Language Concepts
	Case Sensitivity
	Data Types
	Data Declarations
	Type Definitions and Macros
	Calling Conventions
	Function Prototypes

	Compiling and Linking C Functions
	Compiling on Windows
	Compiling on UNIX
	Linking on Windows
	Linking on UNIX
	Multiple Template Files

	Appendix D: Global Attributes
	Global Attributes Overview
	banner Attribute
	convention Attribute
	diagnostic Attribute
	load_message Attribute
	replace_type Attribute

	Appendix E: Parameter Attributes
	Parameter Attributes Overview
	Argument Number Attributes
	Direction Attributes
	Base and Base Modifier Attributes
	Base Modifiers Common to Base Attributes
	Numeric Base Attributes
	Numeric String Formatting and Conversion Rules
	Base Modifiers that Apply to Numeric Base Attributes

	string Base Attribute
	Base Modifiers that Apply to the String Base Attribute

	general_string Base Attribute
	String Length Base Attributes
	Base Modifiers that Apply to String Length Base Attributes

	Pointer Base Attributes
	Base Modifiers that Apply to Pointer Base Attributes

	Descriptor Base Attributes
	Base Modifier that Applies to Descriptor Base Attributes

	Error Base Attributes
	Base Modifiers that Apply to Error Base Attributes

	Parameter Attributes Summary
	Parameter Attribute Combinations

	Appendix F: CodeBridge Library Functions
	Library Functions Overview
	Specifying the Flags Parameter
	AssertDigits
	AssertDigitsLeft
	AssertDigitsRight
	AssertLength
	AssertSigned
	AssertUnsigned
	BufferLength
	CobolArgCount
	CobolDescriptorAddress
	CobolDescriptorDigits
	CobolDescriptorLength
	CobolDescriptorScale
	CobolDescriptorType
	CobolInitialState
	CobolToFloat
	CobolToGeneralString
	CobolToInteger
	CobolToNumericString
	CobolToPointerAddress
	CobolToPointerBase
	CobolToPointerLength
	CobolToPointerOffset
	CobolToPointerSize
	CobolToString
	CobolWindowsHandle
	ConversionCleanup
	ConversionStartup
	DiagnosticMode
	EffectiveLength
	FloatToCobol
	GeneralStringToCobol
	GetCallerInfo
	IntegerToCobol
	NumericStringToCobol
	PointerBaseToCobol
	PointerOffsetToCobol
	PointerSizeToCobol
	StringToCobol

	Appendix G: Non-COBOL Subprogram Internals for Windows
	C Subprograms for Windows
	Methods of Using Non-COBOL Subprograms
	Calling C Subprograms from COBOL for Windows
	COBOL CALL Statement
	C Subprogram Name Table Structure on Windows
	Example RM_EntryPoints for Windows

	Parameters Passed to the C Subprogram on Windows
	COBOL Argument Entry Structure for C on Windows

	Preparing C Subprograms for Windows
	Special Entry Points for Support Modules on Windows
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Debugging C Subprograms on Windows
	Calling a CodeBridge Subprogram Library on Windows

	Appendix H: Non-COBOL Subprogram Internals for UNIX
	C Subprograms for UNIX
	Calling C Subprograms from COBOL for UNIX
	COBOL CALL Statement
	C Subprogram Name Table Structure on UNIX
	Example RM_EntryPoints for UNIX

	Parameters Passed to the C Subprogram on UNIX
	COBOL Argument Entry Structure for C on UNIX

	Accessing C Subprograms from UNIX
	Preparing C Subprograms for UNIX
	Creating a Support Module from a C Source
	Creating a Support Module from a C Object (No Source)

	Special Entry Points for Support Modules on UNIX
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Calling a CodeBridge Subprogram Library on UNIX
	C Subprograms Performing Terminal I/O
	Debugging C Subprograms on UNIX
	C Subprogram Example
	Runtime Functions for Support Modules

	Appendix I: Calling the CodeBridge Library Directly
	Overview
	Including cbridge.h
	Declaring the C Function Return Value and Parameters
	Specifying the COBOL Argument Number
	Declaring C Data Items Used in the Conversion Process
	Numeric Conversions
	String Conversions
	Address Conversions
	Pointer Numeric Component Conversions
	Other Conversions
	Trivial Conversions

	Initializing and Terminating the Conversion Process
	Initialization
	Termination

	Converting COBOL Arguments to C Data Items
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Converting C Data Items to COBOL Arguments
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Validating Properties of COBOL Arguments
	Example

	Appendix J: Summary of Enhancements
	Version 8 Enhancements
	Version 7.5 Enhancements
	Version 7.1 Enhancements
	Version 7.0 Enhancements

	Glossary of Terms
	Terminology and Definitions

	Index

