
CICS Adapters Administrator’s
Guide

Version 6.2, May 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products."

Updated: 20-Dec-2006

Contents

List of Figures ix

List of Tables xi

Preface xiii

Part 1 Introduction

Chapter 1 Introduction to CORBA and Orbix 3
Overview of CORBA 4

Why CORBA? 5
CORBA Objects 7
The ORB 9
CORBA Application Basics 10

Overview of Orbix 13
Simple Orbix Application 14
Broader Orbix Environment 17

Chapter 2 Introduction to the CICS Adapters 19
Overview of the CICS Server Adapter 21

Role of the CICS Server Adapter 22
CICS Server Adapter Processing of IDL Operations 25
The CICS Server Adapter cicsraw Interface 26
Unsupported IDL Types 34

Overview of the Client Adapter 35
iii

CONTENTS
Part 2 Configuring the CICS Server Adapter and the Orbix
Runtime Inside CICS

Chapter 3 Introduction to CICS Server Adapter Configuration 41
A CICS Server Adapter Sample Configuration 42
Configuration Summary of Adapter Plug-Ins 46

Chapter 4 CICS Server Adapter Service Configuration Details 57

Chapter 5 Configuring the CICS Server Adapter EXCI Plug-In 67
Setting Up EXCI for the CICS Server Adapter 68

Installing Support for IRC for the External Call Interface 69
Installing Sample Orbix CICS Resource Definitions 70
Updating Access Permissions for CICS Resources 71

EXCI Plug-In Configuration Items 72

Chapter 6 Configuring the CICS Server Adapter APPC Plug-In 75
Setting Up APPC for the CICS Server Adapter 76

Defining LUs to APPC 77
Defining an APPC Destination Name for the CICS LU 78
Defining LUs to VTAM 80
Defining the Required Resources to CICS 82

Additional RACF Customization Steps for APPC 83
Bind Time Security with APPC 84
Protecting LUs 86
Link Security & User Security with APPC 87

APPC Plug-In Configuration Items 88

Chapter 7 Configuring the CICS Server Adapter RRS Plug-In 91
Introduction to RRS 92
Setting up RRS for the CICS Server Adapter 93
RRS Plug-In Configuration Items 100
 iv

CONTENTS
Chapter 8 Configuring the CICS Server Adapter for Client Principals 101
Activating Client Principal Support 103
Setting up the Required Privileges 107
Additional Requirements for CICS Protocol Plug-Ins 109

Chapter 9 Configuring the Orbix Runtime inside CICS 113
Customizing CICS 114
Customizing Orbix Event Logging 116

Chapter 10 IDL Compiler Configuration 119

Part 3 Configuring the Client Adapter and the Orbix
Runtime Inside CICS

Chapter 11 Introduction to Client Adapter Configuration 125
A Client Adapter Sample Configuration 126
Configuration Summary of Client Adapter Plug-Ins 129

Chapter 12 Client Adapter General Configuration 133

Chapter 13 Configuring the Client Adapter AMTP_APPC Plug-in 137
Setting Up APPC for the Client Adapter 138

Defining LUs to APPC 139
Defining an APPC Destination Name for the Client Adapter 142
Defining LUs to VTAM 145
Defining the Required Resources to CICS 150

Additional RACF Customization Steps for APPC 151
LU-to-LU Security Verification 152
Protecting LUs 154

AMTP_APPC Plug-In Configuration Items 155

Chapter 14 Configuring the Client Adapter Subsystem 157
v

CONTENTS
Chapter 15 Configuring the Orbix Runtime inside CICS 161
Customizing CICS 162
Customizing Orbix Configuration 164
Customizing Orbix Event Logging 166
Customizing Orbix Maximum Segment Size 168
Customizing Orbix APPC Symbolic Destination 169

Part 4 Securing and Using the CICS Server Adapter

Chapter 16 Securing the CICS Server Adapter 173
Security Configuration Items 174
Common Security Considerations 181
EXCI-Based Security Considerations 184

CICS Security Mechanisms when Using EXCI 185
Orbix CICS Server Adapter Security Modes for EXCI 188

APPC-Based Security Considerations 191
CICS Security Mechanisms when Using APPC 192
Orbix CICS Server Adapter Security Modes for APPC 198

Chapter 17 Mapping IDL Interfaces to CICS 199
The Mapping File 200

Characteristics of the Mapping File 201
Generating a Mapping File 203

Using the IFR as a Source of Type Information 206
Introduction to Using the IFR 207
Registering IDL interfaces with the IFR 209
Informing CICS Server Adapter of a New Interface in the IFR 212
Using an IFR Signature Cache file 214

Using type_info store as a Source of Type Information 216
Introduction to Using a type_info Store 217
Generating type_info Files using the IDL Compiler 219
Informing CICS Server Adapter of a new type_info Store File 221
 vi

CONTENTS
Chapter 18 Using the CICS Server Adapter 223
Preparing the Server Adapter 225
Starting the Server Adapter 229
Stopping the CICS Server Adapter 231
Running Multiple Server Adapters Simultaneously 232
Using the MappingGateway Interface 234
Locating CICS Server Adapter Objects Using itmfaloc 237
Adding a Portable Interceptor to the CICS Server Adapter 240

Developing the Portable Interceptor 241
Compiling the Portable Interceptor 246
Loading the Portable Interceptor into the CICS Server Adapter 248

Enabling the GIOP Request Logger Interceptor 251
Gathering Accounting Information in the Server Adapter 253

Developing the Accounting DLL 254
Compiling the Accounting DLL 258
Loading the Accounting DLL into the Server Adapter 259

Exporting Object References at Runtime 260
Configuration Items for Exporting Object References 261
Exporting Object References to a File 265
Exporting Object References to Naming Service Context 266
Exporting Object References to Naming Service Object Group 268

Part 5 Securing and Using the Client Adapter

Chapter 19 Securing the Client Adapter 275
Security Configuration Items 276
Common Security Considerations 281
APPC Security Considerations 283

Chapter 20 Using the Client Adapter 289
Starting the Client Adapter 290
Stopping the Client Adapter 292
Running Multiple Client Adapters Simultaneously 293

Load Balancing with Multiple Client Adapters 294
Running Two Client Adapters on the Same z/OS Host 296
vii

CONTENTS
Part 6 Appendices

Appendix A Troubleshooting 301

Appendix B Glossary of Acronyms 305

Index 309
 viii

List of Figures

Figure 1: The Nature of Abstract CORBA Objects 7

Figure 2: Role of the ORB in the Basic CORBA Model 9

Figure 3: Invoking on a CORBA Object 11

Figure 4: Overview of a Simple Orbix Application 14

Figure 5: Graphical Overview of the Role of the CICS Server Adapter 23

Figure 6: Graphical Overview of the Role of the Client Adapter 37

Figure 7: CICS Security Mechanisms for EXCI-Based Server Adapter 185

Figure 8: CICS Security Mechanisms for APPC-Based Server Adapter 193

Figure 9: Graphical Overview of a Load Balancing Scenario 294

Figure 10: Running Two Client Adapters on the Same z/OS Host 297
ix

LIST OF FIGURES
 x

List of Tables

Table 1: Initial and Maximum Log Stream Sizes 95

Table 2: Client Principal Support and cicsa Plug-In Configuration Items 104

Table 3: Event Logging Settings for the CICS Server Adapter 116

Table 4: Server Adapter Mapping Member Configuration Settings 121

Table 5: S390 Assembler Program Variables and Default Values 165

Table 6: Event Logging Settings for the Client Adapter 166

Table 7: Summary of user IDs used for the CICS Security Checks 189

Table 8: APPC LU Security System Base LU Keyword Definitions 284

Table 9: APPC LU Security Client Adapter LU Keyword Definitions 284

Table 10: Glossary of Acronym Extensions 305
xi

LIST OF TABLES
 xii

Preface
Orbix is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group. Orbix complies with the following specifications:

� CORBA 2.6

� GIOP 1.2 (default), 1.1, and 1.0

Orbix Mainframe is IONA�s implementation of the CORBA standard for the
z/OS platform. Orbix Mainframe documentation is periodically updated. New
versions between releases are available at http://www.iona.com/docs.

Support If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Audience This guide is intended for CICS system programmers who want to configure,
secure, and use the ClCS server adapter and client adapter that are supplied
with Orbix Mainframe. It is assumed that the reader is familiar with the
basic concepts of CORBA 2.6 and CICS administration.

Related Documentation Orbix Mainframe documentation includes the following related guides:

� IMS Adapters Administrator�s Guide

� COBOL Programmer�s Guide and Reference

� PL/I Programmer�s Guide and Reference

� CORBA Programmer�s Guide, C++

� CORBA Programmer�s Reference, C++

� CORBA Administrator�s Guide
xiii

www.iona.com/docs
mailto:support@iona.com
mailto:docs-support@iona.com.

PREFACE
� Mainframe Security Guide

� Mainframe Migration and Upgrade Guide

� Mainframe Management Guide

� Mainframe CORBA Concepts Guide

� Mainframe OTS Guide

� Artix Transport User�s Guide

The Orbix CICS Adapter Programmer�s Guide, which is based on Orbix
2.3.x rather than Orbix Mainframe 6.x, is also a useful reference. For
migration issues refer to the Mainframe Migration Guide.

For the latest version of all IONA product documentation, see the IONA web
site at: http://www.iona.com/support/docs

Organization of This Guide This guide is divided into the following parts:

Part 1, �Introduction�

This part introduces Common Object Request Broker Architecture (CORBA),
and Orbix, IONA's implementation of CORBA. It also introduces the CICS
server adapter, which is an Orbix server that can connect with CICS; and the
client adapter, which enables CICS transactions to connect to CORBA
servers running on various platforms.

Part 2, �Configuring the CICS Server Adapter and the Orbix Runtime Inside
CICS�

This part describes how to configure the CICS server adapter and the Orbix
runtime inside CICS.

Part 3, �Configuring the Client Adapter and the Orbix Runtime Inside CICS�

This part explains security considerations for the CICS server adapter, and
how the server adapter can be used as a bridge between CORBA based
messages and CICS programs. It also describes how IDL operation
signatures are mapped via the CICS server adapter to CICS.

Part 4, �Securing and Using the CICS Server Adapter�

This part describes how to configure the Orbix Mainframe client adapter and
the Orbix runtime inside CICS.
 xiv

http://www.iona.com/support/docs

PREFACE
Part 5, �Securing and Using the Client Adapter�

This part explains security considerations for the client adapter, and how the
client adapter can be used as a bridge between CORBA based messages
and CICS programs.

Appendix A, �Troubleshooting�

This chapter provides an overview of the MCLOOKUP utility that can be used
for troubleshooting.

Appendix B, �Glossary of Acronyms�

This glossary provides an expansion for each of the acronyms used in this
guide.

Additional Related Resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix Mainframe, and other products. You can access the
knowledge base at the following location:

http://www.iona.com/support/knowledge_base/index.xml

The IONA update center contains the latest releases, and patches for IONA
products:

http://www.iona.com/support/updates/index.xml

Typographical Conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text represents
portions of code, and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Code italic Italic words or characters in code and commands
represent variable values that you must supply; for
example:

install-dir/etc/domains
xv

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying Conventions This guide might use the following keying conventions:

Code Bold Code bold is used to highlight a piece of code within a
particular code sample.

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

$ A dollar sign represents the z/OS UNIX System
Services command shell prompt for a command that
does not require root privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.
 xvi

Part 1
Introduction

In This part This part contains the following chapters:

Introduction to CORBA and Orbix page 3

Introduction to the CICS Adapters page 19

CHAPTER 1

Introduction to
CORBA and Orbix
The Common Object Request Broker Architecture (CORBA)
standard is specified by the Object Management Group (OMG)
and provides the foundation for flexible and open systems. It
underlies some of the Internet�s most successful e-business
sites, and some of the world�s most complex and demanding
enterprise information systems. Orbix is a full implementation
of the CORBA standard from IONA Technologies. Orbix
Mainframe is IONA�s implementation of CORBA for the z/OS
platform. This chapter provides an introductory overview of
both CORBA and Orbix.

In this chapter This chapter discusses the following topics:

Overview of CORBA page 4

Overview of Orbix page 13
3

CHAPTER 1 | Introduction to CORBA and Orbix
Overview of CORBA

Overview The Common Object Request Broker Architecture (CORBA) provides the
foundation for flexible and open systems. It underlies some of the Internet�s
most successful e-business sites and some of the world�s most complex and
demanding enterprise information systems. This section provides an
overview of CORBA in terms of the enterprise information solutions that it
provides and the basic principles on which it is based.

In this section This section discusses the following topics:

Why CORBA? page 5

CORBA Objects page 7

The ORB page 9

CORBA Application Basics page 10
 4

Overview of CORBA
Why CORBA?

Overview CORBA is a standard middleware architecture that can be used to develop
and integrate a wide variety of distributed systems that use a variety of
hardware, operating systems, and programming languages.

This subsection discusses the following topics:

� Need for open systems

� Need for high-performance systems

� Open standard solution

� Widely available solution

Need for open systems Today�s enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages that need to work together
to make the enterprise function.

Need for high-performance
systems

Orbix is a CORBA development platform for building high-performance
systems. Its modular architecture supports the most demanding needs for
scalability, performance, and deployment flexibility. The Orbix architecture
is also language-independent, so you can implement Orbix applications in
COBOL, PL/I, C++, or Java that interoperate, via the standard IIOP
protocol, with applications built on any CORBA-compliant technology.

Open standard solution CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network, using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

Widely available solution CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, COBOL,
and PL/I, COM, LISP, Python, and XML, running on embedded systems,
PCs, UNIX hosts, and mainframes. CORBA objects running in these
environments can cooperate seamlessly. Through COMet, IONA�s dynamic
5

CHAPTER 1 | Introduction to CORBA and Orbix
bridge between CORBA and COM, they can also interoperate with COM
objects. CORBA offers an extensive infrastructure that supports all the
features required by distributed business objects. This infrastructure
includes important distributed services, such as transactions, messaging,
and security.
 6

Overview of CORBA
CORBA Objects

Overview This subsection describes the most basic components of a CORBA system.
It discusses the following topics:

� Nature of abstract CORBA objects

� Object references

� IDL interfaces

� Advantages of IDL

Nature of abstract CORBA objects A CORBA system provides distributed object capability between applications
in a network. A client in a CORBA system is any program that invokes the
services (or functions) of a CORBA object. A server in a CORBA system is
any program that contains instances of CORBA objects.

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server within the system.

Figure 1: The Nature of Abstract CORBA Objects

A server
implements a
CORBA object

IDL interface definitions
specify CORBA objects

Clients access
CORBA objects
via object
references
7

CHAPTER 1 | Introduction to CORBA and Orbix
Object references An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as COBOL, PL/I, C++, or Java.

For integration with existing transactions in CICS, you can:

� Use the Orbix CICS server adapter to receive CORBA client requests
and translate them to program invocations in CICS.

� Use the Orbix CICS client adapter to allow transactions in CICS to
initiate CORBA client requests to servers running outside of CICS.

IDL interfaces Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which operations (member functions), data types, attributes, and
exceptions are available to a client, without making any assumptions about
an object�s implementation. Not all IDL data types are supported by the
CICS server and client adapters. Refer to �Unsupported IDL Types� on
page 34 for more information.

Advantages of IDL With a few calls to an Object Request Broker�s (ORB�s) application
programming interface (API), servers can make CORBA objects available to
client programs in your network.

To call member functions on a CORBA object, a client programmer needs
only to refer to the object�s interface definition. Clients use their normal
programming language syntax to call the member functions of a CORBA
object. A client does not need to know which programming language
implements the object, the object�s location on the network, or the operating
system in which the object exists.

Using an IDL interface to separate an object�s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients
that access the object. You can also make existing objects available across a
network.
 8

Overview of CORBA
The ORB

Overview CORBA defines a standard architecture for object request brokers (ORBs).
An ORB is a software component that mediates the transfer of messages
from a program to an object located on a remote network host. The ORB
hides the underlying complexity of network communications from the
programmer.

This subsection discusses the following topics:

� Role of an ORB

� Graphical overview

Role of an ORB An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

Graphical overview When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Figure 2: Role of the ORB in the Basic CORBA Model

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Server
9

CHAPTER 1 | Introduction to CORBA and Orbix
CORBA Application Basics

Overview This subsection describes the basics of how CORBA applications work. It
discusses the following topics:

� Developing application interfaces

� Client invocations on CORBA objects

� IDL operation parameters

� Parameter-passing mode qualifiers

Developing application interfaces The first step in developing a CORBA application is to define interfaces to
objects in your system, in CORBA IDL. Then compile these interfaces with
an IDL compiler. An IDL compiler can generate COBOL, PL/I, C++ or Java
from IDL definitions. The generated code includes client stub code
(excluding COBOL and PL/I), which you use to develop client programs; and
object skeleton code, which you use to implement CORBA objects in server
programs.

Your installation of the CICS server adapter includes a server application
that runs on z/OS and acts as the CORBA gateway to the CICS system Your
installation of the CICS client adapter includes a client application that runs
on z/OS and acts as the CORBA gateway outbound from the CICS system.
Sample demonstrations are provided with both the CICS server and client
adapter installation programs. These demonstrations are located in the
orbixhlq.DEMOS.CICS.** PDS range. Samples of both COBOL and PL/I
CICS servers and clients are provided. For more details about the COBOL
demonstrations, see the sections in the COBOL Programmer�s Guide and
Reference on developing a CICS server and a CICS client. For more details
about the PL/I demonstrations, see the sections in the PL/I Programmer�s
Guide and Reference on developing a CICS server and a CICS client.

Note: With Orbix Mainframe, you can use the IDL compiler to generate
only COBOL or PL/I server skeleton code from IDL definitions. The IDL
compiler does not generate COBOL or PL/I client stub code.
 10

Overview of CORBA
Client invocations on CORBA
objects

When a client wants to invoke operations on a CORBA object, it invokes on
an object reference that it obtains from the server process. As shown in
Figure 3 on page 11, a client call is transferred through the client stub code
to the ORB. The ORB then passes the function call through the object
skeleton code to the target object. Because the implemented object is not
located in the client�s address space, CORBA objects are represented in
client code by proxy objects.

IDL operation parameters Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter-passing modes clarify operation
definitions and allow the IDL compiler to accurately map operations to a
target programming language. The Orbix CICS runtime uses
parameter-passing modes to determine in which direction (or directions) it
must marshal a parameter.

Parameter-passing mode
qualifiers

There are three parameter-passing mode qualifiers:

Figure 3: Invoking on a CORBA Object

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton
Code

in This means that the parameter is initialized only by the client and
is passed to the object.
11

CHAPTER 1 | Introduction to CORBA and Orbix
out This means that the parameter is initialized only by the object and
is passed to the client.

inout This means that the parameter is initialized by the client and
passed to the server; the server can modify the value before
returning it to the client
 12

Overview of Orbix
Overview of Orbix

Overview Orbix is IONA�s implementation of the CORBA standard. This section
provides an example of a simple Orbix application and an introduction to the
broader Orbix environment.

In this section This section discusses the following topics:

Simple Orbix Application page 14

Broader Orbix Environment page 17
13

CHAPTER 1 | Introduction to CORBA and Orbix
Simple Orbix Application

Overview A simple Orbix application might contain a client and a server along with
one or more objects (see Figure 4). In this model, the client obtains
information about the object it seeks, using object references. An object
reference uniquely identifies a local or remote object instance.

This subsection discusses the following topics:

� Graphical overview

� Explanation of simple application

� Portable object adapter

� Limitations of a simple application

Graphical overview Figure 4 provides a graphical overview of a simple Orbix application.

Figure 4: Overview of a Simple Orbix Application

Network

Client Host

Object
Client

ORB ORB

12

3

Server Host

Naming
Service
 14

Overview of Orbix
Explanation of simple application Figure 4 on page 14 shows how an ORB enables a client to invoke on a
remote object:

Portable object adapter For simplicity, Figure 4 on page 14 omits details that all applications
require. For example, Orbix applications use a Portable Object Adapter
(POA), to manage access to server objects. A POA maps object references to
their concrete implementations on the server. Given a client request for an
object, a POA can invoke the referenced object locally.

The client request embeds the POA name and object ID taken from the
published object reference. The server then uses the POA name to invoke
the POA. The POA uses the object ID to invoke the desired object, if it exists
on the server.

Refer to either the COBOL Programmer�s Guide and Reference or the PL/I
Programmer�s Guide and Reference for details about the Orbix Mainframe
POA.

Limitations of a simple application This simple model uses a naming service to pass object references to
clients. The naming service has some limitations and does not support all
the needs of enterprise-level applications. For example, naming services are
often not designed to handle frequent updates. They are designed to store
relatively stable information that is not expected to change very often. If a
process stops and restarts frequently, a new object reference must be
published with each restart. In production environments where many

Step Action

1 When a server starts, it creates one or more objects and
publishes their object references in a naming service. A naming
service uses simple names to make object references
accessible to prospective clients. Servers can also publish
object references to a file or as a URL.

2 The client program looks up the object reference by name in
the naming service. The naming service returns the server�s
object reference.

3 The client ORB uses the object reference to pass a request to
the server object.
15

CHAPTER 1 | Introduction to CORBA and Orbix
servers start and stop frequently, this can overwork a naming service.
Enterprise applications also have other needs that are not met by this simple
model�for example, on-demand activation, and centralized administration.
These needs are met in a broader Orbix environment, as described in
�Broader Orbix Environment� on page 17.
 16

Overview of Orbix
Broader Orbix Environment

Overview Along with the naming service, Orbix offers a number of features that are
required by many distributed applications, for flexibility, scalability, and
ease of use. This subsection provides an overview of those features. It
discusses the following topics:

� Location domains

� Managing object availability

� Configuration domains

� Interface Repository

Location domains Location domains enable a server and its objects to move to a new process
or host, and to be activated on demand. An Orbix location domain consists
of two components�a locator daemon and a node daemon:

� locator daemon�This is a CORBA service that acts as the control
center for the entire location domain. The locator daemon has two
roles:

♦ Manage the configuration information used to find, validate, and
activate servers running in the location domain.

♦ Act as the contact point for clients trying to invoke on servers in
the domain.

� node daemon�This acts as the control point for a single host machine
in the system. Every machine that runs an application server must run
a node daemon. The node daemon starts, monitors, and manages
application servers on its machine. The locator daemon relies on node
daemons to start processes and tell it when new processes are
available.
17

CHAPTER 1 | Introduction to CORBA and Orbix
Managing object availability A server makes itself available to clients by publishing Interoperable Object
References (IORs). An IOR contains an object's identity and address. Refer
to �Sample configuration file� on page 227 for an example of an IOR.

When a client invokes on an object, Orbix locates the object as follows:

1. The ORB sends the invocation to the locator daemon.

2. The locator daemon searches the implementation repository for the
actual address of a server that runs this object.

3. The locator daemon returns this address to the client.

4. The client connects to the returned server address and directs this and
all subsequent requests for this object to that address.

Configuration domains Configuration domains allows you to organize ORBs into independently
manageable groups. This brings scalability and ease of use to the largest
environments.

Interface Repository The Interface Repository (IFR) provides a source of type information, and
allows clients to discover and use additional objects in the environment�
even if clients do not know about these objects at compile time. Orbix
Mainframe also supplies an alternative to using the IFR; refer to �Using
type_info store as a Source of Type Information� on page 216 for more
information.
 18

CHAPTER 2

Introduction to the
CICS Adapters
The Orbix Mainframe CICS server adapter provides a simple
way to integrate distributed CORBA and EJB clients on various
platforms with existing and new CICS transactions running on
z/OS. It allows you to develop and deploy Orbix COBOL and
Orbix PL/I servers in CICS, and to integrate these CICS servers
with distributed CORBA clients running on various platforms.
It also facilitates the integration of existing CICS transactions,
not developed using Orbix, with distributed CORBA clients,
without the need for code changes to these existing
transactions. The CICS server adapter itself can execute in a
native z/OS or UNIX System Services address space.

The Orbix Mainframe client adapter provides a simple way for
CICS transactions to act as clients of distributed CORBA
servers on various platforms. It allows you to develop and
deploy Orbix COBOL and Orbix PL/I clients in CICS. The client
adapter itself can execute in a native z/OS or UNIX Systems
Services address space

This chapter provides an introductory overview of both the CICS
server adapter and the client adapter that are supplied with
Orbix Mainframe.
19

CHAPTER 2 | Introduction to the CICS Adapters
In this chapter This chapter discusses the following topics:

Overview of the CICS Server Adapter page 21

Overview of the Client Adapter page 35
 20

Overview of the CICS Server Adapter
Overview of the CICS Server Adapter

Overview The CICS server adapter is an Orbix IONA service that can be deployed in
either a native z/OS or UNIX System Services environment. Its function is to
integrate distributed CORBA or EJB clients (or both) running on various
platforms with existing or new CICS applications (or both) running on z/OS.

In this section This section discusses the following topics:

Role of the CICS Server Adapter page 22

CICS Server Adapter Processing of IDL Operations page 25

The CICS Server Adapter cicsraw Interface page 26

Unsupported IDL Types page 34
21

CHAPTER 2 | Introduction to the CICS Adapters
Role of the CICS Server Adapter

Overview The CICS server adapter acts as a bridge between CORBA/EJB clients and
CICS servers. It allows you to set up a distributed system that combines the
powerful online transaction processing capabilities of CICS with the
consistent and well-defined structure of a CORBA environment.

This subsection discusses the following topics:

� Characteristics of the CICS server adapter

� CICS server adapter functions

� Graphical overview

� Graphical overview explanation

Characteristics of the CICS server
adapter

The CICS server adapter has the following characteristics:

� It is a fully dynamic bridge, because the interfaces that it provides to
CORBA clients can be changed at runtime.

� It is an Orbix server that is used to allow CICS transactions to process
IDL-defined operations. Refer to �CICS Server Adapter Processing of
IDL Operations� on page 25 for more details.

� It implements the cicsraw IDL interface. Refer to �The CICS Server
Adapter cicsraw Interface� on page 26 for more details.

CICS server adapter functions The CICS server adapter performs the following functions:

1. It accepts an IDL request or an input COMMAREA from the client.

2. It provides accepted IDL requests or an input COMMAREA to CICS.

3. It runs the CICS program. If it is an IDL-based request, the server
adapter marshals the operation parameters for the implementation
server program in CICS, performing any necessary data conversion;
otherwise, it simply runs the requested program with the supplied
input COMMAREA.

4. In the same way, it receives the results from CICS and returns them to
the client.
 22

Overview of the CICS Server Adapter
Graphical overview Figure 5 provides a graphical overview of the role of the CICS server
adapter.

Figure 5: Graphical Overview of the Role of the CICS Server Adapter

Windows
NT Client

Solaris
Client

Java
Client

z/OS
(native or UNIX

System Services)

Orbix CICS
Server Adapter

CICS

Existing
Program

IIOP
over

TCP/IP

IIOP
over

TCP/IP

IIOP
over

TCP/IP

EXCI or
APPC
using

cicsraw

Orbix
Daemon

Mapping
Repository

Type
Information
Repository

New
Program

COBOL
runtime

or
PL/I

runtime

IIOP

IIOP orFile read

EXCI
or

APPC

File read
23

CHAPTER 2 | Introduction to the CICS Adapters
Graphical overview explanation Figure 5 on page 23 provides an overview of the role of the CICS server
adapter in integrating distributed CORBA or EJB clients (or both) on
different platforms with CICS transactions running on z/OS. The CORBA or
EJB clients can be written in languages such as C++ or Java.

The CICS server adapter communicates with CICS using either IBM�s
External CICS Interface (EXCI) or Advanced Program to Program
Communications (APPC) protocol. A 32K data limit applies when using
EXCI, but does not apply when using APPC. As discussed, the CICS server
adapter acts as a bridge between CORBA/EJB clients that can be running on
various platforms and servers that are running in CICS.
 24

Overview of the CICS Server Adapter
CICS Server Adapter Processing of IDL Operations

Overview The CICS server adapter is an Orbix server that allows CICS programs to
process IDL-defined operations. When the server adapter receives a request
from a CORBA/EJB client, it looks up the appropriate CICS program name,
based on the requested interface and operation name. The server adapter
then marshals incoming data and submits the request to CICS with that
program name. When the CICS program receives control via the normal
CICS dispatching process, it uses the set of Orbix-provided services to read
in the operation�s parameters and marshal the return data, and returns the
result to the client.

This subsection discusses the following topics:

� List of required IDL interfaces

� CICS server adapter type information

List of required IDL interfaces The list of interfaces that the CICS server adapter needs to provide to its
clients is provided to the server adapter in the form of a mapping file. Refer
to �The Mapping File� on page 200 for more details.

CICS server adapter type
information

The CICS server adapter obtains IDL interface information (operation
signatures) from either the IFR or from a type_info store, depending on the
configuration values used. This enables the server adapter to unmarshal the
data received from client programs and marshal the response back to the
client. (Marshalling is the process whereby the communicated data is
converted to a byte stream, so that it can be sent between the client and the
server).

The exact manner in which information is loaded depends on the type
information mechanism employed (that is, IFR or type_info store). Refer to
�Mapping IDL Interfaces to CICS� on page 199 for more information on
these mechanisms.
25

CHAPTER 2 | Introduction to the CICS Adapters
The CICS Server Adapter cicsraw Interface

Overview This subsection provides an introductory overview of the cicsraw IDL
interface, which the CICS server adapter implements. It discusses the
following topics:

� What is the cicsraw interface?

� EXCI versus APPC

� Definition of the cicsraw IDL.

� Explanation of the cicsraw IDL.

� Demonstration of the cicsraw interface

What is the cicsraw interface? The CICS server adapter exposes a CORBA IDL interface, called cicsraw, to
its clients. The cicsraw IDL interface defines operations to:

� Specify a CICS program name and an input COMMAREA.

� Run the program in CICS.

� Receive the resulting output COMMAREA.

EXCI versus APPC The cicraw interface is only supported by server adapters that are
communicating with CICS over EXCI. It is not supported by server adapters
that are communicating with CICS over APPC. In CICS, the called program
is responsible for conversation handling (unlike in IMS, where the IMS
system is responsible for conversation handling and simply passes the
segments to the called transaction). Therefore, when communicating with
CICS over APPC, you can only call a program that has been coded to be the
other partner in an APPC conversation, rather than a program that takes a
COMMAREA as input.

Note: If you used the previous versions of the CICS server adapter, the
cicsraw IDL interface has been modified to scope the cicsraw interface
inside a module called IT_MFA_CICS. However, to maintain backwards
compatibility with older client applications, the CICS server adapter can be
configured to expose the legacy unscoped cicsraw API (see the Mainframe
Migration and Upgrade Guide for more details). Also, as stated in the IDL
of previous adapter versions, the do_trans() operation has been removed.
 26

Overview of the CICS Server Adapter
Definition of the cicsraw IDL The following shows the IDL definitions contained within the cicsraw IDL
interface:

Example 1: The cicsraw IDL Interface (Sheet 1 of 3)

//IDL
1 #pragma prefix "iona.com"

2 module IT_MFA_CICS
{

interface cicsraw {
3 typedef string<8> programName;

 typedef sequence<char> CharBuffer;
 typedef sequence<octet> ByteBuffer;
 typedef string<4> CICSabend;
 typedef char transid[4];

4 exception CICSunavailable
 {
 string reason;
 };
 exception unknownProgramName {};
 exception commareaTooLarge {};
 exception userNotAuthorized
 {
 string reason;
 };
 exception programFailed
 {
 unsigned long eibresp;
 unsigned long eibresp2;
 CICSabend abendCode;
 };
 exception internalError

 {
 string reason;
 };

 //
 // Methods for invoking CICS server programs.
 // The first uses CharBuffer, so data is subject
 // to ASCII-EBCDIC conversion cross-platforms, the
 // second uses a ByteBuffer so no conversion will be
 // done.
 //

5 void run_program(
27

CHAPTER 2 | Introduction to the CICS Adapters
 in programName program_name,
 inout CharBuffer commarea)
) raises (
 commareaTooLarge,
 CICSunavailable,
 unknownProgramName,
 userNotAuthorized,
 programFailed,
 internalError
 };

5 void run_program_binary{
 in programName program_name,
 inout ByteBuffer commarea
) raises (
 commareaTooLarge,
 CICSunavailable,
 unknownProgramName,
 userNotAuthorized,
 programFailed,
 internalError
);

 //
 // Methods for invoking CICS server programs with the
 // mirror transaction name specified.
 //
 // This is for the EXCI based CICS adapter only.
 //
 // The first uses a CharBuffer, so data is subject
 // to ASCII-EBCDIC conversion cross-platforms, the
 // second uses a ByteBuffer so no conversion will be
 // done.
 //

6 void run_program_with_tran(
 in programName program_name,
 in transid transaction_id,
 inout CharBuffer commarea
) raises(
 commareaTooLarge,
 CICSunavailable,
 unknownProgramName,
 userNotAuthorized,
 programFailed,
 internalError

Example 1: The cicsraw IDL Interface (Sheet 2 of 3)
 28

Overview of the CICS Server Adapter
Explanation of the cicsraw IDL The cicsraw interface can be explained as follows:

1 This pragma prefix indicates that the IDL was developed by IONA.

2 The cicsraw interface is within the IT_MFA_CICS module scope. The IT_
prefix is a naming convention that is used to signify IDL modules developed
by IONA. This helps to avoid naming clashes in the global scope.

3 It defines five data types:

♦ programName, which is a bounded string of up to eight characters.

♦ CharBuffer, which is a sequence of char types.

♦ ByteBuffer, which is a sequence of octet types.

♦ CICSabend, which is a bounded string of up to four characters.

♦ transid, which is a bounded string of up to four characters.

4 It defines a series of exceptions that can be used to describe errors that
might occur when running a CICS program. Any such errors are returned to
the client, using this series of exceptions. This means that a client program
can catch and handle any errors that might be used for diagnostic purposes
or for which a useful response is possible. See �Exception information for
APPC� on page 32 and �Exception information for EXCI� on page 33 for
more details of these exceptions.

 };

6 void run_program_binary_with_tran{
 in programName program_name,
 in transid transaction_id,
 inout ByteBuffer commarea
) raises (
 commareaTooLarge,
 CICSunavailable,
 unknownProgramName
 userNotAuthorized,
 programFailed,
 internalError
 };

7 readonly attribute unsigned long maxCommareaSize;
};

};

Example 1: The cicsraw IDL Interface (Sheet 3 of 3)
29

CHAPTER 2 | Introduction to the CICS Adapters
5 It defines operations called run_program() and run_program_binary().
These operations are similar in that:

♦ They are both provided for passing COMMAREA data to a CICS
program.

♦ They both take an in parameter called program_name, and an
inout parameter called commarea. The program_name parameter
specifies the CICS program that the client wants to invoke. The
commarea parameter is used by the client to pass the COMMAREA
data to the CICS program. The commarea parameter is also used
by the CICS server adapter, to pass the processed data from the
CICS program back to the client.

The two operations differ in the type of the commarea parameter, as
follows:

♦ The commarea parameter for run_program() is of the CharBuffer
type. This means that the CICS server adapter performs
ASCII-to-EBCDIC translations when it is sending the buffer that
contains the COMMAREA across different platforms. However, if
the client input is a mixture of character and numeric data, the
numeric data might be corrupted by the ASCII-to-EBCDIC
conversion process, and the CICS program is then unable to
process the inputs. The easiest solution in this case is to have the
CICS program receive all its input in character format, and to
have the CICS server adapter use the run_program() operation to
convert the data to EBCDIC format before supplying it to CICS.

♦ The commarea parameter for run_program_binary() is of the
ByteBuffer type. This means that the data passed from a
non-EBCDIC platform to z/OS is not converted. In such cases,
where the COMMAREA contains a mixture of character and
non-character data, there are two possible solutions. The first
solution is to have the client call run_program_binary and
translate all the character data to EBCDIC. (However, this
translation is awkward and is not portable across different client
platforms.) The second solution is to modify the CICS program, so
that it only accepts character input.
 30

Overview of the CICS Server Adapter
6 It defines operations called run_program_with_tran() and
run_program_binary_with_tran(). These operations are similar to
run_program() and run_program_binary(). The only difference is that they
also have an extra in parameter called transaction_id, which allows for
the mirror transaction to be specified. The run_program() and
run_program_binary() operations pick up a default mirror transaction
specified in the configuration domain.

7 The readonly attribute, maxCommareaSize, allows the client to retrieve the
maximum COMMAREA length for which the CICS server adapter was
configured when it was started. Because this is a readonly attribute, clients
can read its value, but they cannot set it.

As long as your CICS program uses a COMMAREA for all input and output,
no changes are required to it.
31

CHAPTER 2 | Introduction to the CICS Adapters
Exception information for APPC For APPC, the exception information that can be raised by the cicsraw
interace can be explained as follows:

� reason

The reason string is usually created from a call to ATBEES3(), with
some other available information, such as the return code from the
ATBxxx call, added where applicable. For failures that do not involve
APPC, a reason string is generated by the adapter to describe the
failure.

� exception CICSunavailable { string reason; };

A CICSunavailable exception is thrown when ATBALC5() fails with
k_badDestname, k_remoteLUnotActive, or k_remoteLUnotActive2.

� exception unknownTransactionName {};

An unknownTransactionName exception is thrown when ATBSEND(),
ATBRCVW(), or ATBDEAL() fails with CM_TPN_NOT_RECOGNIZED.

� exception segmentTooLarge {};

A segmentTooLarge exception is thrown if one of the input segments
exceeds the maximum length specified for segments in the adapter
configuration file.

� exception userNotAuthorized { string reason; };

A userNotAuthorized exception is thrown when ATBSEND(),
ATBRCVW(), or ATBDEAL() fails with CM_SECURITY_NOT_VALID. It can
also be thrown if the plugins:cicsa:use_client_principal
configuration item is set to "yes" but the principal received does not
look like a valid RACF user ID.

� exception transactionFailed { string reason; };

A transactionFailed exception is thrown when ATBSEND() fails with
CM_PROGRAM_ERROR_NO_TRUNC.

� exception internalError { string reason; };

An internalError exception is thrown for all other failures. Refer to
the adapter event log output for more details on what caused a specific
exception.
 32

Overview of the CICS Server Adapter
Exception information for EXCI For EXCI, the exception information that can be raised by the cicsraw
interface can be explained as follows:

� exception CICSunavailable

A CICSunavailable exception is thrown when EXCI returns
NO_CICS_IRC_STARTED, NO_PIPE, or NO_CICS reason codes. It can also
be thrown for a reason code of IRC_CONNECT_FAILURE with a subreason
of IRERRNSS or -1.

� exception unknownProgramName

An unknownProgramName exception is thrown if the program name is
more than eight characters in length. It can also be returned if CICS
returns a DPL response code of EXEC_PGMIDERR.

� exception commareaTooLarge

A commareaTooLarge exception is thrown if the commarea received
from the client application is either larger than the limit specified in the
adapter configuration file or larger than 32K.

� exception userNotAuthorized

A userNotAuthorized exception is thrown if the adapter is configured
to use client principals for calls to CICS, but the received principal is
malformed. It can also be thrown for a reason code of
IRC_CONNECT_FAILURE with a subreason of IRERRSCF.

� exception programFailed

A programFailed exception is thrown for any error, except
EXEC_PGMIDERR, that is returned by DPL on the EXCI DPL_request call.

� exception interalError

An internalError exception is thrown for all other failures. Refer to
the adapter event log output for more details on what caused a specific
exception. This includes errors that are caused by the CICS adapter
being configured to use the client principal, but not subsequently being
able to log onto CICS with the principal provided by the client.

Demonstration of the cicsraw
interface

A C++ demonstration client for the cicsraw interface is supplied with the
other C++ demonstrations in your Orbix Mainframe installation. Follow the
instructions in the supplied readme to run the client application.
33

CHAPTER 2 | Introduction to the CICS Adapters
Unsupported IDL Types

Overview This section provides an overview of the IDL types that the CICS server
adapter does not support.

Unsupported types The following IDL types are not currently supported by the CICS server
adapter:

� Object references.

� Value types, and other Pseudo-object types.

� wchar and wstring

Refer to the COBOL Programmer's Guide and Reference and the PL/I
Programmer's Guide and Reference for details.
 34

Overview of the Client Adapter
Overview of the Client Adapter

Overview The Orbix Mainframe client adapter is an Orbix IONA Service that can be
deployed in a native z/OS or UNIX System Services environment. Its function
is to allow CICS transactions to act as clients of CORBA servers running on
various platforms.

The client adapter acts as a bridge between CICS client transactions and
CORBA servers. The client adapter allows you to set up a distributed system
that combines the powerful online transaction processing capabilities of
CICS with the consistent and well-defined structure of a CORBA
environment.

This section discusses the following topics:

� Characteristics of the client adapter

� Client adapter functions

� Graphical overview

� Graphical overview explanation

Characteristics of the client
adapter

The client adapter has the following characteristics:

� It is a mirror implementation of the CICS server adapter in that it
adapts CORBA requests that originate in CICS, whereas the CICS
server adapter adapts CORBA requests destined for CICS. Figure 6 on
page 37 provides an overview of the role of the client adapter in
integrating CICS client transactions with distributed CORBA servers on
different platforms.

� It uses APPC to communicate with CICS.

� It implements the CORBA invocation facility via the Orbix Dynamic
Invocation Interface (DII), and uses the IFR server or a type_info store
to obtain type information. Refer to the CORBA Programmer�s Guide,
C++ for more information on the DII.

� It provides an optional caching feature to improve performance. It can
cache target object references and type information for operations.

� It is a multi-threaded application that can service multiple concurrent
client requests.
35

CHAPTER 2 | Introduction to the CICS Adapters
� It can service multiple CICS regions.

� It supports two-phase commit processing initiated from CICS
transactions.

Client adapter functions The client adapter performs the following functions:

� It accepts a request from a CICS client transaction.

� It locates the target CORBA object and invokes the requested
operation.

� It returns the CORBA object reply to the CICS client transaction.
 36

Overview of the Client Adapter
Graphical overview Figure 6 provides a graphical overview of the role of the client adapter.

Figure 6: Graphical Overview of the Role of the Client Adapter

Windows NT
Server

Solaris
Server

Java
Server

z/OS (native or UNIX System Services)

CICS

GIOP GIOP GIOP

APPC

Orbix Client
Adapter

RRS OTSTM

Node Daemon

Type
Information
Repository

IIOP

IIOP orFile read

Client
Transaction

COBOL Runtime
or PL/I Runtime

Locator
Daemon

IIOP

IIOP
37

CHAPTER 2 | Introduction to the CICS Adapters
Graphical overview explanation Figure 6 on page 37 provides an overview of the role of the client adapter in
integrating distributed CORBA servers on different platforms with CICS client
transactions running on z/OS. The CICS client transactions can be written in
COBOL or PL/I. The clients make a call to the COBOL or PL/I runtime that
identifies both the target object and the operation to perform, and supplies
in, inout, and out parameters. The COBOL or PL/I runtime uses the APPC
protocol to communicate with the client adapter, and passes the client
request to it. The client adapter locates the target server object and invokes
the requested operation. The results are then returned back to the CICS
client transaction. A CICS client transaction can process requests to servers
using two-phase commit processing.
 38

Part 2
Configuring the CICS Server

Adapter and the Orbix
Runtime Inside CICS

In this part This part contains the following chapters:

Introduction to CICS Server Adapter Configuration page 41

CICS Server Adapter Service Configuration Details page 57

Configuring the CICS Server Adapter EXCI Plug-In page 67

Configuring the CICS Server Adapter APPC Plug-In page 75

Configuring the CICS Server Adapter RRS Plug-In page 91

Configuring the CICS Server Adapter for Client Principals page 101

Configuring the Orbix Runtime inside CICS page 113

IDL Compiler Configuration page 119

CHAPTER 3

Introduction to
CICS Server
Adapter
Configuration
This chapter provides information needed to configure the
CICS server adapter and its components (plug-ins). It provides
descriptions of all the configuration items involved in running
the server adapter. It also provides details on configuring the
various system components used by the server adapter. These
components include CICS, EXCI, APPC/MVS, and RRMS.

In this chapter This chapter discusses the following topics:

A CICS Server Adapter Sample Configuration page 42

Configuration Summary of Adapter Plug-Ins page 46
41

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
A CICS Server Adapter Sample Configuration

Overview A sample configuration member is supplied with your Orbix Mainframe
installation that provides an example of how you might configure and deploy
the CICS server adapter on both native z/OS and UNIX System Services.

This section discusses the following topics:

� Location of configuration templates

� Configuration scope

� Configuration scope example

Location of configuration
templates

Sample configuration templates are supplied with your Orbix Mainframe
installation in the following locations:

� Non-TLS template�orbixhlq.CONFIG(BASETMPL)

� TLS template�orbixhlq.CONFIG(TLSTMPL)

Configuration scope An ORBname of iona_services.cicsa has been chosen for the CICS server
adapter service. Therefore, the corresponding configuration items that are
specific to the server adapter are scoped within an iona_services.cicsa
configuration scope.

Configuration scope example The following is an example of the iona_services.cicsa configuration
scope.

Note: Further configuration resides in orbixhlq.CONFIG(ORXINTRL). This
contains internal configuration that should not usually require any
modifications.

Example 2: iona_services.cicsa Configuration Scope Example (Sheet 1 of
4)

iona_services
{
 orb_plugins = ["iiop_profile", "giop", "iiop",
 "local_log_stream, "ots"];
 42

A CICS Server Adapter Sample Configuration
 generic_server:wto_announce:enabled = "true";

 �
 cicsa
 {
 event_log:filters = ["*=WARN+ERROR+FATAL", "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 plugins:cicsa:direct_persistence = "no";
 plugins:cicsa:poa_prefix = "IT_MFA_CICS_";

 #
 # Settings for well-known addressing:
 # (mandatory if direct_persistence is enabled)
 #
 # plugins:cicsa:iiop:port = "5007";
 # plugins:cicsa:iiop:host = "%{LOCAL_HOSTNAME}";

 # List of mappings of interface/operation -> CICS prog name
 # PDS member or HFS filename may be specified
 #
 plugins:cicsa:mapping_file = "DD:MFAMAPS";

 # The adapter may be configured to use type_info files or
 # to contact the IFR to attain type information dynamically
 # during runtime.
 #
 # * To configure to use type_info files:
 # (note: source may be a PDS or HFS pathname)
 # plugins:cicsa:repository_id = "type_info";
 # plugins:cicsa:type_info:source = "%{LOCAL_HFS_ROOT}/info.txt";
 #
 # * To configure to use the IFR:
 # plugins:cicsa:repository_id = "ifr";
 # plugins:cicsa:ifr:cache = "";
 #
 plugins:cicsa:repository_id = "type_info";
 plugins:cicsa:type_info:source = "DD:TYPEINFO";
 plugins:cicsa:ifr:cache = "";

 # Use the following to display timing information on adapter requests
 # plugins:cicsa:display_timings = "yes";

 # choose CICS protocol plugin: cics_exci or cics_appc
 #

Example 2: iona_services.cicsa Configuration Scope Example (Sheet 2 of
4)
43

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
 initial_references:IT_cicsraw:plugin = "cics_exci";
 #initial_references:IT_cicsraw:plugin = "cics_appc";

 plugins:cics_exci:applid = "CICSTS1";
 plugins:cics_exci:pipe_name = "ORXPIPE1";
 plugins:cics_exci:default_tran_id = "ORX1";
 plugins:cics_exci:pipe_type = "SPECIFIC";
 plugins:cics_exci:max_comm_area_length = "32000";

 plugins:cics_appc:cics_destination_name = "ORBIXCIC";
 plugins:cics_appc:appc_outbound_lu_name = "ORXLU02";
 plugins:cics_appc:timeout = "6";
 plugins:cics_appc:segment_length = "32767";

 # Activate this to display accounting info
 # plugins:cicsa:call_accounting_dll = "yes";

 #
 # For RRS/OTS support, add:
 # plugins:rrs:rm_name = "TEST.CICSRAW.IONA.UA";
 # initial_references:IT_RRS:plugin = "rrs";
 #

 #
 # For client principal support, add/update:
 # plugins:cicsa:use_client_principal = "yes";
 # plugins:cicsa:use_client_password = "no";
 #
 # And add the following if the client cannot send principals in a
 # service context over GIOP 1.2 in a format recognised by the GIOP
 # plugin
 # policies:iiop:server_version_policy = "1.1";
 #
 #
 # For publishing IORs from the adapter, add:
 #
 # plugins:cicsa:publish_all_iors = "yes";
 #
 # Publishing to a USS file:
 # plugins:cicsa:write_iors_to_file = "%{LOCAL_HFS_ROOT}/text.txt";
 #
 # Publishing to a DD file that has to be defined in the JCL:
 # plugins:cicsa:write_iors_to_file = "DD:MFAIORS";
 #

Example 2: iona_services.cicsa Configuration Scope Example (Sheet 3 of
4)
 44

A CICS Server Adapter Sample Configuration
Configuring a domain Refer to the CORBA Administrator�s Guide for more details on how to
configure an Orbix configuration domain.

 # Publishing to a naming service context:
 # plugins:cicsa:write_iors_to_ns_context = "test_context";
 # plugins:cicsa:place_iors_in_nested_ns_scopes = "no";
 # plugins:cicsa:remove_ns_iors_on_shutdown = "yes";
 #
 # Publishing to a naming service group:
 # plugins:cicsa:write_iors_to_ns_group_with_prefix = "group1_";
 # plugins:cicsa:write_iors_to_ns_group_member_name = "adapter2";
 # plugins:cicsa:remove_ns_iors_on_shutdown = "yes";

 # For the Adapter portable interceptor demo, please
 # add "demo_sec" and "portable_interceptor" to your
 # orb_plugins list. If you need an example, please
 # refer to the orb_plugins list in the iona_services
 # scope. Afterwards, please uncomment the next
 # three configuration settings.
 #
 # orb_plugins = ["iiop_profile", "giop", "iiop",
 # "local_log_stream", "ots",
 # "demo_sec", "portable_interceptor"];
 #
 # binding:server_binding_list = ["DemoPI"];
 # plugins:demo_sec:shlib_name = "SECPI";
 # plugins:demo_sec:shlib_version = "1";
 };
 �

Note: The configuration items shown in Example 2 can be used to deploy
an insecure server adapter. See �Securing and Using the CICS Server
Adapter� on page 171 for more details about the configuration items that
are involved in deploying a server adapter in secure mode.

Example 2: iona_services.cicsa Configuration Scope Example (Sheet 4 of
4)
45

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
Configuration Summary of Adapter Plug-Ins

Overview Orbix configuration allows you to configure an application on a per-plug-in
basis. This section provides a summary of the configuration items
associated with plug-ins specific to the CICS server adapter.

This section discusses the following topics:

� CICS server adapter plug-ins

� Summary of items for the cicsa plug-in

� Summary of items for the cics_exci plug-in

� Summary of items for the cics_appc plug-in

� Summary of items for the rrs plug-in

� Summary of remaining configuration items

CICS server adapter plug-ins There are four plug-ins associated with the CICS server adapter:

� The cicsa plug-in is the core CICS server adapter plug-in.

� The cics_exci plug-in is used specifically for communications with
CICS over EXCI.

� The cics_appc plug-in is used specifically for communications with
CICS over APPC.

� The rrs plug-in provides integration for the Object Transaction Service
(OTS) and CICS commit processing. This plug-in is optional and can
only be used if RRS is configured and RRS support in CICS is enabled.
It can only be used with the cics_exci plug-in.

Summary of items for the cicsa
plug-in

The following is a summary of the configuration items associated with the
cicsa plug-in. Refer to �CICS Server Adapter Service Configuration Details�
on page 57 for more details.

Note: See �Securing the CICS Server Adapter� on page 173 for more
details about the items relating to the iSF security plug-in.

Note: Either the EXCI or APPC plug-in should be selected with the
initial_references:IT_cicsraw:plugin configuration variable.
 46

Configuration Summary of Adapter Plug-Ins
iiop:port Specifies the TCP/IP port number that the CICS
server adapter uses to listen for incoming
requests. Valid values are in the range 1025�
65535. This is an optional item.

direct_persistence Specifies the persistence mode adopted by the
CICS server adapter service. This is an optional
item. iiop:port is required if this is specified
as "yes".

poa_prefix Specifies the POA prefix name. This is an
optional item. The default value is IT_MFA_.

iiop:host Specifies the host name that is contained in
IORs exported by the CICS server adapter.

alternate_endpoint Allows requests to the MappingGateway
administrative interface to be processed by
threads on an alternate workqueue instead of
using the thread resources of the main
automatic workqueue.

mapping_file This file contains the mapping entries. Refer to
�The Mapping File� on page 200 for more
details. Optional.

repository_id Specifies the type information source to use.
This source supplies the CICS server adapter
with operation signatures as required. Valid
values are "ifr", "type_info", and "none".
The default is "ifr". Refer to �Type information
mechanism� on page 64 for more information

ifr:cache This value is used if repository_id is set to
�ifr�. The ifr:cache configuration item is
optional, specifying the location of an
(operation) signature cache file. This signature
cache file contains a cache of operation
signatures from a previous run of this server
adapter. The default is no signature cache file
(��).

type_info:source This value is used if repository_id is set to
�type_info�. The type_info:source variable
denotes the location of a type_info store from
which the server adapter can obtain operation
signatures. Refer to �type_info store� on
page 65 for more information.
47

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
use_client_principal Indicates that the CICS server adapter should
verify the client principal user ID with SAF
before trying to start the target CICS program
under that ID. The default is no.

use_client_principal
_user_security

Used with the CICS EXCI plug-in. When set to
true, this indicates that the CICS server adapter
should provide the client principal user ID on
the request to start the target CICS program.
The default is false.

use_client_password Indicates that the CICS server adapter should
use a client password when it wants to switch
the thread that is making the request to CICS to
the user ID passed in the client principal,
instead of using SURROGAT rights.

display_timings Specifies that the server adapter print
timestamps showing how long it takes to
process requests in CICS.

call_accounting_dll If set to yes, this causes the accounting DLL to
be loaded and accounting statistics to be
displayed after each client request has been
processed. The default is no. Refer to �Loading
the Accounting DLL into the Server Adapter� on
page 259 for more details.

capture_first_argument_
in_dynany

If set to yes, this passes the first argument of
the request to the IT_MFA_display_account_
information() function as a dynamic any. The
default is no. Refer to �Loading the Accounting
DLL into the Server Adapter� on page 259 for
more details.

object_publishers Specifies where the adapter can publish its
object references. Valid options are
"naming_service" to publish object references
to the Naming Service, and "filesystem" to
publish object references to file. The default
value is "". See �Exporting Object References at
Runtime� on page 260 for more details.

write_iors_to_file This item has now been deprecated and is
superceded by the plugins:cicsa:object_
publisher:filesystem:filename configuration
item described next.
 48

Configuration Summary of Adapter Plug-Ins
object_publisher:
filesystem:filename

This supercedes the plugins:cicsa:write_
iors_to_file configuration item. It specifies
the file that should be used if you want the
adapter to export object references to a file. You
can specify the full path to an HFS filename, a
PDS member name, or a PDS name as the
value for this item. If this configuration item is
not included in the adapter�s configuration, no
object references are exported to file. See
�Exporting Object References at Runtime� on
page 260 for more details.

write_iors_to_ns_context This item has now been deprecated and is
superceded by the plugins:cicsa:object_
publisher:naming_service:context
configuration item described next.

object_publisher:
naming_service:
context

This supercedes the plugins:cicsa:write_
iors_to_ns_context configuration item. It
specifies the Naming Service context that
should be used if you want the adapter to
export object references to a Naming Service
context. If this configuration item is not
included in the adapter�s configuration, no
object references are exported to a Naming
Service context. See �Exporting Object
References at Runtime� on page 260 for more
details.

object_publisher:naming_
service:update_mode

Specifies whether adapter-deployed objects
should only be published during start-up, or
whether updates should also be published.
Valid values are "startup" and "current". The
default value is "startup". See �Exporting
Object References at Runtime� on page 260 for
more details.

place_iors_in_nested_ns_
scopes

This item has been deprecated and is
superceded by the plugins:cicsa:object_
publisher:naming_service:nested_scopes
configuration item described next.
49

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
object_publisher:naming_
service:nested_scopes

This supercedes the plugins:cicsa:place_
iors_in_nested_ns_scopes configuration item.
If this configuration item is set to "false", the
IOR is stored in the specified scope in the
Naming Service. If this configuration item is set
to "true", the module name(s) of the interface
for the IOR are used to navigate subscopes from
the configured scope, with the same names as
the module names, and the IOR is then placed
within the relevant subscope. The default is
"false". See �Exporting Object References at
Runtime� on page 260 for more details.

publish_all_iors If set to yes, this instructs the adapter to export
object references for the MappingGateway
interface, the cicsraw interface, and all
interfaces specified in the adapter mapping file.

If set to no, this instructs the adapter to export
object references for the MappingGateway and
cicsraw interfaces only. The default is no. See
�Exporting Object References at Runtime� on
page 260 for more details.

remove_ns_iors_on
_shutdown

If set to yes, this instructs the adapter to unbind
the object references from the Naming Service
when shutting down normally. The default is
no. See �Exporting Object References at
Runtime� on page 260 for more details.

write_iors_to_ns_group
_with_prefix

This item has been deprecated and is
superceded by the plugins:cicsa:object_
publisher:naming_service:group:prefix
configuration item described next.
 50

Configuration Summary of Adapter Plug-Ins
object_publisher:naming_
service:group:prefix

This supercedes the plugins:cicsa:write_
iors_to_ns_group_with_prefix configuration
item. It specifies the prefix that should be
attached to each generated name indicating an
interface, if you want the adapter to export
object references to a Naming Service object
group. This prefix is attached to the generated
name, to specify the object group that is to be
used.

If this configuration item is not included in the
adapter�s configuration, no object references are
exported to any Naming Service object groups.
See �Exporting Object References at Runtime�
on page 260 for more details.

write_iors_to_ns_group
_member_name

This item has been deprecated and is
superceded by the plugins:cicsa:object_
publisher:naming_service:group:member_
name configuration item described next.

object_publisher:naming_
service:group:member_
name

This supercedes the plugins:cicsa:write_
iors_to_ns_group_member_name configuration
item. It specifies the member name that the
adapter should use in the object group. A
unique member name must be specified for
each adapter; otherwise, one adapter might end
up replacing the object group members of
another adapter. See �Exporting Object
References at Runtime� on page 260 for more
details.
51

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
Summary of items for the
cics_exci plug-in

The following is a summary of the configuration items associated with the
cics_exci plug-in. Refer to �EXCI Plug-In Configuration Items� on page 72
for more details.

Summary of items for the
cics_appc plug-in

The following is a summary of the configuration items associated with the
cics_appc plug-in. Refer to the �APPC Plug-In Configuration Items� on
page 88 for more details.

Applid Specifies the APPLID of the CICS region to which
the server adapter is to connect. The default is
CICSAPPL.

pipe_name Specifies the NETNAME of a CICS-specific EXCI
connection for the CICS server adapter to use.
The default is ORXPIPE1.

pipe_type Specifies whether specific or generic EXCI
sessions are to be used. Valid values are
SPECIFIC and GENERIC. The default is SPECIFIC.

default_tran_id Specifies the default EXCI mirror transaction ID
that is used on the CICS EXCI when the client
makes a request. The default is ORX1.

max_comm_area_length Specifies the maximum size, in bytes, of the
COMMAREA block (that is, the buffer that is to
be available to exchange data with the CICS
programs). The default value is 32000.

check_if_cics_available If this is set to "yes", CICS must be available
before you start the CICS server adapter in EXCI
mode. The default is "no", to allow the CICS
server adapter to start even if CICS is not
available.

cics_destination_name Specifies a symbolic name that identifies the
APPC LU (Logical Unit) name for the CICS region
to which the CICS server adapter connects. The
default value is ORBXCICS.

appc_outbound_lu_name Specifies the CICS server adapter�s APPC LU
name. The default value is none, which means
that the system base LU is used.
 52

Configuration Summary of Adapter Plug-Ins
Summary of items for the rrs
plug-in

The following is a summary of the configuration items associated with the
rrs plug-in. Refer to �RRS Plug-In Configuration Items� on page 100 for
more details.

Summary of remaining
configuration items

The following is a summary of the remaining configuration items. Refer to
�CICS Server Adapter Service Configuration Details� on page 57 and the
CORBA Administrator�s Guide for more details.

timeout Specifies the number of minutes that the CICS
server adapter waits for a response from CICS
before cancelling the request. The default value is
no timeout.

segment_length Specifies the maximum size, in bytes, of each
APPC data segment. The default value is 32767,
which is also the maximum.

rm_name The resource manager name that
the CICS server adapter uses to
register with RRS. Ensure that
this variable is not specified in the
configuration scope of the CICS
server adapter, if you do not want
the RRS plug-in loaded.

initial_references:IT_RRS:plugin Indicates to the CICS server
adapter that it is the plug-in to
loaded to enable communication
with RRS. This is required if the
rrs plug-in is used.

thread_pool:initial_threads Specifies the initial number of
threads that are created in the
thread pool to send requests to
CICS. This item is optional. The
default value is 5.

thread_pool:high_water_mark Specifies the maximum number
of threads created in the CICS
server adapter thread pool to
send requests to CICS. This item
is optional. Default value is -1.
53

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
event_log:filters Specifies the types of events that
the CICS server adapter logs.

orb_plugins List of standard ORB plug-ins the
CICS server adapter should load.

initial_references:IT_MFA:reference IOR used by itadmin to contact
the CICS server adapter�added
to configuration after the server
adapter has been run in prepare
mode.

initial_references:IT_cicraw:plugin Specifies the CICS transport-level
plug-in that is to be loaded. Valid
values are "cics_exci" and
"cics_appc". When preparing the
CICS server adapter, using the
JCL in
orbixhlq.JCLLIB(PREPCICA),
this must be set to "cics_exci"
to allow the prepare JOB to
complete with condition codes of
zero.

initial_references:IT_WTO_Announce:p
lugin

This is used in conjunction with
generic_server:wto_announce:
enabled to enable the loading of
the WTO accounce plug-in in an
IONA service, such as the CICS
server adapter. This item must be
set to "wto_announce" to enable
messages to be written to the
operator console on starting or
shutting down successfully.

generic_server:wto_announce:enabled This is used in conjunction with
initial_references:IT_WTO_
Announce:plugin to enable the
loading of the WTO accounce
plug-in in an IONA service, such
as the CICS server adapter. This
item must be set to "true" to
enable messages to be written to
the operator console on starting
or shutting down successfully.
 54

Configuration Summary of Adapter Plug-Ins
policies:iiop:server_version_policy If this is set to "1.1", the server
adapter publishes a version 1.1
IOR which instructs clients to
communicate over GIOP 1.1. If
this is set to "1.2" (the default),
1.2 is used as the default GIOP
version. See �Configuring the
CICS Server Adapter for Client
Principals� on page 101 for more
details.

policies:giop:interop_policy:enable_
principal_service_context

For GIOP 1.2, if this is set to
"true", it instructs the CICS server
adapter to look for the principal
string in a service context. The
default is "false". See �Configuring
the CICS Server Adapter for Client
Principals� on page 101 for more
details.

policies:giop:interop_policy:
principal_service_context_id

If principal_service_context_
id is set to "true", this item
specifies the service context ID
from which the CICS server
adapter attempts to read the
principal string. See �Configuring
the CICS Server Adapter for Client
Principals� on page 101 for more
details.
55

CHAPTER 3 | Introduction to CICS Server Adapter Configuration
 56

CHAPTER 4

CICS Server
Adapter Service
Configuration
Details
This chapter provides details of the configuration items for the
CICS Server Adapter�s application service plug-in. These items
are used to specify parameters such as TCP/IP transport
details, the level of Orbix event logging, and mapping
information for mapping IDL operations to CICS programs.

Overview This chapter discusses the following topics:

� Persistence mode

� Host name

� Well known addressing

� Initial threads in thread pool

� Maximum threads in thread pool

� Alternate workqueue for the MappingGateway

� IT_cicsraw initial reference
57

CHAPTER 4 | CICS Server Adapter Service Configuration Details
� IT_MFA initial reference

� Orbix event logging

� WTO announce plug-in

� ORB plug-ins list

� POA prefix

� Displaying transaction processing times

� Mapping file

� Type information mechanism

� IFR signature cache file

� type_info store

Persistence mode The related configuration item is plugins:cicsa:direct_persistence. It
specifies the persistence mode policy adopted by the CICS server adapter. If
you want the server adapter to run as a standalone service, set this to yes.
If you set this to no, the server adapter contacts and registers with the
locator service.

Host name The related configuration item is plugins:cicsa:iiop:host. It specifies the
name of the host on which the CICS server adapter is running. This host
name is contained in IORs exported by the CICS server adapter.

Well known addressing Configuration items for well known addressing can be specified on the IIOP
and secure IIOP plug-ins that are loaded by the CICS server adapter. For
example, you can use plugins:cicsa:iiop:port to specify a fixed TCP/IP
port that the CICS server adapter uses to listen for insecure incoming
CORBA requests. If the adapter is running with direct persistence enabled,
the specified port number is published in the IORs generated by the adapter
in prepare mode, and in any IORs returned by the MappingGateway interface.

Refer to �Using the MappingGateway Interface� on page 234 for more
details. If the adapter is running in indirect persistent mode, the locator�s
addressing information is published in the IORs; however, in this case, the
adapter still listens on the specified port.
 58

The specified port number cannot be less than 1025, because the TCP/IP
port numbers up to and including 1024 are reserved for TCP/IP services.
Therefore, ensure that you do not use a port that is allocated to some other
TCP/IP service on the machine. The server adapter checks to see if the port
is available before it attempts to use it.

Initial threads in thread pool The related configuration item is thread_pool:initial_threads. It specifies
the initial number of threads that are created in the thread pool to send
requests to CICS. This item is optional. The default value is "5".

Maximum threads in thread pool The related configuration item is thread_pool:high_water_mark. It specifies
the maximum number of threads created in the CICS server adapter thread
pool to send requests to CICS. This item is optional. Default value is -1.

Alternate workqueue for the
MappingGateway

The related configuration item is plugins:cicsa:alternate_endpoint. It
allows the CICS server adapter to be configured so that requests to the
MappingGateway administrative interface are processed by threads on an
alternate workqueue instead of using the thread resources of the main
automatic workqueue. This allows the main workqueue to remain dedicated
to processing requests that are destined for CICS.

The associated thread pool settings can then be configured as follows:

The preceding values correspond to the default settings that are assumed if
these items are omitted from the CICS server adapter configuration. See the
CORBA Administrator�s Guide for general information on thread pools and
workqueues.

plugins:cicsa:alternate_endpoint:thread_pool:high_water_mark =
"-1";

plugins:cicsa:alternate_endpoint:thread_pool:low_water_mark =
"-1";

plugins:cicsa:alternate_endpoint:thread_pool:initial_threads =
"2";

plugins:cicsa:alternate_endpoint:thread_pool:max_queue_size =
"-1";
59

CHAPTER 4 | CICS Server Adapter Service Configuration Details
If you have configured the CICS server adapter to use direct persistence, you
must specify the addressing information for the listener associated with the
MappingGateway interface�s alternate endpoint. You can specify well-known
addressing information as follows:

The IOR that is published by the server adapter for the MappingGateway
interface now includes this addressing information.

IT_cicsraw initial reference The related configuration item is initial_references:IT_cicsraw:plugin.
The cicsa plug-in uses this configuration item to establish the name of the
CICS transport-level plug-in to be loaded. To load the CICS EXCI plug-in, set
this item to cics_exci. To load the CICS APPC plug-in, set this item to
cics_appc.

This plug-in is used by the CICS server adapter service to communicate with
CICS�it is therefore required for processing both the cicsraw interface and
mapped IDL interface requests. This item is required.

IT_MFA initial reference The related configuration item is initial_references:IT_MFA:reference.
This specifies the IOR that is used by itadmin to contact the CICS server
adapter. This is added to the adapter configuration after the server adapter
has been run in prepare mode.

Orbix event logging The related configuration item is event_log:filters. It is used in Orbix
configuration to specify the level of event logging. To obtain events specific
to the CICS server adapter, the IT_MFA event logging subsystem can be
added to this list item. For example:

plugins:cicsa:alternate_endpoint:iiop:port = "5007";
plugins:cicsa:alternate_endpoint:iiop:host = "hostname";

Note: When preparing the CICS server adapter, using the JCL in
orbixhlq.JCLLIB(PREPCICA), set this value to "cics_exci". This allows
the prepare JOB to complete with condition codes of zero.

event_log:filters = ["*=WARN+ERROR+FATAL",
"IT_MFA=INFO_HI+INFO_MED+WARN+ERROR+FATAL"];
 60

This then logs all IT_MFA events (except for INFO_LOW � low priority
informational events), and any warning, error, and fatal events from all other
subsystems (for example, IT_CORE, IT_GIOP, and so on). The level of detail
that is provided for IT_MFA events can therefore be controlled by setting the
relevant logging levels. Refer to the CORBA Administrator�s Guide for more
details.

The following is a categorization of the informational events associated with
the IT_MFA subsystem.

WTO announce plug-in Orbix applications may be configured to write messages to the operator
console on starting or shutting down successfully. This can be useful for
automated operations software to keep track of these events. The WTO
accounce plug-in is ued to implement this feature.

To enable the loading of the WTO announce plug-in in an IONA service,
such as the CICS server adapter, add the following two configuration items
in the iona_services.cicsa scope:

� initial_references:IT_WTO_Announce:plugin = "wto_announce";

INFO_HI Configuration settings and CICS server adapter startup
and shutdown messages

INFO_MED Mapping gateway actions and CICS EXCI/APPC calls,
including return codes

INFO_LOW CICS segment data streams and RRS actions

Note: To enable the logging of user ID details sent into CICS via EXCI
when the plugins:cicsa:use_client_principal_security configuration
item is set to true, the event_log:filters configuration item must
contain INFO_MED in its list of values for the IT_MFA filter, as shown in the
preceding example.
61

CHAPTER 4 | CICS Server Adapter Service Configuration Details
� generic_server:wto_announce:enabled = "true";

When you load the WTO announce plug-in, a WTO message is issued when
the server adapter ORB starts up and shuts down. Messages take the
following format:

On UNIX System Services, <process id> is a pid. On native z/OS, <process
id> is a job name and an A=xxxx job identifier.

ORB plug-ins list The related configuration item is orb_plugins. It specifies the ORB-level
plug-ins that should be loaded in your application at ORB_init() time. On
z/OS, you can add the WTO announce plug-in support to any
customer-developed Orbix application by updating this list in the relevant
configuration scope. For example:

In the case of the CICS server adapter�s configuration (that is, in the
iona_services.cicsa scope itself) the wto_announce plug-in should not be
included in this list, as discussed in �WTO announce plug-in� on page 61.

If RRS support is required, you can add the OTS plug-in to this list. For
example, in the iona_services.cicsa scope:

Note: For customer-developed Orbix applications (for example, a batch
COBOL or PL/I server), the wto_announce plug-in should be added to the
end of the orb_plugins list in that particular application�s ORB
configuration. (See �ORB plug-ins list� next for more details.) However, for
all IONA services (by default, within the iona_services configuration
scope), IONA recommends that you load the wto_announce plug-in by
specifying the two preceding configuration items rather than by adding the
wto_announce plug-in to the orb_plugins list.

+ORX2001I ORB iona_services.cicsa STARTED (HOSTNAME:<process id>)
+ORX2002I ORB iona_services.cicsa ENDED (HOSTNAME: <process id>)

orb_plugins = ["iiop_profile", "giop", "iiop",
 "local_log_stream", "wto_announce"];

orb_plugins = ["iiop_profile", "giop", "iiop",
 "local_log_stream", "ots"];
 62

POA prefix The related configuration item is plugins:cicsa:poa_prefix. It specifies
the prefix to be assigned to the POA name used by the CICS server adapter.
The default value is IT_MFA_. This POA name is embedded in the object key
of the IOR that is published by the server adapter in prepare mode, and
obtained with resolve from the Mapping Gateway interface. The POA name
is not significant in a server that runs in direct persistent mode; however, it
can be useful for the purposes of keeping track of IORs in an environment
where multiple CICS server adapters are being deployed.

Displaying transaction processing
times

The related configuration item is plugins:cicsa:display_timings. This is
set to "no" by default. If you set this to "yes", the server adapter produces
output similar to the following:

Each item of output contains one line. Each line shows the date and time
when the corresponding request was completed, the name of the interface
and operation, and the timestamps at each of the four measurement points
(in milliseconds). All timestamps are relative to the first measurement point.
Therefore, the first measurement point always shows zero milliseconds.

The four measurement points taken are:

1. After the dispatching handler thread gets the request from the server
adapter's pending request work queue.

2. Before sending the request to CICS.

3. After receiving the response from CICS.

4. Before sending the response back to the client, using IIOP.

The times measured do not include any time that the request has waited for
a server adapter processing thread to become available. If you therefore
have five threads in the server adapter, and send six requests at exactly the
same moment, the times displayed for the sixth request do not include the
time it waited in the server adapter input queue for a thread to become
available.

The first measurement point is taken before the data is marshalled from the
IIOP request buffer, and is exactly the same point in the source code for
each version of the server adapter.

2005-05-20 02:07:46: Simple/SimpleObject: call_me: 1: +0 ms, 2: +37ms, 3: +45ms, 4: +51ms
63

CHAPTER 4 | CICS Server Adapter Service Configuration Details
The second and third measurement points are only approximately the same
point in the source code for each version of the server adapter CICS
transport (EXCI or APPC) plug-ins.

The fourth point is taken after the data has been marshalled back into the
IIOP request buffer, but before it is transmitted to the client. It is also exactly
the same point in the source code for each version of the server adapter.

No information is displayed for threads with IDs greater than 99. The use of
plugins:cicsa:display_timings can cause a small decrease in the
performance of server adapters, as opposed to when the server adapters are
running without plugins:cicaa:display_timings.

Mapping file The related configuration item is plugins:cicsa:mapping_file. You can
use this to specify either a native z/OS dataset name or a fully qualified
pathname to a z/OS UNIX System Services file. The contents of the specified
file represent the mappings between IDL operations that the adapter
supports and target CICS program names. The mapping file is read by the
adapter when it starts. Refer to �The Mapping File� on page 200 for more
details.

Type information mechanism The related configuration item is plugins:cicsa:repository_id. It specifies
the repository used by the CICS server adapter to store operation signatures.
Two repositories are supported: IFR ("ifr") and type_info store
("type_info"). The default is ifr. Refer to �Using type_info store as a
Source of Type Information� on page 216 for more information on the role of
type information. You can also set this item to "none", to indicate that the
adapter should only support cicsraw and not attempt to read type
information from anywhere.

IFR signature cache file If the CICS server adapter is configured to use the IFR as the type
information repository (a store of operation signatures), an IFR signature
cache file can be used to improve performance. The related configuration
item is plugins:cicsa:ifr:cache. Refer to �Using an IFR Signature Cache
file� on page 214 for more information on how IFR signature cache files
work.

The filename specification for the signature cache file can take one of
several forms:
 64

� The following example reads the mappings from a file in the z/OS UNIX
System Services hierarchical file system (HFS):

� The following example shows the syntax to indicate that the mappings
are cached in a flat file (PS) data set, which is created with the default
attributes used by the LE runtime:

The data set is created with the default attributes used by the LE runtime.
Depending on the number of interfaces and the complexity of the types
used, this might not be large enough. In this case, the CICS server adapter
saves as many cache entries as possible and then issues error messages. If
this occurs, you should preallocate a larger data set with the same
attributes, and use this name the next time you start the server adapter.

type_info store If the CICS server adapter is configured to use a type_info store as the type
information repository (a store of operation signatures), the location of the
store must be supplied. The related configuration item is
plugins:cicsa:type_info:source.

The plugins:cicsa:type_info:source variable can be set to one of the
following:

� An HFS file (z/OS UNIX System Services)

Specifies a file to use as a type_info source. Operation signatures are
read from this file during start-up. If a refresh is requested (via itadmin
mfa refresh for example), this file is re-read. For example:

� An HFS directory (z/OS UNIX System Services)

Specifies a directory to use as a type_info source. Operation signatures
are read from all files in this directory during start-up. If a refresh is

plugins:cicsa:ifr:cache = "/home/user/sigcache.txt;"

plugins:cicsa:ifr:cache = "//orbixhlq.DEMOS.IFRCACHE";

Note: Do not use members of partitioned data sets as a signature cache
file.

plugins:cicsa:type_info:source = "/home/bob/type_info.txt";
65

CHAPTER 4 | CICS Server Adapter Service Configuration Details
requested, all files in the directory are browsed until the relevant
operation signature(s) are found. For example:

� A PDS member (native z/OS)

Specifies a PDS member (batch) to use as a type_info source.
Operation signatures are read from this member during start-up. If a
refresh is requested, this member is re-read. For example:

� A PDS (native z/OS)

Specifies a dataset to use as a type_info source. Operation signatures
are read from all members in this dataset during start-up. If a refresh is
requested, all members in the dataset are browsed until the relevant
operation signature(s) are found. For example:

For PDS names, you can use a DD name, as long as this is defined to the
CICS server adapter start JCL, orbixhlq.JCLLIB(CICSA).

plugins:cicsa:type_info:source = "/home/bob/typeinfo_store";

plugins:cicsa:type_info:source = "//MY1.TYPEINFO(MYINFS)";

plugins:cicsa:type_info:source = "//MY1.TYPEINFO";

Note: The use of HFS directories or a PDS is preferable to the use of flat
files, because these methods are better suited to the dynamic addition or
removal of interface information, and they can also address IDL versioning.
 66

CHAPTER 5

Configuring the
CICS Server
Adapter EXCI
Plug-In
This chapter describes how to configure the CICS server
adapter to use EXCI to communicate with CICS.

In this chapter This chapter discusses the following topics:

Setting Up EXCI for the CICS Server Adapter page 68

EXCI Plug-In Configuration Items page 72
67

CHAPTER 5 | Configuring the CICS Server Adapter EXCI Plug-In
Setting Up EXCI for the CICS Server Adapter

Overview This section describes the steps to set up EXCI for the CICS server adapter.
It discusses the following topics:

Further reading Refer to the manual CICS/ESA 4.1 Intercommunication Guide or the
equivalent CICS TS manuals for details on installing IRC support in CICS.

Refer to the manual CICS/ESA 4.1 External CICS Interface or the equivalent
CICS TS manuals (CICS TS External Interfaces Guide) for details on EXCI
used by the Orbix CICS server adapter.

Refer to the section on security in the IBM publication EXCI reference,
SC26-8743 for details on security-related questions.

Installing Support for IRC for the External Call Interface page 69

Installing Sample Orbix CICS Resource Definitions page 70

Updating Access Permissions for CICS Resources page 71
 68

Setting Up EXCI for the CICS Server Adapter
Installing Support for IRC for the External Call Interface

Overview Support for Inter Region Communication (IRC) must be installed in CICS,
and a number of definitions must be made in CICS to support the EXCI
mechanism used by Orbix CICS.

This subsection discusses the following topics:

� Enabling IRC

� Confirmation IRC is activated

Enabling IRC In general, IRC can be enabled by specifying the CICS parameter IRC=YES or
IRCSTRT=YES (depending on the version), and by using the default CICS
definitions in the CICS System Definition Data Set (CSD) group DFH$EXCI
that are delivered with CICS by default. These definitions are sufficient to get
started and they can be used as models for any future requirements you
might have.

Confirmation IRC is activated The following message is issued if this support is active and installed
correctly within CICS:

If this message is not issued, the CICS server adapter cannot use EXCI to
communicate with the CICS region.

DFHSI1519I CICS The interregion communication session was
successfully started.
69

CHAPTER 5 | Configuring the CICS Server Adapter EXCI Plug-In
Installing Sample Orbix CICS Resource Definitions

Overview This subsection discusses the following topics:

� Location of sample JCL to run DFHCSDUP

� Using the sample JCL

� Achieving optimal performance

Location of sample JCL to run
DFHCSDUP

The orbixhlq.JCLLIB(ORBIXCSD) data set contains a job to run DFHCSDUP,
which is the CICS offline resource definition utility, to define the CICS
resources used by the sample jobs and demonstrations.

Using the sample JCL You can run the sample ORBIXCSD JCL as is, or just use it as a reference
when defining the resources online with the CEDA transaction. When the
resources have been defined, use CEDA to install the whole group.

Achieving optimal performance To achieve optimal performance, update the value of "RECEIVECOUNT� in the
definition of the ORX1 session to ensure that it matches the maximum
number of threads specified for the CICS server adapter via the
thread_pool:high_water_mark configuration item.
 70

Setting Up EXCI for the CICS Server Adapter
Updating Access Permissions for CICS Resources

Overview To use the CICS server adapter with a secured CICS region, a number of
RACF definitions must be added or changed. Details of the relevant CICS
security mechanisms are described in the chapter �Securing the CICS Server
Adapter� on page 173. The following are some examples of RACF
commands that are needed to establish the necessary permissions.

This subsection discusses the following topics:

� Prerequisites

� Running the server adapter in default mode

Prerequisites Depending on what security options are enabled in your CICS region, or if
the region uses SECPRFX=YES, or if you use group instead of member RACF
classes, the commands for your region might differ.

Running the server adapter in
default mode

When you run the server adapter in default mode, it requires access to the
EXCI connection, the CICS region, and the EXCI mirror transaction. If user
security is enabled on the EXCI connection (ATTACHSEC(IDENTIFY)), clients
of the server adapter might need access to the EXCI mirror transaction.

The following is an example of the commands for the default mode:

RDEFINE FACILITY (DFHAPPL.ORXPIPE1) UACC(NONE)
PERMIT DFHAPPL.ORXPIPE1 CLASS(FACILITY) ID(Adapter)
ACCESS(UPDATE)

RDEFINE FACILITY (DFHAPPL.CICS) UACC(NONE)
PERMIT DFHAPPL.CICS CLASS(FACILITY) ID(Adapter) ACCESS(READ)

RDEFINE TCICSTRN ORX1 UACC(NONE)
PERMIT ORX1 CLASS(TCICSTRN) ID(Adapter) ACCESS(READ)
PERMIT ORX1 CLASS(TCICSTRN) ID(client1, client2,�) ACCESS(READ)
71

CHAPTER 5 | Configuring the CICS Server Adapter EXCI Plug-In
EXCI Plug-In Configuration Items

In this section This section provides a detailed description of the EXCI plug-in configuration
items. It discusses the following topics:

� CICS APPLID

� CICS connection name

� CICS connection type

� CICS mirror transaction

� CICS COMMAREA length

� CICS availability

CICS APPLID The related configuration item is plugins:cics_exci:applid. It specifies
the APPLID of the CICS region to which the server adapter is to connect. The
CICS server adapter communicates with only one CICS region. If
cics_exci:check_if_cics_available is set to "yes", the specified APPLID
is verified when the server adapter starts. This means that the CICS region
has to be available when you start the server adapter in prepare mode. The
CICS region does not have to be available, however, if
cics_exci:check_if_cics_available is set to "no".

CICS connection name The related configuration item is plugins:cics_exci:pipe_name. It specifies
the NETNAME of a CICS-specific EXCI connection for the CICS server adapter
to use. By default, the server adapter uses the specific connection that is
defined to EXCI for communicating with CICS. You can also use the CICS
generic connection. However, because this resource must be shared by all
the EXCI programs in your system, there might be times when it is
temporarily unavailable to the CICS server adapter. In such cases, the CICS
server adapter might not be able to process an incoming client request.
Better availability can be achieved by specifying a specific EXCI connection
that is dedicated to each server adapter.

CICS connection type The related configuration item is plugins:cics_exci:pipe_type. It specifies
whether specific or generic EXCI sessions are to be used. Valid values are
SPECIFIC and GENERIC.
 72

EXCI Plug-In Configuration Items
CICS mirror transaction The related configuration item is plugins:cics_exci:default_tran_id. It
specifies the default CICS mirror transaction ID that is used on the CICS
EXCI when the client calls run_program() or run_program_binary() on the
cicsraw interface to invoke a CICS program or for a mapped transaction.

CICS COMMAREA length The related configuration item is
plugins:cics_exci:max_comm_area_length. It specifies the maximum size,
in bytes, of the COMMAREA block (that is, the buffer that is to be available
to exchange data with the CICS programs). IDL operations with a large
number of arguments, or with large data values for arguments, might be
rejected if the CICS server adapter cannot marshal their values into this
buffer. When the CICS server adapter uses EXCI, a single COMMAREA is
used for the request buffer. The standard EXCI limitation on request size
(that is, 32K) therefore applies. The default is 3200 bytes per buffer.

CICS availability The related configuration item is
plugins:cics_exci:check_if_cics_available. If this is set to yes, CICS
must be available before you start the CICS server adapter in EXCI mode.
The default is no, to allow the CICS server adapter to start even if CICS is not
available.
73

CHAPTER 5 | Configuring the CICS Server Adapter EXCI Plug-In
 74

CHAPTER 6

Configuring the
CICS Server
Adapter APPC
Plug-In
The APPC plug-in for the CICS Server Adapter uses APPC to
pass data into and out of a CICS region. Using this plug-in
therefore enables you to avoid the 32K limit imposed by the
EXCI plug-in. This chapter describes how to configure the CICS
server adapter to use APPC to communicate with CICS.

In this chapter This chapter discusses the following topics:

Setting Up APPC for the CICS Server Adapter page 76

Additional RACF Customization Steps for APPC page 83

APPC Plug-In Configuration Items page 88
75

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
Setting Up APPC for the CICS Server Adapter

Prerequisites to using APPC Before you can run an Orbix CICS application in your CICS region, you must
perform a number of additional steps to enable the required APPC
functionality on your z/OS system. Depending on your installation, one or all
of these tasks might already have been completed.

Further reading For more information on setting up APPC/MVS, refer to the IBM publication
MVS Planning: APPC/MVS Management, GC28-107.

Additionally, you can find specific information about defining APPC links in
CICS in the chapter on �Defining APPC Links" in the IBM publication CICS
Intercommunication Guide, SC33-1695.

In this section This section discusses the following topics:

Defining LUs to APPC page 77

Defining an APPC Destination Name for the CICS LU page 78

Defining LUs to VTAM page 80
 76

Setting Up APPC for the CICS Server Adapter
Defining LUs to APPC

Overview An LU (Logical Unit) name identifies each side of an APPC conversation. It
is defined to APPC/MVS in the APPCPMxx member of SYS1.PARMLIB. You must
define at least one LU name to use the CICS server adapter. If you want to
run multiple server adapters you might want to set up separate LUs for each
one.

This subsection discusses the following topics:

� Specifying the LU name

� Specifying the VSAM dataset name

� Location of sample JCL to create a VSAM dataset name

� RACF APPCLU profile name requirement

Specifying the LU name The LU name to be used by the server adapter is only used for outbound
communication. It can therefore be specified as follows:

Specifying the VSAM dataset
name

The only other requirement in SYS1.PARMLIB(APPCPMxx) is the specification
of the name of the VSAM data set where APPC-side information can be
found. This data set is used to define APPC destination names. For
example:

Location of sample JCL to create
a VSAM dataset name

If your installation does not already have one, see SYS1.SAMPLIB(ATBSIVSM)
for sample JCL to create a VSAM dataset name.

RACF APPCLU profile name
requirement

If you define a new LU for the server adapter�s use (for example, ORXLU02),
that name must be used for the RACF APPCLU profile name. You can use the
plugins:cics_appc:appc_outbound_lu_name configuration item to define a
new LU.

LUADD ACBNAME(ORXLU02) NOSCHED

SIDEINFO DATASET(SYS1.APPCSI)
77

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
Defining an APPC Destination Name for the CICS LU

Overview The CICS server adapter connects to a CICS region through an APPC
destination name rather than directly through the CICS LU name. This
destination name is used to establish various default characteristics for the
APPC conversation being initiated; including the name of the partner LU,
the transaction program name, and a logon mode name.

This subsection discusses the following topics:

� Storage of the APPC destination name

� Example of the APPC-side information JCL

� Explanation of example JCL

Storage of the APPC destination
name

All this information is stored in the APPC-side information data set. This
data set is updated using the ATBSDFMU APPC/MVS utility program.

Example of the APPC-side
information JCL

The following is an example of JCL to load an entry into the APPC-side
information data set.

Example 3: Example of APPC-Side Information JCL

//SIADDEXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA
SIADD

1 DESTNAME(ORBXCICS)
2 TPNAME(CICS)
3 MODENAME(APPCHOST)
4 PARTNER_LU(CICSTS1)

/*
 78

Setting Up APPC for the CICS Server Adapter
Explanation of example JCL The example APPC-side information JCL can be explained as follows:

1 For the purposes of the CICS server adapter, DESTNAME names the string that
is to be passed to the server adapter when it starts up. The associated
configuration item is plugins:cics_appc:cics_destination_name.

2 The TPNAME specification names a CICS transaction to run. However, the
server adapter overrides this for each conversation. Therefore, its value here
is not important.

3 The MODENAME parameter names an entry in the VTAM logon mode table.
This specifies other characteristics that are to be used in the conversation.
See the SYS1.SAMPLIB(ATBLMODE)data set for a definition of the APPCHOST
logon mode, and the SYS1.SAMPLIB(ATBLJOB) data set for the JCL to install
it.

4 PARTNER_LU must specify the APPLID of the CICS region to which you want
to connect.
79

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
Defining LUs to VTAM

Overview APPC/MVS expects its LUs to be defined as VTAM resources, so that they
can access a SNA network. This subsection discusses the following topics:

� VTAM requirements for LUs

� Using SYS1.SAMPLIB(ATBAPPL)

VTAM requirements for LUs Although the CICS server adapter is only intended to run on the same
system as the CICS region it communicates with (that is, an LU=LOCAL
conversation), VTAM application program definition (APPL) macros must
still be coded for each LU. See SYS1.SAMPLIB(ATBAPPL) for a sample APPL
definition of an APPC LU.

Using SYS1.SAMPLIB(ATBAPPL) The following definitions for the CICS server adapter LU use the
SYS1.SAMPLIB(ATBAPPL) definition, with some changes (which are
highlighted):

Example 4: Example of APPL Definitions for CICS and CICS Server
Adapter LUs

1 ORXLU02 APPL ACBNAME=ORXLU02, C
 APPC=YES, C

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1
 80

Setting Up APPC for the CICS Server Adapter
1 Both the ACBNAME= parameter and the APPL statement label should match
the LU name defined to APPC. This LU must be supplied to the APPC-based
CICS server adapter via the plugins:cics_appc:appc_outbound_lu_name
configuration item.

2 SECACPT= and VERIFY=, in conjunction with some CICS start-up options,
specify what authentication and access checks are made when initiating
conversations between the LU and CICS. SECACPT=CONV indicates that a
partner LU must provide user and password information to authenticate
itself before being allowed access to resources on the local system. This
protects your CICS region from unauthorized access by users on other
systems in your SNA network.

3 VERIFY=OPTIONAL indicates that the password requirement can be bypassed
if LU-LU session-level verification can be performed. This allows the server
adapter to get access (via the session keys in the APPCLU profiles described
in �Session key� on page 85) to the CICS region without having to know the
passwords of all its clients.

Security considerations If there is no possibility of unauthorized access from other systems in your
SNA network, you might prefer to code SECACPT=ALREADYV and
VERIFY=NONE, indicating that partner LUs do not need to be authenticated.
This is safe for LU=LOCAL conversations, because user information is
provided directly by APPC/MVS, with no opportunity for the programmer of
the partner LU to fabricate his identity.

Refer to �Securing the CICS Server Adapter� on page 173 for more details
about APPC conversation security and session-level verification.
81

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
Defining the Required Resources to CICS

Overview This subsection provides the location of the JCL used to define required
APPC resources to CICS. It also provides information about prerequisites to
using this JCL.

This subsection discusses the following topics:

� Location of required JCL

� Prerequisites

Location of required JCL The orbixhlq.JCLLIB(ORBIXCSD) JCL member runs the CICS offline
resource definition utility to define the required APPC resources to CICS.

Prerequisites You might need to change the STEPLIB and DFHCSD DD cards to match your
CICS installation.
 82

Additional RACF Customization Steps for APPC
Additional RACF Customization Steps for
APPC

Overview There are a number of RACF definitions related to APPC that you might
need to add or change to run the CICS server adapter. Refer to �Securing the
CICS Server Adapter� on page 173 for more details about how the server
adapter fits into a secure system environment.

Much of the information provided in this section can be found in the chapter
on �Implementing LU 6.2 Security� in the IBM publication CICS RACF
Security Guide, SC33-1701 CICS RACF Security Guide.

In this section This section discusses the following topics:

Bind Time Security with APPC page 84

Protecting LUs page 86

Link Security & User Security with APPC page 87
83

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
Bind Time Security with APPC

Overview When a request to establish an APPC session is received from or sent to a
remote system (that is, when the session is bound), a security check can be
applied. This is called bind-time security and its purpose is to prevent an
unauthorized system from binding a session to one of your CICS systems.

This subsection discusses the following topics:

� Specifying session security at both ends of a connection

� Bind request prerequisites

� Implementing bind-time security

� APPCLU profile name

� Session key

� User IDs and APPCLU profiles

Specifying session security at both
ends of a connection

When you define an LU 6.2 connection to a remote system, you assume
that all inbound bind requests originate in that remote system, and that all
outbound bind requests are routed to the same system. However, where
there is a possibility that a transmission line might be switched or broken
into, you can guard against unauthorized session binds by specifying session
security at both ends of the connection.

Bind request prerequisites For a bind request to succeed, both ends must hold the same session key,
which is defined to RACF in an APPCLU definition.

Implementing bind-time security To implement bind-time security for your APPC connection, you need to:

� Specify SEC=YES and XAPPC=YES in your system initialization table (SIT)
and recycle CICS to effect the change.

� Change the BINDSECURITY option to YES on the CONNECTION resource
definition in the CSD.

� Define APPCLU RACF definitions with shared session keys as outlined
below.
 84

Additional RACF Customization Steps for APPC
APPCLU profile name Each APPCLU profile name has the form:

and contains information to be used by APPC/MVS on one side of a
conversation between the two named LUs. This means each side of a
conversation has its own specific profile. For example, if LU ORXLU02
initiates a conversation with the CICS region whose APPLID is CICSTS1,
APPC/MVS on the initiating (outbound) side examines the following profile:

and APPC/MVS on the receiving (inbound) side examines this profile:

Session key Each profile includes a session key, which is a string of letters or numbers,
and a CONVSEC setting. When a conversation is initiated between these
two LUs, APPC/MVS on the outbound side passes the session key found in
its profile to APPC/MVS on the inbound side. If APPC/MVS on the inbound
side finds that the received session key matches the session key in its own
profile, it overrides the VTAM SECACPT= setting with the CONVSEC setting
from its profile. In summary, for a bind request to succeed, both ends must
hold the same session key, which is defined to RACF as follows:

User IDs and APPCLU profiles It is not necessary to permit the server adapter or CICS region to have user
IDs for the APPCLU profiles. However, access to the profiles should be tightly
controlled to ensure that only appropriate users can read or change the
session keys.

�networkid.local-lu-name.partner-lu-name�

�networkid.ORXLU02.CICSTS1�

�networkid.CICSTS1.ORXLU02�

RDEFINE APPCLU P390.ORXLU02.CICSTS1

 UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

RDEFINE APPCLU P390.CICSTS1.ORXLU02

 UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

SETROPTS CLASSACT(APPCLU)
85

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
Protecting LUs

Overview This subsection discusses the following topics:

� User access to LU names

� Creating RACF APPCPORT profiles

User access to LU names If you have set up the APPCLU profiles that allow a conversation between two
specific LU names to bypass password checking, you should limit the users
that can initiate or received conversations using those LU names.

Creating RACF APPCPORT
profiles

You can do this by creating RACF APPCPORT profiles for each LU name and
by permitting only certain users access to those profiles. For example:

By having an ORXLU02 profile, you are restricting the users that can take
advantage of the session-level verification provided by the APPCLU profiles.

RDEFINE APPCPORT ORXLU02 UACC(NONE)

PERMIT ORXLU02 CLASS(APPCPORT) ID(Adapter) ACCESS(READ)

SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)
 86

Additional RACF Customization Steps for APPC
Link Security & User Security with APPC

Overview Link security and user security further restricts the resources a user can
access, depending on the remote system from which they are accessed.

This subsection discusses the following topics:

� A bound APPC session

� Specifying ATTACHSEC=

A bound APPC session When an APPC session is bound, each side tells the other the level of
attach-security user verification that is be performed on its incoming
requests. The ATTACHSEC operand on the CONNECTION resource
definition in the CSD specifies the sign-on requirements for incoming
transaction-attach requests.

Specifying ATTACHSEC= If you specify ATTACHSEC=LOCAL, no user ID is supplied by the remote
system. However, if you specify ATTACHSEC=IDENTIFY, a user ID is expected
on every attach request. Depending on how you want to protect your CICS
resources, you might want to change this option. Refer to the CICS RACF
Security Guide for more information.
87

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
APPC Plug-In Configuration Items

Overview This section discusses the following topics:

� CICS APPC destination LU name

� Server adapter outbound LU name

� APPC/CICS transaction request timeout

� Data segment length

CICS APPC destination LU name The related configuration item is
plugins:cics_appc:cics_destination_name. This specifies a symbolic
name that identifies the APPC LU name for the CICS region that the CICS
server adapter connects to. All incoming client requests are forwarded into
the specific CICS region that is associated with this destination name. The
default value is ORBXCICS.

The specified APPC destination name is verified only when the server
adapter first attempts to issue a request to the specified CICS region. This
means that the CICS region does not have to be available when you start the
APPC-based server adapter.

Server adapter outbound LU name The related configuration item is
plugins:cics_appc:appc_outbound_lu_name. This specifies the APPC LU
name that the server adapter uses to initiate communication with CICS. This
is useful when security considerations prohibit APPC connections between
the system base LU and CICS. Refer to �APPC-Based Security
Considerations� on page 191 for more details. Refer to �Defining LUs to
APPC� on page 77 for an example where the LU name is created as
ORXLU02.

APPC/CICS transaction request
timeout

The related configuration item is plugins:cics_appc:timeout. It specifies
the number of minutes that the CICS server adapter waits for a response
from CICS before cancelling the request. It prevents the server adapter from
having to wait indefinitely for a response from CICS if the transaction has
stopped for some reason. The default is no timeout.
 88

APPC Plug-In Configuration Items
Data segment length The related configuration item is plugins:cics_appc:segment_length. The
CICS server adapter builds up APPC segments of this size. For APPC,
multiple buffers of up to this specified length are used to transmit the data.
The 32K limit for APPC for a single buffer therefore applies, but all the
buffers together can be more than 32K. The default is 32767 bytes per
buffer.
89

CHAPTER 6 | Configuring the CICS Server Adapter APPC Plug-In
 90

CHAPTER 7

Configuring the
CICS Server
Adapter RRS
Plug-In
The RRS plug-in provides integration facilities between the
CORBA OTS service in the CICS server adapter and the
commit/rollback processing of CICS. This chapter provides an
introduction to RRS functionality, shows you how to set up
RRS for the CICS server adapter, and provides details of the
RRS plug-in configuration items.

In this chapter This chapter discusses the following topics:

Introduction to RRS page 92

Setting up RRS for the CICS Server Adapter page 93

RRS Plug-In Configuration Items page 100
91

CHAPTER 7 | Configuring the CICS Server Adapter RRS Plug-In
Introduction to RRS

RRS plug-in functionality This plug-in can only be used in conjunction with the EXCI transport plug-in.
Also, RRS support is only available when using CICS TS 1.3 or higher. The
RRS plug-in only becomes involved in the request if the client sends the
request with a transaction context. The server adapter therefore supports
both transactional and non-transactional requests when the RRS plug-in is
enabled. The transactional performance overheads only affect transactional
requests. With RRS support, the server adapter only commits or rolls back
transactions in CICS when the client program issues the commit or rollback
call for a transactional request.

This section discusses the following topics:

� IORs and transaction support

� Further reading

IORs and transaction support IORs for IDL interfaces that support transactional processing have an extra
component to indicate to the client that transactional support is available in
the server (the server adapter in this case). Ensure that you obtain new IORs
from the CICS server adapter using prepare and resolve, and so on, after you
have enabled the RRS plug-in. This is because transactional communication
between the client program and the server adapter only works with these
new IORs with the transaction support component.

Further reading For further information, refer to the IBM publication OS/390 MVS Setting
up a Sysplex, GC28-1779.

Further information about System Logger is available in the IBM publication
OS/390 MVS Setting up a Sysplex, GC28-1779.
 92

Setting up RRS for the CICS Server Adapter
Setting up RRS for the CICS Server Adapter

Overview This section describes what you need to do to use the RRS plug-in with the
CICS server adapter. It discusses the following topics:

� IPL your z/OS system in Sysplex mode

� Defining the required log streams

� Managing log streams

� Starting RRS

� Stopping RRS

� Restarting CICS when RRS is available on the system

IPL your z/OS system in Sysplex
mode

RRS requires the use of a sysplex couple data set, which means that your
z/OS system must be configured as part of a single-system or multi-system
sysplex.

The following steps are required:

Step Action

1 Change the PLEXCFG parameter in SYS1.PARMLIB(IEASYSxx) to
PLEXCFG=MONOPLEX for a single-system sysplex or
PLEXCFG=MULTISYSTEM for a multi-system sysplex. PLEXCFG=ANY
is also valid.

2 Specify COUPLExx in SYS1.PARMLIB(IEASYSxx) to identify the
COUPLExx parmlib member that describes the sysplex
environment.
93

CHAPTER 7 | Configuring the CICS Server Adapter RRS Plug-In
Defining the required log streams There are two types of log streams:

� Coupling facility log streams.

� DASD-only log streams.

The main difference between the two types of log streams is the storage
medium used to hold interim log data. In a coupling facility log stream,
interim storage for log data is contained in coupling facility list structures. In

3 Use the XCF couple dataset format utility (IXCL1DSU) to create
and format all sysplex couple data sets prior to IPLing a system
that is to use them. The following JCL can be used:

//STEP1 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.XCF.CDS01) VOLSER(S27VL1)
 MAXSYSTEM(8)
 CATALOG
 DATA TYPE(SYSPLEX)
 ITEM NAME(GROUP) NUMBER(50)
 ITEM NAME(MEMBER) NUMBER(120)
 ITEM NAME(GRS) NUMBER(1)
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.XCF.CDS02) VOLSER(S27VL2)
 MAXSYSTEM(8)
 CATALOG
 DATA TYPE(SYSPLEX)
 ITEM NAME(GROUP) NUMBER(50)
 ITEM NAME(MEMBER) NUMBER(120)
 ITEM NAME(GRS) NUMBER(1)
/*

4 Create a COUPLExx member in SYS1.PARMLIB that includes the
couple data sets you have just defined. For example:

COUPLE SYSPLEX(IONAPLEX)

 PCOUPLE(SYS1.XCF.CDS01)

 ACOUPLE(SYS1.XCF.CDS02)

5 IPL your system for the above changes to take effect.

Step Action
 94

Setting up RRS for the CICS Server Adapter
a DASD-only log stream, interim storage for log data is contained in local
storage buffers on the system. For the purposes of this demonstration,
DASD-only log streams are used.

Prerequisites to running the log
streams

RRS requires five log streams to be defined to System Logger. The IBM
publication OS/390 MVS Programming: Resource Recovery, GC28-1739
lists the following initial and recommended sizes for the log streams:

The initial sizes listed should be sufficient to run the demonstration, but the
log streams should be set up with the maximum sizes, if possible, to
facilitate future use of RRS on the system. This is because production- level
applications require the maximum sizes listed. Also, the ARCHIVE stream is
not required, but setting it up could help to trace any problems with RRS
later on.

Table 1: Initial and Maximum Log Stream Sizes

Log Stream Initial Size Maximum Size

RM.Data 1 MB I MB

MAIN.UR 5 MB 50 MB

DELAYED.UR 5 MB 50 MB

RESTART 1 MB 5 MB

ARCHIVE 5 MB 50 MB
95

CHAPTER 7 | Configuring the CICS Server Adapter RRS Plug-In
Managing log streams Log streams are managed based on the policy information that is placed in
the LOGR couple data set. To do this perform the following steps:

Step Action

1 Create and format the LOGR couple data set. The following JCL
can be used:

//STEP1 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.SLC.FDSS1) VOLSER(S27VL1)
 DATA TYPE(LOGR)
 ITEM NAME(LSR) NUMBER(100)
 ITEM NAME(LSTRR) NUMBER(50)
 ITEM NAME(DSEXTENT) NUMBER(20)
 DEFINEDS SYSPLEX(IONAPLEX)
 DSN(SYS1.SLC.FDSS2) VOLSER(S27VL2)
 DATA TYPE(LOGR)
 ITEM NAME(LSR) NUMBER(100)
 ITEM NAME(LSTRR) NUMBER(50)
 ITEM NAME(DSEXTENT) NUMBER(20)
/*

2 Update the SYS1.PARMLIB(COUPLExx) member to include the
LOGR data sets you have just defined. For example:

DATA

 TYPE(LOGR)

 PCOUPLE(SYS1.SLC.FDSS1)

 ACOUPLE(SYS1.SLC.FDSS2)
 96

Setting up RRS for the CICS Server Adapter
3 Make the LOGR couple data sets available. You can use either of
the following ways to make the LOGR datasets available to the
system:

♦ IPL the system to activate the newly defined
specifications in the COUPLxx member.

♦ Issue the following SETXCF operator commands to
bring the LOGR data sets online without an IPL:

SETXCF COUPLE,TYPE=LOGR,PCOUPLE=(SYS1.SLC.FDSS1)

SETXCF COUPLE,TYPE=LOGR,ACOUPLE=(SYS1.SLC.FDSS2)

Step Action
97

CHAPTER 7 | Configuring the CICS Server Adapter RRS Plug-In
4 Define the log streams using the IXCMIAPU utility provided in
SYS1.MIGLIB. The following JCL can be used:

//STEP1 EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(LOGR) REPORT(YES)
 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.ARCHIVE)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.RM.DATA)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.MAIN.UR)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.DELAYED.UR)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)

 DEFINE LOGSTREAM
 NAME(ATR.IONAPLEX.RESTART)
 HLQ(IXGLOGR) MODEL(NO) LS_SIZE(1024)
 LOWOFFLOAD(0) HIGHOFFLOAD(80)
 RETPD(15) AUTODELETE(YES)
 DASDONLY(YES)
/*

Step Action
 98

Setting up RRS for the CICS Server Adapter
Starting RRS Perform the following steps to start RRS:

Stopping RRS To stop RRS, issue the following command:

SETRRS CANCEL

Restarting CICS when RRS is
available on the system

Add RRMS=YES to the CICS SIT table. Restart the CICS region. The following
message must appear in the CICS region output to indicate that CICS has
attached to RRS:

Step Action

1 Update the IEFSSNxx member of SYS1.PARMLIB to add RRS as
a z/OS subsystem as follows:

SUBSYS SUBNAME(RRS)

An IPL is required to activate this change. Dynamic subsystem
definition is not supported by RRS, so you cannot use the
SETSSI ADD,SUBNAME=RRS command to define RRS.

2 Copy SYS1.SAMPLIB(ATRRRS) to SYS1.PROCLIB(RRS)

3 Start RRS by issuing the following operator command:

S RRS

The Resource Recovery Services (RRS) exit manager ATR.EXITMGR.IBM
is now available.
99

CHAPTER 7 | Configuring the CICS Server Adapter RRS Plug-In
RRS Plug-In Configuration Items

Overview This section discusses the following topics:

� Server adapter resource manager name

� Initial reference name for RRS plug-in

Server adapter resource manager
name

The related configuration item is plugins:rrs:rm-name. It specifies the
resource manager name that the CICS server adapter uses to register with
RRS. The server adapter registers with RRS as a communications resource
manager, because it only forwards transactional requests and does not itself
manage incoming data on a transactional basis (that is, it supports only
communication and is not a database). Each server adapter should have its
own resource manager name that it uses to register with RRS. The resource
manager name should also be in a dot-separated format; for example, as
follows: TEST.CICSADAP1.IONA.UA

According to the rules of RRS on the naming of resource managers, the
resource manager name for the server adapter must be suffixed with .UA.
This indicates to RRS that the server adapter might run without APF
authorization and that it does not use any of the RRS services that require
APF authorization. The second last item in the name should be the
company name that provides this resource manager. Depending on the
naming schemes in your company, this should either be IONA or the name
of your company. Using IONA is usually the best option, to ensure that the
resource manager names do not conflict with resource managers provided
by other companies. The rest of the name should be specified in such a way
that it is unique for each server adapter.

The presence of this configuration item instructs the server adapter to
attempt to load RRS.

Initial reference name for RRS
plug-in

The related configuration item is initial_references:IT_RRS:plugin. It
specifies that the RRS plug-in should be used for RRS services in the server
adapter. This should always be set to rrs and is a required item if RRS is
used.
 100

CHAPTER 8

Configuring the
CICS Server
Adapter for Client
Principals
The CICS server adapter can be configured to read the client
principal from incoming GIOP 1.0 and 1.1 requests. It can
also be configured to read the principal from a service context
for GIOP 1.2. If the server adapter reads the principal from
the GIOP request, it passes it into CICS for mapped requests.
The server adapter can also run the transaction in CICS under
the user principal obtained from the client. This chapter
explains how to configure the server adapter to use client
principals.

In this chapter This chapter discusses the following topics:

Activating Client Principal Support page 103

Setting up the Required Privileges page 107
101

CHAPTER 8 | Configuring the CICS Server Adapter for Client Principals
Additional Requirements for CICS Protocol Plug-Ins page 109

Note: See �Securing and Using the CICS Server Adapter� on page 171 for
more details about the use of client principals when running the server
adapter in secure mode.
 102

Activating Client Principal Support
Activating Client Principal Support

Overview For IDL mapped requests, the server adapter marshals the principal data
into CICS, making it available to the Orbix server inside CICS. The server
adapter can also be configured to run the transaction in CICS under this
client�s user ID for both cicsraw requests and mapped requests.

This section discusses the following topics:

� Using CORBA::Principal

� Configuring the cicsa plug-in

Using CORBA::Principal CORBA::Principal has been deprecated by the OMG in GIOP 1.2 and
higher. Hence the principal can only be made available to the server adapter
via GIOP 1.0 or 1.1 client requests. However, GIOP 1.2 can still be used. In
this case, the client must pass the principal string in a service context and
the server adapter must be configured to read the principal from this service
context.

Configuring the cicsa plug-in To configure client_principal support, the following items within the
server adapter�s configuration scope must be reviewed.
103

CHAPTER 8 | Configuring the CICS Server Adapter for Client Principals
Table 2: Client Principal Support and cicsa Plug-In Configuration Items
(Sheet 1 of 3)

Configuration Item Description

plugins:cicsa:use_client_principal When this item is set to "true", the principal is be obtained from
GIOP, truncated to eight characters and converted to uppercase.
The CICS server adapter then also runs the transaction under the
user ID. If no principal is available or it is invalid, the transaction
fails.

Setting this item to "true", therefore, instructs the CICS server
adapter to use z/OS services, to assume the identity of the client
when communicating with CICS. This results in CICS and either
APPC or EXCI making their security checks against that user ID. If
this option is not specified, the security checks are made against
the user ID of the server adapter itself. The use of this option
requires that the server adapter has special privileges set up. See
�Securing the CICS Server Adapter� on page 173 for more details
about using this configuration item. When this item is set to
"false", the transaction runs under the server adapter's user ID.

When this item is set to "true" or "false", the principal is still
obtained from GIOP and passed as is (apart from being converted
from ASCII to EBCDIC) to the transaction inside CICS, if cicsraw
is not being used. If the client principal is not available from
GIOP, it is not passed as part of the request to CICS, but the
transaction is still executed.

The default is "false".

plugins:cicsa:use_client_principal_
user_security

This is used only with CICS EXCI. When this item is set to "true",
the CICS server adapter is to provide the client principal user ID
rather than its own user ID on the request to start the target CICS
program.

The default is "false".
 104

Activating Client Principal Support
plugins:cicsa:use_client_password When this item is set to "yes", it indicates that the CICS server
adapter should use a client password when it wants to switch the
thread that is making the request to CICS to the user ID passed in
the client principal, instead of using SURROGAT rights. The format
of the principal sent by the client application must then take the
form userid;password (that is, user ID and password separated
by a colon) instead of the normal userid format.

When using this option, there is a risk that the password might be
displayed in the CICS server adapter output or that the password
might be obtained from the IIOP message on the network if TLS is
not used. You should therefore consider these security
implications before using this configuration item to send
passwords from the client. The default is "no".

policies:iiop:server_version_policy If this is set to 1.1, the server adapter publishes a version 1.1 IOR
which instructs clients to communicate over GIOP 1.1. In this
case, the principal is transmitted in the CORBA::Principal field.

If this is set to 1.2 (the default), 1.2 is used as the default GIOP
version. In this case, the principal must be transmitted in the
request message using an alternative mechanism (that is, a
service context).

Note: Orbix does not support publishing 1.0 version IORs.
Therefore, this configuration item must be set to 1.1 or 1.2.

Note: Even if this configuration item is set to 1.2, clients may
still choose to communicate using a lower GIOP version, if the
client ORB is capable of parsing a 1.2 IOR. For example, Orbix
clients can use the policies:iiop:client_version_policy
configuration item to communicate with the server adapter over
GIOP 1.0 or 1.1.

policies:giop:interop_policy:enable
_principal_service_context

For GIOP 1.2, if this item is set to "true", it instructs the CICS
server adapter to look for the principal string in a service context.
The default value is "false".

Table 2: Client Principal Support and cicsa Plug-In Configuration Items
(Sheet 2 of 3)

Configuration Item Description
105

CHAPTER 8 | Configuring the CICS Server Adapter for Client Principals
policies:giop:interop_policy:
principal_service_context_id

This item specifies the service context ID from which the CICS
server adapter attempts to read the principal string if
policies:giop:interop_policy:enable_principal_service
_context is set to true. The default service context ID where the
server adapter looks for the principal string is 0x49545F44.

Table 2: Client Principal Support and cicsa Plug-In Configuration Items
(Sheet 3 of 3)

Configuration Item Description
 106

Setting up the Required Privileges
Setting up the Required Privileges

Overview If the CICS server adapter is to be run using the use_client_principal
configuration item in the APPC or EXCI plug-ins, the user ID under which
the server adapter runs might need to be granted special privileges to enable
thread-level security environments. The requirements vary, depending on
whether the FACILITY RACF class profile BPX.SERVER is defined on your
system.

This section discusses the following topics:

� Requirements when BPX.SERVER is defined

� Requirements when BPX.SERVER is not defined

� Impersonating users

Requirements when
BPX.SERVER is defined

If BPX.SERVER is defined, the user ID does not need to have a UID of 0, but it
must have READ access to the BPX.SERVER profile. In addition, the server
adapter executable must reside in a z/OS load library that is PADS-defined.
(PADS is the acronym for Program Access to Data Sets.)

Requirements when
BPX.SERVER is not defined

If BPX.SERVER is not defined, this user ID must have a UID of 0 assigned to it
in the OMVS segment of its RACF user profile.

Impersonating users Additionally, because the CICS server adapter is processing requests for
users without having their passwords, you must activate the SURROGAT RACF
class and define profiles in it that allow the server adapter�s user ID to
impersonate particular users. You can do this by establishing a profile for
each potential client user. For example:

RDEFINE SURROGAT BPX.SRV.client1 UACC(NONE)
PERMIT BPX.SRV.client1 CLASS(SURROGAT) ID(Adapter) ACCESS(READ)
RDEFINE SURROGAT BPX.SRV.client2 UACC(NONE)
PERMIT BPX.SRV.client2 CLASS(SURROGAT) ID(Adapter) ACCESS(READ)
107

CHAPTER 8 | Configuring the CICS Server Adapter for Client Principals
Alternatively, you might want to use a generic profile that allows the CICS
server adapter to impersonate any client user. For example:

Access to such profiles should be very tightly controlled.

RDEFINE SURROGAT BPX.SRV.* UACC(NONE)
PERMIT BPX.SRV.* CLASS(SURROGAT) ID(Adapter) ACCESS(READ)
 108

Additional Requirements for CICS Protocol Plug-Ins
Additional Requirements for CICS Protocol
Plug-Ins

Overview When running authorized and using the use_client_principal
configuration item in the APPC or EXCI plug-in, the CICS server adapter
changes the ID of the thread processing the request to that of the client
principal. It then makes the request under the new ID; so, in this case, the
request should start the CICS transaction with an ACEE for the client ID.

This section discusses the following topics:

� Switching threads

� Making the CICS server adapter program-controlled

� Further Reading

Switching threads The CICS server adapter uses the pthread_security_np() call on the thread
that is processing the client request, to switch that thread to run under the
requested user ID (client principal). For EXCI, it then issues the EXCI call,
providing this ID in the request. For APPC, it issues the APPC calls now that
the thread is running under this user ID. For this to work, an EXCI or APPC
server adapter must be program-controlled.
109

CHAPTER 8 | Configuring the CICS Server Adapter for Client Principals
Making the CICS server adapter
program-controlled

To make the CICS server adapter program-controlled, you need to consider
the following issues:

Step Action

1 If the CICS server adapter user ID does not have READ access
to the BPX.SERVER RACF resource, in the FACILITY class, you
get the EPERM errors when the server adapter is trying to switch
identities on the thread. The server adapter user ID also needs
access to the BPX.SRV.userid resource in the RACF SURROGAT
class where userid is the client principal in question. If the
user ID under which the server adapter runs is well controlled,
you could possibly give it read access to the BPX.SRV.*
resource, to enable the server adapter to handle requests from
any client principal.

2 When deploying in UNIX System Services, the CICS server
adapter must run in its own address space. You must ensure
that the _BPX_SHAREAS variable is not set in the server adapter's
environment. The itcicsa shell script supplied by IONA
handles this, by unsetting this variable before running the
server adapter program.

3 When deploying in UNIX System Services, you must ensure
that any UNIX System Services files that are involved in
running the server adapter have the appropriate extended
attributes set. Your systems programmer might execute the
extattr command, as follows, to make these files
program-controlled:

$ cd $IT_PRODUCT_DIR

$ extattr +p shlib/* asp/6.0/bin/itcicsa

The command ls -E can be used to display the extended file
attributes in the UNIX System Services shell.

Note: If, at this point, the address space is still not
program-controlled, the server adapter throws an exception
back to the client and logs an error message to indicate that it
could not switch to that user ID, and that it is therefore not
going to attempt to start the transaction in CICS.
 110

Additional Requirements for CICS Protocol Plug-Ins
Further Reading Refer to the IBM publication Planning: OpenEdition MVS, SC23-3015 for
more information on enabling thread-level security for servers.
111

CHAPTER 8 | Configuring the CICS Server Adapter for Client Principals
 112

CHAPTER 9

Configuring the
Orbix Runtime
inside CICS
This chapter provides information on configuring the Orbix
runtime that is used by Orbix servers running in CICS.

In this chapter This chapter discusses the following topics:

Customizing CICS page 114

Customizing Orbix Event Logging page 116
113

CHAPTER 9 | Configuring the Orbix Runtime inside CICS
Customizing CICS

Overview Before you can run Orbix CICS applications in your region, you must perform
a number of additional steps to enable your CICS system to support Orbix
servers. Depending on your installation, one or all of these tasks might
already have been completed. You must verify this with the systems
programmer responsible for CICS at your site.

This section discusses the following topics:

� Installing language environment support

� Installing support for C++ classes in CICS

� Installing sample Orbix CICS resource definitions

� Updating the CICS region

Installing language environment
support

CICS Language Environment (LE) support is not installed as standard. To
enable LE support in CICS you must perform a number of steps. Refer to the
IBM manual Language Environment for OS/390 Customization for details
on installing LE support in CICS.

If LE support has been successfully installed in CICS, the following message
is written to the console:

If you cannot see this message, LE support is not available under CICS and
any Orbix activities fail.

Installing support for C++ classes
in CICS

Support for the C++ standard classes must be explicitly defined to CICS.
Refer to the IBM manual OS/390 C/C++ Programming Guide for details of
the steps required to run C++ application programs under CICS. In
particular, note that the standard C++ DLLs such as IOSTREAM must be
defined to CICS.

Failure to do this results in the following messages being issued from CICS
when attempting to run an Orbix CICS transaction:

DFHAP1203I CICS Language Environment is being initialized

EDC6063I DLL name is IOSTREAM
EDC5207S Load request for DLL load module unsuccessful.
 114

Customizing CICS
C++ support is required by Orbix itself, which is written in C++.

Installing sample Orbix CICS
resource definitions

The data set orbixhlq.JCLLIB(ORBIXCSD) contains a job to run DFHCSDUP,
which is the CICS offline resource definition utility, to define the CICS
resources used by the sample jobs and demonstrations. You can run this as
is, or just use it as a reference when defining the resources online with the
CEDA transaction. When the resources have been defined, use CEDA to
install the whole group.

Updating the CICS region To update the CICS region perform the following steps.

Note: From the Orbix CICS programming perspective, servers can only be
written in COBOL or PL/I at this time.

Step Action

1 Add five libraries to the CICS region�s DFHRPL concatenation as
follows:

DD DSN=orbixhlq.DEMOS.CICS.CBL.LOADLIB,DISP=SHR
DD DSN=orbixhlq.DEMOS.CICS.PLI.LOADLIB,DISP=SHR
DD DSN=orbixhlq.MFA.LOADLIB,DISP=SHR
DD DSN=CEE.SCEERUN,DISP=SHR
DD DSN=CBC.SCLBDLL,DISP=SHR

2 Add CEE.SCEERUN to the STEPLIB concatenation.

3 Recycle the regions to pick up these libraries.
115

CHAPTER 9 | Configuring the Orbix Runtime inside CICS
Customizing Orbix Event Logging

Overview For the Orbix runtime in CICS, most of the configuration settings are fixed.
However, the level of event logging performed by the runtime can be
customized for the server adapter.

This section discusses the following topics:

� Customizing the level of event logging

� Event logging settings

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

Customizing the level of event
logging

This is done by modifying the ORXMFACx DLL. This DLL contains an S390
Assembler CSECT that supplies the event logging string to the runtime.

Event logging settings The event logging settings are as follows:

Table 3: Event Logging Settings for the CICS Server Adapter

Value Description

0 LOG_NONE� no logging in CICS is performed.

1 LOG_ERROR�only log errors.

2 LOG_WARNING�log warnings and errors.

3 LOG_INFO_HIGH�log high priority informational messages,
warnings and errors.

4 LOG_INFO_MED�log medium priority informational messages,
high priority informational messages, warnings and errors.

5 LOG_INFO_LOW�log low priority informational messages,
medium priority informational messages, high priority
informational messages, warnings and errors.

6 LOG_INFO_ALL�log all messages.
 116

Customizing Orbix Event Logging
ORXMFACx DLL setting The ORXMFACx DLL shipped with the CICS server adapter has a setting of 2
for event logging in CICS.

This can be modified to some other setting. For example, to help trace a
problem with a transaction in CICS, it can be changed to 6.

Modifying the ORXMFACx DLL
setting

This is done using the MFACLINK JCL member supplied in orbixhlq.JCLLIB.
In this JCL, the LOGLVL variable can be modified to contain the new event
logging value. It can then be run to create a new version of the ORXMFACx
DLL with this new value. Ensure that you make a backup copy of ORXMFACx,
before running this JCL member. After this re-link of the DLL, make it
available to the CICS region in which you are testing, for the new setting to
come into effect. After the testing is complete, consider copying back the
original DLL, to revert to the normal logging levels.
117

CHAPTER 9 | Configuring the Orbix Runtime inside CICS
 118

CHAPTER 10

IDL Compiler
Configuration
This chapter describes Orbix IDL compiler settings for the mfa
plug-in, which is used to generate CICS server adapter
mapping files and type_info files.

In this chapter This chapter discusses the following topics:

Overview page 120

Configuration settings page 120

Mandatory settings page 120

User-defined settings page 121

List of available settings page 121
119

CHAPTER 10 | IDL Compiler Configuration
Overview The -mfa plug-in allows the IIDL compiler to generate CICS server adapter
mapping members and CICS server adapter type_info files from IDL. The
behavior of the Orbix IDL compiler is defined by the IDL compiler
configuration file, orbixhlq.CONFIG(IDL). This chapter details the default
settings used and describes how these can be modified.

Configuration settings The CICS server adapter mapping member configuration is listed under
MFAMappings as follows:

Mandatory settings The first three of the preceding settings are mandatory and must not be
altered. They inform the Orbix IDL compiler how to recognize the server
adapter mapping member switch, and what name the DLL plug-in is stored
under.

Note: IDL compiler configuration is separate from standard Orbix
configuration and is contained in its own configuration member
(orbixhlq.CONFIG(IDL)).

MFAMappings
{
 Switch = "mfa";
 ShlibName = "ORXBMFA";
 ShlibMajorVersion = "6";
 IsDefault = "NO";
 PresetOptions = "";

Mapping & Type Info file suffix and ext. can be overridden
The default mapping file suffix is A
The default mapping file ext. is .map and none for OS/390
The default type info file suffix is B
The default type info file ext. is .inf and none for OS/390
MFAMappingExtension = "";
MFAMappingSuffix = "";
TypeinfoFileExtension = "";
TypeinfoFileSuffix = "";

};

Note: Settings listed with a # are considered to be comments and are not
in effect.
 120

User-defined settings All but the first three settings are user-defined and can be changed. The
reason for these user-defined settings is to allow you to change, if you want,
default configuration values that are set during installation. To enable a
user-defined setting, use the following format:

List of available settings Table 4 provides an overview and description of the available settings.

setting_name = "value";

Table 4: Server Adapter Mapping Member Configuration Settings

Setting Name Description Default

IsDefault Indicates whether the Orbix IDL
compiler generates CICS server
adapter mapping members by
default from IDL. If this is set to
YES, you do not need to specify
the -mfa switch when running
the compiler.

 NO

PresetOptions The arguments that are passed
by default as parameters to the
Orbix IDL compiler for the
purposes of generating CICS
server adapter mapping
members.

MFAMappingExtension Extension for the CICS server
adapter mapping file (on UNIX
System Services).

map

TypeinfoFileExtension Extension for the CICS server
adapter type_info files (on
UNIX System Services).

inf

TypeinfoFileSuffix Suffix for CICS server adapter
type_info files (on both native
z/OS and UNIX System
Services). If you do not supply a
value for this, a default suffix of B
is used.

B

121

CHAPTER 10 | IDL Compiler Configuration
MFAMappingSuffix Suffix for the CICS server adapter
mapping member on z/OS. If you
do not specify a value for this, a
default suffix of A is used.

A

Table 4: Server Adapter Mapping Member Configuration Settings

Setting Name Description Default
 122

Part 3
Configuring the Client
Adapter and the Orbix
Runtime Inside CICS

In this part This part contains the following chapters:

Introduction to Client Adapter Configuration page 125

Client Adapter General Configuration page 133

Configuring the Client Adapter AMTP_APPC Plug-in page 137

Configuring the Client Adapter Subsystem page 157

Configuring the Orbix Runtime inside CICS page 161

CHAPTER 11

Introduction to
Client Adapter
Configuration
This chapter provides information needed to configure the
client adapter and its components (plug-ins). It provides
descriptions of all the configuration items involved in running
the client adapter. It also provides details on configuring the
various system components used by the client adapter.

In this chapter This chapter discusses the following topics:

A Client Adapter Sample Configuration page 126

Configuration Summary of Client Adapter Plug-Ins page 129
125

CHAPTER 11 | Introduction to Client Adapter Configuration
A Client Adapter Sample Configuration

Overview A sample configuration member is supplied with your Orbix Mainframe
installation that provides an example of how you might configure and deploy
the client adapter on both native z/OS and UNIX System Services.

This section discusses the following topics:

� Location of configuration templates

� Configuration scope

� Configuration scope example

� Configuring a domain

Location of configuration
templates

Sample configuration templates are supplied with your Orbix Mainframe
installation in the following locations:

Non-TLS�orbixhlq.CONFIG(BASETMPL).

TLS�orbixhlq.CONFIG(TLSTMPL).

Configuration scope The client adapter uses an ORBname of iona_services.cics_client. The
items specific to the client adapter configuration are scoped in the
iona_services.cics_client configuration scope.

Note: Further configuration resides in orbixhlq.CONFIG(ORXINTRL). This
contains internal configuration that should not usually require any
modifications.
 126

A Client Adapter Sample Configuration
Configuration scope example The following is an example of the iona_services.cics_client
configuration scope.

Example 5: An iona_services.cics_client Configuration Scope Example

iona_services
{
�
 cics_client
 {
 event_log:filters = ["*=WARN+ERROR+FATAL","IT_MFA=INFO_HI+WARN+ERROR+FATAL",
 "IT_MFU=INFO_HI+WARN+ERROR+FATAL"];

 plugins:cicsa:direct_persistence = "yes";
 plugins:cicsa:iiop:host = "%{LOCAL_HOSTNAME]";
 plugins:cicsa:iiop:port = "5072";

 plugins:client_adapter:repository_id = "type_info";
 plugins:client_adapter:type_info:source = "DD:TYPEINFO";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop", "ots",
 "amtp_appc"];

 # Client Adapter amtp_appc plugin

 plugins:amtp_appc:symbolic_destination = "ORXCLNT1";
 plugins:amtp_appc:appc_function_wait = "5";
 plugins:amtp_appc:min_comm_threads = "5";
 plugins:amtp_appc:max_comm_threads = "10";

 #For two-phase commit support uncomment the following lines:
 #
 #plugins:amtp_appc:maximum_sync_level = "2";
 #initial_references:TransactionFactory:reference = "%{LOCAL_OTSTM_REFERENCE}";

 # Client Adapter mfu plugin
 #
 plugins:ots_lite:use_internal_orb = "true";
 plugins:ots_lite:orb_name= "iona_services.cics_client.ots";

 ots
 {
 orb_plugins = ["local_log_stream", "iiop_profile", "giop", "iiop"];
 };
 };
};
127

CHAPTER 11 | Introduction to Client Adapter Configuration
Configuring a domain Refer to the CORBA Administrator�s Guide for details on how to configure
an Application Server Platform domain.
 128

Configuration Summary of Client Adapter Plug-Ins
Configuration Summary of Client Adapter
Plug-Ins

Overview Orbix configuration allows you to configure an application on a per-plug-in
basis. This section provides a summary of the configuration items
associated with plug-ins specific to the client adapter.

This section discusses the following topics:

� Client adapter components

� Summary of items for the amtp_appc plug-in

� Summary of items for the client adapter subsystem

� Summary of remaining configuration items

Client adapter components The main components of the client adapter include:

� A client adapter subsystem, which is loaded by the adapter executable
(many subsystems can be run by the same application).

� The amtp_appc plug-in, which is used to provide APPC transport
between CICS client transactions and the client adapter.

� The common_adapter plug-in, which exposes common functionality
such as support for different signature repositories (that is, type_info,
IFR, and so on).

Summary of items for the
amtp_appc plug-in

The following is a summary of the configuration items associated with the
amtp_appc plug-in. Refer to �AMTP_APPC Plug-In Configuration Items� on
page 155 for more details.

symbolic_destination Specifies the APPC/MVS symbolic destination name
the client adapter uses for APPC services. The Orbix
Runtime in CICS uses the symbolic destination to
send CICS client transaction requests to the client
adapter. The default value is �ORXCLNT1�.
129

CHAPTER 11 | Introduction to Client Adapter Configuration
Summary of items for the client
adapter subsystem

The following is a summary of the configuration items associated with the
client adapter subsystem. Refer to �Configuring the Client Adapter
Subsystem� on page 157 for more details.

appc_function_wait Specifies the number of minutes that the client
adapter can wait for a response from a CICS client
transaction before canceling the request. Valid
values are in the range 0�1440. The default value is
5 minutes.

min_comm_threads Specifies the minimum number of client adapter
threads used to service requests from CICS client
transactions. Each thread processes a request from
a CICS client transaction. A valid value is greater
than 0. The default value is 5 threads.

max_comm_threads Specifies the maximum number of client adapter
threads that can be used to service requests from
CICS client transactions. If all client adapter threads
are busy, and the client adapter receives another
request, it dynamically starts more threads up to
this maximum number. The default value is 10
threads.

maximum_sync_level Specifies the maximum APPC synchronization level
supported by the client adapter. The value can be 0
or 2. A value of 0 does not allow CICS client
transactions to perform two-phase commit
processing. A value of 2 allows CICS client
transactions to perform two-phase commit
processing. The default value is 0.

repository_id Specifies the type information source to use. This
source supplies the CICS client adapter with
operation signatures as required. Valid values are
"ifr" and "type_info". The default is "ifr". Refer
to �Type information mechanism� on page 158 for
more information.
 130

Configuration Summary of Client Adapter Plug-Ins
Summary of remaining
configuration items

The following is a summary of the remaining configuration items. Refer to
�Client Adapter General Configuration� on page 133 and the CORBA
Administrator�s Guide for more details.

ifr:cache This value is used if repository_id is set to "ifr".
The ifr:cache configuration item is optional. It
specifies the location of an (operation) signature
cache file. This signature cache file contains a cache
of operation signatures from a previous run of this
client adapter. The default is no signature cache file
(" ").

type_info:source This value is used if repository_id is set to
"type_info". The type_info:source variable
denotes the location of a type_info store from which
the client adapter can obtain operation sigatures.
Refer to �type_info store� on page 159 for more
information.

event_log:filters Specifies the types of events the client adapter
logs.

orb_plugins List of standard ORB plug-ins the client adapter
should load.

initial_references:
TransactionFactory:
reference

Specifies the IOR of the RRS OTSTM service that
coordinates two-phase commit processing
initiated by CICS client transactions. The IOR is
obtained by running orbixhlq.JCLLIB(DEPLOY3).
See the Mainframe Installation Guide for more
details. The RRS OTSTM service must be running
if a CICS client transaction is to be able to perform
two-phase commit processing.
131

CHAPTER 11 | Introduction to Client Adapter Configuration
 132

CHAPTER 12

Client Adapter
General
Configuration
This chapter provides details of the configuration items for the
core client adapter. These details specify the level of Orbix
Event logging and plug-ins to be loaded when the ORB is
initializing.

Overview This chapter discusses the following topics:

� Orbix event logging

� ORB plug-ins list

�

Orbix event logging The related configuration item is event_log:filters. It specifies the level of
event logging. To obtain events specific to the client adapter, the IT_MFU
event logging subsystem can be added to this list. For example:

event_log:filters = ["*=WARN+ERROR+FATAL", "IT_MFU=INFO_HI+INFO_MED+WARN+ERROR+FATAL"];
133

CHAPTER 12 | Client Adapter General Configuration
This logs all IT_MFU events (except for INFO_LOW � low priority informational
events), and any warning, error, and fatal events from all other subsystems
(for example, IT_CORE, IT_GIOP, and so on). The level of detail provided for
IT_MFU events can be controlled by setting the relevant logging levels. Refer
to the CORBA Administrator�s Guide for more details.

The following is a categorization of the informational events associated with
the IT_MFU subsystem.

WTO announce plug-in Orbix applications may be configured to write messages to the operator
console on starting or shutting down successfully. This can be useful for
automated operations software to keep track of these events. The WTO
announce plug-in is used to implement this feature.

To enable the loading of the WTO announce plug-in in an IONA service,
such as the client adapter, add the following two configuration items in the
iona_services.cics_client scope:

� initial_references:IT_WTO_Announce:plugin = "wto_announce";
� generic_server:wto_announce:enabled = "true";

INFO_HI Configuration settings and client adapter start-up and shutdown
messages

INFO_MED APPC informational messages

INFO_LOW CICS segment data streams and two-phase commit events.

Note: For customer-developed Orbix applications (for example, a batch
COBOL or PL/I server), the wto_announce plug-in should be added to the
end of the orb_plugins list in that particular application�s ORB
configuration. (See �ORB plug-ins list� next for more details.) However, for
all IONA services (by default, within the iona_services configuration
scope), IONA recommends that you load the wto_announce plug-in by
specifying the two preceding configuration items rather than by adding the
wto_announce plug-in to the orb_plugins list.
 134

When you load the WTO announce plug-in, a WTO message is issued when
the server adapter ORB starts up and shuts down. Messages take the
following format:

On z/OS UNIX System Services, <process id> is a pid. On native z/OS,
<process id> is a job name and an A=xxxx job identifier.

ORB plug-ins list The related configuration item is orb_plugins. It specifies the ORB-level
plug-ins that should be loaded into your application at ORB_init() time. On
z/OS, you can add the WTO announce plug-in support to any Orbix
application by updating this list in the relevant configuration scope. For
example, in the iona_services.cics_client scope:

In the case of the CICS client adapter�s configuration (that is, in the
iona_services.cics_client scope) the wto_announce plug-in should not
be included in this list, as discussed in �WTO announce plug-in� on
page 134.

+ORX2001I ORB iona_services.cics_client STARTED
(HOSTNAME:<process id>)

+ORX2002I ORB iona_services.cics_client ENDED (HOSTNAME:
<process id>)

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop", "ots", "amtp_appc", "wto_announce"];
135

CHAPTER 12 | Client Adapter General Configuration
 136

CHAPTER 13

Configuring the
Client Adapter
AMTP_APPC
Plug-in
The AMTP_APPC plug-in for the client adapter uses APPC to
communicate with client transactions. This chapter describes
how to configure APPC for CICS, and the client adapter
AMTP_APPC plug-in configuration.

In this chapter This chapter discusses the following topics:

Setting Up APPC for the Client Adapter page 138

Additional RACF Customization Steps for APPC page 151

AMTP_APPC Plug-In Configuration Items page 155
137

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Setting Up APPC for the Client Adapter

Prerequisites to using APPC Before you can run the client adapter, you must first enable the required
APPC functionality on your z/OS system. Depending on your installation, one
or all of these tasks might already have been completed.

Further reading For more information on setting up APPC/MVS, refer to the IBM publication
MVS Planning: APPC/MVS Management, GC28-107.

Additionally, you can find specific information about defining APPC links in
CICS in the chapter on �Defining APPC Links" in the IBM publication CICS
Intercommunication Guide, SC33-1695.

In this section This section discusses the following topics:

Defining LUs to APPC page 139

Defining an APPC Destination Name for the Client Adapter page 142

Defining LUs to VTAM page 145

Defining the Required Resources to CICS page 150
 138

Setting Up APPC for the Client Adapter
Defining LUs to APPC

Overview A Logical Unit (LU) name identifies each side of an APPC conversation. It is
defined to APPC/MVS in the APPCPMxx member of SYS1.PARMLIB. You must
define at least one LU name to use the client adapter�the LU used by the
client adapter.

This subsection discusses the following topics:

� CICS local LU

� Client adapter LU

� Specifying the APPC/MVS-side information dataset name

� Client adapter LU name and security

� Running multiple client adapters

CICS local LU CICS does not define a local LU for transactions that use APPC/MVS. When
a CICS transaction issues a request to allocate a conversation, APPC/MVS
determines which local LU to use. For CICS client transactions, this is the
system base LU.

For information on how APPC/MVS chooses its local LU, see the description
on the allocate callable service in the chapter on �APPC/MVS TP
Conversation Callable Services� in the IBM publication Writing Transaction
Programs for APPC/MVS, GC28-1775.

An example of a system base LU is:

The definition of MVSLU01�the system base LU�is provided here as an
example. This LU (perhaps with a different name) should already be
defined.

Note: CICS client transactions use the system base LU for their side of
the conversations with the client adapter.

LUADD ACBNAME(MVSLU01)
SCHED(ASCH)
BASE
TPDATA(SYS1.APPCTP)
TPLEVEL(USER)
139

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Client adapter LU The client adapter LU is used by the client adapter to receive requests from
CICS client transactions, and to return replies back to CICS client
transactions. It can be defined as follows:

Specifying the APPC/MVS-side
information dataset name

The APPC/MVS side information dataset contains APPC symbolic
destination names. If your installation does not have a side information
dataset, see SYS1.SAMPLIB(ATBSIVSM) for sample JCL to create one.

The name of the side information dataset must be defined in
SYS1.PARMLIB(APPCPMxx) (for example, SIDEINFO DATASET(SYS1.APPCSI)).

Client adapter LU name and
security

If you choose to secure the LU used by the client adapter, be aware that the
LU name is used as part of the APPCLU RACF profile name for the LU. Refer
to �Bind Time Security with APPC� on page 84 for more information.

Running multiple client adapters If you want to run multiple client adapters, you must first decide if you want
the client adapters to share APPC/MVS allocation queues.

APPC/MVS allocation queues hold requests to start APPC conversations. As
client transactions initiate requests to the client adapter, they are first
placed in an APPC/MVS allocation queue. The requests designate which LU
and Transaction Program Name (TPN) they are destined for. The client
adapter registers with APPC/MVS and specifies the LU and TPN requests it
expects to process. (Refer to �Defining an APPC Destination Name for the
Client Adapter� on page 142 for details of how to set up the LU and TPN
name used by the client adapter.) APPC/MVS delivers the requests from the
allocation queue to the client adapter.

You can choose to run multiple client adapters that specify the same LU and
TPN. The client adapters all share the same APPC/MVS allocation queue.
APPC/MVS chooses one of the client adapters to deliver the request to. This
approach can be used as a form of load balancing where the load is spread

LUADD ACBNAME(ORXLUCA1)
NOSCHED

Note: If you are using the CICS APPC plug-in for the CICS server adapter,
this step might already have been performed.
 140

Setting Up APPC for the Client Adapter
over multiple client adapters. This approach also provides a measure of fault
tolerance. If a client adapter is stopped or goes down, allocation requests
from client transactions can still be processed by the other client adapters.

You can alternatively choose to run multiple client adapters where each
client adapter specifies a different LU and TPN. The client adapters all have
their own APPC/MVS allocation queue. This approach is useful for setting up
a test client adapter along with a production client adapter. The Orbix
runtime inside the test CICS region is configured to direct allocation requests
to the test client adapter, while the Orbix runtime inside the production CICS
region is configured to direct allocation requests to the production client
adapter.
141

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Defining an APPC Destination Name for the Client Adapter

Overview A CICS client transaction connects to the client adapter through an APPC
destination name rather than directly through the client adapter LU name.
The APPC destination name is used to establish various default
characteristics for the APPC conversation being initiated, including the
name of the partner LU, the TPN, and a logon mode name.

This subsection discusses the following topics:

� Storage of the APPC destination name

� Example of the APPC destination name JCL

� Explanation of the APPC destination name JCL

� Example of multiple APPC destination names JCL

� Explanation of multiple APPC destination names JCL

Storage of the APPC destination
name

The APPC destination name information is stored in the APPC-side
information data set. This data set is updated using the ATBSDFMU
APPC/MVS utility program.

Example of the APPC destination
name JCL

The following is an example of defining an APPC destination name.

Example 6: JCL Example for Defining an APPC Destination Name

//SIADDEXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA
 SIADD

1 DESTNAME(ORXCLNT1)
2 TPNAME(ORXCLNT1)
3 MODENAME(APPCHOST)
4 PARTNER_LU(ORXLUCA1)

/*
 142

Setting Up APPC for the Client Adapter
Explanation of the APPC
destination name JCL

The JCL example for defining an APPC destination name can be explained
as follows:

1 The DESTNAME is a symbolic name that contains the TPNAME, MODENAME, and
PARTNER_LU. It is used in two places:

� The Orbix runtime inside CICS configuration specifies which destname
the CICS region uses for APPC communication with the client adapter.

� The amtp_appc plug-in configuration item symbolic_destination,
which tells the client adapter which LU and TPN to use for APPC
communication. The LU/TPN define the APPC/MVS allocation queue
from which the client adapter receives allocation requests.

2 The TPNAME specification forms part of the APPC/MVS allocation queue
designation. If you want to run a test client adapter along with a production
client adapter, two symbolic destinations can be defined. They can each
specify the same MODENAME and PARTNER_LU, but each can specify a different
TPNAME. (Refer to �Explanation of multiple APPC destination names JCL� on
page 144 for more information.)

3 The MODENAME parameter is used to name an entry in the VTAM logon mode
table. This specifies other characteristics that are to be used in the
conversation. See the SYS1.SAMPLIB(ATBLMODE) data set for a definition of
the APPCHOST logon mode, and the SYS1.SAMPLIB(ATBLJOB) data set for the
JCL to install it.

4 PARTNER_LU must specify the client adapter LU name.

Example of multiple APPC
destination names JCL

You might want to define multiple APPC destination names to allow
multiple client adapters that do not share APPC/MVS allocation queues. A
good example of this is to have a production client adapter processing
requests from a production CICS region, and a test client adapter processing
requests from a test CICS region.

Example 7: JCL Example for Defining Multiple APPC Destination Names

//SIADDEXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA
143

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Explanation of multiple APPC
destination names JCL

The JCL example for defining multiple APPC destination names can be
explained as follows:

1 The first SIADD statement defines the production destination, as explained in
�Explanation of the APPC destination name JCL� on page 143.

2 A second DESTNAME is defined for the test destination. It defines a different
name from the production DESTNAME. The production CICS region and
production client adapter is configured to use the production DESTNAME. The
test CICS region and test client adapter is configured to use the test
DESTNAME.

3 The test DESTNAME defines a TPNAME that is different from the production
TPNAME. This causes APPC/MVS to use separate allocation queues for the
production and test client adapters.

4 The test MODENAME is the same as the production MODENAME.

5 The test PARTNER_LU is the same as the production PARTNER_LU. This means
you can run multiple client adapters that do not share APPC/MVS allocation
queues, yet still use the same LU name for each.

1 SIADD
DESTNAME(ORXCLNT1)
TPNAME(ORXCLNT1)
MODENAME(APPCHOST)
PARTNER_LU(ORXLUCA1)
SIADD

2 DESTNAME(ORXTEST)
3 TPNAME(ORXTEST)
4 MODENAME(APPCHOST)
5 PARTNER_LU(ORXLUCA1)

/*

Example 7: JCL Example for Defining Multiple APPC Destination Names
 144

Setting Up APPC for the Client Adapter
Defining LUs to VTAM

Overview APPC/MVS expects its LUs to be defined as VTAM resources, so that they
can access a SNA network.

This subsection discusses the following topics:

� VTAM requirements for LUs

� Using SYS1.SAMPLIB(ATBAPPL)

� APPC definition parameter security requirements

VTAM requirements for LUs Although the client adapter is usually run on the same system as the CICS
region with which it communicates (that is, an LU=LOCAL conversation),
VTAM application program definition (APPL) macros must still be coded for
each LU. See SYS1.SAMPLIB(ATBAPPL) for a sample APPL definition of an
APPC LU.

Using SYS1.SAMPLIB(ATBAPPL) The following definitions for the system base LU and client adapter LUs use
the SYS1.SAMPLIB(ATBAPPL) definition, with some changes (which are
highlighted).

Example 8: Example of APPL Definitions for Client Adapter LUs

1 MVSLU01 APPL ACBNAME=MVSLU01, C
 APPC=YES, C

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1

1 ORXLUCA1 APPL ACBNAME=ORXLCA1, C
 APPC=YES, C
145

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
APPC definition parameter
security requirements

The code for APPL definitions for client adapter LUs can be explained as
follows:

1 Both the ACBNAME= parameter and the APPL statement label should match
the LU name defined to APPC.

2 The VERIFY= and SECACPT= parameters specify the security levels for each
LU. Determining the correct values for these parameters depends on the
environment in which CICS and the client adapter are running. A test
environment might not require the same level of security that a production
environment does.

SECACPT= specifies the greatest level of security information passed on a
conversation allocation request from a CICS client transaction to the client
adapter. If the LUs are secured using RACF APPCLU profiles, this level of
security information can be overridden to the value set in the APPCLU profile.
Refer to �Additional RACF Customization Steps for APPC� on page 151 for
more details. Each LU should have the same value for SECACPT.

� SECACPT=NONE�No security information is passed on conversation
allocation requests. Use this value if security is not required, such as
in a development environment.

� SECACPT=CONV�APPC/MVS passes security information (if available)
on conversation allocation requests. Use this value when security is
desired, such as in a production environment. The security information
that can be passed is:

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1

Example 8: Example of APPL Definitions for Client Adapter LUs
 146

Setting Up APPC for the Client Adapter
♦ User ID

♦ Security profile name (treated as a group ID by APPC/MVS)

♦ Already verified indicator

� SECACPT=ALREADYV�Conversation allocation requests with security
information, and conversation allocation requests with an indication
that security information is already verified. Use this value when the
system base LU used by CICS and the client adapter LU are both
trusted. See below.

3 VERIFY= specifies that VTAM should verify the identity of partner LUs that
attempt to establish sessions with this LU. Generally each LU has the same
value for VERIFY=, but there are valid cases where the values can be
different.

� VERIFY=NONE�VTAM should not verify partner LUs. Use this value if
security is not required.

� VERIFY=OPTIONAL�VTAM should verify those LUs that have session
keys defined. The session keys are defined in the RACF APPCLU profile.
Refer to the topic on LU 6.2 Security in the IBM publication SNA
Network Implementation Guide, SC31-8562 for more information on
how VTAM verifies the partner LU. Use this value when security is
desired.

� VERIFY=REQUIRED�VTAM should verify every partner LU. This
provides even tighter security control. The system base LU used by
CICS can be defined with VERIFY=OPTIONAL, and the client adapter LU
can be defined with VERIFY=REQUIRED. This provides two benefits:

♦ Compatibility with the CICS server adapter if it is being used.

♦ Only those LUs defined with a proper RACF APPCLU profile can
connect to the client adapter.

If there is no possibility of unauthorized access from other systems in your
SNA network, you might prefer to code SECACPT=ALREADYV and VERIFY=NONE
to indicate that partner LUs do not need to be authenticated. This is safe for
LU=LOCAL conversations because user information is provided directly by
APPC/MVS. Therefore, there is no opportunity for the programmer of the

Note: There are other values for the SECACPT parameter that are not
described here, because they do not apply.
147

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
partner LU to fabricate his or her identity. Refer to �Securing the Client
Adapter� on page 275 for more details about APPC conversation security
and session-level verification.

APPC definitions for two-phase
commit

To support two-phase commit processing, define the VTAM LUs with the
ATNLOSS and SYNCLVL operands as follows:

Note: The definition of MVSLU01�the system base LU�is provided here
as an example. This LU (perhaps with a different name) should already be
defined. You might want to modify the security parameters as described
above.

Example 9: Example of APPL Definitions for Two-Phase Commit

1 MVSLU01 APPL ACBNAME=MVSLU01, C
 APPC=YES, C

2 SECACPT=CONV, C
3 VERIFY=OPTIONAL, C

 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1 C
 ATNLOSS=ALL, C
 SYNCLVL=SYNCPT

1 ORXLUCA1 APPL ACBNAME=ORXLCA1, C
 APPC=YES, C

2 SECACPT=CONV, C
 148

Setting Up APPC for the Client Adapter
3 VERIFY=OPTIONAL, C
 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DLOGMOD=APPCHOST, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SRBEXIT=YES, C
 VPACING=1, C
 ATNLOSS=ALL, C
 SYNCLVL=SYNCPT

Example 9: Example of APPL Definitions for Two-Phase Commit
149

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Defining the Required Resources to CICS

Overview This subsection provides the location for the required JCL to define the
required APPC resources to CICS. It also describes the contents of the JCL
and how it is to be used. It discusses the following topics:

� Location of required JCL

� Description of the contents of the JCL

� Using the JCL

Location of required JCL The orbixhlq.JCLLIB(ORBIXCSD) JCL member runs the CICS offline
resource definition utility to define the required APPC resources to CICS. You
might need to change the STEPLIB and DFHCSD DD cards to match your CICS
installation.

Description of the contents of the
JCL

The sample JCL defines the following for the client adapter:

� A Connection definition which identifies the LU used by the client
adapter.

� A Sessions definition which defines session characteristics for sessions
between CICS and the client adapter.

� A Partner definition which defines information needed for
conversations between CICS and the client adapter.

� Demonstration programs and transactions.

Using the JCL Make the appropriate changes to the JCL and run it to define the client
adapter CICS resources.

Note: If you are using the CICS server adapter with the APPC plug-in, this
step might already have been performed.
 150

Additional RACF Customization Steps for APPC
Additional RACF Customization Steps for
APPC

Overview There are a number of RACF definitions related to APPC that you might
need to add or change to run the client adapter. Refer to �Securing the
Client Adapter� on page 275 for more details about how the client adapter
fits into a secure system environment.

Much of the information provided in this section can be found in the
sections relating to LU Security and Conversation Security in the IBM
publication MVS Planning: APPC/MVSManagement, GC28-1807, as well
as in the chapter on �Implementing LU 6.2 Security� in the IBM publication
CICS RACF Security Guide, SC33-1701.

In this section This section discusses the following topics:

LU-to-LU Security Verification page 152

Protecting LUs page 154
151

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
LU-to-LU Security Verification

Overview LU-LU security verification provides a means of controlling which LUs can
establish sessions with a particular LU. RACF provides the APPCLU class for
this purpose. CICS uses the term �Bind Time Security� when referring to
LU-to-LU security verification.

This subsection discusses the following topics:

� Enable LU-to-LU security verification in CICS

� APPCLU profiles

� APPCLU profile contents and operation

� Accessing APPCLU profiles

Enable LU-to-LU security
verification in CICS

CICS requires definitions in the System Initialization Table (SIT) and the
client adapter CONNECTION definition to enable LU-to-LU security verification.

The required changes to the SIT are that you specify SEC=YES and
XAPPC=YES.

After the changes to the SIT are made, CICS must be recycled for the
changes to take effect.

The required change to the client adapter CONNECTION is that you specify
BINDSECURITY=YES.

APPCLU profiles APPCLU profiles can be defined to control which LUs can establish sessions
with a particular LU.

Each APPCLU profile name has the form:
�networkid.local-lu-name.partner-lu-name�.

Each profile contains information to be used by APPC/MVS on one side of a
session between the two named LUs. This means each side of a session has
its own specific profile. CICS requires the system base LU to communicate
with the client adapter. However, when defining APPCLU profiles to secure
the CICS LU, the LU defined on the APPLID parameter of the SIT is the LU
that must be secured.

Note: If you are using the CICS server adapter APPC plug-in, this step
might already have been performed.
 152

Additional RACF Customization Steps for APPC
For example, if LU CICSTS1 attempts to establish a session with LU
ORXLUCA1, APPC/MVS on the initiating (outbound) side examines the
�networkid.CICSTS1.ORXLUCA1� profile, and APPC/MVS on the receiving
(inbound) side examines the �networkid.ORXLUCA1.CICSTS1� profile. LU
CICSTS1 was defined on the APPLID parameter of the SIT.

APPCLU profile contents and
operation

Each APPCLU profile contains a session key, which is a string of letters or
numbers, and a CONVSEC setting. When a session is initiated between two
LUs, APPC/MVS on the initiating (outbound) side passes the session key
found in its APPCLU profile to APPC/MVS on the receiving (inbound) side. If
APPC/MVS on the inbound side finds that the received session key matches
the session key in its own APPCLU profile, it overrides the VTAM SECACPT=
setting with the CONVSEC setting from its profile. Thus, to allow a CICS client
transaction to authenticate itself to the client adapter, the following
definitions might be used:

To refresh the profiles in VTAM, use the following VTAM commands:

Accessing APPCLU profiles It is not necessary to permit the client adapter or CICS region to have user
IDs for the APPCLU profiles. However, access to the profiles should be tightly
controlled to ensure that only appropriate users can read or change the
session keys.

RDEFINE APPCLU P390.ORXLUCA1.CICSTS1
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

RDEFINE APPCLU P390.CICSTS1.ORXLUCA1
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

SETROPTS CLASSACT(APPCLU)

F VTAM,PROFILES,ID=CICSTS1
F VTAM,PROFILES,ID=ORXLUCA1
153

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
Protecting LUs

Overview Protecting LUs involves controlling the users that are permitted to use the
CICS local LU that initiates requests to the client adapter LU, and
controlling the users that are permitted to use the client adapter LU that
receives requests from CICS.

This subsection discusses the following topics:

� Controlling access to the CICS local LU

� Controlling access to the client adapter LU

Controlling access to the CICS
local LU

The CICS local LU initiates requests to allocate conversations with the client
adapter. This LU is considered the APPC port of entry. It can be secured by
controlling the users that are permitted to use the LU. The RACF APPCPORT
class provides this security control. First, a profile is defined for the CICS
local LU that permits no access. A PERMIT is then issued for each user that
requires access to the CICS local LU. For example:

Controlling access to the client
adapter LU

The client adapter LU receives requests initiated by the CICS local LU. The
client adapter LU can be secured by controlling the users that are permitted
to use this LU. The RACF APPL class provides this security control. First, a
profile is defined for the client adapter LU that permits no access. A PERMIT
is then issued for each user that requires access to the client adapter LU.
For example:

RDEFINE APPCPORT CICSTS1 UACC(NONE)
PERMIT CICSTS1 CLASS(APPCPORT) ID(USER1) ACCESS(READ)
PERMIT CICSTS1 CLASS(APPCPORT) ID(USER2) ACCESS(READ)
�
SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)

RDEFINE APPL ORXLUCA1 UACC(NONE)
PERMIT ORXLUCA1 CLASS(APPL) ID(USER1) ACCESS(READ)
PERMIT ORXLUCA1 CLASS(APPL) ID(USER2) ACCESS(READ)

SETROPTS CLASSACT(APPL) RACLIST(APPL)
SETROPTS RACLIST(APPL) REFRESH
 154

AMTP_APPC Plug-In Configuration Items
AMTP_APPC Plug-In Configuration Items

Overview This section discusses the following topics:

� APPC destination

� AMTP function timeout

� APPC minimum communication threads

� APPC maximum communication threads

APPC destination The related configuration item is
plugins:amtp_appc:symbolic_destination. This specifies the APPC/MVS
symbolic destination name that identifies the LU, TPN, and LOGMODE the
client adapter uses. The Orbix runtime in CICS is configured to use this
destination. Refer to �Customizing Orbix APPC Symbolic Destination� on
page 169 for more information on configuring the destination in the Orbix
runtime in CICS. CICS client transactions haves their requests sent to the
client adapter using this symbolic destination. The default value is
ORXCLNT1.

The specified symbolic destination name is verified only when a CICS client
transaction attempts to send a request to the client adapter. This means the
CICS region does not have to be available when you start the client adapter.
Refer to �Example of the APPC destination name JCL� on page 142 for
details of how to define the symbolic destination to APPC/MVS.

AMTP function timeout The related configuration item is plugins:amtp_appc:function_wait. It
specifies the number of minutes the client adapter waits for a response from
the CICS client transaction before canceling the request. It prevents the
client adapter from having to wait indefinitely for a response from the CICS
client transaction if the transaction has stopped for some reason. The
default is 5 minutes.
155

CHAPTER 13 | Configuring the Client Adapter AMTP_APPC Plug-in
APPC minimum communication
threads

The related configuration item is plugins:amtp_appc:min_comm_threads. It
specifies the minimum number of client adapter threads that are used to
service CICS client transaction requests. Each thread services a single client
transaction request. Multiple threads allow for multiple concurrent client
requests to be processed. The default is 5 threads.

APPC maximum communication
threads

The related configuration item is plugins:amtp_appc:max_comm_threads. It
specifies the maximum number of client adapter threads that can be used to
service CICS client transaction requests. If all client adapter threads are
busy, and another request arrives, further threads are started dynamically
up to this maximum number. The default is 10 threads.

AMTP maximum sync level The related configuration item is plugins:amtp_appc:maximum_sync_level.
It specifies the maximum APPC synchronization level supported by the
client adapter. The value can be 0 or 2. A value of 0 indicates that
two-phase commit processing is not used by CICS transactions. A value of 2
indicates that two-phase commit processing is available for CICS
transactions to use. Transactions that do not require two-phase commit
processing can still function correctly if the maximum sync level is set to 2.
The default value is 0.
 156

CHAPTER 14

Configuring the
Client Adapter
Subsystem
The client adapter receives CICS client transaction requests
from the AMTP_APPC plug-in, locates target objects, invokes
operations, and returns results to the AMTP_APPC plug-in.
This functionality is implemented as a client adapter
subsystem that is dynamically loaded by the adapter
application. This chapter describes how to configure the client
adapter subsystem.

Overview This chapter discusses the following topics:

� Type information mechanism

� IFR signature cache file

� type_info store
157

CHAPTER 14 | Configuring the Client Adapter Subsystem
Type information mechanism The related configuration item is plugins:client_adapter:repository_id.
It specifies the repository used by the client adapter to store operation
signatures. Two repositories are supported: IFR ("ifr") and type_info store
("type_info"). The default is type_info. Refer to �Using type_info store as
a Source of Type Information� on page 216 for more information on the role
of type information.

IFR signature cache file If the client adapter is configured to use the IFR as the type information
repository (a store of operation signatures), an IFR signature cache file can
be used to improve performance. The related configuration item is
plugins:client_adapter:ifr:cache. Refer to �Using an IFR Signature
Cache file� on page 214 for more information on how IFR signature cache
files work.

The filename specification for the signature cache file can take one of
several forms:

� The following example reads the mappings from a file in the z/OS UNIX
System Services hierarchical file system (HFS):

� The following example shows the syntax to indicate that the mappings
are cached in a flat file (PS) data set, which is created with the default
attributes used by the LE runtime:

The data set is created with the default attributes used by the LE runtime.
Depending on the number of interfaces and the complexity of the types
used, this might not be large enough. In this case, the client adapter saves
as many cache entries as possible and then issues error messages. If this
occurs, you should preallocate a larger data set with the same attributes,
and use this name the next time you start the client adapter.

plugins:client_adapter:ifr:cache =
"/home/user/sigcache.txt;"

plugins:client_adapter:ifr:cache =
"//orbixhlq.DEMOS.IFRCACHE";

Note: Do not use members of partitioned data sets as a signature cache
file.
 158

type_info store If the client adapter is configured to use a type_info store as the type
information repository (a store of operation signatures), the location of the
store must be supplied. The related configuration item is
plugins:client_adapter:type_info:source.

The plugins:client_adapter:type_info:source variable can be set to one
of the following:

� An HFS file (z/OS UNIX System Services)

Specifies a file to use as a type_info source. Operation signatures are
read from this file during start-up. If a refresh is requested (via itadmin
mfa refresh for example), this file is re-read. For example:

� An HFS directory (z/OS UNIX System Services)

Specifies a directory to use as a type_info source. Operation signatures
are read from all files in this directory during start-up. If a refresh is
requested, all files in the directory are browsed until the relevant
operation signature(s) are found. For example:

� A PDS member (native z/OS)

Specifies a PDS member (batch) to use as a type_info source.
Operation signatures are read from this member during start-up. If a
refresh is requested, this member is re-read. For example:

� A PDS (native z/OS)

Specifies a dataset to use as a type_info source. Operation signatures
are read from all members in this dataset during start-up. If a refresh is
requested, all members in the dataset are browsed until the relevant
operation signature(s) are found. For example:

plugins:client_adapter:type_info:source =
"/home/bob/type_info.txt";

plugins:client_adapter:type_info:source =
"/home/bob/typeinfo_store";

plugins:client_adapter:type_info:source =
"//MY1.TYPEINFO(MYINFS)";

plugins:client_adapter:type_info:source = "//MY1.TYPEINFO";
159

CHAPTER 14 | Configuring the Client Adapter Subsystem
For PDS names, you can use a DD name, as long as this is defined to the
client adapter start JCL, orbixhlq.JCLLIB(CICSCA).

Note: The use of HFS directories or a PDS is preferable to the use of flat
files, because these methods are better suited to the dynamic addition or
removal of interface information, and they can also address IDL versioning.
 160

CHAPTER 15

Configuring the
Orbix Runtime
inside CICS
This chapter provides information on configuring the Orbix
runtime that is used by Orbix clients running in CICS.

In this chapter This chapter discusses the following topics:

Customizing CICS page 162

Customizing Orbix Configuration page 164

Customizing Orbix Event Logging page 166

Customizing Orbix Maximum Segment Size page 168

Customizing Orbix APPC Symbolic Destination page 169
161

CHAPTER 15 | Configuring the Orbix Runtime inside CICS
Customizing CICS

Overview Before you can run Orbix CICS applications in your region, you must perform
a number of additional steps to enable your CICS system to support Orbix
clients. Depending on your installation, one or all of these tasks might
already have been completed. You must verify this with the systems
programmer responsible for CICS at your site.

This section discusses the following topics:

� Installing language environment support

� Installing support for C++ classes in CICS

� Installing sample Orbix CICS resource definitions

� Updating the CICS region

Installing language environment
support

CICS Language Environment (LE) support is not installed as standard. To
enable LE support in CICS you must perform a number of steps. Refer to the
IBM manual Language Environment for OS/390 Customization for details
on installing LE support in CICS.

If LE support has been successfully installed in CICS, the following message
is written to the console:

If you cannot see this message, LE support is not available under CICS and
any Orbix activities fail.

Installing support for C++ classes
in CICS

Support for the C++ standard classes must be explicitly defined to CICS.
Refer to the IBM manual OS/390 C/C++ Programming Guide for details of
the steps required to run C++ application programs under CICS. In
particular, note that the standard C++ DLLs such as IOSTREAM must be
defined to CICS.

Failure to do this results in the following messages being issued from CICS
when attempting to run an Orbix CICS transaction:

DFHAP1203I CICS Language Environment is being initialized

EDC6063I DLL name is IOSTREAM
EDC5207S Load request for DLL load module unsuccessful.
 162

Customizing CICS
C++ support is required by Orbix itself, which is written in C++.

Installing sample Orbix CICS
resource definitions

The data set orbixhlq.JCLLIB(ORBIXCSD) contains a job to run DFHCSDUP,
which is the CICS offline resource definition utility, to define the CICS
resources used by the sample jobs and demonstrations. You can run this as
is, or just use it as a reference when defining the resources online with the
CEDA transaction. When the resources have been defined, use CEDA to
install the whole group.

Updating the CICS region To update the CICS region perform the following steps:

Note: From the Orbix CICS programming perspective, clients can only be
written in COBOL or PL/I at this time.

Step Action

1 Add five libraries to the CICS region�s DFHRPL concatenation
as follows:

DD DSN=orbixhlq.DEMOS.CICS.CBL.LOADLIB,DISP=SHR
DD DSN=orbixhlq.DEMOS.CICS.PLI.LOADLIB,DISP=SHR
DD DSN=orbixhlq.MFA.LOADLIB,DISP=SHR
DD DSN=CEE.SCEERUN,DISP=SHR
DD DSN=CBC.SCLBDLL,DISP=SHR
Where hlq and version represents the location of your

Orbix installation.

2 Add CEE.SCEERUN to the STEPLIB concatenation.

3 Recycle the regions to pick up these libraries.

Note: If you are using the CICS server adapter, this step might have
already been performed.
163

CHAPTER 15 | Configuring the Orbix Runtime inside CICS
Customizing Orbix Configuration

Overview The Orbix configuration inside CICS is DLL-based. (DLL is the acronym for
Dynamic Link Library.) The Orbix runtime inside CICS does not access a file
for configuration information, but instead gets configuration information
from a DLL. The DLL resides in the Orbix CICS runtime library that was
added to the CICS region�s DFHRPL. The ORXMFACx member is the
configuration DLL.

This section discusses the following topics:

� How the configuration is changed

� Steps to change the configuration

� S390 Assembler program variables

How the configuration is changed Changing the configuration involves updating the configuration DLL. The
DLL is updated by assembling and linking an S390 Assembler program that
defines the configuration settings. See orbixhlq.JCLLIB(MFACLINK) for
sample JCL to update the DLL. The sample JCL runs the Assembler and
re-links the configuration in the DLL. The JCL contains the S390 Assembler
program that defines the configuration settings.

Steps to change the configuration Perform the following steps to update the configuration DLL:

Step Action

1 Make a backup of your current configuration DLL. The
configuration DLL is in orbixhlq.MFA.LOADLIB(ORXMFACx).

2 Make the appropriate changes to the
orbixhlq.JCLLIB(MFACLINK) JCL, as outlined in the JCL
comments.

3 Change the S390 Assembler program to define the new
configuration settings.

4 Submit the JCL.
 164

Customizing Orbix Configuration
S390 Assembler program
variables

The following table lists the Assembler variables that can be changed in
order to change the configuration:

5 Make the updated DLL available to your CICS region for the
configuration changes to take effect.

Step Action

Table 5: S390 Assembler Program Variables and Default Values

Assembler Variable Description Default Value

LOGLVL Event logging level 2

MAXSEG Maximum APPC segment size 32760

TIMEOUT Not used by the Orbix runtime inside CICS

SYMBDST APPC symbolic destination ORXCLNT1

LOCALLU Not used by the Orbix runtime inside CICS
165

CHAPTER 15 | Configuring the Orbix Runtime inside CICS
Customizing Orbix Event Logging

Overview For the Orbix runtime in CICS, most of the configuration settings are fixed.
However, the level of event logging performed by the runtime can be
customized for the client adapter.

This section discusses the following topics:

� Customizing the level of event logging

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

Customizing the level of event
logging

This is done by modifying the ORXMFACx DLL. This DLL contains an S390
Assembler CSECT that supplies the event logging string to the runtime.

Event logging settings The event logging settings are as follows:

Table 6: Event Logging Settings for the Client Adapter

Value Description

0 LOG_NONE�no logging in CICS is performed.

1 LOG_ERROR�only log errors.

2 LOG_WARNING�log warnings and errors.

3 LOG_INFO_HIGH�log high priority informational messages,
warnings and errors.

4 LOG_INFO_MED�log medium priority informational messages,
high priority informational messages, warnings and errors.

5 LOG_INFO_LOW�log low priority informational messages,
medium priority informational messages, high priority
informational messages, warnings and errors.

6 LOG_INFO_ALL�log all messages.
 166

Customizing Orbix Event Logging
ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has a setting of 2 for
event logging in CICS. This means that all warning and error messages are
displayed, but none of the informational messages are displayed.

Modifying the ORXMFACx DLL
setting

The ORXMFACx DLL setting can be modified to some other value. For
example, to help trace a problem with a transaction in CICS, it can be
changed to 6.
167

CHAPTER 15 | Configuring the Orbix Runtime inside CICS
Customizing Orbix Maximum Segment Size

Overview The Orbix runtime in CICS sends client transaction data to the client adapter
in a stream of segments. The maximum size of these segments can be
customized.

This section discusses the following topics:

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

� Maximum segment size constraints

ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has a setting of 32760 for
the maximum segment size. (This is 32K rounded down to be a multiple of
eight.)

Modifying the ORXMFACx DLL
setting

The Orbix runtime in CICS builds up APPC segments of this size. For APPC,
multiple segments of this size are used to transmit data. The 32K APPC
limit for a single segment applies, but all the segments together can be more
than 32K. Depending on your network definitions, these segments can be
further broken up into smaller segments by VTAM and chained when they
are transmitted.

The ORXMFACx DLL setting can be modified to be some other value if, for
example, your installation has restrictions on the size of APPC buffers. For
example, it might be changed to 4096 to meet an installation requirement.
Change MAXSEG in the Assembler program to modify the maximum segment
size.

Maximum segment size
constraints

When choosing a value for the maximum segment size consider the
following:

� The value must be a multiple of 8

� The minimum value is 32

� The maximum value is 32760

� The default value is 32760
 168

Customizing Orbix APPC Symbolic Destination
Customizing Orbix APPC Symbolic
Destination

Overview The Orbix runtime in CICS uses APPC when communicating with the client
adapter. It issues an �APPC allocate� to initiate an APPC conversation with
the client adapter. The �APPC allocate� must identify the client adapter as
the target of the allocate request. An APPC symbolic destination is used to
identify the client adapter. The symbolic destination can be customized.

This section discusses the following topics:

� ORXMFACx DLL setting

� Modifying the ORXMFACx DLL setting

� APPC symbolic destination restrictions

ORXMFACx DLL setting The ORXMFACx DLL shipped with the client adapter has a setting of ORXCLNT1
for the APPC symbolic destination.

Modifying the ORXMFACx DLL
setting

The ORXMFACx DLL setting can be modified to some other value. If your
installation has naming standards for symbolic destinations, it can be
changed to, for example, PRODCADP.

Change SYMBDST in the Assembler program to modify the APPC symbolic
destination.

APPC symbolic destination
restrictions

When choosing a value for the APPC symbolic destination consider the
following:

� The default value is ORXCLNT1.

� The value must match the client adapter�s AMTP_APPC plug-in
plugins:amtp_appc:symbolic_destination configuration item setting.
Refer to �APPC destination� on page 155 for more information on the
AMTP_APPC plug-in configuration setting.

� Refer to �Defining an APPC Destination Name for the Client Adapter�
on page 142 for more information on how to define a symbolic
destination to APPC/MVS.
169

CHAPTER 15 | Configuring the Orbix Runtime inside CICS
 170

Part 4
Securing and Using the CICS

Server Adapter

In this part This part contains the following chapters:

Securing the CICS Server Adapter page 173

Mapping IDL Interfaces to CICS page 199

Using the CICS Server Adapter page 223

CHAPTER 16

Securing the CICS
Server Adapter
This chapter provides details of security considerations
involved in using the CICS server adapter. It provides a review
of general Orbix security implications and the relevant CICS
security mechanisms. It describes the various security modes
that the EXCI-based and APPC-based server adapters support,
with particular emphasis on how each mode affects the
existing CICS security mechanisms.

In this chapter The following topics are discussed in this chapter:

Security Configuration Items page 174

Common Security Considerations page 181

EXCI-Based Security Considerations page 184

APPC-Based Security Considerations page 191
173

CHAPTER 16 | Securing the CICS Server Adapter
Security Configuration Items

Overview This section provides an example and details of how to configure the CICS
server adapter to run with Transport Layer Security (TLS) enabled. The
sample configuration includes an isf sub-scope that highlights the
configuration items required to integrate with the IONA Security Framework
(iSF) and, in particular, enable CSIv2-based authentication using the
off-host Security service. The isf sub-scope also includes configuration
items that allow you to deploy a fully standalone CICS adapter service.

Sample configuration Example 10 provides an overview of the configuration items used to enable
security with the server adapter.

Example 10:Sample Security Configuration for CICS Server Adapter
(Sheet 1 of 4)

plugins:security:share_credentials_across_orbs = "true";

By default, use TLS V1. Downgrade to SSL V3 if the remote
peer is unable to support TLS V1.
policies:mechanism_policy:protocol_version = ["TLS_V1", "SSL_V3"];

Please change the following if you have only export strength
encryption available on the machine.
policies:mechanism_policy:ciphersuites = ["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_RC4_128_MD5"];

plugins:systemssl_toolkit:saf_keyring
 = "%{LOCAL_SSL_USER_SAF_KEYRING}";

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "security_label";

By default, use the 'iona_services' certificate from the keyring
principal_sponsor:auth_method_data = ["label=iona_services"];

By default the following policies are used to deploy a
fully secure domain where client authentication is not required:
#
policies:target_secure_invocation_policy:requires =
 ["Confidentiality", "DetectMisordering",
 174

Security Configuration Items
 "DetectReplay", "Integrity"];
policies:target_secure_invocation_policy:supports =
 ["Confidentiality", "EstablishTrustInTarget",
 "EstablishTrustInClient", "DetectMisordering",
 "DetectReplay", "Integrity"];
policies:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget",
 "DetectMisordering", "DetectReplay", "Integrity"];
policies:client_secure_invocation_policy:supports =
 ["Confidentiality", "EstablishTrustInClient",
 "EstablishTrustInTarget", "DetectMisordering",
 "DetectReplay", "Integrity"];

For semi-secure services, the following policies would be used:
#
#policies:target_secure_invocation_policy:requires =
["NoProtection"];
#policies:target_secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"EstablishTrustInTarget", "EstablishTrustInClient",
"DetectMisordering", "DetectReplay", "Integrity"];
#policies:client_secure_invocation_policy:requires =
["NoProtection"];
#policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"EstablishTrustInTarget", "EstablishTrustInClient",
"DetectMisordering", "DetectReplay", "Integrity"];
#
If you are going to use a semi-secure approach, please
search this file for "orb_plugins" and add "iiop" into
the list.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop_tls"];

IT_LocatorReplicas = ["iona_services.locator=corbaloc:iiops:1.2@%{LOCAL\
_HOSTNAME}:%{LOCAL_TLS_LOCATOR_PORT},it_iiops:1.2@%{LOCAL_HOSTNAME}:%{L\
OCAL_TLS_LOCATOR_PORT},iiop:1.2@%{LOCAL_HOSTNAME}:%{LOCAL_LOCATOR_PORT}\
/IT_LocatorReplica"];

iona_services
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop_tls", "ots"];

Example 10:Sample Security Configuration for CICS Server Adapter
(Sheet 2 of 4)
175

CHAPTER 16 | Securing the CICS Server Adapter
 generic_server:wto_announce:enabled = "true";
�
 cicsa
 {
 #
 # Settings for well-known addressing:
 # (mandatory if direct_persistence is enabled)
 #
 # plugins:cicsa:iiop_tls:port = "5107";
 # plugins:cicsa:iiop_tls:host = "%{LOCAL_HOSTNAME}";
 #

 isf
 {
 # enable ISF authentication
 #

 orb_plugins = ["iiop_profile", "giop",
 "iiop_tls", "local_log_stream",
 "ots", "gsp", "portable_interceptor"];

 event_log:filters = ["IT_CSI=*", "IT_GSP=*",
 "IT_IIOP_TLS=*",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 binding:server_binding_list
 = ["CSI+GSP+OTS", "CSI+GSP", "CSI+OTS", "CSI"];

 # standalone ISF-enabled adapter
 #
 plugins:cicsa:direct_persistence = "yes";
 plugins:cicsa:iiop_tls:port = "5106";
 plugins:cicsa:iiop:port = "5006";

 # search for an access ID in the received credentials,
 # and if available, use that ID to perform SAF checks
 # when starting CICS transactions
 #
 plugins:cicsa:use_client_principal = "yes";
 plugins:cicsa:check_security_credentials = "yes";

 # IOR for the off-host Security Service -
 # not required if the adapter is only intended to

Example 10:Sample Security Configuration for CICS Server Adapter
(Sheet 3 of 4)
 176

Security Configuration Items
 # perform identity assertion on the propagated
 # CSI::IdentityToken.
 #
 initial_references:IT_SecurityService:reference = "";

 policies:csi:auth_over_transport:target_supports =
 ["EstablishTrustInClient"];

 # allow non-CSIv2 based requests to proceed for
 # demonstrational purposes. Insert this config item
 # to enforce CSIv2 authentication:
 #
 # policies:csi:auth_over_transport:target_requires =
 # ["EstablishTrustInClient"];

 policies:csi:auth_over_transport:server_domain_name =
 "IONA";

 policies:csi:attribute_service:target_supports =
 ["IdentityAssertion"];
 };
 };
�

};

Example 10:Sample Security Configuration for CICS Server Adapter
(Sheet 4 of 4)
177

CHAPTER 16 | Securing the CICS Server Adapter
Summary of global scope
configuration items

The following is a summary of the security-related configuration items
associated with the global scope:

plugins:security:share_
credentials_across_orbs

Enables own security credentials to be
shared across ORBs. Normally, when
you specify an own SSL/TLS
credential (using the principal sponsor
or the principal authenticator), the
credential is available only to the ORB
that created it. By setting this
configuration item to "true",
however, the own SSL/TLS credentials
created by one ORB are automatically
made available to any other ORBs
that are configured to share
credentials.

policies:mechanism_policy:
protocol_version

Specifies the protocol version used by
a security capsule (ORB instance). It
can be set to SSL_V3 or TLS_V1.

policies:mechanism_policy:
ciphersuites

Specifies a list of cipher suites for the
default mechanism policy.

plugins:systemssl_toolkit:
saf_keyring

Specifies the RACF keyring to be used
as the source of X.509 certificates.

principal_sponsor:use_principal_
sponsor

This must be set to "true" to indicate
that the certificate information is to be
specified in the configuration file.

principal_sponsor:auth_method_id This must be set to "security_label"
to indicate that the certificate lookup
should be performed using the label
mechanism.

principal_sponsor:auth_method_
data

If you are using TLS security, this
specifies the label that should be used
to look up the SSL/TLS certificate in
the SAF key store. The specified label
name must match the label name
under which the server certificate was
imported into, or created in, the key
store (for example, in RACF).
 178

Security Configuration Items
Summary of iSF configuration
items

The following is a summary of the configuration items associated with the
iona_services:cicsa:isf security plug-in:

policies:target_secure_
invocation_policy:requires

Specifies the invocation policy
required by the server for accepting
secure SSL/TLS connection attempts.

policies:target_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the server for accepting
secure SSL/TLS connection attempts.

policies:client_secure_
invocation_policy:requires

Specifies the invocation policy
required by the client for opening
secure SSL/TLS connections.

policies:client_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the client for opening
secure SSL/TLS connections.

orb_plugins The iiop_tls plug-in must be added
to this list, to enable TLS support.

Note: Remove the iiop plug-in if you
explicitly wish to disable all insecure
communications.

Note: See the Mainframe Security Guide for more details of these
configuration items.

orb_plugins List of standard ORB plug-ins the
CICS server adapter should load
when running in secure mode.

event_log:filters Specifies the types of events that the
CICS server adapter logs in secure
mode.

binding:server_binding_list Specifies a list of potential server-side
bindings.

plugins:cicsa:direct_persistence Specifies the persistence mode
adopted by the CICS server adapter
service in secure mode. This is an
optional item. iiop_tls:port is
required if this is specified as "yes".
179

CHAPTER 16 | Securing the CICS Server Adapter
plugins:cicsa:iiop_tls:port Specifies the TCP/IP port number
that the CICS server adapter uses to
listen for incoming secure requests.
Valid values are in the range 1025�
65535. This is an optional item.
Default is 5106.

plugins:cicsa:iiop:port Specifies the TCP/IP port number
that the CICS server adapter uses to
listen for incoming insecure requests.
Valid values are in the range 1025�
65535. This is an optional item.
Default is 5006.

plugins:cicsa:use_client_
principal

Indicates whether the CICS server
adapter should verify the client
principal user ID with SAF before
trying to start the target CICS
program under that ID. The default is
no.

plugins:cicsa:check_security_
credentials

Indicates whether the CICS server
adapter should query the CSI
received credentials for a user ID
before defaulting to the GIOP
Principal value, on receiving a client
request.

initial_references:
IT_SecurityService:reference

Specifies the IOR for the off-host
Security service.

policies:csi:auth_over_transport:
target_supports

Specifies that the target server
supports receiving
username/password authentication
data from the client.

policies:csi:auth_over_transport:
target_requires

Specifies that the target server
requires the client to send
username/password authentication
data.

policies:csi:auth_over_transport:
server_domain_name

Specifies the server�s CSIv2
authentication domain name.

policies:csi:attribute_service:
target_supports

Specifies that the target server
supports receiving propagated user
identities from the client.
 180

Common Security Considerations
Common Security Considerations

Overview This subsection provides details of common security considerations involved
in using the CICS server adapter. These security considerations are relevant
regardless of which protocol the server adapter is using to communicate
with CICS.

This subsection discusses the following topics:

� Orbix SSL/TLS

� iSF integration

� Client authorization

� SAF plug-in

� Mapping client principal values to z/OS user IDs

� RACF program control

Orbix SSL/TLS Orbix provides transport layer security (TLS) that enables secure connectivity
over IIOP. TLS includes authentication, encryption, and message integrity.
As with all Orbix servers, you can configure the CICS server adapter to use
TLS. See the Mainframe Security Guide for details on securing CORBA
applications with SSL/TLS.

iSF integration The IONA security framework (iSF) provides a common security framework
for all Orbix components in your system. This framework is involved at both
the transport layer (using TLS) and the application layer (using the CORBA
CSIv2 protocol and the IONA generic security plug-in (GSP)). At the
application level, one of the following authentication credentials can be
passed, using the CSIv2 protocol:

� username/password/domain name

� propagated username

� Single sign-on (SSO) token
181

CHAPTER 16 | Securing the CICS Server Adapter
You can configure the CICS server adapter to use CSI/GSP support. See the
Mainframe Security Guide for details on iSF and integration with an off-host
Security service.

Client authorization Even though Orbix Mainframe 6.2 does not support GSP authorization
functionality, authorization checks can be performed against the client�s
Principal value. These authorization checks can be performed in the
following ways:

� Using the SAF plug-in, which provides Principal-based access control.
Refer to �SAF plug-in� on page 182 for more details.

� As part of the Orbix security mechanisms (for example, checking that
the client has invoke rights to the server). Refer to the Mainframe
Security Guide for more details.

� As part of the CICS security mechanisms (for example, checking that
the user is allowed to run the specified program). Refer to �CICS
Security Mechanisms when Using EXCI� on page 185 and �CICS
Security Mechanisms when Using APPC� on page 192 for more
details.

The client�s Principal value is a string that is passed as part of an Orbix
request that identifies the user on the client side. If Orbix SSL/TLS has not
been configured, this value cannot be authenticated in any way.
Sophisticated client-side users could fabricate this value, and therefore gain
access to server-side resources that those users would not otherwise be
allowed to use.

SAF plug-in This Orbix plug-in provides optional Principal-based access control, similar
to that found in IONA�s Orbix 2.3-based mainframe solutions. A server
might accept or reject incoming requests, based upon a CORBA::Principal
value in the request header. The value is treated as a z/OS user ID and
access is checked against an operation-specific SAF profile name. Access
can therefore be controlled on a per-operation basis, or (using generic
profiles) on a per-server basis. More details can be found in the
orbixhlq.DOC PDS which is created as part of the software installation.

Note: The GSP realm/role authorization functionality is not supported in
Orbix Mainframe 6.2.
 182

Common Security Considerations
Mapping client principal values
to z/OS user IDs

For the purposes of checking access to CICS resources, the only translation
that the server adapter performs between the client Principal value and the
z/OS user ID is to convert lowercase letters to uppercase. This means that
users must have the same name on the client platform and z/OS.

RACF program control If RACF program control is in use on your system, appropriate RACF
definitions must be defined for Orbix. Refer to your RACF manuals for
further details.
183

CHAPTER 16 | Securing the CICS Server Adapter
EXCI-Based Security Considerations

Overview This section provides details of security considerations that are specific to
using the EXCI-based server adapter. It describes the various security modes
that the EXCI-based server adapter supports, with particular emphasis on
how each mode affects the existing CICS security mechanisms.

In this section The following topics are discussed in this section:

CICS Security Mechanisms when Using EXCI page 185

Orbix CICS Server Adapter Security Modes for EXCI page 188
 184

EXCI-Based Security Considerations
CICS Security Mechanisms when Using EXCI

Background to CICS security
mechanisms for EXCI

CICS provides a number of mechanisms for securing access to CICS
resources. The EXCI-based server adapter uses EXCI to transfer data into
and out of a CICS region. It is therefore bound by the security restrictions
that CICS places on it, such as link security, user security, and surrogate
checks.

This subsection discusses the following topics:

� Overview of CICS security mechanisms for EXCI

� MRO logon security

� MRO connect security

� Link security

� User security

� Further reading

Overview of CICS security
mechanisms for EXCI

Figure 7 provides a graphical overview of the security mechanisms that are
relevant to the operation of the EXCI-based server adapter.

Figure 7: CICS Security Mechanisms for EXCI-Based Server Adapter

Client

ID - Principal

Orbix CICS Adapter

ID - Adapter

IIOP

CICS

Mirror Transaction CICS Program

Transaction

Resource

Command

EXCI

MRO Connect

MRO Logon
185

CHAPTER 16 | Securing the CICS Server Adapter
MRO logon security CICS EXCI is designed to allow non-CICS programs (such as the server
adapter) to call a program running in a CICS region, without that program
needing to be aware that it has been invoked from outside CICS. The
program runs as if it were being linked to by another CICS program. EXCI
accomplishes this by allowing each EXCI client program to act as a CICS
pseudo-region. EXCI uses MRO logon security to ensure that a particular
user has the authority to start this particular �pseudo-region�. The
pseudo-region is named via the NETNAME attribute of the EXCI connection
that is to be used.

You can use the plugins:cics_exci:pipe_name configuration item to
specify the NETNAME of a particular EXCI SPECIFIC connection, which the
server adapter uses for communicating with CICS. When this connection is
first used, MRO logon security checks that the user ID under which the
server adapter is running is allowed to use that connection. It does this by
checking that the user ID has UPDATE access to the RACF FACILITY class
profile named DFHAPPL.pipename. If the user ID does not have UPDATE
access to this RACF FACILITY class profile, the server adapter cannot send
data into the CICS region.

MRO connect security MRO connect security is normally used to check the authorization of one
CICS region to access resources in another region. Because CICS EXCI
clients are treated as regions in their own right, this check applies to them
also.

You can use the plugins:cics_exci:pipe_name configuration item to
specify the CICS region to which to connect. Access rights to the CICS
region that is specified with the plugins:cics_exci:pipe_name
configuration item must therefore be checked. This is done by checking for
READ access to a profile named DFHAPPL.applid in the RACF FACILITY
class.

Note: This check is not made if the server adapter uses the EXCI
GENERIC connection, which is used by default if you do not specify the
plugins:cics_exci:pipe_name configuration item when starting the
server adapter.
 186

EXCI-Based Security Considerations
Link security Link security checks are made to ensure that a user has access to all the
CICS resources that it wants to use. In the case of the server adapter, the
following checks can occur:

� If CICS transaction-attach security is enabled (that is, XTRAN=YES in the
CICS system initialization parameters), access to the EXCI mirror
transaction (which is specified via the plugins:cics_exci:default_
tran_id configuration item) is checked via the RACF GCICSTRN and
TCICSTRN resource classes.

� If CICS resource security is enabled (that is, RESSEC=ALWAYS in the CICS
system initialization parameters or RESSEC(YES) in the mirror
transaction definition), a whole range of checks can be made for
access to resources used by the EXCI mirror transaction. This can
include checking for access to the program to be run, if XPPT=YES is
specified in the CICS system initialization parameters. It can also
include checking for resources that program might use, such as files (if
XFCT=YES), journals (if XJCT=YES), and other started transactions (if
XPCT=YES).

Refer to the CICS-RACF Security Guide for more details about which
CICS parameters need to be specified to protect the various kinds of
resources.

� If CICS command-security checking is enabled, checks are made if the
program issues system programming-type (SP-type) CICS commands.
Refer to the CICS-RACF Security Guide for more details about these
commands.

User security User security performs the same checks as link security. User security
checks are only made if the EXCI connection that the server adapter uses
(whether GENERIC or SPECIFIC) is defined with the ATTACHSEC(IDENTIFY)
attribute. Otherwise, user security is disabled.

Further reading Refer to the following IBM manuals for full details about securing CICS in
general, and EXCI clients in particular:

� SC33-1185 CICS/ESA CICS-RACF Security Guide

� SC33-1390 CICS/ESA External CICS Interface
187

CHAPTER 16 | Securing the CICS Server Adapter
Orbix CICS Server Adapter Security Modes for EXCI

Overview The Orbix CICS server adapter supports two modes of operation with regard
to security. The two modes are distinguished by which user identity is made
available to CICS for MRO connect and link security checks.

This section discusses the following topics:

� �Determining the user ID� on page 188.

� �Default mode� on page 189.

� �use_client_principal mode� on page 189.

� �Choosing between the two security modes for EXCI� on page 189.

� �check_security_credentials iSF option� on page 190.

Determining the user ID For every incoming client request, the CICS server adapter has two user IDs
at its disposal:

� Its own user ID (that is, the ID under which the server adapter
executable is running). This is always used for MRO logon security
checks.

� The client user ID (that is, the Principal value converted to uppercase,
and potentially truncated, to match the requirements of z/OS). This is
always used for CICS user security checks (if they are enabled).

By default, the client user ID is the string value that is passed in the GIOP
Principal field. For GIOP 1.2 or later versions, the CORBA::Principal field
has been deprecated; however, as an alternative, Orbix can be configured to
pass the Principal user ID in a special service context that is marshaled by
the GIOP plug-in.

For installations that have been configured to use the Security service, the
client user ID can be obtained from the CSI received credentials. If a user ID
is not available in the security credentials, the GIOP Principal value is used
instead. See �check_security_credentials iSF option� on page 190 for more
details.

The Orbix CICS security mode that is chosen when starting the server
adapter determines the mode used for CICS MRO connect and link security.
 188

EXCI-Based Security Considerations
Default mode In the default mode, it is the user ID of the server adapter itself that CICS
uses to verify access to the region, the EXCI mirror transaction, and the
other items already described. If CICS resource security is enabled (that is,
RESSEC=YES on the mirror transaction definition, or RESSEC=ALWAYS in the
CICS system initialization parameters), this can include a check for access
to the program being invoked and the resources it uses. This means that the
server adapter�s user ID must be given access to every CICS resource that
any potential client can access. Otherwise, the incoming request fails, even
though the client itself does have access to every CICS resource it needs.

Running in default mode means that the only security checks made against
the client principal are user security checks for EXCI, and then only if user
security is enabled.

use_client_principal mode If you set the plugins:cicsa:use_client_principal configuration item to
yes, the client Principal is used for the two types of checks. In this mode,
the server adapter is more transparent, and security checking is similar to
that of a user working from a 3270 terminal. Although the user now
requires access to the CICS region (the connect check) and the mirror
transaction (one of the link checks), the remaining resources that user needs
access to should be the same as if that user had signed in from a terminal.

If the use_client_principal configuration item is specified, user security
checks (which duplicate the link security checks) become redundant and
should be disabled by setting ATTACHSEC(LOCAL) on the connection.

Choosing between the two
security modes for EXCI

The following table summarizes which user ID is used for the CICS security
checks in the two modes:

Table 7: Summary of user IDs used for the CICS Security Checks

Mode MRO Logon MRO Connect Link User

Default Server Adapter Server
Adapter

Server
Adapter

Principal

plugins:cicsa_:use_client_principal Server Adapter Principal Principal Principal
189

CHAPTER 16 | Securing the CICS Server Adapter
check_security_credentials iSF
option

If you set the plugins:cicsa:check_security_credentials configuration
item to yes, the CICS server adapter queries the CSI received credentials for
a user ID before defaulting to the GIOP Principal value, on receiving a client
request. Assuming that the CICS server adapter is running in
use_client_principal mode, it then attempts to verify that this user ID is
authorized to run the specified transaction.

When using the check_security_credentials iSF option, the client access
ID that is used is one of the following (in order of priority):

1. The propagated user ID that is passed using the identity assertion
mechanism.

2. The GSSUP token username

3. The GIOP Principal.

If a user ID is not available from any of these sources, the client request is
rejected.

Note: In default mode, if the client request does not contain a user
principal, the server adapter's user ID is used for user security. This is
because the server adapter's user ID is the only one available in this case.
This does not apply to use_client_principal mode, where such requests
are rejected by the server adapter.

Note: The check_security_credentials iSF option only takes effect if
the Orbix domain has been configured to use iSF. See the Mainframe
Security Guide for more details.
 190

APPC-Based Security Considerations
APPC-Based Security Considerations

Overview This section provides details of security considerations that are specific to
using the APPC-based server adapter. It describes the various security
modes that the APPC-based server adapter supports, with particular
emphasis on how each mode affects the existing CICS security mechanisms.

In this section The following topics are discussed in this section:

CICS Security Mechanisms when Using APPC page 192

Orbix CICS Server Adapter Security Modes for APPC page 198
191

CHAPTER 16 | Securing the CICS Server Adapter
CICS Security Mechanisms when Using APPC

Overview of APPC (LU 6.2
Protocol)

APPC is an implementation of the SNA LU 6.2 protocol for
program-to-program communication across networks. An LU allocates a
conversation to another LU and exchanges data with it. LU 6.2 defines a
number of characteristics that can be established for a conversation. These
include throughput, transactional behavior, and levels of security. APPC
provides a set of programming interfaces that are used to construct
programs that can send or receive LU 6.2 conversations.

This subsection discusses the following topics:

� Overview of CICS security mechanisms for APPC

� Characteristics of the APPC-based server adapter

� LU 6.2 conversation security levels

� Preventing unauthorized access

� Security for users already logged on

� Session-level verification

� APPCLU class profiles

� Restricting authorized use of LU names

� Setting bind security on CONNECTION resource
 192

APPC-Based Security Considerations
Overview of CICS security
mechanisms for APPC

Figure 8 provides a graphical overview of the security mechanisms that are
relevant to the operation of the APPC-based server adapter.

Characteristics of the APPC-based
server adapter

The APPC-based server adapter has been constructed as an outbound LU.
This means that it accepts data from CORBA clients on a TCP/IP network,
sends that data on to the CICS LU via an LU 6.2 conversation, and then
returns the data it receives from CICS back to the TCP/IP network.

LU 6.2 conversation security
levels

The LU 6.2 protocol, of which APPC/MVS is an implementation, defines
three levels of conversation security:

Figure 8: CICS Security Mechanisms for APPC-Based Server Adapter

Client

ID - Principal

Orbix CICS Adapter

ID - Adapter

IIOP

CICS

CICS Program

Transaction

Resource

Command

APPC Verify

APPC

security_none No user identification is passed during the conversation.
Access to resources on the receiving (inbound) side is
limited to those that are universally available. In RACF
terms, this means that the only resources used are those
protected by profiles with a UACC other than NONE.
193

CHAPTER 16 | Securing the CICS Server Adapter
Preventing unauthorized access Generally, in a network environment, it is a ridiculous idea that a client
should be authenticated by a server merely on the basis that it claims to
have been already-verified. After all, it is possible for a sophisticated user
on a workstation to forge any desired identity merely by fabricating the
appropriate LU 6.2 protocol exchanges with the z/OS host. Therefore, to

security_same The identity of the initiating (outbound) user is passed
when starting the conversation. On the receiving side,
access is granted to all resources for which that user has
appropriate permissions. Essentially, the program
running on the receiving side is expected to have the
same access privileges as if the user had logged in
directly. No authentication of the user is performed,
because the inbound side of the conversation is expected
to pass an already verified flag, to indicate that the
user�s identity has already been checked.

The CICS server adapter attempts to use security_same
when allocating its conversations with the APPC/CICS
inbound transaction program. This allows the CICS
transaction that is being scheduled to be associated with
a particular user, so that existing CICS mechanisms can
be used for resource-access checking and auditing.
However, security_none might be used if VTAM refuses
already verified connections to the LU. Refer to
�Session-level verification� on page 195 for further
details.

security_pgm The initiating side sends a user identity value to be used
on the receiving side. This is not necessarily the identity
of the user initiating the conversation. The program on
the receiving side is expected to run with the privileges of
the specified user. For authentication purposes, the
inbound side must also send an associated password
value for the user, which is checked via RACF services.

A conversation using security_pgm is not possible with
the CICS server adapter, because it has no access to
passwords for its clients.

Note: Although the LU 6.2 protocol can be used for network
communication, the CICS server adapter is only intended to be run on the
same machine as the CICS region with which it is communicating.
 194

APPC-Based Security Considerations
prevent such unauthorized access, z/OS provides a way to specify what
information must be passed, to connect to a particular LU. This is done by
specifying the SECACPT=CONV key in the APPL definition for the VTAM ACB
associated with the LU.

When allocating a conversation with an LU defined in this way, the initiating
LU must provide a user ID and password: the already-verified indicator is
not accepted. If the required data is not passed, VTAM permits the
connection, but the level of conversation security is reduced to
security_none, and only universally available resources are accessible on
the receiving side. Therefore, to get access to resources on the inbound side,
the outbound user must provide a password.

Security for users already logged
on

Consider the special case of a user already logged onto the host, who is
using APPC/MVS to communicate with an LU on the same z/OS host. This
is known as an LU=LOCAL conversation. In this case, the security information
that is passed between the two sides for a security_same conversation is
contained entirely within APPC/MVS itself: the outbound LU extracts the
user�s identity automatically for presentation to the inbound LU. There is no
opportunity for the user to insert a fabricated identity. In such cases, there
should be no need for APPC/MVS to enforce the password requirement: the
user has already provided a password to gain access to the host in the first
place.

When running on z/OS, the CICS server adapter is in a similar situation to a
logged-on user. If it initiates conversations to the CICS LU under its own
identity (the default mode), that identity has either been verified when the
user that started the server adapter logged on (if the server adapter is
submitted as a job or started interactively), or it has been assigned by the
security product when the work is started by an operator (if the server
adapter is run as a started task). Even if the server adapter is initiating
conversations under the identity of its clients, with the
plugins:cicsa:use_client_principal configuration item set to yes, it can
only do that if it is running under a user ID that has been given authority to
do that. Additionally, it must have gone through at least one of the checks
already mentioned, to run under that user ID.

Session-level verification A secure but efficient APPC environment is, therefore, one that permits only
security_pgm conversations from remote machines, but which allows
security_same for LU=LOCAL conversations. In fact, prior to OS/390 V1R3,
195

CHAPTER 16 | Securing the CICS Server Adapter
this is what APPC/MVS provided for LUs defined with SECACPT=CONV,
because VTAM did not enforce the SECACPT=CONV specification for LU=LOCAL
conversations. Since OS/390 V1R3, however, this is enforced1, so an
alternate means of allowing security_same for LU=LOCAL conversations must
be used. This is accomplished on z/OS, using session-level verification.

Session-level verification introduces the concept of a session key that can be
used instead of a password for conversations between two specific LU
names only. If VERIFY=OPTIONAL is coded on the APPL definition of the VTAM
ACB for an LU, VTAM allows a security_same conversation to be
established, provided the other LU can correctly respond to a demand for
the session key that has been defined for these two LU names. On z/OS,
these session keys are maintained by RACF in APPCLU class profiles.

APPCLU class profiles APPCLU class profiles have names that take the following form:

They contain information to be used by APPC/MVS on one side of a
conversation. Even if both LUs are on the same z/OS host, each LU
examines a different profile, because each side of the conversation considers
itself to be the local LU.

For example, if an LU named OUTLU initiates a conversation with an LU
named INLU that has SECACPT=CONV and VERIFY=OPTIONAL coded on its
ACB, APPC/MVS on the inbound side determines the correct session key by
consulting the networkid.INLU.OUTLU APPCLU profile. On the outbound
side, when challenged for a session key, the initiating APPC/MVS consults
the networkid.OUTLU.INLU profile, for the key value to return. VTAM, on
the inbound side, permits the conversation to proceed as security_same,
only if the key values in the two profiles match and CONVSEC(ALREADYV) is
also coded in the inbound APPCLU profile.

Restricting authorized use of LU
names

Additionally, because session-level verification is performed on the basis of
LU name rather than on the basis of user name, it is necessary to restrict
the users that are authorized to use those particular LU names. This is done
via the RACF APPCPORT class. By defining a profile in this class with the
name of an LU, you can use its access list to control who can initiate or
accept APPC conversations with that LU on this system.
1. Refer to the IBM publication GC28-1747 OS/390 V1R3.0 MVS

Conversion Notebook for more details.

�networkid.local-lu-name.partner-lu-name�
 196

APPC-Based Security Considerations
Setting bind security on
CONNECTION resource

The aim of the APPC-based server adapter is to integrate with CICS in such
a way that all the existing mechanisms continue to work. For CICS and
APPC, this is regulated by the setting of the bind security on the CONNECTION
resource, as described in �Bind Time Security with APPC� on page 84.
197

CHAPTER 16 | Securing the CICS Server Adapter
Orbix CICS Server Adapter Security Modes for APPC

Overview The APPC-based CICS server adapter supports two modes of operation with
regard to security. These are discussed as follows:

� Default mode

� use_client_principal mode

Default mode In the default mode, CICS and APPC use the server adapter�s user ID to
verify access to the LU names, to the CICS region, to the CICS transaction,
to databases, and so on. This means that the server adapter�s user ID must
be given access to not just the APPC resources, but also to every CICS
resource that any potential client can access. Otherwise, an incoming
request might fail, even though the client itself has access to every CICS
resource it needs.

use_client_principal mode If you set the plugins:cicsa:use_client_principal configuration item to
yes, the server adapter assumes the identity of the client before initiating
the APPC conversation. This means that the client Principal is used for the
APPC and CICS checks. In this mode, the server adapter is somewhat more
transparent, and security checking is similar to that of a user working from a
3270 terminal. Although users now require access to the server adapter LU
and the CICS LU, the remaining resources to which users need access
should be the same as if they had signed in from a terminal.

The plugins:cicsa:use_client_principal mode works by having the
server adapter use the services of z/OS to establish a thread-level security
environment with the identity of the client for portions of its processing. This
causes APPC and CICS to use that user ID for their checks. This does incur
some extra overhead on each client request compared to the default mode.
 198

CHAPTER 17

Mapping IDL
Interfaces to CICS
This chapter provides information on how a CICS server
adapter exposes CICS transactions as CORBA servers. It details
the role that the mapping file plays in mapping CORBA
operations and attributes for a given interface to a target
transaction. It also details the role of the type information
source (IFR or type_info store) in marshalling data from a client
request.

In this chapter This chapter discusses the following topics:

The Mapping File page 200

Using the IFR as a Source of Type Information page 206

Using type_info store as a Source of Type Information page 216
199

CHAPTER 17 | Mapping IDL Interfaces to CICS
The Mapping File

Overview This section describes how the mapping file is used by the CICS server
adapter. It also describes the contents of the file and how it can be
generated using the Orbix IDL compiler.

In this section This section discusses the following topics:

Characteristics of the Mapping File page 201

Generating a Mapping File page 203
 200

The Mapping File
Characteristics of the Mapping File

Overview This subsection describes the mapping file, its format, how it supports IDL
attributes, and its relationship with type information sources. It discusses
the following topics:

� Description

� Mapping file format

� Support for IDL attributes

Description The mapping file is a simple text file that determines what interfaces and
operations the CICS server adapter supports, and the transaction names to
which it should map each operation. The file is read when the CICS server
adapter starts, and can be written or re-read during the server adapter
operation by using the MappingGateway interface or the itadmin mfa
commands. Refer to �Making runtime modifications to mappings� on
page 205 for more details.

Mapping file format Each mapping entry in the file is specified as a tuple that specifies the
following:

Tuples can span lines. All white space (including blanks embedded in
names) is ignored.

In the tuples, if an IDL interface is scoped within a module or modules, the
module name or names must then be included in the interface name. The
module names are separated from each other and from the interface name
with / characters. The interface name therefore has the following layout if it
is scoped within two modules:

module_name/module_name/interface_name

For the EXCI plug-in, the third element in the tuple is an eight character
program name. This is the program name of the Orbix server running inside
CICS for this interface and operation. For the APPC plug-in, the third
element in the tuple is a four character transaction name. This is the
transaction name that is used by APPC to run the Orbix server inside CICS
for this interface and operation.

(interface name, operation name, CICS program/transaction name)
201

CHAPTER 17 | Mapping IDL Interfaces to CICS
Additionally, for the EXCI plug-in, you can also choose to specify the EXCI
mirror transaction for each individual entry in the mapping file. In this case,
each mapping in the file is specified as follows:

For example, the following entry maps the set operation on the simple
interface (see the Simple IDL below) to the SIMPLESV CICS program and
ORX2 EXCI mirror transaction:

Ensure that there are no spaces before or after the colon that separates the
CICS program name and mirror transaction name. If the mirror transaction
name is not specified, which is the default situation, the server adapter uses
the transaction name that you can specify with the
plugins:cics_exci:default_tran_id configuration item when starting the
server adapter.

Support for IDL attributes Attributes of IDL interfaces are supported by using _get_attribute and
_set_attribute to read and write a particular attribute. For example,
consider the Simple IDL:

The following file maps the operation call_me on the SimpleObject
interface to the CICS transaction named SIMPLESV:

(Simple/SimpleObject, call_me, SIMPLESV)

If the SimpleObject interface had a read-only attribute; for example,
something (which it does not have in the sample application supplied by
IONA), it needs an entry as follows in the mapping file:

(Simple/SimpleObject, _get_something, SIMPLESV)

Because the something attribute of the SimpleObject interface is specified
as read-only in the IDL file, no _set_something operation is necessary.

(interface_name, operation_name, program_name:mirror_tran_name)

(Simple/SimpleObject, call_me, SIMPLESV:ORX2)

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };
 202

The Mapping File
Generating a Mapping File

Overview An IDL compiler plug-in is available, called mfa, that is used to generate
CICS server adapter mapping files.

This subsection discusses the following topics:

� Adapter mapping file versus other mapping files

� Sample IDL

� Generating mapping files on z/OS UNIX System Services

� Generating mapping files on native z/OS

� Making runtime modifications to mappings

Adapter mapping file versus other
mapping files

The CICS server adapter mapping file is completely unrelated to the
mapping file used by the COBOL and PL/I IDL compilers. The CICS server
adapter mapping file is used by the server adapter to select which
transaction to run inside CICS, while the mapping file used by the COBOL
and PL/I IDL compilers changes the names of specific items of source code
generated by the IDL compiler.

Sample IDL The code samples for generating a CICS server adapter mapping file are
based on Simple IDL:

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };
203

CHAPTER 17 | Mapping IDL Interfaces to CICS
Generating mapping files on z/OS
UNIX System Services

To generate a mapping file on z/OS UNIX System Services, run the following
command:

The -t parameter specifies the program or transaction that is run inside
CICS for each IDL operation. For EXCI, it is the eight-character program
name. For APPC, it is the four-character transaction name.

Refer to �Mapping file format� on page 201 for details of the format of the
mapping file generated.

Generating mapping files on
native z/OS

The following is an example of JCL you can use to generate a mapping file
on native z/OS:

The -t parameter specifies the program or transaction that is run inside
CICS for each IDL operation. For EXCI, it is the eight-character program
name. For APPC, it is the four-character transaction name.

idl -mfa:-tSIMPLESV simple.idl

//MAPFILE JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//*
//* Generate an operation mapping file CICS Server Adapter
//*
//IDLMAP EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-mfa:-tSIMPLESV'
//IDLMFA DD DISP=SHR,DSN=&ORBIX..DEMOS.CICS.MFAMAP

Note: If the -mfa option is specified to the Orbix IDL compiler, the IDLMFA
DD statement defines the PDS used to store the generated CICS server
adapter mapping file.
 204

The Mapping File
Refer to �Mapping file format� on page 201 for details of the format of the
mapping file generated.

Making runtime modifications to
mappings

A CICS server adapter caches mapping files internally during execution. This
cache can be modified allowing mappings to be added, changed, or deleted.
This functionality is exposed by the itadmin mfa command (refer to �Using
the MappingGateway Interface� on page 234 for a complete list of itadmin
mfa commands). The syntax is as follows:

The contents of this internal cache can be re-written (using mfa save) to file,
to ensure that the mapping file is kept up-to-date. To refresh an internal
cache from file, you can use mfa reload or mfa switch. The syntax is as
follows:

mfa
 add -interface <name> -operation <name> <mapped value>
 change -interface <name> -operation <name> <mapped value>
 delete -interface <name> -operation <name>

mfa
 reload
 save [<mapping_file name>]
 switch <mapping_file name>
205

CHAPTER 17 | Mapping IDL Interfaces to CICS
Using the IFR as a Source of Type Information

Overview This section describes how the IFR can be used as the source of type
information by the CICS server adapter.

In this section This section discusses the following topics:

Introduction to Using the IFR page 207

Registering IDL interfaces with the IFR page 209

Informing CICS Server Adapter of a New Interface in the IFR page 212

Using an IFR Signature Cache file page 214
 206

Using the IFR as a Source of Type Information
Introduction to Using the IFR

Overview This subsection introduces how the IFR can be used to supply type
information to the CICS server adapter. It details how interfaces can be
registered with the IFR, and the operation of the server adapter when using
the IFR. It also describes how an IFR cache can be employed to improve
performance.

This subsection discusses the following topics:

� Description of the IFR

� Configuration of the IFR

� Operation of IFR when no IFR signature cache file is specified

� Steps for using the IFR

Description of the IFR The IDL for the interfaces and operations specified in the mapping file must
be available to the IFR server that the CICS server adapter uses. This
information is required by the server adapter to marshal a request from a
client. Therefore, IDL for supported interfaces must be added to the IFR.
The steps for doing this are detailed below. To improve performance the IFR
can be used with an optional IFR signature cache file.

Configuration of the IFR If you want to use the IFR you must ensure that the appropriate
configuration variables are set. Additionally, if you want to use an IFR
signature cache file, the relevant configuration variable must also be set.
Refer to �IFR signature cache file� on page 64 for more information.

Operation of IFR when no IFR
signature cache file is specified

The server adapter contacts the IFR during start-up and attains operation
signatures for operations defined in the mapping file. If an operation
signature changes (for example, changing the return type from void to
float) and the server adapter is notified (for example, if itadmin mfa
refresh is called), it contacts the IFR to retrieve this modified signature.

If you want to use the IFR signature cache file refer to �Using an IFR
Signature Cache file� on page 214.
207

CHAPTER 17 | Mapping IDL Interfaces to CICS
Steps for using the IFR To use the IFR follow these steps:

Step Action

1 Register IDL interfaces with the IFR. Refer to �Registering
IDL interfaces with the IFR� on page 209 for further details.

2 Inform the CICS server adapter that the contents of the IFR
have been modified. Refer to �Informing CICS Server
Adapter of a New Interface in the IFR� on page 212 for
more details.
 208

Using the IFR as a Source of Type Information
Registering IDL interfaces with the IFR

Overview This subsection describes how to register IDL interfaces with the IFR. It
discusses the following topics:

� Sample IDL

� Registering IDL on native z/OS

� Registering IDL on z/OS UNIX System Services

� Specifying a -ORB argument

Sample IDL The code samples for registering IDL with the IFR are based on the following
Simple::SimpleObject interface in the simple.idl file:

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };
209

CHAPTER 17 | Mapping IDL Interfaces to CICS
Registering IDL on native z/OS To add IDL (for example, the SIMPLE IDL member) to the IFR on native z/OS,
use the following JCL:

Registering IDL on z/OS UNIX
System Services

To add IDL (for example, the simple.idl file) to the IFR on z/OS UNIX
System Services, use the following command:

//ADDIFR JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//* Add an interface to the IFR
//*
//IDLMAP EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// IDLPARM='-R'
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ idl -R simple.idl
 210

Using the IFR as a Source of Type Information
Specifying a -ORB argument When registering IDL with the IFR, the idl -R command invokes an IDL
back end that acts as a CORBA client to the IFR server. The client sends the
IDL definitions by invoking CORBA calls on the IFR. Therefore, you might
want to specify an ORB argument that can be used in the client�s
ORB_init() call before it communicates with the IFR. For example, to
specify a different Orbix domain name on z/OS UNIX System Services, enter
the following command:

idl -R:-ORBdomain_name=domain2
211

CHAPTER 17 | Mapping IDL Interfaces to CICS
Informing CICS Server Adapter of a New Interface in the IFR

Overview After you add an interface to the IFR, the CICS server adapter must be
notified for the updates to take effect. If adding support for a new interface
or operation, the itadmin mfa add command can be used. In addition to
creating a new binding between operation and CICS transaction in the
mapping file, it also causes the CICS server adapter to contact the IFR to
retrieve the operation signature for the new operation.

This subsection discusses the following:

� Informing the server adapter of a new IDL interface on native z/OS

� Informing the server adapter of a new IDL interface on z/OS UNIX
System Services

� Notifying the server adapter of modifications to the IFR

Informing the server adapter of a
new IDL interface on native z/OS

To inform the CICS server adapter that the SimpleObject interface (see
�Sample IDL� on page 203 for an example) has been added to the IFR on
native z/OS, use the following JCL:

//ADDMFA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
 212

Using the IFR as a Source of Type Information
Informing the server adapter of a
new IDL interface on z/OS UNIX
System Services

To inform the CICS server adapter that the SimpleObject interface (see
�Sample IDL� on page 203 for an example) has been added to the IFR on
z/OS UNIX System Services, use the following command:

Notifying the server adapter of
modifications to the IFR

The itadmin mfa refresh command is used to notify the CICS server
adapter that an already supported operation signature has changed. It
causes the CICS server adapter to contact the IFR and retrieve the updated
operation signature and place this in its internal cache.

You can also use refreshInterface() or refreshOperation(). These
functions are available via the MappingGateway interface and can be used to
refresh the server adapter�s internal cache of operation signatures by
contacting the IFR. This requires that a corresponding entry exist for the
operation(s) in the mapping file.

//* Add an interface mapping to the CICS Adapter
//*
//CICSADD EXEC ORXADMIN,
// PPARM='-ORBname iona_services.cicsa'
//SYSIN DD *
 mfa add \
 �interface Simple/SimpleObject \
 �operation call_me \
 SIMPLESV
/*
//ITDOMAIN DD DSN=SHR,DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ itadmin �ORBname iona_services.cicsa mfa add �interface
Simple/SimpleObject �operation call_me SIMPLESV
213

CHAPTER 17 | Mapping IDL Interfaces to CICS
Using an IFR Signature Cache file

Overview This subsection describes how an IFR signature cache file can be used in
conjunction with the IFR to improve performance of the CICS server adapter.
It discusses the following topics:

� Prerequisites to using the IFR signature cache file

� First run of the server adapter after configuration

� Subsequent runs of the server adapter

� Runtime modifications to the IFR

� Updating an IFR signature cache file

Prerequisites to using the IFR
signature cache file

Before you use a signature cache file you must specify the name of the
signature cache file you want to use, in the plugins:cicsa:ifr:cache
configuration item in the iona_services:cicsa configuration scope. Refer to
�IFR signature cache file� on page 64 for more details.

First run of the server adapter after
configuration

When the server adapter is started after this configuration item is set, a new
signature cache file is generated with this name, and the contents of the IFR
are saved to it. If an operation signature is not available for an operation
defined to the CICS server adapter via the mapping file, a warning message
is output. For example, the warning message for an IDL interface called
Simple/SimpleObject with a single operation called call_me is similar to
the following:

Subsequent runs of the server
adapter

With subsequent runs of the server adapter the IFR is not contacted during
start-up. Instead it reads the list of operation signatures directly from the
signature cache file. This should lead to an improvement in how long it
takes to start the server adapter, especially if you need to start multiple
server adapters simultaneously. This means the server adapters can be
ready and available more quickly for client requests.

Tue, 03 Dec 2002 12:35:30.0000000 [MYMACHINE:16777601]
(IT_MFA:100) W - synchronization problem occurred for mapping
(Simple/SimpleObject,call_me) - unable to obtain type
information for the operation
 214

Using the IFR as a Source of Type Information
Runtime modifications to the IFR During runtime, the CICS server adapter can contact the IFR to load or
refresh an operation entry. Upon shutdown, the server adapter updates the
signature cache file with the operation signatures it has used.

Updating an IFR signature cache
file

If type information subsequently changes in the IFR, you can update the
information in the signature cache file using refreshInterface() or
refreshOperation().

If you are using the IFR signature cache file, either or both of these can be
used on the MappingGateway interface, to consult the IFR and update the
cached IFR operation signatures in-memory in the CICS server adapter with
a specified interface or operation (or both).

Note: The IFR signature cache file is only ever accessed twice. First, it is
accessed in read mode during start-up. This boosts performance by
preventing the IFR being contacted initially. Second, it is accessed in write
mode during shutdown. This dumps the operation signatures used by the
server adapter to a signature cache file, so that this can be used when the
server adapter is restarted.
215

CHAPTER 17 | Mapping IDL Interfaces to CICS
Using type_info store as a Source of Type
Information

Overview This section describes how a type_info store can be used as the source of
type information by the CICS server adapter.

In this section This section discusses the following topics:

Introduction to Using a type_info Store page 217

Generating type_info Files using the IDL Compiler page 219

Informing CICS Server Adapter of a new type_info Store File page 221
 216

Using type_info store as a Source of Type Information
Introduction to Using a type_info Store

Overview This section describes the type_info store in terms of how the Orbix IDL
compiler can be used to generate these files, the operation of the server
adapter when using a type_info store, and how the store can be updated.

This section discusses the following topics:

� Description

� Configuration

� Operation of CICS server adapter using type_info stores

� Steps for using a type_info store

Description The type_info store is one method of supplying IDL interface information to
the CICS server adapter. It is an alternative approach to the IFR, and uses a
file-based approach to represent operation signatures. The CICS server
adapter can access these files at start-up and runtime, to obtain operation
signatures, which it requires to marshal data from the CORBA client.

Configuration If you want to use a type_info source you must ensure that the appropriate
configuration items are set. Refer to �type_info store� on page 65 for more
information.

Operation of CICS server adapter
using type_info stores

The Orbix IDL compiler generates type_info files. When the CICS server
adapter is started it accesses the type_info store and, for all operations for
which an operation-to-transaction mapping entry exists, it loads the
operation signatures into an internal cache. These operation signatures are
required by the CICS server adapter to unmarshal operation arguments from
a client request, and to marshal the response back.

Note: If you are using a type_info store, the CICS server adapter does not
require the IFR. This means that a CICS server adapter that is using a
type_info store can be run in standalone mode, by configuring it to run in
direct persistent mode.
217

CHAPTER 17 | Mapping IDL Interfaces to CICS
During runtime, the type_info store can be updated dynamically (for
example, to add support for a new interface, or to reflect a change in one or
more operation signatures). This simply requires generating a new type_info
file and then requesting the CICS server adapter to refresh its internal
operation signature cache with the latest version in the type_info store.

Steps for using a type_info store To use a type_info store do the following:

Step Action

1 Use the IDL compiler to generate (or regenerate for subsequent
additions or other modifications) a type_info file for IDL. Refer
to �Generating type_info Files using the IDL Compiler� on
page 219 for further details.

2 Inform the CICS server adapter of a new or modified interface.
Refer to �Informing CICS Server Adapter of a new type_info
Store File� on page 221 for further details.
 218

Using type_info store as a Source of Type Information
Generating type_info Files using the IDL Compiler

Overview This subsection describes the process of generating type_info store files. It
discusses the following topics:

� Sample IDL

� On z/OS UNIX System Services

� On native z/OS

Sample IDL The code samples for generating a type_info file are based on Simple IDL

On z/OS UNIX System Services To generate a type_info file on z/OS UNIX System Services for the Simple
IDL, run the IDL compiler as follows:

This generates a type_info file named simpleB.inf.

module Simple {
 interface SimpleObject
 {
 void
 call_me();
 };
 };

idl �mfa:-inf simple.idl

Note: By default, the mfa backend generates type_info files with a suffix
of B. This can be modified by editing the MFAMappings scope in
orbixhlq.CONFIG(IDL).
219

CHAPTER 17 | Mapping IDL Interfaces to CICS
On native z/OS To generate a type_info file on native z/OS for the Simple IDL, submit the
following JCL to run the IDL compiler:

This generates a type_info file named orbixhlq.DEMOS.TYPEINFO(SIMPLEB).

//ADDMFA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//*
//* Add an interface mapping to the CICS Server Adapter
//*
//IDLCBL EXEC ORXIDL,
// SOURCE=SIMPLE,
// IDL=&ORBIX..DEMOS.IDL,
// COPYLIB=&ORBIX..DEMOS.CICS.CBL.COPYLIB,
// IMPL=&ORBIX..DEMOS.CICS.CBL.SRC,
// IDLPARM='-mfa:-inf'
//IDLTYPEI DD DISP=SHR,DSN=&ORBIX..DEMOS.TYPEINFO

Note: By default, the mfa backend generates type_info files with a suffix
of B. This can be modified by editing the MFAMappings scope in
orbixhlq.CONFIG(IDL).

Note: If the -mfa:-inf option is specified to the Orbix IDL compiler, the
IDLTYPEI DD statement defines the PDS used to store the generated
type_info file.
 220

Using type_info store as a Source of Type Information
Informing CICS Server Adapter of a new type_info Store File

Overview After you add a file to the type_info store, the CICS server adapter must be
notified for the updates to take effect. If adding support for a new interface
or operation, the itadmin mfa add command can be used. In addition to
creating a new binding between operation and CICS transaction in the
mapping file, it also causes the CICS server adapter to access the type_info
store to retrieve the operation signature for the new operation.

This subsection discusses the following:

� Informing the server adapter of a new IDL interface on native z/OS

� Informing the server adapter of a new IDL interface on z/OS UNIX
System Services

� Notifying the server adapter of modifications to the type_info store

Informing the server adapter of a
new IDL interface on native z/OS

To inform the CICS server adapter that the SimpleObject interface (see
�Sample IDL� on page 219 for an example) has been added to the type_info
store on native z/OS, use the following JCL:

//ADDMFA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//* Add an interface mapping to the CICS Adapter
//*
221

CHAPTER 17 | Mapping IDL Interfaces to CICS
Informing the server adapter of a
new IDL interface on z/OS UNIX
System Services

To inform the CICS server adapter that the SimpleObject interface (see
�Sample IDL� on page 219 for an example) has been added to the type_info
store on z/OS UNIX System Services, use the following command:

Notifying the server adapter of
modifications to the type_info
store

The itadmin mfa refresh command is used to notify the CICS server
adapter that an already supported operation signature has changed. (Refer
to �Using the MappingGateway Interface� on page 234 for a complete list of
itadmin mfa commands.) It causes the CICS server adapter to access the
type_info store and retrieve the updated operation signature and place this
in its internal cache.

You can also use refreshInterface() or refreshOperation(). These
functions are available via the MappingGateway interface and can be used to
refresh the server adapter�s internal cache of operation signatures by
accessing the type_info store. This requires that a corresponding entry exists
for the operation(s) in the mapping file.

//CICSADD EXEC ORXADMIN,
// PPARM='-ORBname iona_services.cicsa'
//SYSIN DD *
 mfa add \
 �interface Simple/SimpleObject \
 �operation call_me \
 SIMPLESV
/*
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ itadmin �ORBname iona_services.cicsa mfa add �interface
Simple/SimpleObject �operation call_me SIMPLESV
 222

CHAPTER 18

Using the CICS
Server Adapter
This chapter provides information on running and using the
CICS server adapter. It provides details on how to start and
stop the server adapter. It provides details on how to use the
server adapter to act as a dynamic bridge to pass IDL-based
requests into CICS. It describes how to use the
MappingGateway interface of the server adapter. It also
explains how to add a portable interceptor to the server adapter
and gather accounting information in the server adapter.

In this chapter This chapter discusses the following topics:

Preparing the Server Adapter page 225

Starting the Server Adapter page 229

Stopping the CICS Server Adapter page 231

Running Multiple Server Adapters Simultaneously page 232

Using the MappingGateway Interface page 234

Locating CICS Server Adapter Objects Using itmfaloc page 237

Adding a Portable Interceptor to the CICS Server Adapter page 240
223

CHAPTER 18 | Using the CICS Server Adapter
Enabling the GIOP Request Logger Interceptor page 251

Gathering Accounting Information in the Server Adapter page 253

Exporting Object References at Runtime page 260
 224

Preparing the Server Adapter
Preparing the Server Adapter

Overview This section describes what needs to be done to run the server adapter in
prepare mode. It discusses the following topics:

� Prerequisites to running the server adapter in prepare mode

� Running the CICS server adapter in prepare mode

� Sample JCL to run the CICS server adapter in prepare mode

� Location of CICS server adapter IORs

� The IT_MFA IOR

� The IT_MFA_CICSRAW IOR

� Sample configuration file

� Running the CICS server adapter on z/OS UNIX System Services

Prerequisites to running the server
adapter in prepare mode

If you are using a type_info store as the type information source (as is the
default), you can run the CICS server adapter in standalone mode, if you
wish. This requires setting the CICS server adapter to run in direct persistent
mode. In direct persistent mode, the CICS server adapter does not require
the other Orbix Mainframe services.

If you are using the IFR as the type information source, you must first run
the locator, node daemon, and IFR in prepare mode. Ensure that these are
prepared as described in the Mainframe Installation Guide and that they
are running.

Additionally, if you are running the server adapter in prepare mode by using
the batch prepare JOB, ensure that the initial_references:IT_cicsraw:
plugin configuration item is set to "cics_exci". This avoids non-zero return
codes being issued by the prepare JOB.

Running the CICS server adapter
in prepare mode

Run the server adapter in prepare mode. This generates IORs and writes
them to a file, which you can then include in your configuration file. A job to
run the CICS server adapter in prepare mode is provided in
orbixhlq.JCLLIB(PREPCICA).
225

CHAPTER 18 | Using the CICS Server Adapter
Sample JCL to run the CICS server
adapter in prepare mode

This JCL contains the default high-level qualifier, so change it to reflect the
proper value for your installation:

//PREPCICA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
// SET CICSHLQ=CICSTS13
//*
//* Prepare the Orbix CICS Adapter
//*
//* Make the following changes before running this JCL:
//*
//* 1. If you ran DEPLOY1 (or DEPLOYT) to configure in a domain
//* other than the default, please ensure that dataset
//* &ORBIXCFG(ORBARGS) has the domain name used by DEPLOY1
//* (or DEPLOYT).
//*
//PREPARE EXEC PROC=ORXG,
// PROGRAM=ORXCICSA,
// LOADLIB=&CICSHLQ..SDFHEXCI,
// PPARM='prepare -publish_to_file=DD:ITCONFIG(IORCICSA)'
//TYPEINFO DD DUMMY
//MFAMAPS DD DUMMY
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
//*
//* Update configuration domain with CICS Adapter�s IOR
//*
//ITCFG1 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:3 //DD:ITCONFIG(IORCICSA) \
 LOCAL_MFA_CICS_REFERENCE
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR
//*
//* Update configuration domain with CICSRAW IOR
//*
 226

Preparing the Server Adapter
Location of CICS server adapter
IORs

When complete, the IORs for the server adapter should be in
orbixhlq.CONFIG(IORCICSA). The file contains two IORs.

The IT_MFA IOR One IOR is for IT_MFA. This is the IOR for the server adapter
MappingGateway interface. The orbixhlq.JCLLIB(PREPCICA) JCL copies this
IOR into the LOCAL_MFA_CICS_REFERENCE configuration item, which is found
in the orbixhlq.CONFIG PDS, in the member that corresponds to your
configuration domain name. (The default configuration domain name is
DEFAULT@.) This IOR is used by itadmin to contact the correct server
adapter. Refer to �Using the MappingGateway Interface� on page 234 for
more details.

The IT_MFA_CICSRAW IOR The other IOR is for IT_MFA_CICSRAW. This IOR is only produced if the EXCI
plug-in is used. It is not produced if the APPC plug-in is used. This is the
IOR for the CICS server adapter cicsraw interface. This IOR should be made
available to client programs of the server adapter that want to use the
cicsraw interface. Refer to the �The CICS Server Adapter cicsraw Interface�
on page 26 for more details.

Sample configuration file The following is an extract from a working configuration file for you to
compare your file with.

//ITCFG2 EXEC ORXADMIN
//SYSIN DD *
 variable modify \
 -type string \
 -value --from_file:6 //DD:ITCONFIG(IORCICSA) \
 initial_references:IT_MFA_CICSRAW:reference
/*
//ORBARGS DD DSN=&ORBIXCFG(ORBARGS),DISP=SHR

Note: The position of the first quote is moved to the next line, directly
preceding the start of the IOR. (Ellipses denote text omitted for the sake of
brevity.)
227

CHAPTER 18 | Using the CICS Server Adapter
Running the CICS server adapter
on z/OS UNIX System Services

You can also run the CICS server adapter in prepare mode from the UNIX
System Services prompt. The command is as follows:

The two IORs for IT_MFA and IT_MFA_CICSRAW are then displayed on the
console. You can copy them to the appropriate places as described above.
However, in general, it might be easier to obtain the IT_MFA IOR, using the
orbixhlq.JCLLIB(PREPCICA) JCL. This is because it automatically copies
the IOR into the PDS-based configuration file.

�
LOCAL_MFA_CICS_REFERENCE =
 "IOR:000000000000002549444c3a696f6e612e636f6d2f49545f/
4c6f636174696f6e2f4c6f6361746f723a312e300000000000000001000000/
0000007e00010200000000056a756e6f00003a99000000253a3e0233311752/
5706c69636174656453696e676c65746f6e504f410007d3968381a39699000/
0000000003000000010000001c000000001002041700000001000100010001/
10000000001000101090000001a00000004010000000000000600000006000/
0000001c";
�

$ itcicsa -ORBname iona_services.cicsa prepare
 228

Starting the Server Adapter
Starting the Server Adapter

Overview This section describes how to start the CICS server adapter. It discusses the
following topics:

� Starting the server adapter on native z/OS

� Starting the server adapter on z/OS UNIX System Services

� Adapter logging information

Starting the server adapter on
native z/OS

In a native z/OS environment, you can start the CICS server adapter in any of
the following ways:

� As a batch job.

� Using a TSO command.

� As a started task (by converting the batch job into a started task).

The default CICS server adapter is the server adapter whose configuration is
defined directly in the iona_services.cicsa scope, and not in some
sub-scope of this. The following is sample JCL to run the default CICS server
adapter:

//CICSA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
// SET CICSHLQ=CICSTS13
//*
//* Run the Orbix CICS Adapter
//*
//* Make the following changes before running this JCL:
//*
229

CHAPTER 18 | Using the CICS Server Adapter
Starting the server adapter on
z/OS UNIX System Services

On z/OS UNIX System Services, you can start the CICS server adapter from
the shell. The command to run the default CICS server adapter is similar to
the following if you have an initial_references:IT_MFA:reference entry
in the root scope (that is, not inside any {} brackets) of your configuration
file:

The command to run extra server adapters is similar to the following:

Refer to �Running Multiple Server Adapters Simultaneously� on page 232
for more details on running multiple server adapters.

Adapter logging information When the adapter is started, if a sufficient logging level is enabled, some
basic information is displayed on how the particular adapter is configured,
including which region it is going to connect with. If client principal support
is not enabled, the logged information includes the user ID under which the
server adapter is running. This is normally the TSO/E user ID running the
adapter. However, if a USERIDALLIASTABLE is in use in z/OS UNIX System
Services, the user ID that is displayed instead is the alias associated with
the user ID. Regardless of which user ID (that is, TSO/E or alias) is
displayed, for z/OS it is the same user ID, so it does not affect the
functionality of the server adapter.

//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXCICSA,
// LOADLIB=&CICSHLQ..SDFHEXCI,
// PPARM='run'
//MFAMAPS DD DUMMY
//TYPEINFO DD DUMMY
//ITDOMAIN DD DSN=&ORBIXCFG(&DOMAIN),DISP=SHR

$ itcicsa

$ itcicsa -ORBname iona_services.cicsa.gateway2
 230

Stopping the CICS Server Adapter
Stopping the CICS Server Adapter

Overview This section describes how to stop the CICS server adapter. It discusses the
following topics:

� Stopping the adapter via the admin interface

� Stopping the adapter on native z/OS

� Stopping the adapter on z/OS UNIX System Services

Stopping the adapter via the
admin interface

The IONA administrative interface is used to configure and manage Orbix
installations. This interface can be invoked via the ORXADMIN JCL on z/OS or
the itadmin shell command on z/OS UNIX System Services. As with the
other IONA services, you can stop the CICS server adapter by issuing an
admin stop command that uses the appropriate admin plug-in (in this case,
the mfa plug-in). For example, the format of the command is as follows on
z/OS UNIX System Services:

This instructs the adapter to shut down.

Stopping the adapter on native
z/OS

To stop a CICS server adapter job on native z/OS, issue the STOP (P)
operator command from the console.

Stopping the adapter on z/OS
UNIX System Services

To stop a CICS server adapter process on z/OS UNIX System Services, use
the kill command or, if the adapter is running in an active rlogin shell,
press Ctrl-C.

% itadmin mfa stop
231

CHAPTER 18 | Using the CICS Server Adapter
Running Multiple Server Adapters
Simultaneously

Overview This section describes how to run multiple server adapters simultaneously.
It discusses the following topics:

� Running multiple server adapters simultaneously

� Using itadmin on z/OS UNIX System Services

Running multiple server adapters
simultaneously

To run multiple CICS server adapters perform the following steps:

Step Action

1 Set up a configuration scope for each server adapter (for
example, the gateway2 scope) in the partial configuration file.
(Refer to the example in �A CICS Server Adapter Sample
Configuration� on page 42.)

2 Set up a corresponding configuration scope for usage with the
admin utility. For example, add a gateway2 sub-scope to the
iona_utilities.cicsa scope in the configuration file, and add
the following configuration setting under it:

initial_references:IT_MFA:reference=%{LOCAL_MFA_CICS_
REFERENCE2}

3 Specify a unique cicsa:poa_prefix variable for each server
adapter if you are using the locator (indirect persistent).

This is a good idea anyway, even for direct persistent server
adapters, because the IORs are easier to distinguish when
examined with the iordump utility.

4 Set the unique port number.
 232

Running Multiple Server Adapters Simultaneously
Using itadmin on z/OS UNIX
System Services

It might be useful to run in shell mode, so that you do not have to type the
long ORBname in the JCL�s itadmin parameter. To run itadmin on z/OS UNIX
System Services:

5 Get the initial reference for each adapter.

On native z/OS, change the CICS server adapter prepare JCL to
use the new ORBname, and replace the LOCAL variable with the
new LOCAL_MFA_CICS_REFERENCE2 variable.

On z/OS UNIX System Services, enter the following command
to obtain the IOR:
$ itcicsa -ORBname iona_services.cicsa.gateway2 prepare

Enter the following command on z/OS UNIX System Services,
to add the new reference to the configuration file:
$ itadmin variable create -value IOR:00000�0
 LOCAL_MFA_CICS_REFERENCE2

6 Ensure that each server adapter has:

� A unique mapping file.

� A unique IFR signature cache file, if one is being used.

� A unique type_info store, if one is being used.

� A unique pipe member name, if EXCI is being used.

� A unique resource manager name, if RRS is being used.

Step Action

$ itadmin -ORBname iona_utilities.cicsa.gateway2
 % mfa list
 % mfa resolve

Note: When using JCL to issue itadmin commands on native z/OS,
include the full ORBname in the JCL�s itadmin parameter.
233

CHAPTER 18 | Using the CICS Server Adapter
Using the MappingGateway Interface

Overview The MappingGateway interface is used to control a running CICS server
adapter. It discusses the following topics:

� Uses of the MappingGateway interface

� Access to the MappingGateway interface

� Selecting a specific server adapter

Uses of the MappingGateway
interface

You can use the MappingGateway interface to list the transaction mappings
that the server supports, to add or delete individual interfaces and
operations, or to alter the transaction to which an operation is mapped. You
can use it to read a new mapping file, or write existing mappings to a new
file.

Additionally, the MappingGateway interface provides the means by which
IIOP clients can invoke on the exported interfaces. Using the resolve
operation, an IOR can be retrieved for any exported interface. This IOR can
then be used directly by IIOP clients, or registered with an OrbixNames
server as a way of publishing the availability of the interface.

Access to the MappingGateway
interface

The MappingGateway interface is provided both via the itadmin interface and
as an IDL interface. The IDL for the MappingGateway interface is provided
with the other IDL in the installation and can be used by client applications
to invoke operations on the MappingGateway interface.

Access to the MappingGateway interface, using itadmin, is provided as a
plug-in. This plug-in is selected with the mfa keyword. This itadmin mfa
plug-in is an IONA-supplied client of the MappingGateway interface and is
provided to make it easier to access the MappingGateway interface. For
example, to obtain a list of all the operations provided by the itadmin mfa
plug-in, issue the following command (from the UNIX System Services shell
or via JCL on native z/OS):

$ itadmin mfa �help
 234

Using the MappingGateway Interface
The output looks as follows:

Items shown in angle brackets (<�>) must be supplied and items shown in
square brackets ([�]) are optional. Module names form part of the interface
name and are separated from the interface name with a / character.

The parameter after mfa specifies the operation to be invoked. The options
are:

mfa list
 add -interface <name> -operation <name> <mapped value>
 change -interface <name> -operation <name> <mapped value>
 delete -interface <name> -operation <name>
 resolve <interface name>
 refresh [-operation <name>] <interface name>
 reload
 save [<mapping_file name>]
 switch <mapping_file name>
 stats
 resetcon
 stop

list This prints a list of the (interface, operation, and name)
mappings that the CICS server adapter currently
supports.

add This allows you to add a new mapping.

change This allows you to change the transaction to which an
existing operation is mapped.

delete This allows you to get the CICS server adapter to stop
exporting a particular operation.

resolve This prints a stringified IOR for the object in the server
adapter that supports the specified interface. This IOR
string can then be given to clients of that interface, or
stored in an OrbixNames server. The IOR produced
contains the TCP/IP port number for the locator if the
CICS server adapter is running with direct persistence set
to no; otherwise, it contains the CICS server adapter�s
port number.

refresh This causes the CICS server adapter to obtain up-to-date
type information for the specified operation. If you omit
the operation argument, all operations being mapped in
the specified interface are refreshed.
235

CHAPTER 18 | Using the CICS Server Adapter
Selecting a specific server adapter To select a specific server adapter, provide the ORBname for the server
adapter on a request. For example, to obtain the IOR for the SimpleObject
interface, use the following command:

reload This causes the CICS server adapter to reload the list of
mappings from its mapping file.

save This causes the CICS server adapter to save its current
mappings to either its current mapping file or to a
filename you provide.

switch This causes the CICS server adapter to switch over to a
new mapping file, and to export only the mappings
contained within it.

stats Displays some statistical information on the running
server adapter. Information includes the current time
according to the server adapter, the pending request
queue length, the total number of worker threads, worker
threads currently active, total number of requests
processed by the server adapter since start-up, and the
server adapter start-up time.

resetcon This command has no effect for the CICS server adapter.

stop Instructs the CICS server adapter to shut down.

Note: The add, change, and delete operations only update the CICS
server adapter internal information, unless a save operation is issued, in
which case the new details are written to the server adapter mapping file.

itadmin -ORBname iona_utilities.cicsa mfa resolve
Simple/SimpleObject
 236

Locating CICS Server Adapter Objects Using itmfaloc
Locating CICS Server Adapter Objects Using
itmfaloc

Overview The CICS server adapter maintains object references that identify CORBA
server programs running in CICS. A client must obtain an appropriate object
reference to access the target server. The itmfaloc URL resolver plug-in
supplied with your Orbix Mainframe installation facilitates and simplifies
this task.1

This section discusses the following topics:

� Locating CICS servers using IORs

� Locating objects using itmfaloc

� Format of an itmfaloc URL

� What happens when itmfaloc is used

� Example of using itmfaloc

Locating CICS servers using IORs One way of obtaining an object reference for a target server, managed by the
CICS server adapter, is to retrieve the IOR via the itadmin utility. This calls
the resolve() method on the server adapter's MappingGateway interface and
returns a stringified IOR. For example, to retrieve an IOR for the
SimpleObject IDL interface, issue the following command:

After it has been retrieved, the IOR can be distributed to the client and used
to invoke on the target server running inside CICS.

Locating objects using itmfaloc In some cases, the use of itadmin and the need to persist stringified IORs is
not very manageable, and thus a more dynamic approach is desirable. The
itmfaloc resolver is designed to provide an alternative approach. It follows
a similar scheme to that of the corbaloc URL technique. (Refer to the
CORBA Programmer�s Guide, C++ for more information.)

1. This plug-in is not yet available on other Orbix platforms.

itadmin mfa resolve Simple/SimpleObject
237

CHAPTER 18 | Using the CICS Server Adapter
In this way, the Orbix CORBA client can specify a very simple URL format
which identifies the target service required. This text string can therefore be
used programmatically in place of the rather cumbersome stringified IOR
representation.

Format of an itmfaloc URL An itmfaloc URL is a string of the format:

In the preceding example, <InterfaceName> represents the fully scoped
name of the IDL interface implemented by the target CICS server, as
specified in the server adapter mapping file.

What happens when itmfaloc is
used

When an itmfaloc URL is used in place of an IOR, the Orbix client
application contacts the server adapter to obtain an object reference for the
desired CICS server. The itmfaloc URL string only encodes the interface
name, not the server adapter�s location. To establish the initial connection
to the server adapter, the IT_MFA:initial_references configuration item is
used.

If multiple server adapters are deployed, it is imperative that the client
application specifies the correct IT_MFA:initial_references setting, to talk
to the correct CICS server adapter. This can be achieved by specifying the
appropriate ORBname which represents the particular configuration scope;
for example, -ORBname iona_utilities.cicsa.

If the client application successfully connects to the server adapter, it then
calls the resolve() operation on the MappingGateway object reference, thus
retrieving an object reference for the target server managed by the CICS
server adapter.

itmfaloc:<InterfaceName>
 238

Locating CICS Server Adapter Objects Using itmfaloc
Example of using itmfaloc The simple demonstration client code that is shipped with Orbix uses a
file-based mechanism to access the target server's stringified IOR. If the
target server resides in CICS, an alternative approach is to specify an
itmfaloc URL string in the string-to-object call:

The relevant Orbix APIs are:

� str2obj (PL/I)

� STRTOOBJ (COBOL)

� string_to_object() (C++)

itmfaloc:Simple/SimpleObject
239

CHAPTER 18 | Using the CICS Server Adapter
Adding a Portable Interceptor to the CICS
Server Adapter

Overview This section describes how to add a portable interceptor (or multiple
interceptors) to the server adapter. This can be used to perform the usual
functions available in portable interceptors. Refer to the CORBA
Programmer�s Reference, C++ and CORBA Programmer�s Guide, C++ for
more details on portable interceptors. Additionally, a portable interceptor
can be used to manipulate the client principal that the CICS server adapter
receives from the client. It can also be used to inspect the operation
arguments sent in the request.

In this section This section discusses the following topics:

Developing the Portable Interceptor page 241

Compiling the Portable Interceptor page 246

Loading the Portable Interceptor into the CICS Server Adapter page 248
 240

Adding a Portable Interceptor to the CICS Server Adapter
Developing the Portable Interceptor

Overview A portable interceptor should be developed as described in the CORBA
Programmer�s Guide, C++. For the server adapter, only server-side
interceptors are of interest, because the CICS server adapter is a CORBA
server.

This subsection discusses the following topics:

� Server adapter portable interceptor sample locations

� Contents of the ORB plug-in implementation

� Contents of the ORB initializer implementation

� Contents of the server interceptor implementation

� Server interceptor sample code

� Server interceptor sample code explanation

Server adapter portable
interceptor sample locations

An example of a portable interceptor framework for use in the server adapter
is provided in orbixhlq.DEMOS.CPP.SRC and orbixhlq.DEMOS.CPP.H. The
header file members are ORBINITI and SRVINTRC. The source file members
are PLUGIN, ORBINITI, and SRVINTRC.

For a z/OS UNIX System Services installation, the demonstration is located
in $IT_PRODUCT_DIR/asp/6.0/demos/corba/pdk/security_pi. The header
files are located in orb_initializer_impl.h and
server_interceptor_impl.h. The implementation files are located in
plugin.cxx, orb_initializer_impl.cxx and
server_interceptor_impl.cxx.

The portable interceptor is packaged as a standard ORB plug-in, to enable it
to be loaded by an existing Orbix server (in this case, the CICS server
adapter).

Contents of the ORB plug-in
implementation

The ORB plug-in implementation contains code to register this DLL as an
ORB plug-in. The ORB plug-in implementation also contains code in its
ORB_init() method to register the portable interceptor�s ORB initializer
object with the ORB. The ORB plug-in mechanism is used here to enable
the server adapter to load this DLL when the adapter is started. (See
241

CHAPTER 18 | Using the CICS Server Adapter
�Loading the Portable Interceptor into the CICS Server Adapter� on
page 248.) Sample source is provided in the PLUGIN member on z/OS and in
the plugin.cxx file on z/OS UNIX System Services.

Contents of the ORB initializer
implementation

The ORB initializer implementation contains code to register the server
request interceptor with the ORB. Refer to the CORBA Programmer�s Guide,
C++ for details on how to implement an ORB initializer. The initializer is
registered in the IT_Security_PlugIn class (that is, the ORB plug-in
implementation). Sample source is provided in the ORBINITI members on
z/OS, and in the orb_initializer.h and orb_initializer.cxx files on
z/OS UNIX System Services.

Contents of the server interceptor
implementation

The server request interceptor implementation illustrates how you can
intercept the incoming CORBA request and check the following:

� Principal�You can inspect the GIOP principal value, and potentially
modify this principal value before it is subsequently used by the server
adapter. (See �Activating Client Principal Support� on page 103 for
more details.) This is done by invoking on the GIOP Current API.

� Arguments�You can inspect the operation arguments that have been
sent in the request. This is done by invoking on the server adapter�s
IT_MFA Current API.

To achieve this functionality, the interceptor only implements the
receive_request() interception point. This is the point at which both the
principal and operation arguments has been read in from the GIOP request
message. Sample source is available in the SRVINTRC dataset members on
z/OS, and in the server_interceptor_impl.h and
server_interceptor_impl.cxx files on z/OS UNIX System Services.

The IT_MFA Current API The Current API is specific to the server adapter and enables PDK
application-level code to access the operation arguments in the form of a
sequence of octets. The IDL is located in your Orbix Mainframe installation
at orbixhlq.INCLUDE.ORBIX@PD.IDL(MFA@CUR) on z/OS or at
install-dir/asp/6.x/idl/orbix_pdk/mfa_current.idl on z/OS UNIX
System Services.

The Current API can only be used to inspect arguments for a "mapped"
operation. This means that requests targeting the cicsraw interface or the
MappingGateway interface cause a CORBA::BAD_INV_ORDER system exception
 242

Adding a Portable Interceptor to the CICS Server Adapter
to be thrown. A CORBA::BAD_INV_ORDER exception is also thrown if the
Current API is invoked from within an unsuitable interception point. The
request_message_body() operation must be called in the
receive_request() interception point. The reply_body_length()
operation, which returns the length of the reply returned from CICS, must be
called from the send_reply() interception point.

Server interceptor sample code The receive_request() method makes calls to inspect the GIOP principal
and the operation arguments (if appropriate). The following code example
focuses on the GIOP principal checking:

Example 11:Sample Server Interceptor code (Sheet 1 of 2)

void
Demo_ServerInterceptorImpl::inspect_giop_principal(
 PortableInterceptor::ServerRequestInfo_ptr ri
) IT_THROW_DECL((
 CORBA::SystemException,
 PortableInterceptor::ForwardRequest
))
{

1 CORBA::OctetSeq_var received_val_binary =
 m_current->received_principal();

2 if (received_val_binary->length() != 0)
 {

3 if (received_val_binary[received_val_binary->length()-1]
 == '\0')
 {
 cout << "Received a string principal in PI" << endl;
 }
 else
 {
 cout << "Received a binary principal in PI" << endl;
 return;
 }
 }
 else
 {
 cout << "Did not received any principal!" << endl;
 return;
 }
243

CHAPTER 18 | Using the CICS Server Adapter
4 // Show the principal value
 CORBA::String_var received_val =
 m_current->received_principal_as_string();

 if (strlen(received_val.in()) != 0)
 {
 cout << "Received principal string in PI "
 << received_val.in() << endl;

5 // This is very contrived, but shows how to change a principal
 cout << "If principal is JOHN, change to PETER" << endl;
 if (strcmp(received_val.in(),"JOHN") == 0)
 {
 char* new_user = "PETER";

6 m_current->change_received_principal_as_string(new_user);
 }
 }
 else
 {
 cout << "Did not received any principal!" << endl;
 }
}

Example 11:Sample Server Interceptor code (Sheet 2 of 2)
 244

Adding a Portable Interceptor to the CICS Server Adapter
Server interceptor sample code
explanation

The sample server interceptor code can be explained as follows:

1 Obtain the principal in binary format. In binary format, the principal value
does not undergo ASCII-to-EBCDIC conversion.

2 Check if a principal has been received.

3 Check if the principal value ends in a null terminator, which indicates that it
is probably a string. (This depends on the conventions agreed with the client
application.)

4 Because the interceptor returns if the principal value is not a string, it now
re-obtains the principal value as a string with ASCII-to-EBCDIC conversion
taking place.

5 In this example, it checks if the principal is JOHN.

If the principal is JOHN, it is changed to PETER. This is just an example to
show how to change a principal. Production applications probably have
more complex rules for modifying principals.

6 Other interceptor points can also be implemented. For example, the
send_exception() interceptor point can be implemented if tracking or
logging of exceptions is desired. The receive_request_service_contexts()
interceptor can be implemented if access to additional service contexts is
required. Additionally, send_reply() can be used to check the length of the
reply message, using the reply_body_length() method from the IT_MFA
Current API.
245

CHAPTER 18 | Using the CICS Server Adapter
Compiling the Portable Interceptor

Overview This subsection outlines the build information used to compile the portable
interceptor demonstration. It also provides information about the naming of
the compiled DLL, and the location of the readme files that provide
additional information about compiling the portable interceptor.

This section discusses the following topics:

� Compiling on native z/OS

� Compiling on z/OS UNIX System Services

� Specifying the correct DLL name when loading the portable interceptor

� Location of additional information for compiling the portable
interceptor

Compiling on native z/OS Sample JCL to compile the portable interceptor can be found in
orbixhlq.DEMOS.CPP.BLD.JCLLIB(ADTPICL). This compiles the two sample
source files and links them into a DLL called SECPI1.

Compiling on z/OS UNIX System
Services

The $IT_PRODUCT_DIR/asp/6.2/demos/corba/pdk/security_pi directory
contains a makefile that is used to build the SECPI1 DLL on z/OS UNIX
System Services.

Specifying the correct DLL name
when loading the portable
interceptor

The DLL name, SECPI1, has been chosen for this example, because it is a
valid name in both a native z/OS and z/OS UNIX System Services
environment. Any valid DLL name can be used for your target deployment
environment. The correct DLL name must then be specified when selecting
the portable interceptor that is to be loaded into the server adapter. Refer to
�Loading the Portable Interceptor into the CICS Server Adapter� on
page 248 for more details.
 246

Adding a Portable Interceptor to the CICS Server Adapter
Location of additional information
for compiling the portable
interceptor

On native z/OS, the ADTPI member in orbixhlq.DEMOS.CPP.README also
provides a description of how to compile the portable interceptor. You can
refer to this for additional information.

On z/OS UNIX System Services, similar information tailored to compiling the
portable interceptor is provided in $IT_PRODUCT_DIR/asp/6.2/demos/
corba/pdk/security_pi/README_CXX.txt.
247

CHAPTER 18 | Using the CICS Server Adapter
Loading the Portable Interceptor into the CICS Server Adapter

Overview This subsection describes how the portable interceptor is loaded into the
CICS server adapter. It discusses the following topics:

� Loading the portable interceptor on native z/OS

� Loading the portable interceptor on z/OS UNIX System Services

� Setting related configuration items

� Sample CICS server adapter configuration scope

Loading the portable interceptor
on native z/OS

Add the PDS containing the portable interceptor DLL to the STEPLIB for the
CICS server adapter. On native z/OS, this can be done by updating the JCL
used to run the server adapter. For example, add a LOADLIB value as
follows:

Loading the portable interceptor
on z/OS UNIX System Services

If the server adapter is run from z/OS UNIX System Services, and the
portable interceptor was built using JCL on native z/OS (that is, the SECPI1
DLL resides in a PDS), add the PDS to the STEPLIB environment variable.
The following is an example of how to do this, where IT_PRODUCT_HLQ is set
to the relevant Orbix HLQ install area:

If the server adapter is run from z/OS UNIX System Services, and the
portable interceptor was built using a makefile on z/OS UNIX System
Services, so the SECPI1 DLL resides in a UNIX System Services directory,
add the directory that contains the SECPI1 DLL to the LIBPATH environment

//GO EXEC PROC=ORXG,
// PROGRAM=ORXCICSA,
// LOADLIB=&ORBIX..DEMOS.CPP.LOADLIB,
// PPARM='run'

Note: If the LOADLIB symbolic is already in use, you might wish to update
the ORXG procedure and add the PDS that contains the portable interceptor
into the STEPLIB concatenation.

export STEPLIB=$IT_PRODUCT_HLQ.DEMOS.CPP.LOADLIB:$STEPLIB
 248

Adding a Portable Interceptor to the CICS Server Adapter
variable. The following is an example of how to do this, where
IT_PRODUCT_DIR is set to the relevant Orbix install area for z/OS UNIX
System Services:

Setting related configuration
items

The following configuration items must be set to load the plug-in:

export LIBPATH=$IT_PRODUCT_DIR/asp/6.2/demos/corba/pdk/
security_pi:$LIBPATH

orb_plugins The list must include the
demo_sec ORB plug-in,
which is the name that
was used in the ORB
plug-in demonstration
code. This plug-in must
appear before the
portable_interceptor
plug-in in the
orb_plugins list.

The list must also
include the
portable_interceptor
plug-in, to allow for
portable interceptor
support to be activated.

binding:server_binding_list The name of the server
request interceptor must
be added to this list, to
allow it to gain control
when a server request is
being processed. For the
purposes of this
example, add the DemoPI
interceptor.

plugins:demo_sec:shlib_name Specifies the name of
the ORB plug-in library,
without the version
suffix.
249

CHAPTER 18 | Using the CICS Server Adapter
Sample CICS server adapter
configuration scope

For example, the following can be added to the CICS server adapter�s
configuration scope:

When the CICS server adapter is then started, the portable interceptor
should be loaded and included in the server-side communication bindings.

plugins:demo_sec:shlib_version Specifies the version
number of the ORB
plug-in library.

Note: On z/OS, unlike
on other platforms, a
particular ORB plug-in
DLL name is resolved
from the Orbix
configuration simply by
appending the
shlib_version to the
shlib_name.

orb_plugins = ["iiop_profile", "giop", "iiop",
 "local_log_stream", "ots", "demo_sec",
 "portable_interceptor"];
binding:server_binding_list = ["DemoPI"];
plugins:demo_sec:shlib_name = "SECPI";
plugins:demo_sec:shlib_version = "1";
 250

Enabling the GIOP Request Logger Interceptor
Enabling the GIOP Request Logger Interceptor

Overview The request logger plug-in uses the interceptor approach to log accounting
information for each request and reply message. The request logger uses
the ORB's event log to perform the logging.

Format of log messages The log messages take the following format:

The components of the preceding log messages can be explained as follows:

Request message: [REQUEST], peer IP address, peer port number,
principal, operation, program name

Reply message: [REPLY], peer IP address, peer port number,
principal, operation, program name, reply status

principal This is the user ID as specified in the incoming GIOP
request. NO_PRINCIPAL is displayed if the principal was
not sent by the client.

program name This field is specific to the cicsraw interface that is
exposed by the server adapter (see �The CICS Server
Adapter cicsraw Interface� on page 26). It refers to the
program name as passed in the first argument of the
run_program operations. For all other
interfaces/operations, this field does not appear.

reply status This indicates the success status of the invocation.
Values can be:

� NO_EXCEPTION�success: reply data is being sent
back to the client.

� SYSTEM_EXCEPTION�failure: a CORBA system
exception is being thrown.

� USER_EXCEPTION�failure: a CORBA user exception
is being thrown.
251

CHAPTER 18 | Using the CICS Server Adapter
Sample log output The following is an example of some log output:

Configuration To enable the request logger, the following configuration items must be
modified:

Sample configuration scope For example, the following can be added to the CICS server adapter's
configuration scope:

Also ensure that the following global variables are specified in the ORXINTRL
configuration file:

� plugins:request_logger:shlib_name = "ORXRLOG";
� plugins:request_logger:shlib_version = "5";

Mon, 01 May 2006 14:38:52.0000000 [thehost:CICSA,A=0040]
(IT_REQUEST_LOGGER:202) I - [REQUEST] 10.2.100.8, 1408,
johndoe, run_transaction(), PART

Mon, 01 May 2006 14:38:53.0000000 [thehost:CICSA,A=0040]
(IT_REQUEST_LOGGER:202) I - [REPLY] 10.2.100.8, 1408,
johndoe, run_transaction(), PART, NO_EXCEPTION

orb_plugins The request_logger plug-in must be added to the
orb_plugins list. Also, ensure that this list includes a
log stream plug-in (for example, the local_log_stream).

binding:server_
binding_list

The name of the server request interceptor must appear
in the list of allowable server bindings. The interceptor
is also called "request_logger".

event_log:filtersThe request logger event subsystem can be enabled by
adding "IT_REQUEST_LOGGER=*" to the list of filters. This
indicates that all event log messages from this plug-in
are to be enabled.

orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop", "request_logger"];
binding:server_binding_list = ["request_logger"];
event_log:filters = ["IT_REQUEST_LOGGER=*",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];
 252

Gathering Accounting Information in the Server Adapter
Gathering Accounting Information in the
Server Adapter

Overview This section describes how to add a DLL to the CICS server adapter which
can gather and log accounting type information. This is done in the form of a
user replaceable DLL. A sample DLL is provided, which can be modified to
collate results and write them to the desired location; for example, some
kind of log file.

In this section This section discusses the following topics:

Developing the Accounting DLL page 254

Compiling the Accounting DLL page 258

Loading the Accounting DLL into the Server Adapter page 259
253

CHAPTER 18 | Using the CICS Server Adapter
Developing the Accounting DLL

Overview The accounting DLL consists of a call to the function
IT_MFA_display_account_information() for mapped requests, and a call
to the function IT_MFA_display_raw_interface_account_information()
for cicsraw requests, after each CICS server adapter request has been
completed. You can implement your own version of these functions and
replace the DLL called ORXACCT1, to gather the customized accounting
information.

This section discusses the following topics:

� IT_MFA_display_account_ information() parameters

� Sample use of IT_MFA_display_account_information()

� Location of sample source code

IT_MFA_display_account_
information() parameters

The parameters for the function contain the following information:

 Parameter Description

interface This is the interface name of the request.

operation This is the operation name of the request.

mapped_name This is the transaction or program name that is invoked in
CICS.

request_lengthThis is the total length of inbound data received from
TCP/IP, excluding the 12-byte fixed GIOP header.

reply_length This is the total length of outbound data sent back via
TCP/IP, excluding the 12-byte fixed GIOP header.

principal The Client principal, if available; otherwise, an empty
string.

local_arglist This is an NVList of all the arguments for the request. This
NVList is in the state after the reply has been transmitted
back to the client application, so only limited data is
available in it.
 254

Gathering Accounting Information in the Server Adapter
dynany_set Indicates if the first argument has been saved in a dynamic
any when the request was received from the client. This
dynamic any is the next parameter. Saving the argument
has to be activated via configuration.

da First argument, if saved. Refer to the chapter on Any�s and
Dynamic Any�s in the CORBA Programmer�s Guide, C++
for details on how to access the data contained in this
parameter.

orb Pointer to the CICS server adapter ORB, if needed, for
example, to call resolve_initial_references() to obtain
a current object.

 Parameter Description
255

CHAPTER 18 | Using the CICS Server Adapter
Sample use of
IT_MFA_display_account_inform
ation()

Here is an example of what can be done in the function.

Example 12:Sample use of IT_MFA_display_account_information() (Sheet
1 of 2)

#include <it_cal/iostream.h>
#include <it_cal/fstream.h>
#include <string.h>
#include <it_mfa/account.h>

IT_USING_NAMESPACE_STD
void
IT_MFA_display_account_information(
 const char* interface,
 const char* operation,
 const char* mapped_name,
 CORBA::Long request_length,
 CORBA::Long reply_length,
 const char* principal,
 CORBA::NVList_ptr local_arglist,
 CORBA::Boolean dynany_set,
 DynamicAny::DynAny_ptr da,
 CORBA::ORB_ptr orb
)
{
 cout << "Accounting information: " << endl;
 cout << " Interface: " << interface << endl;
 cout << " Operation: " << operation << endl;
 cout << " Tran: " << mapped_name << endl;
 cout << " Request len: " << request_length << endl;
 cout << " Reply len: " << reply_length << endl;
 cout << " Principal: " << principal << endl;
 256

Gathering Accounting Information in the Server Adapter
Location of sample source code The source code for this sample function is contained in
orbixhlq.DEMOS.CPP.SRC(ACCOUNT). This example can be used as a basis
for a function which logs the request accounting information in the desired
format.

// Gather type information from the NVList
 cout << " Number of Arguments: " << local_arglist->count() <<

endl;

 // Display information from the first parameter
 if (dynany_set == IT_TRUE)
 {
 CORBA::TypeCode_ptr type = da->type();

 cout << " Kind: " << type->kind() << endl;
 cout << " Id: " << type->id() << endl;
 if ((type->kind() == CORBA::tk_struct))
 {
 cout << " Member count: " << type->member_count() <<

endl;
 for (int ii=0; ii < type->member_count(); ii++)
 {
 CORBA::TypeCode_ptr type1 = type->member_type(ii);
 cout << " Kind of member: " << type1->kind() <<

endl;
 }
 }
 }
 cout << endl;
}

Example 12:Sample use of IT_MFA_display_account_information() (Sheet
2 of 2)
257

CHAPTER 18 | Using the CICS Server Adapter
Compiling the Accounting DLL

Overview The IT_MFA_display_account_information() and
IT_MFA_display_raw_interface_account_information() functions must
be compiled into a C++ DLL, called ORXACCT1. This is the DLL name which
the CICS server adapter attempts to load if it is configured to produce
accounting information.

This section discusses the following topics:

� Location of sample JCL to compile IT_MFA_display_account_
information()

� Location of additional information for compiling
IT_MFA_display_account_ information()

Location of sample JCL to compile
IT_MFA_display_account_
information()

Sample JCL to compile the DLL can be found in
orbixhlq.DEMOS.CPP.BUILD.JCLLIB(ACCTCL).

Location of additional information
for compiling
IT_MFA_display_account_
information()

The orbixhlq.DEMOS.CPP.README(ACCOUNT) file also provides a description
of how to compile the DLL, which can be referred to for additional
information.
 258

Gathering Accounting Information in the Server Adapter
Loading the Accounting DLL into the Server Adapter

Overview This section describes how the accounting DLL is loaded into the CICS
server adapter. It discusses the following topics:

� Loading the accounting DLL on native z/OS

� Loading the accounting DLL on z/OS UNIX System Services

� Setting required configuration items

Loading the accounting DLL on
native z/OS

To load the accounting DLL on native z/OS, add the PDS containing the
accounting DLL to the STEPLIB for the CICS server adapter. This can be
done by updating the CICS server adapter JCL. For example, add a LOADLIB
value as follows:

Loading the accounting DLL on
z/OS UNIX System Services

To load the accounting DLL on z/OS UNIX System Services, add the PDS to
the STEPLIB environment variable, for example using:

In the preceding example, orbixhlq represents the relevant high-level
qualifier for the PDS.

Setting required configuration
items

If the plugins:cicsa:call_accounting_dll configuration item is set to
"yes", the DLL ORXACCT1 is loaded by the CICS server adapter, and the
function is called after each request.

If the plugins:cicsa:capture_first_argument_in_dynany configuration
item is set to "yes", the first argument of the request, if it is an input
argument, is also preserved and passed to the function.

//GO EXEC PROC=ORXG,
// PROGRAM=ORXCICSA,
// LOADLIB=&ORBIX..DEMOS.CPP.LOADLIB,
// PPARM='run'

export STEPLIB=orbixhlq.DEMOS.CPP.LOADLIB:$STEPLIB
259

CHAPTER 18 | Using the CICS Server Adapter
Exporting Object References at Runtime

Overview When you start the server adapter it can export object references for the
interfaces it supports. These object references relate to the MappingGateway
interface, the cicsraw interface, and (optionally) any other mapped
interfaces that have been defined to the server adapter via its mapping file
at start-up. The server adapter can export these object references to a file, to
the Naming Service, or both.

In this section This section discusses the following topics:

Configuration Items for Exporting Object References page 261

Exporting Object References to a File page 265

Exporting Object References to Naming Service Context page 266

Exporting Object References to Naming Service Object Group page 268
 260

Exporting Object References at Runtime
Configuration Items for Exporting Object References

Overview This subsection describes the configuration items that are used to control
the export of object references from the server adapter.

Configuration Items Summary The following table summarizes the configuration items that are used to
control the export of object references from the server adapter:

Note: None of these configuration items are included by default in the
adapter configuration file. If you want to configure the server adapter to
export object references, you must add these configuration items, as
appropriate.

plugins:cicsa:object_publishers This specifies where the adapter can
publish its object references. Valid
options are "naming_service" to
publish object references to the
Naming Service, and "filesystem" to
publish object references to file. The
default value is "".

plugins:cicsa:write_iors_to_fileThis item has now been deprecated
and is superceded by the
plugins:cicsa:object_publisher:
filesystem:filename configuration
item described next.

plugins:cicsa:object_publisher:
filesystem:filename

This supercedes the plugins:cicsa:
write_iors_to_file configuration
item. It specifies the file that is to be
used if you want the adapter to export
object references to a file. You can
specify the full path to an HFS
filename, a PDS member name, or a
PDS name as the value for this item. If
this configuration item is not included
in the adapter�s configuration, no
object references are exported to file.
See �Configuration Example� on
page 265 for more details.
261

CHAPTER 18 | Using the CICS Server Adapter
plugins:cicsa:write_iors_to_ns
_context

This item has now been deprecated
and is superceded by the
plugins:cicsa:object_publisher:
naming_service:context configuration
item described next.

plugins:cicsa:object_publisher:
naming_service:context

This supercedes the plugins:cicsa:
write_iors_to_ns_context
configuration item. It specifies the
Naming Service context that is to be
used if you want the adapter to export
object references to a Naming Service
context. If this configuration item is not
included in the adapter�s configuration,
no object references are exported to a
Naming Service context. If you specify
a value of "", the object references are
written to the root context of the
Naming Service.

plugins:cicsa:object_publisher:
naming_service:update_mode

This specifies whether
adapter-deployed objects are to be
published during start-up only or
whether updates are also to be
published. Valid options are "startup"
and "current". The default value is
"startup".

plugins:cicsa:place_iors_in_
nested_ns_scopes

This item has now been deprecated
and is superceded by the
plugins:cicsa:object_publisher:
naming_service:nested_scopes
configuration item described next.
 262

Exporting Object References at Runtime
plugins:cicsa:object_publisher:
naming_service:nested_scopes

This supercedes the plugins:cicsa:
place_iors_in_nested_ns_scopes
configuration item. If this configuration
item is set to "false", the IOR is
stored in the specified scope in the
Naming Service. If this configuration
item is set to "true", the module
name(s) of the interface for the IOR are
used to navigate subscopes from the
configured scope, with the same
names as the module names, and the
IOR is then placed within the relevant
subscope. The default is "false".

plugins:cicsa:publish_all_iors If this is set to "yes", the object
references for the MappingGateway
interface, the cicsraw interface, and all
interfaces specified in the adapter
mapping file are exported. If this is set
to "no", only the object references for
the MappingGateway and cicsraw
interfaces are exported. The default is
"no".

plugins:cicsa:remove_ns_iors
_on_shutdown

If this is set to "yes", the server
adapter attempts to unbind the object
references from the Naming Service
when it shuts down normally (for
example, via an operator stop
command). The default is "no".

plugins:cicsa:write_iors_to_ns
_group_with_prefix

This item has now been deprecated
and is superceded by the
plugins:cicsa:object_publisher:
naming_service:group:prefix
configuration item described next.
263

CHAPTER 18 | Using the CICS Server Adapter
plugins:cicsa:object_publisher:
naming_service:group:prefix

This supercedes the plugins:cicsa:
write_iors_to_ns_group_with_
prefix configuration item. It specifies
the prefix that is to be added to each
generated name indicating an
interface. The specified prefix is
attached to the generated name, to
specify the object group that is to be
used. If a prefix of �� is specified, no
prefix is added. If this configuration
setting is not present, no object
references are exported to any object
groups.

plugins:cicsa:write_iors_to_ns
_group_member_name

This item has now been deprecated
and is superceded by the
plugins:cicsa:object_publisher:
naming_service:group:member_name
configuration item described next.

plugins:cicsa:object_publisher:
naming_service:group:member_
name

This supercedes the plugins:cicsa:
write_iors_to_ns_group_member_
name configuration item. It specifies the
member name that the server adapter
is to use in the object group. A unique
member name must be specified for
each adapter; otherwise, one adapter
might end up replacing the object
group members of another adapter.
 264

Exporting Object References at Runtime
Exporting Object References to a File

Overview When it comes to the server adapter exporting object references, the
simplest option is to have the adapter export them to a file. This subsection
provides an example of the configuration settings that are required to enable
the export of object references to a file, and the subsequent output
produced.

Configuration Example The following configuration settings indicate that the server adapter should
export object references for all the interfaces it supports to the home
directory of user1:

Alternatively, the following configuration settings indicate that the server
adapter should export object references for only the MappingGateway and
cicsraw interfaces to a data set called MFAIORS:

Example Output The following is an example of the output produced in the file for the first of
the preceding configuration examples, assuming the simple demonstration
has been added to the adapter mapping file:

plugins:cicsa:object_publisher:filesystem:filename =
"/home/user1/test.txt";

plugins:cicsa:publish_all_iors = "yes";

plugins:cicsa:object_publisher:filesystem:filename =
"DD:MFAIORS";

plugins:cicsa:publish_all_iors = "no";

IT_MFA = IOR:0000000000000027494�
Simple:SimpleObject = IOR:000000000000001c4944�
IT_MFA_CICS:cicsraw = IOR:00000000000000254944�
265

CHAPTER 18 | Using the CICS Server Adapter
Exporting Object References to Naming Service Context

Overview When it comes to exporting object references to the Naming Service, the
server adapter can be configured to export to either a Naming Service
context or a Naming Service object group. This subsection provides details
about exporting to a Naming Service context.

Prerequisites If the server adapter is configured to export its object references to a Naming
Service context, the following prerequisites apply:

� The Naming Service used must support the
CosNaming::NamingContextExt interface.

� The initial reference for this Naming Service must be supplied to the
adapter either in the adapter�s configuration file or via the command
line at start-up.

Configuration The plugins:cicsa:object_publisher:naming_service:context
configuration item specifies the Naming Service context to which the
adapter should export its object references. If a value of "" (that is, an
empty context) is specified for this item, the object references are written to
the root context. To indicate a nested context, the specified value must take
a format of "context/context/context".

If plugins:cicsa:remove_ns_iors_on_shutdown is also specified, the
adapter calls unbind() on the object references in the Naming Service as
part of a normal shut-down operation.

Note: The simultaneous exporting of object references to both a Naming
Service context and a Naming Service object group is not supported.

Note: The context must exist when the adapter is started. See the Orbix
Administrator�s Guide for details of how to create contexts with itadmin,
in particular how to create and specify nested Naming Service contexts.
 266

Exporting Object References at Runtime
Object ID The ID for the object bound into the Naming Service is derived from the
module and interface name. First, all the module names are used and then
the interface name, each separated by a colon. For example, the ID for the
interface for the simple demonstration is Simple:SimpleObject. The kind
parameter is always left empty. The MappingGateway interface uses IT_MFA
as the ID.

rebind() function The adapter uses rebind() to add the object references to the Naming
Service, so any existing object reference with the same name in the same
context is replaced.

Example The following itadmin command creates a context called "test" in the
Naming Service:

The following configuration settings indicate that when the adapter starts, it
should write all of its object references to the Naming Service context called
test, and subsequently remove the object references again on shutting
down (during a normal shut-down):

itadmin ns newnc test

Note: You can also create a context via an equivalent piece of JCL.

plugins:cicsa:object_publisher:naming_service:context = "test";
plugins:cicsa:publish_all_iors = "yes";
plugins:cicsa:remove_ns_iors_on_shutdown = "yes";
267

CHAPTER 18 | Using the CICS Server Adapter
Exporting Object References to Naming Service Object Group

Overview When it comes to exporting object references to the Naming Service, the
server adapter can be configured to export to either a Naming Service
context or a Naming Service object group. This subsection provides details
about exporting to a Naming Service object group.

Prerequisites If the server adapter is configured to export its object references to a set of
Naming Service object groups, the following prerequisites apply:

� The Naming Service used must support the Orbix load balancing
extensions to the Naming Service.

� The initial reference for the Naming Service must be available to the
adapter either in the adapter�s configuration file or via the command
line at start-up.

� The object group must be predefined, so that the load balancing
algorithm defined for each object group can be used�the load
balancing algorithm might be round-robin, random, or some other
custom load balancing algorithm.

Summary of rules The following rules apply when mapping object references to a Naming
service object group:

� An object group must be created for each object before the adapter is
started; otherwise, the objects will not be exported. If you are unsure
about the names of the object groups, start the adapter without any
object groups created and check the error messages to see which
object groups are needed.

� The object groups must then be bound to �objects�, so that clients can
locate them. The fact that object groups are used is transparent to the
clients.

Note: The simultaneous exporting of object references to both a Naming
Service context and a Naming Service object group is not supported. See
the Orbix Administrator�s Guide for more details on Naming Service object
groups.
 268

Exporting Object References at Runtime
� Each adapter must have a unique member name to ensure that it does
not overwrite object group members created by other adapters.

� Members are only removed if the adapter shuts down normally; for
example, by using an operator Stop command, by using itadmin mfa
stop, or by calling the stop operation on the adapter�s MappingGateway
interface.

Configuration Both the plugins:cicsa:object_publisher:naming_service:group:
prefix and plugins:cicsa:object_publisher:naming_service:group:
member_name configuration items indicate that the adapter should write its
object references to a Naming Service object group.

If a value of "" (that is, an empty prefix) is specified for
plugins:cicsa:object_publisher:naming_service:group:prefix, the
object references are written to object groups derived from the interface
name only; otherwise, the prefix is attached to the derived names for each
object group.

The object reference for each interface is placed in the relevant object group,
with the member name obtained from the plugins:cicsa:object_
publisher:naming_service:group:member_name configuration variable. A
unique member name must be specified for each adapter that is to use the
set of object groups.

Object group name The object group name used for each object bound into the Naming Service
is derived from the module and interface name. First, all the module names
are used and then the interface name, each separated by a colon. For
example, the object group name for the interface for the simple
demonstration is Simple:SimpleObject. If the prefix is not blank, it is
attached to the start of each derived object group name before the object
group is located in the naming service. The MappingGateway interface uses
IT_MFA as the object group name.

Note: The object groups must exist when the adapter is started. See the
Orbix Administrator�s Guide for details on how to create and specify
nested Naming Service contexts.
269

CHAPTER 18 | Using the CICS Server Adapter
rebind() function The adapter uses rebind() to add the object references to the Naming
Service, so any existing member in the object group is replaced.

Example For example, consider the following configuration settings:

Assuming the interface for the simple demonstration is the only one
exported by the adapter, the following itadmin commands create object
groups called group1_IT_MFA, group1_IT_MFA_CICS:cicsraw, and
group1_Simple:SimpleObject:

Now, with the three round-robin object groups created, each needs to be
bound to a context in the Naming Service, so that clients can locate the
object references. For example, the following command creates a context
called testog:

Each object group should be subsequently created in this context, using the
following commands, so that clients can locate the objects:

plugins:cicsa:object_publisher:naming_service:group:prefix =
"group1_";

plugins:cicsa:object_publisher:naming_service:group:member_name
= "adapter1";

plugins:cicsa:publish_all_iors = "yes";
plugins:cicsa:remove_ns_iors_on_shutdown = "yes";

itadmin nsog create -type rr group1_IT_MFA
itadmin nsog create -type rr group1_IT_MFA_CICS:cicsraw
itadmin nsog create -type rr group1_Simple:SimpleObject

Note: You can also create object groups via an equivalent piece of JCL.

itadmin ns newnc testog

itadmin nsog bind -og_name group1_IT_MFA testog/IT_MFA
itadmin nsog bind -og_name group1_IT_MFA_CICS:cicsraw

testog/cicsraw
itadmin nsog bind -og_name group1_ Simple:SimpleObject

testog/simple
 270

Exporting Object References at Runtime
Based on the preceding command, the content of the testog context should
now be listed as follows (when you specify an itadmin ns list testog
command):

If a client now resolves one of the object references before any adapter is
started, a nil object will be returned. For example, consider the following
command:

If the preceding itadmin command is entered before an adapter is started,
the following output is returned:

If the preceding itadmin command is entered after an adapter is started, the
following output is returned:

Running simultaneous adapters If more than one adapter is started, each time resolve() is used it gives a
different object reference, based on the load balancing algorithm specified
when the object group was created. If all the adapters are stopped normally
and plugins:cicsa:remove_ns_iors_on_shutdown has been specified,
resolve again returns a nil object reference.

IT_MFA Object
cicsraw Object
simple Object

itadmin ns resolve testog/cicsraw

IOR:00000000000000010000000000000000

IOR:00000000000000254944�
271

CHAPTER 18 | Using the CICS Server Adapter
 272

Part 5
Securing and Using the

Client Adapter

In this part This part contains the following chapters:

Securing the Client Adapter page 275

Using the Client Adapter page 289

CHAPTER 19

Securing the Client
Adapter
This chapter provides details of security considerations
involved in using the client adapter. It provides a review of
general Orbix security implications and the relevant CICS
security mechanisms. It describes the various security modes
that the APPC-based client adapter supports, with particular
emphasis on how each mode affects the existing CICS security
mechanisms.

In this chapter This chapter discusses the following topics:

Security Configuration Items page 276

Common Security Considerations page 281

APPC Security Considerations page 283
275

CHAPTER 19 | Securing the Client Adapter
Security Configuration Items

Overview This section provides an example and details of how to configure the client
adapter to run with Transport Layer Security (TLS) enabled. The sample
configuration includes a csiv2 sub-scope that highlights the configuration
items required to propagate CSIv2 user/password credentials to
CSIv2-enabled targets.

Sample configuration Example 13 provides an overview of the configuration items used to enable
security with the client adapter.

Example 13:Sample Security Configuration for Client Adapter (Sheet 1 of
3)

plugins:security:share_credentials_across_orbs = "true";

By default, use TLS V1. Downgrade to SSL V3 if the remote
peer is unable to support TLS V1.
policies:mechanism_policy:protocol_version = ["TLS_V1", "SSL_V3"];

Please change the following if you have only export strength
encryption available on the machine.
policies:mechanism_policy:ciphersuites = ["RSA_WITH_RC4_128_SHA",
 "RSA_WITH_RC4_128_MD5"];

plugins:systemssl_toolkit:saf_keyring
 = "%{LOCAL_SSL_USER_SAF_KEYRING}";

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method_id = "security_label";

By default, use the 'iona_services' certificate from the keyring
principal_sponsor:auth_method_data = ["label=iona_services"];

By default the following policies are used to deploy a
fully secure domain where client authentication is not required:
#
policies:target_secure_invocation_policy:requires =
 ["Confidentiality", "DetectMisordering",
 "DetectReplay", "Integrity"];
policies:target_secure_invocation_policy:supports =
 276

Security Configuration Items
 ["Confidentiality", "EstablishTrustInTarget",
 "EstablishTrustInClient", "DetectMisordering",
 "DetectReplay", "Integrity"];
policies:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget",
 "DetectMisordering", "DetectReplay", "Integrity"];
policies:client_secure_invocation_policy:supports =
 ["Confidentiality", "EstablishTrustInClient",
 "EstablishTrustInTarget", "DetectMisordering",
 "DetectReplay", "Integrity"];

iona_services
{
�
 cics_client
 {
 plugins:cicsa:iiop_tls:host = "%{LOCAL_HOSTNAME}";
 plugins:cicsa:iiop_tls:port = "5172";

 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
 "iiop_tls", "ots", "amtp_appc"];

 ots
 {
 orb_plugins = ["local_log_stream", "iiop_profile",
 "giop", "iiop_tls"};
 };

 csiv2
 {
 # enable csiv2 authentication
 #

 orb_plugins = ["iiop_profile", "giop", "iiop",
 "iiop_tls", "local_log_stream",
 "ots", "gsp", "amtp_appc"];

 event_log:filters = ["IT_CSI=*", "IT_GSP=*",
 "IT_IIOP_TLS=*",
 "IT_MFA=INFO_HI+WARN+ERROR+FATAL"];

 binding:client_binding_list
 = ["OTS+TLS_Coloc+POA_Coloc",
 "TLS_Coloc+POA_Coloc",

Example 13:Sample Security Configuration for Client Adapter (Sheet 2 of
3)
277

CHAPTER 19 | Securing the Client Adapter
Summary of global scope
configuration items

The following is a summary of the security-related configuration items
associated with the global scope:

 "OTS+POA_Coloc", "POA_Coloc",
 "CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
 "CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS",
 "CSI+OTS+GIOP+IIOP", "OTS+GIOP+IIOP",
 "CSI+GIOP+IIOP", "GIOP+IIOP"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";

 # Provide the correct username, password, and domain
 # for the user you would like to authenticate.
 principal_sponsor:csi:auth_method_data = ["username=IONAAdmin",
 "password=admin",
 "domain=IONA"];

 policies:csi:auth_over_transport:client_supports = ["EstablishTrustInClient"];

 };
};

Example 13:Sample Security Configuration for Client Adapter (Sheet 3 of
3)

plugins:security:share_
credentials_across_orbs

Enables own security credentials to be
shared across ORBs. Normally, when
you specify an own SSL/TLS
credential (using the principal sponsor
or the principal authenticator), the
credential is available only to the ORB
that created it. By setting this
configuration item to "true",
however, the own SSL/TLS credentials
created by one ORB are automatically
made available to any other ORBs
that are configured to share
credentials.

policies:mechanism_policy:
protocol_version

Specifies the protocol version used by
a security capsule (ORB instance). It
can be set to SSL_V3 or TLS_V1.
 278

Security Configuration Items
policies:mechanism_policy:
ciphersuites

Specifies a list of cipher suites for the
default mechanism policy.

plugins:systemssl_toolkit:
saf_keyring

Specifies the RACF keyring to be used
as the source of X.509 certificates.
This must match the keyring you
specified in the GENCERT JCL.

principal_sponsor:use_principal_
sponsor

This must be set to "true" to indicate
that the certificate information is to be
specified in the configuration file.

principal_sponsor:auth_method_id This must be set to "security_label"
to indicate that the certificate lookup
should be performed using the label
mechanism.

principal_sponsor:auth_method_
data

If you are using TLS security, this
specifies the label that should be used
to look up the SSL/TLS certificate in
the SAF key store. The specified label
name must match the label name
under which the server certificate was
imported into, or created in, the key
store (for example, in RACF).

policies:target_secure_
invocation_policy:requires

Specifies the invocation policy
required by the server for accepting
secure SSL/TLS connection attempts.

policies:target_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the server for accepting
secure SSL/TLS connection attempts.

policies:client_secure_
invocation_policy:requires

Specifies the invocation policy
required by the client for opening
secure SSL/TLS connections.

policies:client_secure_
invocation_policy:supports

Specifies the invocation policies
supported by the client for opening
secure SSL/TLS connections.

orb_plugins The iiop_tls plug-in must be added
to this list, to enable TLS support.

Note: Remove the iiop plug-in if you
explicitly wish to disable all insecure
communications.
279

CHAPTER 19 | Securing the Client Adapter
Summary of CSIV2 configuration
items

The following is a summary of the configuration items associated with the
iona_services:cics_client:csiv2 security plug-in:

Note: See the Mainframe Security Guide for more details of these
configuration items.

orb_plugins The csi plug-in must be added to
this list for CSIv2 credentials
propagation.

Note: The iiop_tls plug-in is a
prerequisite for CSIv2 and must also
be included if the csi plug-in is used.

event_log:filters All CSIv2-specific messages
(informational and otherwise) can be
enabled by adding "IT_CSI=*" to this
list.

binding:client_binding_list Specifies a list of potential client-side
binding chains. The CSI binding must
be added to the relevant chains to
effect CSIv2 credential propagation
at invocation time.

principal_sponsor:csi:
use_principal_sponsor

This must be set to "true" to
indicate that the CSIv2 credential
information is to be specified in the
configuration file.

principal_sponsor:csi:
auth_method_id

This must be set to "GSSUPMech".

principal_sponsor:csi:
auth_method_data

This list is used to specify the
credentials information.

policies:csi:auth_over_transport:
client_supports

This must be set to
"EstablishTrustInClient" to
indicate that the client is capable of
propagating credentials.
 280

Common Security Considerations
Common Security Considerations

Overview This section provides details of common security considerations involved in
using the CICS client adapter. It discusses the following topics:

� Orbix SSL/TLS

� iSF integration

� Principal propagation

Orbix SSL/TLS Orbix provides Transport Layer Security (TLS) that enables secure
connectivity over IIOP. TLS includes authentication, encryption, and
message integrity. As with all Orbix applications, you can configure the CICS
client adapter to use TLS. See the Mainframe Security Guide for details on
securing CORBA applications with SSL/TLS.

iSF integration The IONA security framework (iSF) provides a common security framework
for all Orbix components in your system. This framework is involved at both
the transport layer (using TLS) and the application layer (using the CORBA
CSIv2 protocol and the IONA generic security plug-in (GSP)). At the
application level, in terms of the CICS client adapter, one of the following
authentication credentials can be passed:

� username/password/domain name

� Single sign-on (SSO) token

You can configure the client adapter to use CSI/GSP support. See the
Mainframe Security Guide for details on iSF and integration with an off-host
Security service.

Principal propagation By default, when an Orbix CICS client invokes a request via the client
adapter, it passes the user ID of the running CICS transaction to the client
adapter as part of the requesting message. The client adapter will then
interact with the GIOP Current interface to set the outgoing principal
identifier to this CICS user ID. If the GIOP plug-in has been configured
appropriately, this ID is then sent as part of the CORBA request to the target
server.
281

CHAPTER 19 | Securing the Client Adapter
The following table highlights the pertinent GIOP configuration settings:

policies:giop:interop_policy:
send_principal = "true";

This instructs GIOP to propagate a
principal value if one has been
specified for the outgoing client
request. For example, the
local_principal_as_string()
attribute in the GIOP Current
interface can be used to set a
text-based user ID.

policies:giop:interop_policy:
enable_principal_service_context

For GIOP 1.2, if this item is set to
"true", it instructs the client
adapter to insert the outgoing
principal string in a service context.
This is required because the
CORBA::Principal field is not
available in the request header for
GIOP 1.2 messages. The default
value is "false".

policies:giop:interop_policy:
principal_service_context_id

This item specifies the service
context ID into which the CICS
client adapter attempts to insert
the principal string, if
policies:giop:interop_policy:
enable_principal_service_
context has been set to "true". If
this configuration setting is not
specified, a default ID of
0x49545F44 is used to create the
service context.

Note: You cannot configure the
default processing behavior of the
client adapter. For example, setting
the use_client_principal
configuration item has no effect in
this case. To customize the
processing behavior of the client
adapter (for example, to map the
CICS user ID to a network ID), you
can use the Orbix PDK to develop a
client-side interceptor.
 282

APPC Security Considerations
APPC Security Considerations

Overview This section provides details on how to secure the client adapter in an APPC
environment. It discusses the following topics:

� Overview of APPC security

� APPC LU security

� Define the CICS connection with BINDSECURITY

� Define APPCLU RACF profiles

� APPC conversation security

� Controlling access to the client adapter LU

� Controlling access to the CICS local LU

Overview of APPC security APPC/MVS provides the following levels of security:

� LU security

� Conversation security

APPC LU security The client adapter processes client transactions from CICS. Therefore, CICS
should be allowed to establish sessions with the client adapter. Other APPC
applications on the network, however, are not intended to process requests
via the client adapter. In some environments it might be considered a
security breach if any application other than CICS establishes an APPC
connection with the client adapter.

To prevent applications other than CICS from establishing sessions with the
client adapter, APPC LU security can be used. Enable APPC LU security by
doing the following:

� Define the VTAM APPLs for the system base LU and the client adapter
with the appropriate keywords

� Define the CICS CONNECTION with BINDSECURITY

� Define APPCLU RACF profiles

� Define VTAM APPLs with Security Keywords
283

CHAPTER 19 | Securing the Client Adapter
For the system base LU, make sure the following keywords are defined on
the VTAM APPL definition:

For the client adapter LU, make sure the following keywords are defined on
the VTAM APPL definition:

Define the CICS connection with
BINDSECURITY

Setting BINDSECURITY on the CICS CONNECTION causes CICS to perform bind
time security when attempting to establish sessions with the client adapter.
Set BINDSECURITY(YES) on the CONNECTION definition. Refer to �Bind Time
Security with APPC� on page 84 for more information on bind time security
and the prerequisites for its use.

Table 8: APPC LU Security System Base LU Keyword Definitions

Keyword Description

SECACPT=CONV This keyword allows CICS to provide security
information on a request to allocate a conversation.
The security information includes the user ID
making the request to allocate the conversation, the
user�s group ID, and an �already verified� indicator.

VERIFY=OPTIONAL This setting makes the definition compatible with
the client adapter.

Table 9: APPC LU Security Client Adapter LU Keyword Definitions

Keyword Description

SECACPT=CONV Allows security information on the allocate request
as described above.

VERIFY=REQUIRED This keyword requires that a RACF APPCLU profile is
defined for this LU and for any LU that attempts to
establish a session with it. If RACF APPCLU profiles
do not exist, the session cannot be established. If
profiles do exist, the session keys in each profile
must match; otherwise, the session cannot be
established.
 284

APPC Security Considerations
Define APPCLU RACF profiles The CICS local LU and the client adapter LU require RACF APPCLU profiles.
The names have the following pattern:

NETID represents your network ID. LU01 and LU02 are the LU names to be
secured. Each LU requires its own profile. The profile name in the preceding
example would be for LU01. The profile name for LU02 would be as follows:

Even though CICS makes use of the system base LU to establish sessions
with the client adapter, it is not the LU that must be secured. The LU
defined in the CICS SIT APPLID parameter is the LU that must be secured.

The following is an example of defining the profiles for the CICS local LU
and the client adapter LU:

To activate the profiles in RACF, use the following command:

To refresh the profile in VTAM, use the following VTAM command:

In the preceding example, VTAM is the name of the procedure used to start
VTAM.

NETID.LU01.LU02

NETID.LU02.LU01

RDEFINE APPCLU P390.CICSTS1.ORXLUCA1
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

RDEFINE APPCLU P390.ORXLUCA1.CICSTS1
UACC(NONE) SESSION(SESSKEY(137811C0) CONVSEC(ALREADYV))

SETROPTS CLASSACT(APPCLU)

F VTAM,PROFILES,ID=CICSTS1
F VTAM,PROFILES,ID=ORXLUCA1

Note: Although APPC can be used for networked communication, the
client adapter is only intended to be run on the same machine as the CICS
region with which it is communicating.
285

CHAPTER 19 | Securing the Client Adapter
APPC conversation security There are three levels of conversation security:

� security_none

� security_same

� security_pgm

The Orbix runtime inside CICS uses security_same when allocating its
conversations with the client adapter.

A conversation using security_pgm is not possible with the client adapter,
because the Orbix runtime inside CICS has no access to client passwords.

APPC conversation security allows for:

� Controlling which users are permitted access to the client adapter LU

� Controlling which users are permitted to access the CICS local LU

Refer to �LU 6.2 conversation security levels� on page 193 for more details
on each conversation security level.

Controlling access to the client
adapter LU

Some environments might want very strict controls regarding which users
are permitted access to the client adapter. A RACF APPL class can be
defined for the client adapter LU specifying a universal access of NONE.
Individual users can then be permitted access to the client adapter LU.

An example of defining the RACF APPL class is as follows:

Individual users can then be permitted access to the client adapter LU:

Activate the APPL class as follows:

Refresh the RACLIST as follows:

RDEFINE APPL ORXLUCA1 UACC(NONE)

PERMIT ORXLUCA1 CLASS(APPL) ID(USER1) ACCESS(READ)
PERMIT ORXLUCA1 CLASS(APPL) ID(USER2) ACCESS(READ)
�

SETROPTS CLASSACT(APPL) RACLIST(APPL)

SETROPTS RACLIST(APPL) REFRESH
 286

APPC Security Considerations
Controlling access to the CICS
local LU

Access to the client adapter LU can be controlled by controlling access to
the CICS local LU that wants to establish communications with the client
adapter LU. The CICS local LU is considered an APPC port of entry and can
be secured with the RACF APPCPORT class.

Define the APPCPORT profile for the CICS local LU as follows:

This profile defines a universal access of NONE to the system base LU. To
permit access to users, use the RACF PERMIT command:

Activate the APPCPORT class as follows:

When changes are made to an APPCPORT profile, refresh the profile for the
change to take effect:

RDEFINE APPCPORT CICSTS1 UACC(NONE)

PERMIT MVSLU01 CLASS(APPCPORT) ID(USER1) ACCESS(READ)
PERMIT MVSLU01 CLASS(APPCPORT) ID(USER2) ACCESS(READ)
�

SETROPTS CLASSACT(APPCPORT) RACLIST(APPCPORT)

SETROPTS RACLIST(APPCPORT) REFRESH
287

CHAPTER 19 | Securing the Client Adapter
 288

CHAPTER 20

Using the Client
Adapter
This chapter provides information on running and using the
client adapter. It provides details on how to start and stop the
client adapter, and also provides details on how to run multiple
client adapters.

In this chapter This chapter discusses the following topics:

Starting the Client Adapter page 290

Stopping the Client Adapter page 292

Running Multiple Client Adapters Simultaneously page 293
289

CHAPTER 20 | Using the Client Adapter
Starting the Client Adapter

Overview This section describes how to start the client adapter. It discusses the
following topics:

� Starting the client adapter on native z/OS

� Starting the client adapter on z/OS UNIX System Services

� Running with a different configuration scope

Starting the client adapter on
native z/OS

In a native z/OS environment, you can start the client adapter in any of the
following ways:

� As a batch job.

� Using a TSO command.

� As a started task (by converting the batch job into a started task).

The default client adapter is the client adapter for which configuration is
defined directly in the iona_services.cics_client scope, and not in some
sub-scope of this. The following is sample JCL to run the default client
adapter:

//CICSCA JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Orbix CICS Client Adapter
//*
//* Make the following changes before running this JCL:
//*
//* 1. Change 'SET DOMAIN='DEFAULT@' to your configuration
//* domain name.
//*
// SET DOMAIN='DEFAULT@'
 290

Starting the Client Adapter
Starting the client adapter on z/OS
UNIX System Services

On z/OS UNIX System Services, you can start the client adapter from the
shell. The following command is used to run the default client adapter:

Running with a different
configuration scope

To run the client adapter with a different configuration scope:

� On native z/OS set the value of PPARM to the new scope, for example:

� On z/OS UNIX System Services run a command similar to the
following:

Refer to �Running Multiple Client Adapters Simultaneously� on page 293 for
more details on running multiple client adapters.

//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXCICSA,
// PPARM='run -ORBname iona_services.cics_client'
//TYPEINFO DD DUMMY
//ITDOMAIN DD DSN=&ORBIXCFG(DOMAIN),DISP=SHR

$ itcicsca

 PPARM=�-ORBname iona_services.cics_client�

$ itcicsa -ORBname iona_services.cics_client
291

CHAPTER 20 | Using the Client Adapter
Stopping the Client Adapter

Overview This section describes how to stop the client adapter. It discusses the
following topics:

� Stopping the client adapter on native z/OS

� Stopping the client adapter on z/OS UNIX System Services

Stopping the client adapter on
native z/OS

To stop a client adapter job on native z/OS, issue the STOP (P) operator
command from the console.

Stopping the client adapter on
z/OS UNIX System Services

To stop a client adapter process on z/OS UNIX System Services, use the
kill command or press Ctrl-C if it is running in an active rlogin shell.
 292

Running Multiple Client Adapters Simultaneously
Running Multiple Client Adapters
Simultaneously

Overview This section describes how to run multiple client adapters simultaneously.

In this section This section discusses the following topics:

Load Balancing with Multiple Client Adapters page 294

Running Two Client Adapters on the Same z/OS Host page 296
293

CHAPTER 20 | Using the Client Adapter
Load Balancing with Multiple Client Adapters

Overview The client adapter is a multithreaded application that can concurrently
service multiple requests. However, an installation can choose to run
multiple client adapters to spread the workload over multiple address
spaces.

This subsection discusses the following topics:

� Load balancing scenario

� Graphical overview

� Load balancing scenario explanation

Load balancing scenario Suppose there are three CICS regions that might run client transactions to
be processed via the client adapter. An installation might choose to run two
client adapters to process the load. If one of the client adapters is stopped,
the other can still service client requests from CICS.

Graphical overview Figure 9 illustrates the load balancing scenario.

Figure 9: Graphical Overview of a Load Balancing Scenario

CICS
Region 1

CICS
Region 2

CICS
Region 3

APPC/MVS

Client
Adapter 1

Client
Adapter 2

Target
Object

Target
Object

 Configuration
 294

Running Multiple Client Adapters Simultaneously
Load balancing scenario
explanation

Each CICS region contains an Orbix runtime. Each Orbix runtime has a
configuration that specifies the same symbolic destination. The symbolic
destination determines the client adapter that CICS client transaction
requests are being directed to. From the CICS perspective, it appears as if
there is only one client adapter running.

APPC/MVS processes the CICS client transaction requests. It queues the
requests in an allocation queue. The allocation queue is determined by the
symbolic destination. Because all CICS regions are using the same symbolic
destination, CICS client transaction requests are directed to a single
allocation queue.

Both client adapters are using the same configuration file and same
configuration scope. Therefore, they are using the same symbolic
destination, and share the same allocation queue that APPC/MVS uses for
CICS client transaction requests. Each client adapter has one or more
threads that are waiting for allocation requests from APPC/MVS, all from the
same allocation queue.

APPC/MVS hands off an allocation request to a thread in one of the client
adapters. Determining which thread to give an allocation request to is an
internal function of APPC/MVS. Therefore, it is APPC/MVS that spreads the
load over the two client adapters. If one of the client adapters is stopped,
APPC/MVS hands off all allocation requests to the client adapter that is still
running.
295

CHAPTER 20 | Using the Client Adapter
Running Two Client Adapters on the Same z/OS Host

Overview An installation might choose to run a test and production client adapter on
the same z/OS host. In this scenario, it is not desirable for the client
adapters to share the APPC/MVS allocate queues.

This subsection discusses the following topics:

� Running a test and production client adapter on the same host

� Graphical overview

� Setting up a test and production client adapter on the same host

Running a test and production
client adapter on the same host

Each CICS region contains an Orbix runtime. Each Orbix runtime has a
configuration that specifies different symbolic destinations. The production
CICS region is configured to communicate with the production client
adapter. The test CICS region is configured to communicate with the test
client adapter.

APPC/MVS processes the CICS client transaction requests. It queues the
requests to separate allocation queues�one for the production client
adapter using the production symbolic destination, and one for the test
client adapter using the test symbolic destination.

Both client adapters are using the same configuration file but different
configuration scopes. The configuration scopes can define different symbolic
destinations. Therefore, the client adapters each have their own allocation
queues.
 296

Running Multiple Client Adapters Simultaneously
Graphical overview Figure 10 illustrates how two client adapters can run on the same z/OS
host.

Setting up a test and production
client adapter on the same host

The steps to set up a test and production client adapter on the same z/OS
host are as follows:

Figure 10: Running Two Client Adapters on the Same z/OS Host

CICS
Production

Region

CICS Test
Region

APPC/MVS

Production
Client

Adapter

Test Client
Adapter

Target
Object

Target
Object

 Configuration
 Production Scope

 & Test Scope

Step Action

1 Define separate symbolic destinations in APPC/MVS for the test
and production client adapters to use. Refer to �Defining an
APPC Destination Name for the Client Adapter� on page 142
for more information on defining symbolic destinations.

2 Configure the Orbix runtime inside CICS for the test and
production regions. The test region is configured with the test
symbolic destination. The production region is configured with
the production symbolic destination. Refer to �Customizing
Orbix APPC Symbolic Destination� on page 169 for more
information on configuring the symbolic destination.
297

CHAPTER 20 | Using the Client Adapter
3 Define a test configuration scope in the client adapter
configuration file such as iona_services.cics_test_client.
The existing iona_services.cics_client configuration scope
can be used for production. Set the test symbolic destination in
the test configuration scope, and set the production symbolic
destination in the production configuration scope. Refer to
�APPC destination� on page 155 for more information on
configuring the symbolic destination.

4 Start the production client adapter, specifying a configuration
scope of iona_services.cics_client. Start the test client
adapter specifying the test configuration scope defined in step
3 (that is,. iona_services.cics_test_client). Refer to
�Starting the Client Adapter� on page 290 for more information
on running the client adapter with a different configuration
scope.

Step Action
 298

Part 6
Appendices

In this part This part contains the following chapters:

Troubleshooting page 301

Glossary of Acronyms page 305

APPENDIX A

Troubleshooting
This chapter provides an overview of the MCLOOKUP utility
that can be used for troubleshooting.

In this chapter This chapter discusses the following topics:

Overview page 302

Starting the MCLOOKUP utility on native z/OS page 302

Starting the MCLOOKUP utility on z/OS UNIX System Services
page 303
301

CHAPTER A | Troubleshooting
Overview The MCLOOKUP utility is supplied with your Orbix Mainframe installation and
can be used to perform lookups on system exception minor codes. It serves
as a troubleshooting tool in cases where an errant CORBA application
reports a minor code but does not display a useful message.

Starting the MCLOOKUP utility on
native z/OS

In a native z/OS environment, you can start the MCLOOKUP utility using the
following sample JCL:

Note: In the following example, a minor code value of Ox49540102 is
passed across to MCLOOKUP for investigation.

//MCLOOKUP JOB (),
// CLASS=A,
// MSGCLASS=X,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// REGION=0M,
// TIME=1440
//*
// JCLLIB ORDER=(HLQ.ORBIX62.PROCLIB)
// INCLUDE MEMBER=(ORXVARS)
//*
//* Run the Minor Code Lookup utility
//*
//* Please customise the search criteria via the PPARM variable
//* before running this utility
//*
//* Usage:
//* MCLOOKUP .query options.
//*
//* Query options (include a subset of the following):
//* -mcv/-minor_code_value .val. Specify minor code value
//* as search criteria
//* -exn/-exception_name .val. Specify exception name
//* as search criteria
//* -sbn/-subsystem_name .val. Specify subsystem name
//* as search criteria
//* -mcn/-minor_code_name .val. Specify minor code name
//* as search criteria
//*
//* Examples:
//* MCLOOKUP -mcv 0x49540102
//* MCLOOKUP -mcv 1230242050 -exn TRANSIENT
 302

Starting the MCLOOKUP utility on
z/OS UNIX System Services

On z/OS UNIX System Services, use the following command to run the
MCLOOKUP utility:

For example:

//*
//*
//GO EXEC PROC=ORXG,
// PROGRAM=ORXMCLUP,
// PPARM='-mcv 0x49540102'

mclookup -mcv minor_code

mclookup -mcv 0x49540102
303

CHAPTER A | Troubleshooting
 304

APPENDIX B

Glossary of
Acronyms
This glossary provides an expansion for each of the acronyms
used in this guide.

For more details of each of these terms, refer to the following, as
appropriate:

� The IBM documentation series at http://www.ibm.com.

� The OMG CORBA specification at http://www.omg.org.

� The Sun Microsystems J2EE specification at http://www.sun.com.

Table 10: Glossary of Acronym Extensions

Acronym Extension

ACB Access Control Block

ACEE Accessor Environment Entry

APAR Application Program Authorized Report

APPC Advanced Program to Program Communication

ASCII American National Standard Code for Information
Interchange

CICS Customer Information Control System

CORBA Common Object Request Broker Architecture
305

http://www.ibm.com
http://www.omg.org
http://www.sun.com

CHAPTER B | Glossary of Acronyms
CSD CICS System Definition Data Set

DASD Direct Access Storage Device

DLL Dynamic Link Library

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise Java Beans

GIOP General Inter-ORB Protocol

HFS Hierarchal File System

IDL Interface Definition Language

IFR Interface Repository

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

IPL Initial Program Load

IRC Inter Region Communication

JCL Job Control Language

LE Language Environment

LU Logical Unit

MVS Multiple Virtual Systems

OMG Object Management Group

OMVS Open Multiple Virtual Systems

ORB Object Request Broker

OTS Object Transaction Service

PADS Program Access to Data Sets

PCB Program Control Block

Table 10: Glossary of Acronym Extensions

Acronym Extension
 306

PDS Partitioned Data Set

PSB Program Specification Block

RACF Resource Access Control Facility

RRS Resource Recovery Services

SAF System Authorization Facility

SNA System Network Architecture

SPA Save Program Area

TCP/IP Transmission Control Protocol over Internet Protocol

TP Transaction Program

TPN Transaction Program Name

TSL Transport Security Layer

TSO Time Sharing Option

UACC Universal Access Authority

USS UNIX System Services

VTAM Virtual Telecommunications Access Method

XCF Cross Coupling Facility

WFI Wait For Input

WTO Write-To-Operator

Table 10: Glossary of Acronym Extensions

Acronym Extension
307

CHAPTER B | Glossary of Acronyms
 308

Index

A
ACBNAME= parameter 81, 146
amtp_appc plug-in configuration items 129
AMTP function timeout 155
APF authorization 100
APPC/MVS side information dataset, specifiying 140
APPC data segment lenght 89
APPC destination 155
APPC destination name 78, 88, 142

multiple 143
APPCLU class profiles 81

format 196
APPCLU profile name 85

and LU name 77
APPCLU profiles 152
APPCLU profiles, user IDs 85
APPCLU RACF definitions 84
APPCLU RACF profiles, defining 285
APPC maximum communication threads 156
APPC minimum communication threads 156
APPCPORT profile

CICS local LU 287
APPC resources to CICS 150
APPC-side information data set example 78
APPL class, Client Adapter LU 286
APPLID 72
ASCII-to-EBCDIC translation 30
ATBSDFMU utility program 78
ATTACHSEC(IDENTIFY) 71
ATTACHSEC operand, specifying 87

B
BINDSECURITY 284
bind time security 84

CONNECTION resource 197
BPX.SERVER 107

and Adapter user ID 110
BPX.SRV.* resource 110
BPX.SRV.userid resource 110
ByteSegments attribute 30
C
C++ demonstration for cicsraw 33
C++ standard classes support 114
CEDA transaction 70
CharSegments attribute 30
CICS

configurting inside 164
customizing 114
defining APPC resources to 82

cicsa plug-in configuration items 46, 103
cics_appc plug-in configruation items 52
CICS APPLID 72
CICS commit processing 46
CICS connection name 72
CICS Connection Type 72
CICS connection type 72
cics_exci plug-in configuration items 52
CICS local LU 139

access to 154, 287
CICS mirror transaction ID, default 73
CICS pseudo-region 186
cicsraw IDL interface 26, 27

ByteSegments attribute 30
C++ demo client 33
CharSegments attribute 30
CICS mirror transaction ID 73
din parameter 30
modifications to 26
run_program_binary operation 30
run_program_binary_with_tran operation 31
run_program operation 30
run_program_with_tran operation 31
tran_name parameter 30

CICS resource definitions
installing 115

CICS resources, access permissions 71
cics_rrs plug-in configuration items 53
CICS security mechanisms

for APPC 193
for EXCI 185

CICS system initialization parameters 187
CICS transaction-attach security 187
Client Adapter
309

INDEX
APPC security 283
change configuration scope 291
characteristics 35
configuration scope 127
functions 36
graphical overview 38
load balancing 294
LU-LU secruity 152
multiple on same host 296
plug-ins 129
starting 290
stopping 292

Client Adapter LU 140
access to 154, 286

client_principal support configuration items 103
client Principal value 182

z/OS user IDs 183
clients 7, 9

authentication 182
invoking on CORBA objects 11

client stub code 10
COMMAREA block size 73
COMMAREA length, maximum 31
Configuration domains 18
configuration file 227
CONNECTION resource

ATTACHSEC operand 87
bind security 197, 284
BINDSECURTIY option 84

conversation security 286
CONVSEC setting 85
CORBA 5

application basics 10
introduction to 4

CORBA::Principal 103
SAF plug-in 182

CORBA gateway to the CICS system 10
CORBA objects 7

and IDL 8
client invocations on 11

coupling facility log streams 94
CSD group DFH$EXCI 69
CSECT 116, 166

D
DASD-only log streams 94
data types defined in cicsraw 29
defalut security mode for APPC 198
default security mode for EXCI 189
 310
DESTNAME 79, 143
DFH$EXCI 69
DFHCSD DD cards 82
DFHCSDUP, running 70, 115
din parameter 30
do_trans() operation 26

E
EBCDIC, translating from ASCII 30
EPERM errors 110
errors, EPERM 110
event_log

filters
Client Adapter 133

event_log filters 60
event logging 60, 116, 166

Client Adapter 133
event logging settings 166
exception information

for APPC 32
for EXCI 33

exceptions
address space 110
defined in cicsraw 29

EXCI
default security mode 189
user security 187

EXCI GENERIC connection
type 72
update access 186

EXCI limitation on request size 73
EXCI mirror transaction

Adapter default mode 71
ID 73
user security enables 71

G
GIOP, client_principal support 103
global configuration scope 29

H
host name 58

I
IDL compiler 10

-mfa plug-in 120
operation parameters 11

INDEX
IDL interfaces 8
for CICS Adapter 26
location for Adapter 25

IDL operations 11
adapter processing of 25
COMMAREA block lenght 73
parameter-passing modes 11

IEFSSNxx member 99
IFR 18, 207

modifications to and Server Adapter 212, 221
registering IDL interfaces 209
running in prepare mode 225

IFR signature cache file 214
configuration 64, 158
runtime modifications 215
updating 215

IIOP 5
cicsa plug-in configuration 47
client_principal configuration 105
mapping gateway interface 234
TCP-IP port number 58
timestamps 63

initial_references:IT_cicsraw:plugin 46, 60
initial_references:IT_RRS:plugin 100
Interface Definition Language See IDL
Interface Repositon See IFR
iona_services.cicsa congiguration scope example 42
iona_services.mfu configuration scope 126
iordump utility 232
IORs 18

and itmfaloc 238
IT_MFA 227
IT_MFA_CICSRAW 227
locating Server Adapter 237
mapping gateway interface 234
POA prefix 63
sample 228
transactional processing support 92

IRC, enabling 69
IRC parameter 69
IsDefault 121
itadmin commands 233
itadmin mfa refresh command 213
itcicsa shell script 110
IT_MFA_CICS module 26
IT_MFA event logging subsystem 60
itmfaloc 237

format 238
using 239
IT_MFU event logging subsystem 133
IXCL1DSU 94
IXCMIAPU utility 98

L
Language Environment Support 114
link security 87, 187
Location domains 17
locator 18

running Adapter in prepare mode 225
LOGR couple data set 96, 97
log streams

defining 98
IBM recommended sizes 95
running 95
types 94

LU=LOCAL conversations
security settings for 81

LU 6.2
and Adapter usage 194
connection to a remote system 84
conversation security levels 193

LU-LU security verification 152
LU-LU session-level verification 81
LU names

APPC destination 88
outbound LU 88
restricting use of 196
specifying 77
user access 86

LUs
access to 286
CICS local 139
Client Adapter 140
defined to VTAM 145
outbound 193
protecting 154
VTAM requirements for 80

LU security 283

M
mapping file 25

errors 214
format 201
generating 203
IDL attribute support 202
runtime modifications to 205

Mapping Gateway interface 234
311

INDEX
maxCommareaSize attribute 31
MCLOOKUP utility 301
MFACLINK JCL member 117
MFAMappingExtension 121
MFAMappings 120
MFAMappingSuffix 122
mfa plug-in

options 235
using 234

MODENAME 143
MODENAME parameter 79
MRO connect security 186
MRO logon security 186

N
naming clashe 29
NETNAME of a CICS-specific EXCI connection 72
networked environment, controlling access 194
node daemon 17

running Adapter in prepare mode 225
numeric data corruption 30

O
object ID 15
object key 63
object references 8, 14

and the POA 15
map to servants 15

ORB (Object Request Broker)
and the naming service 15
locating objects 18

ORB_init() 62
Orbix 5
Orbix application 14
Orbix CICS resource definitions, installing 70
Orbix configuration inside CICS 164
Orbix event logging 60
Orbix runtime in CICS 116, 166

parameter-passing modes 11
Orbix security mechanisms 182
ORB-level plug-ins 62
ORBname 42

Client Adapter 126
multiple adapters 233

orb_plugins 62
Client Adapter 135

ORX1 session 70
ORXLU02 profile 86
 312
ORXMFACx DLL 117, 167
segment size 168

OTS plug-in 62
outbound LU 193

P
parameter-passing mode qualifiers 11
PARTNER_LU 79, 143
partner LU 81
passwords

and session keys 81
partner LU 81
processing requests without 107

persistence mode policy 58
plugins:amtp_appc:function_wait 155
plugins:amtp_appc:max_comm_threads 156
plugins:amtp_appc:maximum_syncl_level 156
plugins:amtp_appc:min_comm_threads 156
plugins:amtp_appc:symbolic_destination 155
plugins:cicsa:alternate_endpoint 59
plugins:cicsa:direct_persistence 58
plugins:cicsa:display_timings 63
plugins:cicsa:ifr:cache 64
plugins:cicsa:iiop:host 58
plugins:cicsa:iiop:port 58
plugins:cicsa:mapping_file 64
plugins:cicsa:poa_prefix 63
plugins:cicsa:repository_id 64
plugins:cicsa:type_info:source 65
plugins:cicsa:use_client_password 105
plugins:cicsa:use_client_principal 104

security 189, 198
plugins:cicsa:use_client_principal_user_security 10

4
plugins:cics_appc:appc_outbound_lu_name 77, 81,

88
plugins:cics_appc:cics_destination_name 79, 88
plugins:cics_appc: segment_length 89
plugins:cics_appc:timeout 88
plugins:cics_exci:applid 72
plugins:cics_exci:check_if_cics_available 73
plugins:cics_exci:default_tran_id 73

link security 187
plugins:cics_exci:max_comm_area_length 73
plugins:cics_exci:pipe_name 72, 186
plugins:cics_exci:pipe_type 72
plugins:client_adapter:ifr:cache 158
plugins:client_adapter:repository_id 158
plugins:client_adapter:type_info:source 159

INDEX
plugins:rrs:rmname 100
POA (Portable Object Adapter) 15
POA prefix used by adapter 63
policies:giop:interop_policy

enable_principal_service_context 105
principal_service_context_id 106

policies:iiop:client_version_policy 105
policies:iiop:server_version_policy 105
pragma prefix 29
PREPCICA member 225
PresetOptions 121
principal values, mapping to z/OS user IDs 183
proxy objects 11
pthread_security_np() 109

R
RACF 193
RACF APPCPORT profiles, creating 86
RACF FACILITY class profile

READ access 186
update access 186

RACF GCICSTRN resource class 187
RACF SURROGAT class 110
RACF TCICSTRN resource class 187
RACF user profile 107
RECEIVECOUNT 70
refreshInterface() 222
refreshOperation() 222
resource manager names 100
RESSEC= parameter 187, 189
RRS

setting up 93
starting and stopping 99

run_program 30
run_program_binary 30
run_program_binary_with_tran 31
run_program_with_tran 31

S
S390 Assembler Program Variables 165
SAF Plug-In 182
sample applications 10
SEC= paramater 84
SECACPT=CONV key 195
SECACPT= parameter 81, 146
SECPRFX=YES 71
security

APPC-based considerations 191
common considerations 181
default mode 189
default mode APPC 198
EXCI-based considerations 184
link 87, 187
MRO connect 186
MRO logon 186
use_client_principal mode 189
user 87, 187

security modes
default for APPC 198
default for EXCI 189

security_none 193, 195
security_pgm 194
security_same 194, 195, 196
segment size, customizing 168
Server Adapter

access to 194
and logged on users 195
APPC based 193
APPC security modes 198
default mode EXCI requirements 71
first run 214
functions 22
graphical overview 24
locating 237
obtaining type information 25
old versions of 26
ORBname 42
plug-ins 46
programmed controlled 110
running in defalut mode 71
running mulitple 232
security for users already logged on 195
security modes 188
starting 229
stopping 231
using type_info store 217

servers 7, 9
session key

bind requests 84
session key, APPCLU profile name 85
session keys 81
session-level verification 195, 196
session security, specifying 84
SETRRS CANCEL command 99
SETSSI ADD,SUBNAME=RRS command 99
SETXCF operator commands 97
skeleton code 10
313

INDEX
SNA network
access to 81
and LUs 80

SPECIFIC connection type 72
S RRS command 99
STEPLIB 82

updating CICS region 115
SURROGAT RACF class 107
SYS1.MIGLIB 98
SYS1.SAMPLIB(ATBAPPL) definition 80, 145
System Logger and RRS 95

T
thread IDs 64
thread-level security environments 107
thread_pool

high_water_mark 53
and RECEIVECOUNT 70

initial_threads 53
thread_pool:high_water_mark 59
thread_pool:initial_threads 59
timestamps 63
TPNAME 79, 143
tran_name parameter 30
transaction processing times 63
troubleshooting 301
TypeinfoFileExtension 121
TypeinfoFileSuffix 121
type information mechanism 64
type_info store

configuration 65, 159
generating files 219
introduction 217

U
user ID

and access to BPX.SERVER 110
and ATTACHSEC=LOCAL 87
BPX.SERVER 107
for APPCLU profiles 85
UPDATE access 186

user security 87, 187
enabled on EXCI 71

V
VERIFY= parameter 81, 147
VSAM data set name, specyifing 77
VTAM SECACPT= setting 85
 314
W
WTO announce plug-in 61, 62, 135

X
XAPPC= parameter 84
XPPT= parameter 187

Z
z/OS user ID 182

	List of Figures
	List of Tables
	Preface
	Introduction
	Introduction to CORBA and Orbix
	Overview of CORBA
	Why CORBA?
	CORBA Objects
	The ORB
	CORBA Application Basics

	Overview of Orbix
	Simple Orbix Application
	Broader Orbix Environment

	Introduction to the CICS Adapters
	Overview of the CICS Server Adapter
	Role of the CICS Server Adapter
	CICS Server Adapter Processing of IDL Operations
	The CICS Server Adapter cicsraw Interface
	Unsupported IDL Types

	Overview of the Client Adapter

	Configuring the CICS Server Adapter and the Orbix Runtime Inside CICS
	Introduction to CICS Server Adapter Configuration
	A CICS Server Adapter Sample Configuration
	Configuration Summary of Adapter Plug-Ins

	CICS Server Adapter Service Configuration Details
	Configuring the CICS Server Adapter EXCI Plug-In
	Setting Up EXCI for the CICS Server Adapter
	Installing Support for IRC for the External Call Interface
	Installing Sample Orbix CICS Resource Definitions
	Updating Access Permissions for CICS Resources

	EXCI Plug-In Configuration Items

	Configuring the CICS Server Adapter APPC Plug-In
	Setting Up APPC for the CICS Server Adapter
	Defining LUs to APPC
	Defining an APPC Destination Name for the CICS LU
	Defining LUs to VTAM
	Defining the Required Resources to CICS

	Additional RACF Customization Steps for APPC
	Bind Time Security with APPC
	Protecting LUs
	Link Security & User Security with APPC

	APPC Plug-In Configuration Items

	Configuring the CICS Server Adapter RRS Plug-In
	Introduction to RRS
	Setting up RRS for the CICS Server Adapter
	RRS Plug-In Configuration Items

	Configuring the CICS Server Adapter for Client Principals
	Activating Client Principal Support
	Setting up the Required Privileges
	Additional Requirements for CICS Protocol Plug-Ins

	Configuring the Orbix Runtime inside CICS
	Customizing CICS
	Customizing Orbix Event Logging

	IDL Compiler Configuration

	Configuring the Client Adapter and the Orbix Runtime Inside CICS
	Introduction to Client Adapter Configuration
	A Client Adapter Sample Configuration
	Configuration Summary of Client Adapter Plug-Ins

	Client Adapter General Configuration
	Configuring the Client Adapter AMTP_APPC Plug-in
	Setting Up APPC for the Client Adapter
	Defining LUs to APPC
	Defining an APPC Destination Name for the Client Adapter
	Defining LUs to VTAM
	Defining the Required Resources to CICS

	Additional RACF Customization Steps for APPC
	LU-to-LU Security Verification
	Protecting LUs

	AMTP_APPC Plug-In Configuration Items

	Configuring the Client Adapter Subsystem
	Configuring the Orbix Runtime inside CICS
	Customizing CICS
	Customizing Orbix Configuration
	Customizing Orbix Event Logging
	Customizing Orbix Maximum Segment Size
	Customizing Orbix APPC Symbolic Destination

	Securing and Using the CICS Server Adapter
	Securing the CICS Server Adapter
	Security Configuration Items
	Common Security Considerations
	EXCI-Based Security Considerations
	CICS Security Mechanisms when Using EXCI
	Orbix CICS Server Adapter Security Modes for EXCI

	APPC-Based Security Considerations
	CICS Security Mechanisms when Using APPC
	Orbix CICS Server Adapter Security Modes for APPC

	Mapping IDL Interfaces to CICS
	The Mapping File
	Characteristics of the Mapping File
	Generating a Mapping File

	Using the IFR as a Source of Type Information
	Introduction to Using the IFR
	Registering IDL interfaces with the IFR
	Informing CICS Server Adapter of a New Interface in the IFR
	Using an IFR Signature Cache file

	Using type_info store as a Source of Type Information
	Introduction to Using a type_info Store
	Generating type_info Files using the IDL Compiler
	Informing CICS Server Adapter of a new type_info Store File

	Using the CICS Server Adapter
	Preparing the Server Adapter
	Starting the Server Adapter
	Stopping the CICS Server Adapter
	Running Multiple Server Adapters Simultaneously
	Using the MappingGateway Interface
	Locating CICS Server Adapter Objects Using itmfaloc
	Adding a Portable Interceptor to the CICS Server Adapter
	Developing the Portable Interceptor
	Compiling the Portable Interceptor
	Loading the Portable Interceptor into the CICS Server Adapter

	Enabling the GIOP Request Logger Interceptor
	Gathering Accounting Information in the Server Adapter
	Developing the Accounting DLL
	Compiling the Accounting DLL
	Loading the Accounting DLL into the Server Adapter

	Exporting Object References at Runtime
	Configuration Items for Exporting Object References
	Exporting Object References to a File
	Exporting Object References to Naming Service Context
	Exporting Object References to Naming Service Object Group

	Securing and Using the Client Adapter
	Securing the Client Adapter
	Security Configuration Items
	Common Security Considerations
	APPC Security Considerations

	Using the Client Adapter
	Starting the Client Adapter
	Stopping the Client Adapter
	Running Multiple Client Adapters Simultaneously
	Load Balancing with Multiple Client Adapters
	Running Two Client Adapters on the Same z/OS Host

	Appendices
	Troubleshooting
	Glossary of Acronyms

	Index

