
Orbix 6.3.8

CORBA OTS Guide:
C++

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2015. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are
trademarks or registered trademarks of Micro Focus IP Development
Limited or its subsidiaries or affiliated companies in the United States,
United Kingdom and other countries.
All other marks are the property of their respective owners.

12/16/15

Contents
Preface..v
Contacting Micro Focus .. vii

Transaction Service ...1
About Transactions..1
Transaction Managers..2

OMG OTS and X/Open XA Interfaces5
Transaction Interfaces ...5
OTS Interfaces ...6
The X/Open XA Interface..8

Getting Started with Transactions11
Application Overview ...11
Transaction Demarcation..13
Transaction Propagation and POA Policies ...14
XA Resource Manager Integration..16
Application-Specific Resources ..18
Configuration Issues..19

Transaction Demarcation and Control21
The OTS Current Object ...21
Direct Transaction Demarcation ..26

Propagation and Transaction Policies..................................29
Implicit Propagation Policies ...29
Shared and Unshared Transactions..30
Policy Meanings ..30
Example Use of an OTSPolicy..32
Example Use of a NonTxTargetPolicy ...34
Use of the ADAPTS OTSPolicy ...36
Orbix-Specific OTSPolicies ..37
Migrating from TransactionPolicies...40
Explicit Propagation...41

Using XA Resource Managers with OTS43
The XA Interface...43
XA and Multi-Threading..45
Using the Orbix XA Plug-In ...46
Associations between Transactions and Connections47
Association State Diagram..48
Using a Remote Resource Manager..49

Transaction Management ..53
Synchronization Objects...53
Transaction Identity Operations ..55
Transaction Status ..56
Transaction Relationships...58
 Orbix CORBA OTS Guide: C++ ii i

Recreating Transactions ...59

Writing Recoverable Resources .. 63
The Resource Interface ..63
Creating and Registering Resource Objects ...65
Resource Protocols ..67
Responsibilities and Lifecycle of a Resource Object.......................................75

Interoperability .. 79
Use of InvocationPolicies ..79
Use of the TransactionalObject Interface ..79
Interoperability with Orbix 3 OTS Applications ...80
Using the Orbix 3 otstf with Orbix Applications ..83

OTS Plug-Ins and Deployment Options 85
The OTS Plug-In..86
The OTS Lite Plug-In..88
The Encina Transaction Manager ...89
The itotstm Transaction Manager Service..90

Appendix OTS Management ... 93
Introduction to OTS Management ..93
TransactionManager Entity ...95
Transaction Entity ...97
Encina Transaction Log Entity ...99
Encina Volume Entity ...100
Management Events ..101

Glossary.. 103

Index.. 107
iv Orbix CORBA OTS Guide: C++

Preface
Orbix OTS is a full implementation from Micro Focus of the
interoperable transaction service as specified by the Object
Management Group. Orbix OTS complies with the following
specifications:
• CORBA 2.6
• OTS 1.2
• GIOP 1.2 (default), 1.1, and 1.0

Audience
This guide is intended to help you become familiar with the
transaction service, and shows how to develop applications with it.
This guide assumes that you are familiar with CORBA concepts,
and with C++.
This guide does not discuss every interface and its operations in
detail, but gives a general overview of the capabilities of the
transaction service and how various components fit together. For
detailed information about individual operations, refer to the
CORBA Programmer’s Reference.

Organization of this Guide
This guide is divided as follows:
“Transaction Service” provides a brief overview of the basic
concepts involved in using the transactions service.
“OMG OTS and X/Open XA Interfaces” provides an overview of the
transaction service’s interfaces. It also provides information on
the X/Open XA interfaces and how to use them to interact with
compliant resources.
“Getting Started with Transactions” is a simple example of the
steps involved in developing a client that uses the transaction
service. It discusses the basic steps required to use transactions
and the concepts behind them.
“Transaction Demarcation and Control” covers transaction
demarcation. It covers both using the transactions Current object,
which is convenient but limited, and using the TransactionFactory
and the Terminator interfaces to directly manipulate demarcation.
“Propagation and Transaction Policies” covers how to control how
the transaction is propagated to its target object through the use
of POA policies.
“Using XA Resource Managers with OTS” provides a detailed
discussion how to implement CosTransactions::Resource objects on
top of the standard X/Open XA interface to manage transactional
resources.
 Orbix CORBA OTS Guide: C++ v

“Transaction Management” covers some additional areas of
transaction management. This includes synchronization objects,
transaction identity and status operations, relationships between
transactions and recreating transactions.
“Writing Recoverable Resources” describes the
CosTransactions::Resource interface; how resource objects
participate in the transaction protocols and the requirements for
implementing resource objects.
“Interoperability” describes how the Orbix OTS interoperates with
older releases of Orbix and with other OTS implementations
including the Orbix 3 OTS.
“OTS Plug-Ins and Deployment Options” discusses the plugins that
implement the transaction service and options for deploying them.

Typographical Conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer
to the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on
the screen. For example:
#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or
path names for your particular system. For
example:
% cd /users/your_name
Note: Some command examples may use
angle brackets to represent variable values you
must supply. This is an older convention that is
replaced with italic words or characters.
 vi Orbix CORBA OTS Guide: C++

Keying Conventions
This guide may use the following keying conventions:

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:
• The Product Updates section of the Micro Focus SupportLine

Web site, where you can download fixes and documentation
updates.

• The Examples and Utilities section of the Micro Focus Support-
Line Web site, including demos and additional product docu-
mentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page, then click Support.
Note:
Some information may be available only to customers who have
maintenance agreements.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX command
shell prompt for a command that does not
require root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS,
Windows NT, Windows 95, or Windows 98
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
Orbix CORBA OTS Guide: C++ vii

http://www.microfocus.com

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.
Also, visit:
• The Micro Focus Community Web site, where you can browse

the Knowledge Base, read articles and blogs, find demonstra-
tion programs and examples, and discuss this product with
other users and Micro Focus specialists.

• The Micro Focus YouTube channel for videos related to your
product.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
 viii Orbix CORBA OTS Guide: C++

http://www.microfocus.com
http://www.microfocus.com

You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp
Orbix CORBA OTS Guide: C++ ix

http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 x Orbix CORBA OTS Guide: C++

Transaction Service
This chapter describes the transaction processing capabilities of Orbix,
showing how to use the Object Transaction Service (OTS) for transaction
demarcation, propagation and integration with resource managers.
Integration with X/Open XA compliant resource managers is described.

About Transactions

What is a transaction?
Orbix gives separate software objects the power to interact freely
even if they are on different platforms or written in different
languages. Orbix adds to this power by permitting those
interactions to be transactions.
What is a transaction? Ordinary, non-transactional software
processes can sometimes proceed and sometimes fail, and
sometimes fail after only half completing their task. This can be a
disaster for certain applications. The most common example is a
bank fund transfer: imagine a failed software call that debited one
account but failed to credit another. A transactional process, on
the other hand, is secure and reliable as it is guaranteed to
succeed or fail in a completely controlled way.

Transaction support in Orbix
To support the development of object-oriented, distributed,
transaction-processing applications, Orbix offers:
• An implementation of the Object Management Group’s Object

Transaction Service (OMG OTS).
• Integration with resource managers supporting the X/Open

XA interface.
• A pluggable architecture that supports both a lightweight OTS

implementation and a full recoverable two-phase-commit
(2PC) implementation.

Example
The classical illustration of a transaction is that of funds transfer in
a banking application. This involves two operations: a debit of one
account and a credit of another (perhaps after extracting an
appropriate fee). To combine these operations into a single unit of
work, the following properties are required:
• If the debit operation fails, the credit operation should fail,

and vice-versa; that is, they should both work or both fail.
• The system goes through an inconsistent state during the

process (between the debit and the credit). This inconsistent
state should be hidden from other parts of the application.
 Orbix CORBA OTS Guide: C++ 1

• It is implicit that committed results of the whole operation are
permanently stored.

Properties of transactions
The following points illustrate the so-called ACID properties of a
transaction.

Thus a transaction is an operation on a system that takes it from
one persistent, consistent state to another.

Transaction Managers

Purpose of a Transaction Manager
Most resource managers, for example databases and message
queues, provide support for native transactions. However, when
an application wants two or more resource managers to be part of
the same transaction some third party must provide the necessary
coordination to ensure the ACID properties are guaranteed for the
distributed transaction. This is where the concept of an transaction
manager that is independent of the individual resource manager
comes in.
The application uses the transaction manager to create the
transaction. Each resource manager accessed during the
transaction becomes a participant in the transaction. Then when
the application completes the transaction, either with a commit or
rollback request, the transaction manager communicates with
each resource manager.

Two-phase commit protocol
When there are two of more participants involved in a transaction
the transaction manager uses a two-phase-commit (2PC) protocol
to ensure that all participants agree on the final outcome of the
transaction despite any failures that may occur. Briefly the 2PC
protocol works as follows:

Atomic A transaction is an all or nothing
procedure – individual updates are
assembled and either committed or
aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes
a system from one consistent state to
another.

Isolated While a transaction is executing, its
partial results are hidden from other
entities accessing the transaction.

Durable The results of a transaction are
persistent.
 2 Orbix CORBA OTS Guide: C++

• In the first phase, the transaction manager sends a “prepare”
message to each participant. Each participant responds to this
message with a vote indicating whether the transaction should
be committed or rolled back.

• The transaction manager collects all the prepare votes and
makes a decision on the outcome of the transaction. If all
participants voted to commit the transaction may commit.
However if a least one participant voted to rollback the
transaction is rolled back. This completes the first phase.

• In the second phase the transaction manager sends either
commit or rollback messages to each participant.

The 2PC protocol guarantees the ACID properties despite any
failures that may occur. Usually the transaction manager uses a
log to record the progress of the 2PC protocol so that messages
can be replayed during recovery.

One-phase-commit protocol
If there is only one participant in the transaction the transaction
manager can use a one-phase-commit (1PC) protocol instead of
the 2PC protocol which can be expensive in terms or the number
of messages sent and the data that must be logged. The 1PC
protocol essentially delegates the transaction completion to the
single resource manager. Orbix supports this 1PC protocol which
allows developers to make use of the Orbix transaction manager
without suffering the overheads associated with the 2PC protocol.
By making use of the OTS and XA interfaces an application can be
easily extended to support multiple resource managers within a
transaction easily.
Orbix CORBA OTS Guide: C++ 3

 4 Orbix CORBA OTS Guide: C++

OMG OTS and X/Open
XA Interfaces
The OMG OTS provides interfaces to manage the demarcation of
transactions and the propagation of transaction contexts. With the
X/Open XA interface, integration with compliant resource managers such
as databases and message queues is provided.

Transaction Interfaces

Purpose
The OMG OTS provides interfaces to manage the demarcation of
transactions (creation and completion), the propagation of
transaction contexts to the participants of the transaction and
interfaces to allow applications to participate in the transaction.
With the X/Open XA interface, integration with compliant resource
managers such as databases and message queues is provided.
Figure 1 shows these areas of transaction management.

Figure 1: OTS and XA

OTS Transaction Service

Resource
Manager

(Database)

Transactional
Clients

(e.g., Teller)

Transactional
Application
(e.g., Bank)

Resource
Manager
(Message
Queue)

Transactional
Application
(e.g., Bank)

Transaction Demarcation

CosTransactions::Current
begin(), commit(),
rollback(), ...

Transaction Propagation

CosTransactions::OTSPolicy
REQUIRES, ADAPTS, ...

Resource Manager Integration

X/Open XA &
CosTransactions::Resource

Transaction Management

TransactionFactory,
Control, Coordinator,

Terminator, ...
 Orbix CORBA OTS Guide: C++ 5

Transaction Demarcation
Transaction demarcation is where the application sets the
boundaries of the transaction. Typically this is done using the OTS
Current interface; invoking the begin() operation at the start of
the transaction and either commit() or rollback() at the end of the
transaction. An alternative to using the Current interface is to
create transactions directly using the TransactionFactory interface
and commit or rollback the transactions using the Terminator
interface.

Transaction Propagation
Propagation refers to the passing of information related to the
transaction to the application objects that are participants in the
transaction. When the Current interface is used for transaction
demarcation this propagation takes place transparently and is
controlled by a number of POA policies. Transactions created using
the TransactionFactory interface must be propagated by adding an
extra parameter to the operation.

Resource Manager Integration
Integration with resource managers such as databases is done
using the XA interface. Alternatively an application may use the
OTS Resource interface to provide integration with proprietary
resource managers.

Transaction Management
The OTS interfaces also provide operations for general transaction
management. These include, setting timeouts, registering
resource objects and synchronization objects, comparing
transactions and getting transaction names

OTS Interfaces

Supported OTS Interfaces
The following is a list of the main interfaces supported by the OTS.
All interfaces are part of the IDL module CosTransactions. For
more details on these interfaces, refer to the CORBA
Programmer’s Reference.
 6 Orbix CORBA OTS Guide: C++

Table 1: OTS Interfaces

Interface Purpose

Control The return type of
TransactionFactory::create(). It
provides access to the two controllers
of the transactions, the Coordinator
and the Terminator.

Coordinator Provides operations to register objects
that participate in the transaction.

Current A local interface that provides the
concept of a transaction to the current
thread of control. The Current interface
supports a subset of the operations
provided by the Coordinator and
Terminator interfaces.

RecoveryCoordinator Used in certain failure cases to
complete the transaction completion
protocol for a registered resource
object.

Resource Represents a recoverable participant in
a transaction. Objects supporting this
interface are registered with a
transaction’s coordinator, and are then
invoked at key points in the
transaction’s completion.

SubtransactionAware
Resource

Represents a participant that is aware
of nested transactions. Nested
transactions are not supported in this
release.

Synchronization Represents a non-recoverable object
allowing application specific operations
to occur both before and after
transaction completion.

Terminator Provides a means of directly
committing or rolling back a
transaction.

TransactionalObject This interface has been deprecated
and replaced with transaction policies
(see “Propagation and Transaction
Policies”).

TransactionFactory Provides a means of directly creating
top-level transactions.
Orbix CORBA OTS Guide: C++ 7

OTS Transaction Modes
When using the OTS interfaces for transaction demarcation and
propagation, there are two modes of use:

The preferred mode for most applications is the indirect/implicit
mode. The direct/explicit provides more flexibility but is more
difficult to manage (see “Direct Transaction Demarcation” on
page 26 and “Explicit Propagation” on page 41) for more details.

The X/Open XA Interface

XA Interfaces
The X/Open XA interface is a C API between a transaction
manager and a resource manager (for example, a database). The
C API provides functions for opening and closing connections to
the resource manager (xa_open() and xa_close()), managing
associations between the current connection and global
transactions (xa_start() and xa_end()), transaction protocols
(xa_prepare(), xa_commit(), xa_rollback() and xa_forget()), and
functions to support recovery (xa_recover()).

Integration with OTS
Integration between XA compliant resource managers and the
OTS is provided by several interfaces in the XA module, as
detailed in the following table.

Indirect/Implicit In the indirect/implicit mode transaction
are created, committed and rolled back
using the Current interface. Propagation
takes place automatically depending on
the policies in the target object’s POA.

Direct/Explicit In the direct/explicit mode transactions
are created using the TransactionFactory
and committed or rolled back using the
Terminator object. Propagation is done
by adding a parameter (for example, the
transaction’s control object) to each IDL
operation.

Table 2: XA interfaces.

Interface Purpose

Connector Provides a means of getting
CurrentConnection and
ResourceManager objects.

CurrentConnection Represents the current XA
connection to a resource
manager.
 8 Orbix CORBA OTS Guide: C++

BeforeCompletionCallback Allows an application to be called
before the completion of a
transaction.

ResourceManager Use to register and unregister
BeforeCompletionCallback objects.

Table 2: XA interfaces.

Interface Purpose
Orbix CORBA OTS Guide: C++ 9

 10 Orbix CORBA OTS Guide: C++

Getting Started with
Transactions
This chapter illustrates the Object Transaction Service (OTS) by way of
an example application. It includes the basic steps needed to develop an
application with the OTS.

Application Overview

Funds transfer application
The example application is that of funds transfer between two
bank accounts. Figure 2 shows the application. The client has a
reference to two objects representing two accounts. The account
objects are implemented directly on top of an XA-compliant
database and use SQL to access the database. This example
shows the source and destination accounts using different
databases, however they could both be using the same database.

Interface definition
The interface for the account objects is defined in IDL as follows:

Figure 2: Example OTS Application – Funds Transfer

SQL/XA

SQL/XA

Database
A

Client

Src
Acc

Dest
Acc

$

Database
B

// IDL
module Bank
{
 typedef float CashAmount;
 interface Account
 {
 exception InsufficientFunds {};
 void deposit(in CashAmount amt);
 void withdraw(in CashAmount amt)
 raises (InsufficientFunds);
 };
 ...
};
 Orbix CORBA OTS Guide: C++ 11

TransactionalObject interface
deprecated
Readers familiar with version 1.1 of the OTS specification (used by
OrbixOTM and Orbix 3) will notice that the Account interface does
not inherit from the CosTransactions::TransactionalObject
interface. The use of that interface to mark objects as
transactional has been deprecated in favor of using POA policies in
version 1.2 of the specification. The TransactionalObject interface
is still supported for backward compatibility with the OTS in
OrbixOTM and Orbix 3. See “Use of the TransactionalObject
Interface” on page 79 for more details.
Since the TransactionalObject interface is deprecated, application
developers no longer have to change the IDL used by their
applications when adding transactional capabilities.

Transferring funds
Given a source and destination account, the funds transfer is
performed by invoking the withdraw() operation on the source
account followed by invoking the deposit() operation on the
destination account. The application will look something like the
following:

Completing the application
To make this a transactional application we need three more
steps:
1. The funds transfer application needs to be wrapped in a

transaction to ensure the ACID properties. This is covered in
“Transaction Demarcation” on page 13.

2. The application must make sure the transaction is propagated
to the two account objects during the invocations of the
deposit() and withdraw() operations. This is covered in
“Transaction Propagation and POA Policies” on page 14

3. The implementation of the account objects must be integrated
with an XA compliant database. This is covered in “XA
Resource Manager Integration” on page 16.

// C++
Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount);
dest_acc->deposit(amount);
 12 Orbix CORBA OTS Guide: C++

Transaction Demarcation

Demarcation using OTS current object
Transaction demarcation refers to setting the boundaries of the
transaction. The simplest way to do this is to use the OTS current
object. The following are the steps involved:
1. Obtain a reference to the OTS current object from the ORB.
2. Create a new transaction.
3. Perform the funds transfer.
4. Complete the transaction by either committing it or rolling it

back.
More information on transaction demarcation including other ways
of creating, committing and rolling back transactions is covered in
“Transaction Demarcation and Control”.

Obtain a reference to the OTS current
object from the ORB
The OTS current object supports the CosTransactions::Current
interface and a reference to the object is obtained by calling the
ORB operation resolve_initial_references(“TransactionCurrent”).
Note that the file CosTransactions.hh must be included to use the
interfaces defined in the CosTransactions module. Error handling
has been omitted for clarity:

Create a new transaction
The next step is the creation of a new top-level transaction. This is
done by invoking begin() on the OTS current object:

If the begin() succeeds, a new transaction is associated with the
current thread of control.

// C++
...
#include <CosTransactions.hh>
...
int main(int argc, char** argv)
{
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 CORBA::Object_var obj =

orb->resolve_initial_references(“TransactionCurrent”);
 CosTransactions::Current_var tx_current =
 CosTransactions::Current::_narrow(obj);
 ...
}

// C++
tx_current->begin();
Orbix CORBA OTS Guide: C++ 13

Perform the funds transfer
The funds transfer is the same as shown in the application
overview. There are no changes for transaction management. The
code is reproduced here for completeness:

Complete the transaction by either
committing it or rolling it back
Once the work has been done, we need to complete the
transaction. Most of the time the application simply wants to
attempt to commit the changes made: this is done by invoking the
commit() operation on the OTS current object:

The commit() operation only attempts to commit the transaction. It
may happen that due to system failures or other reasons the
transaction cannot be committed; in this case the
TRANSACTION_ROLLEDBACK system exception is raised.
The parameter passed to commit() is a boolean specifying whether
heuristics outcomes should be reported to the client (see
“Heuristic Outcomes” on page 71 for details on heuristic
outcomes). In this example we do not wait for heuristic outcomes.
If instead of attempting a commit the application wants to roll
back the changes made, the operation rollback() is invoked on
the OTS current object:

Transaction Propagation and POA Policies

Propagating the transaction
The funds transfer application invokes the withdraw() and
deposit() operations within the context of a transaction associated
with the current thread of control. However the transaction needs
to be propagated to the target objects to ensure that any updates
they make are done in the context of the application’s transaction.

// C++
Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount);
dest_acc->deposit(amount);

// C++
try {
 tx_current->commit(IT_false)
} catch (CORBA::TRANSACTION_ROLLEDBACK&) {
 // Transaction has been rolled back.
}

// C++
tx_current->rollback()
 14 Orbix CORBA OTS Guide: C++

POA Policies
To ensure propagation of transaction contexts the target objects
must be placed in a POA with specific OTS POA policies. In
particular the POA must use one of the OTSPolicy values REQUIRES
or ADAPTS. The following code shows the creation of a POA with the
REQUIRES OTSPolicy and the activation of an account object in the
POA.

OTSPolicy values
There are three OTSPolicy values: REQURIES, ADAPTS and FORBIDS.
REQUIRES specifies that the object must be invoked within a
transaction; ADAPTS allows the object to be invoked both within
and without a transaction; FORBIDS specifies that the object must
not be invoked within a transaction. See “Propagation and
Transaction Policies” for a full discussion of POA and client policies
relating to transaction propagation. Support for the deprecated

// C++

CORBA::ORB_var orb = ...

// Create a policy object for the REQUIRES OTS Policy.
CORBA::Any policy_val;
policy_val <<= CosTransactions::REQUIRES;
CORBA::Policy_var tx_policy =
 orb->create_policy(CosTransactions::OTS_POLICY_TYPE,
 policy_val);

// Add OTS policy to policy list (just 1 policy in this case).
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(tx_policy);

// Get a reference to the root POA.
CORBA::Object_var obj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =
 PortableServer::POA::_ narrow(obj);

// Create a new POA with the OTS Policy.
PortableServer::POA_var POA tx_poa =
 root_poa->create_POA("REQUIRES TX",
 root_poa->the_POAManager(),
 policies);

// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object
//
// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl* servant = new AccountImpl(...);
PortableService::ObjectId_var id =
 tx_poa->activate_object(servant);
obj = tx_poa->servant_to_reference(servant);
Bank::Account_var account = Bank::Account::_narrow(obj);
Orbix CORBA OTS Guide: C++ 15

TransactionalObject interface is discussed in “Use of the
TransactionalObject Interface” on page 79.

XA Resource Manager Integration

Process of using an XA Resource
Manager
Integrating an XA compliant resource manager with OTS managed
transactions involves three steps:
1. Setting up configuration variables for the resource manager.
2. Application initialization.
3. Accessing the database during an OTS transaction.
Full details are in “Using XA Resource Managers with OTS”.

Resource Manager Configuration
Each resource manager used by an application requires
configuration. The configuration is placed in a namespace that is
passed to the create_resource_manager() operation during
application initialization. The minimum configuration is the
specification of the resource manager’s open-string. This is a
resource manager specific string that is passed to the xa_open()
call and contains sufficient information to create an XA connection
to the database. For example this can contain user name and
password details.
The following example shows the configuration for an Oracle
database using the xa_resource_managers:oracle namespace. The
thread_model configuration variable specifies scope of an XA
connection (either thread or process):

Application Initialization
Applications using XA resource managers must include the file
omg/XA.hh to access the interfaces in the XA module. During
application initialization ResourceManager and CurrentConnection
objects are created to represent the resource manager being
integrated. This is done by getting a reference to the Connector

xa_resource_managers:oracle:thread_model = “PROCESS”;
xa_resource_managers:oracle:open_string =
 “Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+SqlNet=osol”
 16 Orbix CORBA OTS Guide: C++

object (by passing “XAConnector” to
resolve_initial_references()) and calling
create_resource_manager():

The create_resource_manager() operation is passed the resource
manager's name, XA switch (xaosw is Oracle's XA switch),
open-string and close string as well as flags that affect the
behavior of the resource manager. It returns a reference to the
ResourceManager object and a reference to the
CurrentConnection object (as an out parameter).

Accessing the Database within an OTS
Transaction
The application code used to read and write to the database is the
same as for a normal application with the following exceptions:
1. Before each access to the database the start() operation

must be called on the XA Connection object to associate the
connection with the current transaction.

2. After the database access the end() operation must be called
on the XA Connection object to remove the association with
the current transaction.

3. Resource manager operations related to transaction
management such as the embedded SQL operations BEGIN,
COMMIT, or ROLLBACK must not be used.

// C++
...
CORBA::ORB_var orb = ...

// Get reference to the XAConnector object.
CORBA::Object_var xa_connector_obj =
 orb->resolve_initial_references("XAConnector");
 XA::Connector_var xa_connector =
 XA::Connector::_narrow(xa_connector_obj);

// Get XA Connection object for the resource manager.
XA::CurrentConnection_var current_connection;
XA::ResourceManager_var rm =
 xa_connector->create_resource_manager(
 "xa_resource_managers:oracle",
 xaosw, "",
 current_connection);
Orbix CORBA OTS Guide: C++ 17

The following shows how integration with an XA-compliant
database is achieved using embedded SQL:

Application-Specific Resources

Resource interface operations
The CosTransactions::Resource interface provides a mechanism for
applications to become involved in the commit and rollback
protocol of a transaction. The Resource interface provides five
operations that are called at key points during the commit or
rollback protocols:
• prepare()
• commit()
• rollback()
• commit_one_phase()
• forget()

// C++
void AccountImpl::deposit(float amt)
{
 // Get the coordinator and otid for the current transaction.
 CosTransactions::Current_var tx_current = ...
 CosTransactions::Control_var control =
 tx_current->get_control();
 CosTransactions::Coordinator_var tx =
 control->get_coordinator();
 CosTransactions::PropagationContext_var ctx =
 tx->get_txcontext();
 const CosTransactions::otid_t& otid = ctx->current.otid;

 // Associate current transaction with the XA connection
 // to the database.
 XA:CurrentConnection_var current_connection = ...
 current_connection->start(tx, otid);

 EXEC SQL BEGIN DECLARE SECTION
 unsigned long acc_id = m_accId;
 float balance = 0.0;
 EXEC SQL END DECLARE SECTION

 // Get the current balance.
 EXEC SQL SELECT BALANCE
 INTO :balance
 FROM ACCOUNTS
 WHERE ACC_ID = :acc_id;

 // Update balance.
 balance += amt;
 EXEC SQL UPDATE ACCOUNTS
 SET BALANCE = :balance
 WHERE ACC_ID = :acc_id;

 // Dissociate the current transaction from the XA
 // connection to the database.
 current_connection->end(tx, otid, IT_true);
}

 18 Orbix CORBA OTS Guide: C++

Implementing resource objects
An application implements a resource object that supports the
Resource interface and registers an instance of the object with a
transaction using the register_resource() operation provided by
the Coordinator interface. Resource object implementations are
responsible for cooperating with the OTS to ensure the ACID
properties for the whole transaction. In particular resource objects
must be able to recover from failures.
The implementation of resource objects is discussed in detail in
“Writing Recoverable Resources”.

Configuration Issues

Issues
Before an application using OTS can run there are a number of
configuration issues. These are concerned with loading the
appropriate plug-ins and setting up the client and server bindings
to enable implicit propagation of transactions.

Loading the OTS plug-in
For server applications, the OTS plug-in must be loaded explicitly
by including it in the orb_plugins configuration variable. For
example:
orb_plugins = [..., “ots”];

The client and server bindings are controlled with the
configuration variables binding:client_binding_list and
binding:server_binding_list respectively. The settings for both
variables need to take account of the OTS for potential bindings.
For example, to be considered for the IIOP/GIOP and
collocated-POA bindings the variables must be set as follows:
binding:client_binding_list = [“OTS+POA_Coloc”,
 “OTS+GIOP+IIOP”,
 “POA_Coloc”,
 “GIOP+IIOP”];

binding:server_binding_list = [“OTS”, “”];

Other configuration variables can be used to alter the
characteristics of your application. These are covered in
“Configuration Summary”.
Orbix CORBA OTS Guide: C++ 19

 20 Orbix CORBA OTS Guide: C++

Transaction
Demarcation and
Control
The most convenient means of demarcating transactions is to use the OTS
Current object. Direct transaction demarcation using the
TransactionFactory and Terminator interfaces provide more flexibility
but is more difficult to manage.

The OTS Current Object

Current Interface
The OTS Current object maintains associations between the
current thread of control and transactions. The Current interface is
defined as follows:

// IDL (in module CosTransactions)
local interface Current : CORBA::Current {

 void begin()
 raises(SubtransactionsUnavailable);

 void commit(in boolean report_heuristics)
 raises(NoTransaction, HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises(NoTransaction);

 void rollback_only()
 raises(NoTransaction);

 Status get_status();

 string get_transaction_name();

 void set_timeout(in unsigned long seconds);
 unsigned long get_timeout();

 Control get_control();

 Control suspend();

 void resume(in Control which)
 raises(InvalidControl);
};
 Orbix CORBA OTS Guide: C++ 21

Threads and transactions
The OTS Current object maintains the association between threads
and transactions. This means the same OTS Current object can be
used by several threads. Figure 3 shows the relationship between
threads, the OTS Current object, and the three objects that
represent a transaction (Control, Coordinator and Terminator).

Getting a Reference to the OTS Current
Object
A reference to the OTS Current object is obtained by calling
resolve_initial_references() passing “TransactionCurrent” as the
parameter and narrowing the result to CosTransactions::Current.
For example:

The Current interface is declared as local which means references
to the Current object cannot be passed as parameters to IDL
operations or passed to operations such as object_to_string().

Figure 3: Thread and Transaction Associations

Thread A

Thread B

Current

Control A

Coordinator A

Terminator A

Control B

Terminator B

Coordinator B

// C++
CosTransactions::Current_var tx_current;
try {
 CORBA::ORB_var orb = ...
 CORBA::Object_var obj =

orb->resolve_initial_references("TransactionCurrent");

 tx_current = CosTransactions::Current::_narrow(obj);
}
catch (CORBA::SystemException& ex)
{
 // Error handling.
 ...
}

 22 Orbix CORBA OTS Guide: C++

Creating Transactions
The begin() operation is used to create a new transaction and
associate the new transaction with the current thread of control. If
there is no current transaction a top-level transaction is created;
otherwise a nested transaction is created (see “Nested
Transactions” on page 25).
The following code creates a new transaction:

Committing the Current Transaction
The commit() operation attempts to commit the current
transaction, if any, and removes the current thread/transaction
association. If the commit() operation returns normally the
transaction was successfully committed. However if the
TRANSACTION_ROLLEDBACK system exception is raised the transaction
has been rolled back. In both cases the transaction is
disassociated with the current thread of control.

// C++
CosTransactions::Current_var tx_current = ...
try
{
 tx_current->begin();
}
catch (CosTransactions::SubtransactionsUnavailable& ex)
{
 // Already in a transaction and nested transaction are

not
 // supported.
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}

Orbix CORBA OTS Guide: C++ 23

For example, the following code attempts to commit the current
transaction:

If there is no current transaction the
CosTransactions::NoTransaction exception is raised.
The commit() operation takes a boolean parameter that indicates
whether reporting of heuristic exceptions is permitted. Heuristic
exceptions occur when a there is a conflict or potential conflict
between the outcome decided by the transaction coordinator and
the outcome performed by one or more resource managers (see
“Heuristic Outcomes” on page 71 for more details). If a value of
true is passed, the application must be prepared to catch the
HeuristicMixed and HeuristicHazard exceptions; if a value of false
is passed these exceptions are never raised.

Rolling Back the Current Transaction
The rollback() operation rolls back the current transaction, if any,
and removes the current thread/transaction association. For
example, the following code rolls back the current transaction:

// C++
CosTransactions::Current_var tx_current = ...
try
{
 // Attempt to commit the current transaction.
 tx_current->commit(IT_false);
}
catch (CORBA::TRANSACTION_ROLLEDBACK&)
{
 // The transaction was rolled back.
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}
catch (CosTransactions::NoTransaction& ex)
{
 // There was no transaction to commit.
}

// C++
CosTransactions::Current_var tx_current = ...
try
{
 tx_current->rollback();
}
catch (CORBA::SystemException& ex)
{
 // Error handling...
}
catch (CosTransactions::NoTransaction& ex)
{
 // There was no transaction to commit.
}

 24 Orbix CORBA OTS Guide: C++

If there is no current transaction the
CosTransactions::NoTransaction exception is raised.
The rollback_only() operation may also be used to mark a
transaction to be rolled back. This operation does not actively
rollback the transaction, but instead prevents it from ever being
committed. This can be useful, for example, to ensure the current
transaction will be rolled back during a remote operation. Again,
the NoTransaction exception is raised if there is no current
transaction.

Nested Transactions
Nested transactions, also known as sub-transactions, provide a
way of composing applications from a set of transactions each of
which can fail independently of each other. Nested transactions
form a hierarchy known as a transaction family. No updates are
made permanent until the top-level transaction commits.
When using the Current object, a nested transaction is created by
calling begin() when there is already a transaction associated with
the current thread of control. When nested transaction is
committed or rolled back, the thread transaction association
reverts back to the parent transaction.

Note: Nested transactions are not supported in this release of Orbix.

Timeouts
The set_timeout() operation sets the timeout in seconds for
subsequent top-level transactions. It does not set the timeout for
the current transaction. Passing a value of 0 means subsequent
top-level transactions will never timeout.
If set_timeout() is not called the default timeout is taken from the
plugins:ots:default_transaction_timeout configuration variable.
The get_timeout() operation returns the current timeout in
seconds for subsequent top-level transactions. It does not return
the timeout for the current transaction.
For example, the following code sets the timeout for subsequent
top level transactions to 30 seconds:

Suspending and Resuming Transactions
The suspend() operation temporarily removes the association
between the current thread of control and the current transaction
if any. Calling suspend() returns a reference to a control object for
the transaction. The transaction can be resumed later by calling
the resume() operation passing in the reference to the control
object.

// C++
CosTransactions::Current_var tx_current = ...
tx_current->set_timeout(30);
Orbix CORBA OTS Guide: C++ 25

Suspending a transaction is useful if it is necessary to perform
work outside of the current transaction. For example:

The resume() operation raises the CosTransactions::InvalidControl
exception if the transaction represented by the control object
cannot be resumed.
Sometimes the work done during the transaction’s suspend state
can be work on a different transaction. Thus, suspend() and
resume() give you a way to work on multiple transactions within
the same thread of control.

Miscellaneous Operations
The get_status() and get_transaction_name() operations provide
information on the current transaction. The get_control()
operations returns the Control object for the current transaction or
nil if there is no current transaction. This is used to provide access
to the Coordinator and Terminator objects for more advanced
control. See “Transaction Management” for more details

Direct Transaction Demarcation

Using the transaction factory to create
transactions
The alternative to using the OTS Current object is to use the
transaction factory directly to create transactions.

// C++
CosTransactions::Current_var tx_current = ...
tx_current->begin();
account->deposit(100.0);

// Suspend the current transaction.
CosTransactions::Control_var control =
 tx_current->suspend();

// Do some non-transactional work.
...

// Resume the transaction.
tx_current->resume(control);

tx_current->commit(IT_true);
 26 Orbix CORBA OTS Guide: C++

Example
The following code shows the creation of a new top-level
transaction:

The first step is to obtain a reference to the transaction factory
object. This is done by calling resolve_initial_references()
passing a value of “TransactionFactory” and narrowing the result
to CosTransactions::TransactionFactory.
The create() operation creates a new top-level transaction and
returns a control object representing the new transaction.
create() is passed the timeout in seconds for the transaction. A
value of 0 means there is no timeout.
To complete a transaction created using the transaction factory,
the terminator object is used. The terminator object is obtained by
calling get_terminator() on the control object. The Terminator
interface provides the commit() and rollback() operations. These
are the same as the ones provided by the Current interface except
they do not raise the NoTransaction exception.

Example of a commit
The following shows the attempted commit of a transaction using
the direct approach:

// C++
//
// Get a reference to the transaction factory.
CORBA::ORB_var orb = ...
CORBA::Object_var obj =
 orb->resolve_initial_references("TransactionFactory");
CosTransactions::TransactionFactory_var tx_factory =
 CosTransactions::TransactionFactory::_narrow(obj);

// Create a transaction with a timeout of 60 seconds.
CosTransactions::Control_var control =
 tx_factory->create(60);

// C++
//
try {
 CosTransactions::Terminator_var term =
 control->get_terminator();
 term->commit(IT_true);
} catch (CORBA::TRANSACTION_ROLLEDBACK&){
 // Transaction has been rolled back.
}

Orbix CORBA OTS Guide: C++ 27

 28 Orbix CORBA OTS Guide: C++

Propagation and
Transaction Policies
This chapter describes how to control transfer of the transaction to the
target object using POA policies or explicitly.

Implicit Propagation Policies

Implicit and Explicit Propagation
Propagation refers to the transfer of the transaction to the target
object during an invocation.
For transactions created using the OTS Current object ,
propagation is implicit. That is, the application does not have to
change the way the object is invoked in order for the transaction
to be propagated. Implicit propagation is controlled using POA
policies.
For transactions created directly via the TransactionFactory
reference, explicit propagation must be used.

Policies for implicit propagation
For implicit propagation, there are two POA policies and one client
policy that affect the behavior of invocations with respect to
transactions.
The POA policies are:
• OTSPolicy
• InvocationPolicy
Both policies allow an object to set requirements on whether the
object is invoked in the context of a transaction and transaction
model being used.
The client OTS policy is:
• NonTxTargetPolicy

This alters the client’s behavior when invoking on objects that do
not permit transactions.
Note: These three policies replace the deprecated
TransactionPolicy and the use of the deprecated
TransactionalObject interface both of which are still supported in
this release. See “Migrating from TransactionPolicies” on page 40
and “Use of the TransactionalObject Interface” on page 79 for
more details.
 Orbix CORBA OTS Guide: C++ 29

Shared and Unshared Transactions

InvocationPolicy transaction models
The InvocationPolicy deals with the transaction model supported
by the target object. There are two transaction models:
• shared
• unshared

Shared model
The shared model is the familiar end-to-end transaction where the
client and the target object both share the same transaction. That
is, an invocation on an object within a shared transaction is
performed within the context of the transaction associated with
the client.

Unshared model
An unshared transaction is used for asynchronous messaging
where different transactions are used along the invocation path
between the client and the target object. Here, the target object
invocation is performed within the context of a different
transaction than the transaction associated with the client. Hence,
the client and target object does not share the same transaction.
This model is required since with asynchronous messaging it is not
guaranteed that the client and server are active at the same time.
Orbix does not support unshared transactions in this release. They
are included in the following discussion for completeness only.

Policy Meanings

The three standard OTSPolicy values
The OTSPolicy has three possible standard values plus additional
two values specific to Orbix. The Orbix-specific values are
discussed in “Orbix-Specific OTSPolicies” on page 37; the standard
values and their meanings are:

REQUIRES This policy is used when the target object always
expects to be invoked within the context of a
transaction. If there is no transaction the
TRANSACTION_REQUIRED system exception is raised.
This policy guarantees that the target object is
always invoked within a transaction.
 30 Orbix CORBA OTS Guide: C++

Objects with the REQUIRES or ADAPTS OTSPolicy are also known as
transactional objects since they support invocations within
transactions; objects with the FORBIDS OTSPolicy or no OTSPolicy
at all are known as non-transactional objects since they do not
support invocations within transactions.
For an example of using an OTSPolicy see “Example Use of an
OTSPolicy” on page 32 below.

The two NonTxTargetPolicy values
The default behavior for a client that invokes on an object within a
transaction where the target object has the FORBIDS OTSPolicy (or
where the object does not have any OTSPolicy, since FORBIDS is the
default) is for the INVALID_TRANSACTION exception to be raised. This
behavior can be altered with the NonTxTargetPolicy. The policy
values and their meanings are:

Setting the policies
As with all client policies, there are four ways in which they may
be set:
1. Using configuration. For the NonTxTargetPolicy the variable to

set is policies:non_tx_target_policy.
2. Set the policy on the ORB using the CORBA::PolicyManager

interface.

FORBIDS This policy is used when the target object does not
permit invocations performed within the context of
a transaction. If a transaction is present the
INVALID_TRANSACTION system exception is raised.
This policy guarantees that the target object is
never invoked within a transaction. This is the
default policy.

ADAPTS This policy is used when the target object can
accept both the presence and absence of a
transaction. If the client is associated with a
transaction, the target object is invoked in the
context of the transaction; otherwise the target
object is invoked without a transaction. This policy
guarantees that the target object is invoked
regardless of whether there is a transaction or not.
Here, the target object adapts to the presence or
not of a transaction.

PREVENT The invocation is prevented from proceeding and
the INVALID_TRANSACTION system exception is raised.
This is the default behavior

PERMIT The invocation proceeds but the target object is not
invoked within the context of the transaction. This
satisfies the target object’s requirements and allows
the client to make invocations on non-transactional
objects within a transaction.
Orbix CORBA OTS Guide: C++ 31

3. Set the policy for the current invocation using the
CORBA::PolicyCurrent interface.

4. Set the policy on the target object using the
CORBA::Object::_set_policy_overrides() operation.

For more information on client policies see the chapter “Using
Policies” in the CORBA Programmer’s Guide. For an example of
using a NonTxTargetPolicy see “Example Use of a
NonTxTargetPolicy” on page 34 below.
Note that since the default OTSPolicy is FORBIDS, using the PREVENT
NonTxTargetPolicy could result in previously working code
becoming unworkable due to invocations been denied. The
PREVENT policy should be used with care.

The three InvocationPolicy values
Finally, the choice of which transaction model (shared or
unshared) that an object supports is done using the
InvocationPolicy. This has three values:

Note that the UNSHARED and EITHER InvocationPolicies cannot be
used in combination with the FORBIDS and ADAPTS OTSPolicies.
Attempting to create a POA with these policy combinations results
in the PortableServer::InvalidPolicy exception being raised.

Example Use of an OTSPolicy

Steps to create an object with an
OTSPolicy
The following are the steps to create an object with a particular
OTS policy:
1. Create a CORBA Policy object that represents the desired OTS

policy. This is done by calling the ORB operation
create_policy() passing in the value
CosTransactions::OTS_POLICY_VALUE as the first parameter and
the policy value (encoded as an any) as the second parameter.

2. Create a POA that includes the OTSPolicy in its policy list. This
is done by calling create_POA().

3. Create an object using the new POA.

SHARED The target object supports only shared
transactions. This is the default. An asynchronous
invocation results in the TRANSACTION_MODE system
exception being raised.

UNSHARED The target object supports only unshared
transactions. A synchronous invocation results in
the TRANSACTION_MODE system exception begin raised.

EITHER The target object supports both shared and
unshared transactions.
 32 Orbix CORBA OTS Guide: C++

Example
The following code sample shows an object being created in a POA
that uses the ADAPTS OTSPolicy. For clarity, the POA is created off
the root POA and only one new policy is added.

// C++
//
// Create CORBA policy object for ADAPTS OTSPolicy
CORBA::Any tx_policy_value;
tx_policy_value <<= CosTransactions::ADAPTS;

CORBA::ORB_var orb = ...
CORBA::Policy_var tx_policy = orb->create_policy(
 CosTransactions::OTS_POLICY_TYPE, tx_policy_value);

// Create a POA using the transactional policy.
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = CORBA::Policy::_duplicate(tx_policy)

// Get a reference to the root POA.
CORBA::Object_var obj =
orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =

PortableServer::_narrow(obj);

// Set up nil POAManager reference.
PortableServer::POAManager_var nil_mgr =
PortableServer::POAManager::_nil();

PortableServer::POA_var tx_poa =
root_poa->create_POA("TX ADAPTS", nil_mgr, policies);

// Create object using the transactional POA. This example
// uses servant_to_reference() to create the object

// AccountImpl is the servant class implementing the
// IDL interface Account.
AccountImpl* servant = new AccountImpl(...);

PortableServer::ObjectId_var id =
 tx_poa->activate_object(servant);

obj = tx_poa->servant_to_reference(servant);
Account_var account = Account::_narrow(obj);
Orbix CORBA OTS Guide: C++ 33

Example Use of a NonTxTargetPolicy

Steps to use a NonTxTargetPolicy
The following are the steps for a client to use a NonTxTargetPolicy
when invoking on a non-transactional object:
1. Get a reference to the PolicyCurrent or PolicyManager object.
2. Create a CORBA Policy object that represents the desired

NonTxTargetPolicy. This is done by calling the
CORBA::ORB::create_policy() operation passing in the value
CosTransactions::NON_TX_TARGET_POLICY_TYPE as the first
parameter and the policy value (encoded as an any) as the
second parameter.

3. Call the set_policy_overrides() operation on the PolicyCurrent
or PolicyManager object passing in a policy list containing the
NonTxTargetPolicy. Alternatively call the
_set_policy_overrides() operation on the target object itself.

4. Invoke on the non-transaction object (from within a
transaction).

Example
The following code shows a client using the PERMIT
NonTxTargetPolicy to invoke on a non-transactional object within
a transaction. The client uses the PolicyCurrent object to set the
policy. Assume that the Account object is using the REQUIRES or
ADAPTS OTSPolicy and the AuditLog object is using the FORBIDS
OTSPolicy or no OTSPolicy at all:
 34 Orbix CORBA OTS Guide: C++

Specifying the default
NonTxTargetPolicy
The default NonTxTargetPolicy value is taken from the
policies:non_tx_target_policy configuration variable, which can
be set to “prevent” and “permit” to represent the PREVENT and
PERMIT policy values. If this configuration variable is not set, the
default is PREVENT.

// C++
//
// Get reference to PolicyCurrent object.
CORBA::ORB_var orb = ...
CORBA::Object_var obj =
 orb->resolve_initial_references(“PolicyCurrent”);

CORBA::PolicyCurrent_var policy_current =
 CORBA::PolicyCurrent::_narrow(obj);

// Create PERMIT NonTxTarget policy.
CORBA::PolicyList policy_list(1);
policy_list.length(1);

CORBA::Any tx_policy_value;
tx_policy_value <<= CosTransactions::PERMIT;

policy_list[0] = orb->create_policy(
 CosTransactions::NON_TX_TARGET_POLICY_TYPE,
 tx_policy_value);

// Set policy overrides.
policy_current->set_policy_overrides(policy_list,
 CORBA::ADD_OVERRIDE);

// Invoke on target object
CosTransctions::Current_var tx_current = ...
Account_var account = ...
AuditLog_var log = ...

tx_current->begin();
account->deposit(100.00);
log->append(“User ... deposited 100 to account ...”);
tx_current->commit(IT_true);
Orbix CORBA OTS Guide: C++ 35

Use of the ADAPTS OTSPolicy

Using the ADAPTS OTSPolicy
The ADAPTS OTSPolicy is useful for implementing services that must
work whether or not the client is using OTS transactions. If the
client is using transactions, the target object simply executes in
the same transaction context and its work will be either committed
or rolled back when the client completes the transaction.
However, if there is no transaction the target object can choose to
create a local transaction for the duration of the invocation.

Example
The following code shows how a servant might be implemented to
take advantage of the ADAPTS OTSPolicy (error handling has been
omitted):

This approach allows clients to selectively bracket operations with
transactions based on how much work is done. For example, if
only a single server operation is performed then no client
transaction needs to be created. However, if more than one
operation is performed the client creates a transaction to ensure
ACID properties for all of the operations.

// C++
void AccountImpl::deposit(float amount)
{
 CosTransactions::Current_var tx_current = ...

 // Test if a transaction was propagated from the client.
 CosTransactions::Control_var control =
 tx_current->get_control();

 if (CORBA::is_nil(control))
 {
 // No current transaction, so create one.
 tx_current->begin();
 }

 // Do the transactional work
 ...

 // If a local transaction was created, commit it.
 if (CORBA::is_nil(control))
 {
 tx_current->commit(IT_true);
 }
}

 36 Orbix CORBA OTS Guide: C++

For example (error handling omitted):

For this example the servant created an OTS transaction.
However, it could just create a local database transaction instead
or not create any transaction at all.

Orbix-Specific OTSPolicies

The two proprietary OTSPolicy values
Orbix extends the set of OTSPolicies with two proprietary values to
support automatically created transactions and optimizations. The
values and their meanings are:

Automatic Transactions
The ADAPTS OTSPolicy (see “Use of the ADAPTS OTSPolicy” on
page 36) is useful for implementing servants that can be invoked
both with and without transactions. A useful pattern to use is for
the servant to check for the existence of a transaction and create
one for the duration of the invocation if there is none. The
AUTOMATIC OTSPolicy provides this functionality without having to
code it into the servant implementation.

// C++
// Deposit money into a single account (no transaction
// needed).
Account_var acc = ...
acc->deposit(100.00);

// Transfer money between two account (this requires a
// transaction)
Account_var src_acc = ...
Account_var dest_acc = ...
CosTransactions::Current_var tx_current = ...

tx_current->begin();
src_acc->withdraw(200.00);
dest_acc->deposit(200.00);
tx_current->commit(IT_true);

AUTOMATIC This policy is used when the target object always
expects to be invoked within the context of a
transaction. If there is no transaction a
transaction is created for the duration of the
invocation. This policy guarantees that the
target object is always invoked within a
transaction. See “Automatic Transactions”.

SERVER_SIDE This policy is used in conjunction with
just-in-time transaction creation to optimize the
number of network messages in special cases.
See “Just-In-Time Transaction Creation”.
Orbix CORBA OTS Guide: C++ 37

From the target object’s point of view the AUTOMATIC OTSPolicy is
the same as REQUIRES since the target object is always invoked in
the context of a transaction. However, from the clients point of
view, the AUTOMATIC policy is the same as ADAPTS since the client
can choose whether to invoke on the object within a transaction or
not. In fact, object references created in a POA with the AUTOMATIC
OTSPolicy contain the ADAPTS policy so they can be used by other
OTS implementations that do not support the AUTOMATIC OTSPolicy.
For the case were the client does not use a transaction and the
automatically created transaction fails to commit, the standard
TRANSACTION_ROLLEDBACK system exception is raised. Reporting of
heuristic exceptions is not supported.

Just-In-Time Transaction Creation
Orbix provides three extensions to support the concept of
just-in-time (JIT) transaction creation to eliminate network
messages in special conditions. These extensions are:
1. A configuration option to enable JIT transaction creation,

which allows the creation of a transaction to be delayed until it
is really needed.

2. The SERVER_SIDE OTSPolicy which allows a transaction to be
created just before a target object is invoked.

3. A additional operation commit_on_completion_of_next_call()
that allows the next invocation on an object to also commit
the transaction.

The use of JIT transaction creation is useful when invocations
between a client and an object involve using a network
connection. This is because it can reduce the number of network
messages that are exchanged to create, propagate and commit a
transaction.

Enabling JIT Transaction Creation
JIT transaction creation is enabled by setting the
plugins:ots:jit_transactions configuration variable to “true”.
When enabled a call to Current::begin() does not create a
transaction; instead, it remembers that the client requested to
create one. The client is said to be in the context of an empty
transaction. At this stage a call to Current::get_status() would
return StatusActive event though a real transaction has not been
created. Likewise, calls to Current::commit() and
Current::rollback() would succeed. A real transaction is only
created at the following points:
1. When any of the following CosTransactions::Current

operations are invoked: rollback_only(), get_control(),
get_transaction_name() or suspend().

2. When an object with any of the standard OTSPolicies is
invoked.
 38 Orbix CORBA OTS Guide: C++

If the target object’s OTSPolicy is SERVER_SIDE, a real transaction is
not created until the invocation has reached the object’s POA.
Note that unlike the AUTOMATIC OTSPolicy, this transaction it not
terminated when the invocation has completed. Instead, the client
adopts the newly created transaction.
When JIT transactions are not enabled, the SERVER_SIDE OTSPolicy
behaves the same as the ADAPTS OTSPolicy, except that unlike the
AUTOMATIC policy, other OTS implementations will not recognize the
new policy.
A final optimization is possible when JIT transaction creation and
the SERVER_SIDE OTSPolicy are used. The OTS current object in
Orbix provides an additional operation that allows a transaction to
be committed within the context of the target object rather than
by the client:

The commit_on_completion_of_next_call() operation causes the
current transaction to be committed after the completion of the
next object invocation (so long as the target object is using the
SERVER_SIDE OTSPolicy). The transaction commit is performed by
the target object’s POA, which means that the transaction will
have been created and committed in the context of the target
object rather than by the client.
To use the operation the client must include the file
<orbix/cos_transactions.hh> and narrow the OTS current object
to the IT_CosTransactions::Current interface.

Note that the client still must call the commit() operation, though
this will not result in any network messages.

// IDL
module IT_CosTransactions
{
 interface Current : CosTransactions::Current
 {
 void
 commit_on_completion_of_next_call()
 raises (CosTransactions::NoTransaction)
 };
};

// C++
CosTransactions::Current_var tx_current = ...

IT_CosTransactions::Current_var it_tx_current =
 IT_CosTransactions::Current::_narrow(tx_current);

Account_var account = ...
it_tx_current->begin();

account->deposit(100.00);

it_tx_current->commit_on_completion_of_next_call();
account->deposit(50.00);

it_tx_current->commit(IT_true);
Orbix CORBA OTS Guide: C++ 39

Migrating from TransactionPolicies

Mapping from TransactionPolicy values
Previous releases of Orbix used the deprecated
CosTransaction::TransactionPolicy which provided seven standard
policy values and two Orbix extensions. Below is a table that
provides the mapping from TransactionPolicy values to their
OTSPolicy and InvocationPolicy equivalent.

Combining Policy Types
It is possible to create a POA that combines all three policy types
to support interoperability with earlier versions of Orbix. However,
invalid combinations result in the PortableServer::InvalidPolicy
exception being raised when PortableServer::POA::create_POA() is
called. An invalid combination is any combination not in Table 3;
for example combining Requires_shared with ADAPTS and SHARED.
The mappings for the Allows_unshared and Allows_either
TransactionPolicies are not supported since this would lead to an
invalid combination of OTSPolicies and InvocationPolicies.

Table 3: Mapping from TransactionPolicy values

TransactionPolicy
Value

OTSPolicy
Value

InvocationPolicy
Value

Allows_shared ADAPTS SHARED

Allows_none FORBIDS SHARED

Requires_shared REQUIRES SHARED

Allows_unshared ADAPTS Not supported

Allows_either ADAPTS Not supported

Requires_unshared REQUIRES UNSHARED

Requires_either REQUIRES EITHER or none

Automatic_shared AUTOMATIC SHARED

Server_side_shared SERVER_SIDE SHARED

Note: Support for the TransactionPolicy type may be
discontinued in a future Orbix release. It is recommended
that only OTSPolicies and InvocationPolicies be used.
 40 Orbix CORBA OTS Guide: C++

Explicit Propagation

Altering the IDL to propagate explicitly
When a transaction is created directly using the
TransactionFactory interface the transaction must be propagated
explicitly to target objects. This means altering the IDL for the
application to add an extra parameter for the transaction’s Control
object.

Example
The following is the Account IDL interface modified to support
explicit propagation:

Each invocation on the account object must now take a reference
to a transaction control as its last parameter:

It is also possible to pass a reference to the transaction’s
coordinator object instead of its control object.

// IDL (in module Bank)
#include <CosTransactions.idl>
...
interface Account
{
 exception InsufficientFunds {};

 void deposit(in CashAmount amt.
 in CosTransactions::Control ctrl);

 void withdraw(in CashAmount amt,
 in CosTransactions::Control ctrl)
 raises (InsufficientFunds);
};

// C++
CosTransactions::TransactionFactory_var tx_factory = ...
CosTransactions::Control_var control =
 tx_factory->create(60);

Bank::Account_var src_acc = ...
Bank::Account_var dest_acc = ...
Bank::CashAmount amount = 100.0;
src_acc->withdraw(amount, control);
dest_acc->deposit(amount, control);

CosTransactions::Terminator_var term =
 control->get_terminator();
term->commit(IT_true);
Orbix CORBA OTS Guide: C++ 41

 42 Orbix CORBA OTS Guide: C++

Using XA Resource
Managers with OTS
This chapter describes how to integrate with transactional systems by
implementing CosTransactions::Resource objects on top of the standard
X/Open XA interface.

The XA Interface

Resource objects
To use a transactional system (such as a database system) with
the transaction service, you must "connect" the transactions
provided by the transactional system to the distributed
transactions managed by the transaction service. With the
transaction service, this is achieved by implementing
CosTransactions::Resource objects — each resource represents a
local transaction in the transactional system — and registering
these Resource objects with the distributed transactions.
Because many systems provide a standard interface to their
transactional capabilities — the X/Open XA interface — you can
implement CosTransactions::Resource objects on top of the XA
interface, and provide an easy-to-use integration with the
transaction service. This is precisely what the Orbix XA plug-in
provides.

XA Overview
XA (X/Open CAE Specification, Distributed Transaction Processing:
The XA specification, December 1991, ISBN: 1 872630 24 3)
specifies a standard C API provided by transactional systems
(called Resource Managers in the XA specification) that want to
participate in distributed transactions managed by transaction
 Orbix CORBA OTS Guide: C++ 43

managers developed by other vendors. XA defines a set of
C-function pointers, and a C-struct that holds these function
pointers, xa_switch_t (see orbix_sys/xa.h):

Function pointers
Each XA Resource Manager must provide a global instance of
xa_switch_t. For example, Oracle's global xa_switch_t instance is
called xaosw.
The function pointers provided by this xa_switch_t instances can
be divided into four categories:
• Functions to connect and disconnect to the XA Resource

Manager:xa_open() and xa_close(). The string passed to
xa_open() typically contains connection information, e.g. a
database name and a username and password.

• Transaction completion functions xa_prepare(), xa_commit(),
xa_rollback(), xa_forget() correspond to the
CosTransactions::Resource operations.

• Recovery function xa_recover() is currently not used by the XA
plug-in.

• Functions used to start and end associations between
connections and a transactions: xa_start(), xa_end()

struct xa_switch_t
{
 char name[RMNAMESZ]; /* name of resource manager */
 long flags; /* resource manager specific options */
 long version; /* must be 0 */
 int (*xa_open_entry) /* xa_open function pointer */
 (char *, int, long);
 int (*xa_close_entry) /* xa_close function pointer */
 (char *, int, long);
 int (*xa_start_entry) /* xa_start function pointer */
 (XID *, int, long);
 int (*xa_end_entry) /* xa_end function pointer */
 (XID *, int, long);
 int (*xa_rollback_entry) /* xa_rollback function

pointer */
 (XID *, int, long);
 int (*xa_prepare_entry) /* xa_prepare function pointer

*/
 (XID *, int, long);
 int (*xa_commit_entry) /* xa_commit function pointer

*/
 (XID *, int, long);
 int (*xa_recover_entry) /* xa_recover function pointer

*/
 (XID *, long, int, long);
 int (*xa_forget_entry) /* xa_forget function pointer

*/
 (XID *, int, long);
 int (*xa_complete_entry) /* xa_complete function

pointer */
 (int *, int *, int, long);
};
 44 Orbix CORBA OTS Guide: C++

In order to use an XA connection to do some work within a
distributed transaction, it is necessary to create an association
between this connection and the distributed transaction.
xa_start() is used to create such an association;
xa_end(TMSUSPEND) suspends the association, without releasing
the connection; xa_start(TMRESUME) resumes a suspended
association; xa_end(TMSUCCESS) terminates an association with
success; and xa_end(TMFAIL) terminates an association and
marks the transaction rollback-only.

Note: xa_complete() is only used for asynchronous XA, an optional part
of XA which is not supported by any popular XA implementation.

XA and Multi-Threading
In the XA specification, the scope of an XA connection is called
"thread-of-control". Each thread-of-control can only use the
connections that it has established (using xa_open()). The XA
specification maps thread-of-control to operating system process
(2.2.8). Each thread in a process has access to all the XA
connections established by this process. This is clearly specified in
the JTA specification (XA for Java).
Unfortunately, for the C XA API, most vendors implement the
following:
• a thread-unsafe mode, in which the scope of each XA

connection is the process (XA thread-of-control maps to
process)

• a thread-safe mode, in which the scope of each XA connection
is the thread by which is was created (XA thread-of-control
maps to thread)

For example, with Oracle, the "+threads={true,false}" option of
the OracleXA open string lets the application programmer choose
between these two modes.The thread-of-control equal thread
model sometimes simplifies the API used to access the data. For
example, Oracle embedded SQL in C/C++ (Pro*C/C++) has a
notion of a default database connection for each thread of control.
When the model is thread-of-control equal process, and a process
has a pool of connections to the same database, it is necessary to
explicitly specify which connection to use (with an Oracle AT
clause):
EXEC SQL AT :db_name INSERT VALUES(123, 43, 3.49) INTO

SALE_DETAILS;

But when the model is thread-of-control equal thread, and each
thread has one connection to a given database, there is no need
to explicitly specify the connection to use (no AT clause):
EXEC SQL INSERT VALUES(123, 43, 3.49) INTO SALE_DETAILS;

The EXEC SQL statements used in a multi-threaded
multi-connection application look very much like the EXEC SQL
statement used in a single-threaded single-connection application.
The main drawback of tying connection and threads is flexibility
since it prevents the application from managing connections
independently of threads, which limits the kind of connection
pooling that can be implemented. Also, a CORBA server typically
dispatches different requests to different threads: the
Orbix CORBA OTS Guide: C++ 45

thread-of-control equal thread model prevents the use of
xa_end(TMSUSPEND) at the end of a request and xa_start(TMRESUME)
at the beginning of the next request in the same transaction, since
an association must be resumed by the thread of control from
which it was suspended.

Using the Orbix XA Plug-In
The Orbix XA plug-in implements and manages
CosTransactions::Resource objects on behalf of the application. It
supports the two thread-of-control models described in the
previous paragraph: when the thread model is XA::PROCESS, it uses
a single-threaded persistent POA to host its
CosTransactions::Resource servants. When the thread model is
XA::THREAD, it uses a multi-threaded persistent POA.
You access the XA plug-in by obtaining a reference to the
XA::Connector local object through resolve_initial_references():

Then you create an XA::ResourceManager, by calling
create_resource_manager on the connector. This operation creates a
persistent POA that hosts the resource manager's servant and will
host the CosTransactions::Resource servants. The
create_resource_manager operation also returns an
XA::CurrentConnection local object, which establishes (with
xa_open()) connections when needed, and lets you start, suspend,
resume, and end associations between any transaction and the
current XA thread of control's connection.

The first parameter of create_resource_manager is the name of an
Orbix configuration namespace; this configuration namespace
defines the name of the resource manager persistent POA
(defaults to the given namespace name), the open string when

#include <omg/xa.hh>
CORBA::Object_var xa_connector_obj =
 orb- >resolve_initial_references("XAConnector");
XA::Connector_var xa_connector =
 XA::Connector::_narrow(xa_connector_obj);

XA::CurrentConnection_var current_connection;
XA::ResourceManager_var rm =
 xa_connector->create_resource_manager(
 "xa_resource_managers:oracle",
 // the name of an Orbix configuration namespace
 xaosw, // XA switch
 "", // empty open-string, i.e. the unsecured
 // open-string is specified in

configuration
 "", // empty close-string, i.e. the

unsecured
 // close-string is specified in the

configuration
 XA::PROCESS, // thread-model
 false, // no automatic association
 false, // do not use dynamic registration
 current_connection // (out) current connection local

object
);
 46 Orbix CORBA OTS Guide: C++

the open_string parameter is empty, the close string when the
close_string parameter is empty, and various other properties.
The resource manager id can also be set in the configuration using
the rmid variable. When the rmid variable is set, the XA integration
uses the value as the rmid passed to xa_open() and all subsequent
xa_ calls. When the rmid variable is not set, the XA integration
generates a new rmid value for each CurrentConection object.

Associations between Transactions and
Connections

The CurrentConnection local interface is defined in the XA module as
follows:

When the thread model is PROCESS, xa_open() is called by the first
start call or the first operation performed by a Resource servant;
and xa_close() is called during shutdown. When the thread model
is THREAD, xa_open() is called the first time a thread calls
CurrentConnection::start, or any operation on a Resource servant;
xa_close() is called when this thread exits.

enum ThreadModel { PROCESS, THREAD };
local interface CurrentConnection
{

void
start(
 // xa_start(TMNOFLAGS) or xa_start(TMJOIN)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void
suspend(
 // xa_end(TMSUSPEND)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void resume(
 // xa_start(TMRESUME)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid
);
void end(
 // xa_end(TMSUCCESS) or xa_end(TMFAIL)
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
ThreadModel thread_model();
long rmid();

};
Orbix CORBA OTS Guide: C++ 47

In order to do some work within a distributed transaction with a
given resource manager, you have to associate the resource
manager's current connection with this transaction, by calling
CurrentConnection::start:

The first time CurrentConnection::start() is called with a given
transaction, the XA plug-in creates a CosTransactions::Resource
persistent object and registers this object with the transaction
coordinator.
Once you have finished using a connection, it is critical to end the
association with the transaction for two reasons:
• It releases the connection, and makes it available for other

transactions
• As long as any connection is associated with a transaction,

this transaction cannot be committed. Some systems (e.g.
Oracle) don't even allow to roll back a transaction while it is
associated with any connection.

The recommended way to start and end (or
start/suspend/resume/suspend...) an association is to use a
helper C++ class: the helper class constructor creates the
association by calling start, and the helper class destructor ends
the association. The multi-threaded transfer demo provides a
helper Association class which uses start and end; the
single-threaded farm demo provides a helper Association class
which uses start, suspend and resume.

Association State Diagram
Figure 4 shows the state diagram of an association between a
transaction and an XA connection. In this diagram all start,
suspend, resume, and end calls are successful (they do not raise
any exception). When start, suspend, resume or end raises
CORBA::INTERNAL with the minor code
IT_XA_MinorCodes::INTERNAL::XAER_RMFAIL_ the new state is "non
existant". When resume, suspend or end raises
CORBA::TRANSACTION_ROLLEDBACK with the minor code
IT_XA_MinorCodes::TRANSACTION_ROLLEDBACK::XA_RB_, the new state
is "non existant". When end raises CORBA::TRANSACTION_ROLLEDBACK
with the minor code

// assuming the OTS transaction is associated with the
current

// thread
CosTransactions::Control_var control =

tx_current->get_control();
CosTransactions::Coordinator_var tx =

control->get_coordinator();
CosTransactions::PropagationContext_var ctx =

tx->get_txcontext();
const CosTransactions::otid_t& otid = ctx->current.otid;
current_connection->start(tx, otid);
 48 Orbix CORBA OTS Guide: C++

IT_XA_MinorCodes::TRANSACTION_ROLLEDBACK::DEFERRED_ROLLBACK, the
new state is "non existant". For every other exception raised by
start, suspend, resume and end, there is no state transition.

Using a Remote Resource Manager
The Resource servants and the application logic that performs the
transactional data access (for example, through embedded SQL in
C/C++ calls) do not need to be in the same process. You use the
operation Connector::connect_to_resource_manager to connect to a
remote XA::ResourceManager:

Figure 4: Association State Diagram

XA::CurrentConnection_var current_connection =
 xa_connector->connect_to_resource_manager(
 "xa_resource_managers:oracle",
// the name of an Orbix configuration namespace
 rm, // object reference to an XA::ResourceManager

object
 xaosw, // XA switch
 "", //open string (empty string means that the

actual open
 // string is in configuration)
 "", //close string (empty string means that the

actual close
 // string is in configuration)
 XA::PROCESS, // thread-model
 false, // no automatic association
 false, // do not use dynamic registration
);
Orbix CORBA OTS Guide: C++ 49

Some systems (e.g. Oracle) even allow you to create associations
between a given transaction and connections to the same
database established by different processes: this is referred to as
"tightly coupled threads" in the XA specification.
Using a remote resource manager is particularly useful for
single-threaded servers, since it allows you to make a data-access
server available for other transactions as soon as the transaction
has finished with this server (before the completion of the
transaction). See the farm demo.

Before Completion Callback
You can register with a resource manager any number of
BeforeCompletionCallback objects:

The before completion callbacks objects are called by the
Resource servant before prepare, commit_one_phase, and rollback
on a non-prepared transaction. If any of these before completion
callbacks calls raise an exception, the transaction is rolled back. A
typical use of the BeforeCompletionCallback is to end a suspended
association in a single-threaded server. See the farm demo.

Asynchronous Rollback Support
An XA implementation may or may not support asynchronous
rollbacks,that is xa_rollback() may or may not be called on a
transaction while this transaction is actively associated with some
connection. This is typically not documented by the XA
implementation — OracleXA does not support asynchronous
rollbacks, while SybaseXA does.
When you set supports_async_rollback to "false" and use a remote
resource manager, the XA plug-in uses a transient object to
handle asynchronous rollbacks (by deferring them until the
association is ended). This transient object is hosted by the root
POA, so you have to activate the root POA manager.

interface BeforeCompletionCallback
{
 void
 before_completion(
 in CosTransactions::Coordinator tx,
 in CosTransactions::otid_t otid,
 in boolean success
);
};
interface ResourceManager
{
 unsigned long register_before_completion_callback(
 in BeforeCompletionCallback bcc);
 void unregister_before_completion_callback(
 in unsigned long key);
};
 50 Orbix CORBA OTS Guide: C++

Ping Period
The Resource Manager can periodically check that the transactions
with which the Resource servants it manages were registered are
still alive by calling get_status on their respective coordinators.
When a call to get_status fails (that is, it raises any exception),
and the associated Resource is not prepared, this Resource is
immediately rolled back.
Orbix CORBA OTS Guide: C++ 51

 52 Orbix CORBA OTS Guide: C++

Transaction
Management
This chapter covers some additional areas of transaction management.
This includes Synchronization objects, transaction identity and status
operations, relationships between transactions and recreating
transactions.

Synchronization Objects

Synchronization interface
The transaction service provides a Synchronization interface to
allow an object to be notified before the start of a transaction's
completion and after it is finished. This is useful, for example, for
applications integrated with an XA compliant resource manager
where the data is cached inside the application. By registering a
synchronization object with the transaction the cache can be
flushed to the resource manager before the transaction starts to
commit. Without the synchronization object any updates made by
the application could not be moved from the cache to the resource
manager. The Synchronization interface is as follows:

before_completion()
This operation is invoked during the commit protocol before any
2PC or 1PC operations have been called, that is before any XA or
Resource prepare operations.
An implementation may flush all modified data to the resource
manager to ensure that when the commit protocol begins, the
data in the resource is up to date.
Raising a system exception causes the transaction to be rolled
back as does invoking the rollback_only() operation on the
Current or Coordinator interfaces.
The before_completion() operation is only called if the transaction
is to be committed. If the transaction is being rolled back for any
reason this operation is not called.

// IDL (in module CosTransactions)
interface Synchronization :

CosTransactions::TransactionalObject {
 void before_completion();

 void (in Status s);
};
 Orbix CORBA OTS Guide: C++ 53

after_completion()
This operation is invoked after the transaction has completed, that
is after all XA or Resource commit or rollback operations have
been called. The operation is passed the status of the transaction
so it is possible to determine the outcome. It is possible that
before_completion() has not been called, so the implementation
must be able to deal with this possibility.
An implementation can use this operation to release locks that
were held on behalf of the transaction or to clean up caches.
Raising an exception in this operation has no effect on the
outcome of the transaction as this has already been determined.
All system exceptions are silently ignored.

register_synchronization()
A synchronization object is registered with a transaction by calling
the register_synchronization() operation on the transaction’s
coordinator. Assuming the SynchronizationImpl class supports the
Synchronization interface the following code may be used:

// C++
//
// Get the control and coordinator object for the
// current transaction.
//
CosTransactions::Current_var tx_current = ...
CosTransactions::Control_var control =
 tx_current->get_control();
CosTransactionsCoordinator_var coordinator =
 control->get_coordinator();

//
// Create a synchronization servant and activate it in a
// transactional POA. The OTS Policy should be ADAPTS
//
SynchronizationImpl servant = new SynchronizationImpl();
PortableServer::POA_var poa = ...
CosTransactions::Synchronization_var obj =
 sync_servant->activate(poa);

//
// Register the synchronization once with the transaction
//
coord->register_synchronization(obj);
 54 Orbix CORBA OTS Guide: C++

The register_synchronization() operation raises the Inactive
exception if the transaction has started completion or has already
been prepared. A synchronization object must only be registered
once per transaction, this is the application’s responsibility.

Transaction Identity Operations

Coordinator interface identity operations
The Coordinator interface provides a number of operations related
to the identify of transactions. Some of these operations are also
available in the Current interface:

Note: Unlike resource objects, synchronization objects are
not recoverable. The transaction service does not
guarantee that either operation on the interface will be
called in the event of a failure. It is imperative that
applications use a resource object if they need guarantees
in these situations (to release persistent locks for
example).

// IDL (in module CosTransactions)
interface Coordinator {
 boolean is_same_transaction(in Coordinator tc);
 unsigned long hash_transaction();
 unsigned long hash_top_level_tran();
 string get_transaction_name();
 PropagationContext get_txcontext();
 ...
};

Table 4: Coordinator interface identity operations

Operation Description

is_same_transaction() Takes a transaction coordinator as a
parameters and returns true if both
coordinator objects represent the
same transaction; otherwise returns
false.

hash_transaction() Returns a hash code for the
transaction represented by the target
coordinator obejct. Hash codes are
uniformly distributed over the range
of a CORBA unsigned long and are
not guaranteed to be unique for each
transaction.
Orbix CORBA OTS Guide: C++ 55

Maintaining information in individual
transactions
The is_same_transaction() and hash_transaction() operations are
useful when it is necessary for an application to maintain data on a
per transaction basis (for example, for keeping track of whether a
particular transaction has visited the application before to
determine whether a Resource or Synchronization object needs to
be registered). The hash_transation() operation can be used to
implement an efficient hash table while the is_same_transaction()
operation can be used for comparison within the hash table.
For nested transaction families the hash_top_level_transaction() is
provided. This returns the hash code for the top level transaction.

Transaction Status

Coordinator interface status operations
The Coordinator::get_status() operation returns the current
status of a transaction. This operation is also provided by
Current::get_status() for the current transaction. The status
returned may be one of the following values:

get_transaction_name
()

Returns a string representation of the
transaction’s identify. This string is
not guaranteed to be unique for each
transaction so it is only useful for
display and debugging purposes. This
operation is also available on the
Current interface.

get_txcontext() Returns the PropagationContext
structure for the transaction
represented by the target coordinator
object. Amongst other information,
the PropagationContext structure
contains the transaction identifier in
the current.otid field. See
“Recreating Transactions” on page 59
for more information on the structure
of the PropagationContext.

Table 4: Coordinator interface identity operations

Operation Description

StatusActive The transaction is active. This is the case
after the transaction has started and
before the transaction has started to be
committed or rolled back.

StatusCommitted The transaction has successfully completed
its commit protocol.
 56 Orbix CORBA OTS Guide: C++

The following code shows how to obtain the status of a transaction
from the transaction’s coordinator object:

There are two additional status operations for use within nested
transaction families:
• get_top_level_status() returns the status of the top-level

transaction.
• get_parent_status() returns the status of a transaction’s

parent.

StatusCommitting The transaction is in the process of
committing.

StatusMarkedRollback The transaction has been marked to be
rolled back.

StatusNoTransaction There is no transaction. This can only be
returned from the Current::get_status()
operation and occurs when there is no
transaction associated with the current
thread of control.

StatusPrepared The transaction has completed the first
phase of the 2PC protocol.

StatusPreparing The transaction is in the process of the
first phase of the 2PC protocol.

StatusRolledBack The transaction has completed rolling
back.

StatusRollingBack The transaction is in the process of being
rolled back.

StatusUnknown The exact status of the transaction is
unknown at this point.

// C++
CosTransactions::Coordinator_var coord = ...
CosTransactions::Status status = coord->get_status();
if (status == CosTransactions::StatusActive)
{
 ...
} else if (status == CosTransactions::StatusRollingBack)
{
 ...
} else if ...
Orbix CORBA OTS Guide: C++ 57

Transaction Relationships

Coordinator interface relationship
operations
The Coordinator interface provides several operations to test the
relationship between transactions. Each operation takes as a
parameter a reference to another transaction’s coordinator object:

// IDL (in module CosTransactions)
interface Coordinator {
 boolean is_same_transaction(in Coordinator tc);
 boolean is_related_transaction(in Coordinator tc);
 boolean is_ancestor_transaction(in Coordinator tc);
 boolean is_descendant_transaction(in Coordinator tc);
 boolean is_top_level_transaction();
 ...
};

Table 5: Coordinator interface relationship operations

Operation Description

is_same_transaction() Returns true if both coordinator
objects represent the same
transaction; otherwise returns
false.

is_related_transaction() Returns true if both coordinator
objects represent transactions in
the same nested transaction
family; otherwise returns false.

is_ancestor_transaction() Returns true if the transaction
represented by the target
coordinator object is an ancestor
of the transaction represented by
the coordinator parameter;
otherwise returns false. A
transaction is an ancestor to itself
and a parent transaction is an
ancestor to its child transactions.

is_descendant_transaction
()

Returns true if the transaction
represented by the target
coordinator object is a descendant
of the transaction represented by
the coordinator parameter;
otherwise returns false. A
transaction is a descendant of
itself and is a descendent of its
parent.
 58 Orbix CORBA OTS Guide: C++

Example
The following code tests if the transaction represented by the
coordinator c1 is an ancestor of the transaction represented by the
coordinator c2:

Recreating Transactions

TransactionFactory interface
The TransactionFactory interface provides the create() operation
for creating new top-level transactions. The interface also provides
a recreate() operation to import an existing transaction into the

is_top_level_transaction() Returns true if the transaction
represented by the target
coordinator object is a top-level
transaction; otherwise returns
false.

Table 5: Coordinator interface relationship operations

Operation Description

// C++
CosTransactions::Coordinator_var c1 = ...
CosTransactions::Coordinator_var c2 = ...
if (c1->is_ancestor_transaction(c2))
{
 // c1 is an ancestor of c2
}
else
{
 // c1 is not an ancestor of c2
}

Orbix CORBA OTS Guide: C++ 59

local context. The recreate() is passed a PropagationContext
structure and returns a Control object representing the recreated
transaction. The interfaces and types are declared as follows:

The PropagationContext is a structure that encodes sufficient
information about the transaction to successfully recreate it. To
get the PropagationContext for a transaction use the
get_txcontext() operation provided by the Coordinator interface.

Example
The following code shows how to use the get_txcontext() and
recreate() operations to explicitly import a transaction given a
reference to the Control object for a foreign transaction:

// IDL (in module CosTransactions)
struct otid_t {
 long formatID;
 long bqual_length;
 sequence <octet> tid;
};

struct TransIdentity {
 Coordinator coord;
 Terminator term;
 otid_t otid;
};

struct PropagationContext {
 unsigned long timeout;
 TransIdentity current;
 sequence <TransIdentity> parents;
 any implementation_specific_data;
};

interface TransactionFactory
{
 Control recreate(in PropagationContext ctx);
 ...
};

interface Coordinator
{
 PropagationContext get_txcontext();
 raises (Unavailable);
 ...
};

// C++
CosTransactions::Control_var foreign_control = ...
CosTransactions::Coordinator_var foreign_coord =
 foreign_control->get_coordinator();
CosTransactions::PropagationContext_var ctx =
 foreign_coord->get_txcontext();

CosTransactions::TransactionFactory_var tx_factory = ...
CosTransactions::Control_var control =
 tx_factory->recreate(ctx);
 60 Orbix CORBA OTS Guide: C++

The PropagationContext structure contains the transaction’s global
identifier in the current.otid field. This is essentially a sequence of
octets divided into two parts: a global transaction identifier and a
branch qualifier. This structure is indented to match the XID
transaction identifier format for the X/Open XA specification.
Orbix CORBA OTS Guide: C++ 61

 62 Orbix CORBA OTS Guide: C++

Writing Recoverable
Resources
The OTS supports resource objects to allow applications to participate
in transactions. For example, an application might maintain some data
for which ACID properties are required. This chapter describes the
CosTransactions::Resource interface; how resource objects participate
in the transaction protocols and the requirements for implementing
resource objects.

The Resource Interface

Resource interface transaction
operations
The CosTransactions::Resource interface provides a means for
applications to participate in an OTS transaction. The interface is
defined as follows:

Resource object implementations cooperate with the OTS, through
these five operations, to ensure the ACID properties are satisfied
for the whole transaction. Each resource object represents a single
participant in a transaction and throughout the lifecycle of the
resource it must respond to the invocations by the OTS until the
resource object is no longer needed. This may include surviving
the failure of the process or node hosting the resource object or
the failure of the process or node hosting the OTS implementation.

// IDL (in module CosTransactions)
interface Resource
{
 void commit_one_phase()
 raises (HeuristicHazard);

 Vote prepare()
 raises (HeuristicMixed,
 HeuristicHazard);

 void rollback()
 raises (HeuristicCommit,
 HeuristicMixed,
 HeuristicHazard);

 void commit()
 raises (NotPrepared,
 HeuristicRollback,
 HeuristicMixed,
 HeuristicHazard);

 void forget();
};
 Orbix CORBA OTS Guide: C++ 63

Overview of the use of resource objects
Figure 5 shows a high level picture of how clients, applications,
the OTS and resource objects interoperate to achieve the ACID
properties.

The steps involved are:
1. The client contacts the OTS implementation and creates a

transaction.
2. The client makes invocations on the application within the

context of the transaction and updates some data.
3. The application detects that the data is being updated and

creates a resource object. The resource object is registered
with the transaction.

4. The client completes by contacting the OTS implementation
and attempting to commit the transaction.

5. The transaction initiates the commit protocol. The choice of
which protocol to use (either 1PC or 2PC) depends on the
number of resource objects registered with the transaction
and whether the OTS supports the 1PC optimization.

6. Assuming the 2PC protocol is being used, the OTS sends a
prepare message to the resource. The resource stably stores
enough information to recover in case of a crash (for example,
by writing the changes to a log file). The resource object votes
to commit the transaction.

7. The OTS gathers the votes of all resource objects and decides
the outcome of the transaction. This decision is send to all
registered resource objects.

8. The resource object upon receiving the commit or rollback
message makes the necessary changes and saves the
decision to the log.

9. The OTS returns the outcome to the client.

Figure 5: Relationship between resources and transactions

Client

Log

Application

Data

Resource

update

write

OTS

Transaction

begin/commit

2PC/1PC
protocol

register
 64 Orbix CORBA OTS Guide: C++

Creating and Registering Resource Objects

Implementing servants for resource
objects
Implementing servants for resource objects is similar to any
servant implementation. The resource servant class needs to
inherit from the POA_CosTransactions::Resource class to extend the
ResourcePOA class and provide implementations for the five
resource operations. For example, the following class can be used
to implement a resource servant:

// C++
class ResourceImpl : public POA_CosTransactions::Resource
{
 public:

 ResourceImpl();

 virtual ~ResourceImpl();

 CosTransactions::Vote
 prepare()
 throw (CORBA::SystemException,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 rollback()
 throw (CORBA::SystemException,
 CosTransactions::HeuristicCommit,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 commit()
 throw(CORBA::SystemException,
 CosTransactions::NotPrepared,
 CosTransactions::HeuristicRollback,
 CosTransactions::HeuristicMixed,
 CosTransactions::HeuristicHazard);

 void
 commit_one_phase()
 throw(CORBA::SystemException,
 CosTransactions::HeuristicHazard);

 void
 forget()
 throw (CORBA::SystemException);
};
Orbix CORBA OTS Guide: C++ 65

Creating resource objects
Resource objects, once prepared, must survive failures until the
2PC protocol has completed. During recovery any resource objects
requiring completion must be recreated using the same identifier
so the transaction coordinator can deliver the outcome. This
means that resource objects must be created within a POA with a
PERSISTENT lifespan policy and a USER_ID ID assignment policy. See
the sections “Setting Object Lifespan” and “Assigning Object IDs”
in the chapter "Managing Server Objects" in the CORBA
Programmer’s Guide for more details.

Tracking resource objects
Each resource object can only be used once and may only be
registered with one transaction. It is up to the application to keep
track of whether it has seen a particular transaction before. This
can be done efficiently using the hash_transaction() and
is_same_transaction() operations provided by the Coordinator
interface to implement a hash map (see “Transaction Identity
Operations” on page 55 for details).
Some form of unique identifier must be used for the resource
object’s ObjectId. One possibility is to use the transaction
identifier (obtained from the otid field in the transaction’s
propagation context).

Registering resource objects
Registration of a resource object with a transaction is done by the
register_resource() operation provided by the transaction’s
coordinator object. For example, the following code sample shows
a resource servant and object being created and registered with a
transaction:

// C++
CosTransactions::Current_var tx_current = ...

// Get the transaction’s coordinator object.
CosTransactions::Control_var control =
 tx_current->get_control();
CosTransactions::Coordinator_var coord =
 control->get_coordinator();

// Create resource servant.
ResourceImpl* servant = new ResourceImpl();
 66 Orbix CORBA OTS Guide: C++

The register_resource() operation returns a reference to a
recovery coordinator object:

The recovery coordinator object supports a single operation,
replay_completion(), that is used for certain failure scenarios (see
“Failure of the Transaction Coordinator” on page 73). Resource
objects must hold onto the recovery coordinator reference.
The register_resource() operation raises the Inactive exception if
the transaction is no longer active.

Resource Protocols

Protocols supported by resource objects
Resource object implementations cooperate with the transaction
coordinator to achieve the ACID properties. This section examines
the protocols that resource objects are required to support:
• Rolling back a transaction.
• The 2-phase-commit protocol.
• Read-only resources.

// Create resource object. The POA referenced by
resource_poa

// has the PERSISTENT lifespan policy and the USER_ID ID
// assignment policy.
PortableServer::POA_var resource_poa = ...
PortableServer::ObjectId_var oid = ...

resource_poa->activate_object_with_id(oid, servant);

CORBA::Object_var obj =
 resource_poa->servant_to_reference(servant);

CosTransactions::Resource_var resource =
 CosTransactions::Resource::_narrow(obj);

// Register the resource with the transaction
coordinator.

CosTransactions::RecoveryCoordinator_var rec_coord =
 coord->register_resource(resource);

// IDL (in module CosTransactions)
interface Coordinator
{
 RecoveryCoordinator register_resource(in Resource r)
 raises(Inactive);
 ...
};

interface RecoveryCoordinator
{
 Status replay_completion(in Resource r)
 raises(NotPrepared);
};
Orbix CORBA OTS Guide: C++ 67

• The 1-phase-commit protocol.
• Heuristic outcomes.
• Failure and recovery

Transaction Rollbacks
Up until the time the coordinator makes the decision to commit a
transaction, the transaction may be rolled back for a number of
reasons. These include:
• A client calling the rollback() operation.
• Attempting to commit the transaction after the transaction

has been marked to be rolled-back with the rollback_only()
operation.

• The transaction being timed-out.
• The failure of any participant in the transaction.
When the transaction is rolled-back all registered resource are
rolled-back via the rollback() operation. Figure 6 shows a
transaction with two registered resource objects being rolled back
after a timeout.

Rollbacks may also occur during the 2PC protocol (see below).

The 2-Phase-Commit Protocol
The 2-phase-commit (2PC) protocol is designed so that all
participants within a transaction know the final outcome of the
transaction. The final outcome is decided by the transaction
coordinator but each resource object participating can influence
this decision.
During the first phase, the transaction coordinator invokes the
prepare() operation on each resource asking it to prepare to
commit the transaction. Each resource object returns a vote which
may be one of three possible values: VoteCommit indicates the
resource is prepared to commit its part of the transaction;
VoteRollback indicates the transaction must be rolled-back; and
VoteReadOnly indicates the resource is no longer interested in the
outcome of the transaction (see “Read-Only Resources” on
page 69).

Figure 6: Rollback after a timeout

OTS Resource A Resource BClient

rollback

rollback

begin

TIMEOUT
 68 Orbix CORBA OTS Guide: C++

The coordinator makes a decision on whether to commit or
rollback the transaction based on the votes of the resource
objects. Once a decision has been reached the second phase
commences where the resource objects are informed of the
transaction outcome.
In order for the coordinator to decide to commit the transaction,
each resource object must have either voted to commit the
transaction or indicated that it is no longer interested in the
outcome. Once a resource has voted to commit, it must wait for
the outcome to be delivered via either the commit() or rollback()
operation. The resource must also survive failures. This means
that sufficient information must be stable stored so that during
recovery the resource object and its associated state can be
reconstructed. Figure 7 shows a successful 2PC protocol with two
resources objects. Both resources return VoteCommit from the
prepare() operation and the coordinator decides to commit the
transaction resulting in the commit() operations being invoked on
the resources.

If one resource returns VoteRollback the whole transaction is
rolled back. Resources which have already been prepared and
which voted to commit and resources which have not yet been
prepared are told to rollback via the rollback() operation. Figure 8
shows VoteRollback being returned by one resource which results
in the other resource being told to rollback.

Read-Only Resources
A resource can return VoteReadOnly from the prepare() operation
which means the resource is no longer interested in the outcome
of the transaction. This is useful, for example, when the

Figure 7: Successful 2PC protocol with two resources

OTS Resource A Resource BClient

prepare

prepare

commit

commit

VoteCommit

VoteCommit

commit

Figure 8: Voting to rollback the transaction.

commit

OTS Resource A Resource BClient

prepare

rollback

VoteRollback

TRANSACTION_ROLLEDBACK
Orbix CORBA OTS Guide: C++ 69

application data associated with the resource was not modified
during the transaction. Here it does not matter whether the
transaction is committed or rolled back. By returning
VoteReadOnly the resource is opting out of the 2PC protocol and
the resource object will not be contacted again by the transaction
coordinator.
Figure 9 shows the 2PC protocol with two resource objects. In the
first phase, the first resource returns VoteReadOnly and the
second resource returns VoteCommit. During the second phase
only the second resource is informed of the outcome (commit in
this case).

The 1-Phase-Commit Protocol
The 1-phase-commit (1PC) protocol is an optimization of the 2PC
protocol where the transaction only has one participant. Here the
OTS can short circuit the 2PC protocol and ask the resource to
commit the transaction directly. This is done by invoking the
commit_one_phase() operation rather than the prepare() operation.
When the 1PC protocol is uses the OTS is delegating the commit
decision to the resource object. If the resource object decides to
commit the transaction, the commit_one_phase() operation returns
successfully. However, if the resource decides to rollback the
transaction it must raise the TRANSACTION_ROLLEDBACK system
exception. Figure 10 shows a successful 1PC protocol.

Figure 9: A resource returning VoteReadOnly.

commit

OTS Resource A Resource BClient

prepare

prepare

commit

VoteReadOnly

VoteCommit

Figure 10: A successful 1PC protocol.

commit

OTS Resource AClient

commit_one_phase
 70 Orbix CORBA OTS Guide: C++

Figure 11 shows a 1PC protocol resulting in the transaction being
rolled-back.

It is possible for the commit_one_phase() operation to be called
even when more than one resource is registered with a
transaction when resources return VoteReadOnly from prepare().
Assume for example there are three resources registered with a
transaction. If the first two resources both return VoteReadOnly the
third resource does not need to be prepared and the
commit_one_phase() operation can be used instead.

Heuristic Outcomes
Heuristics outcomes occur when at least one resource object
unilaterally decides to commit or rollback its part of the
transaction and this decision is in conflict with the eventual
outcome of the transaction. For example, a resource may have a
policy that, once prepared, it will decide to commit if no outcome
has been delivered within a certain period. This might be done to
free up access to shared resources.
Any unilateral decisions made must be remembered by the
resource. When the eventual outcome is delivered to the resource
it must reply according to the compatibility of the decisions. For
example, if the resource decides to commit its part of the
transaction and the transaction is eventually rolled back, the
resource’s rollback() operation must raise the HeuristicCommit
exception. The following table lists the resource’s response for the
various possible outcomes.

Figure 11: The 1PC protocol resulting in a rollback.

commit

OTS Resource AClient

commit_one_phase

TRANSACTION_ROLLEDBACK

TRANSACTION_ROLLEDBACK

Table 6: Heuristic Outcomes

Resource Decision Transaction
Outcome

Resource’s Response

Commit Commit commit() returns
successfully.

Commit Rollback rollback() raises
HeuristicCommit

Rollback Rollback rollback() returns
successfully

Rollback Commit commit() raises
HeuristicRollback
Orbix CORBA OTS Guide: C++ 71

Once a resource has raised a heuristic exception it must
remember this until the forget() operation has been called by the
OTS (see Figure 12). For example, after a failure the OTS might
invoke the rollback operation again in which case the resource
must re-raise the HeuristicCommit exception. Once the forget()
operation has been called the resource object is no longer
required and can be deleted.

Heuristic outcome are reported to the client only if true is passed
to the commit() operation provided by the OTS Current object.
They are reported by raising one of the exceptions: HeuristicMixed
or HeuristicHazard. HeuristicMixed means a heuristic decision has
been made resulting in some updates being committed and some
being rolled back. HeuristicHazard indicates that a heuristic
decision may have been made.
If the commit_one_phase() operation is called by the transaction
coordinator, the commit decision is delegated to the resource
implementation. This means that if the operation fails (that is
results in a system exception other than TRANSACTION_ROLLEDBACK
being raised) then the coordinator cannot know the true outcome
of the transaction. For this case, the OTS raises the
HeuristicHazard exception.

Failure and Recovery
Resource objects need to be able to deal with the failure of the
process or node hosting the resource and the failure of the
process or node hosting the OTS implementation.

Failure of the Resource
If the process or node hosting the resource object fails after the
resource has been prepared, the resource object must be
recreated during recovery so that the outcome of the transaction
can be delivered to the resource. Figure 13 shows a crash
occurring sometime after the resource has been prepared but
before the coordinator invokes the commit() operation. When the
coordinator does invoke the commit() operation the resource
object is not active and the coordinator will attempt to commit
later. In the meantime the resource object is recreated and waits

Figure 12: Raising the HeuristicCommit exception

commit

OTS Resource AClient

prepare

rollback

VoteCommit

Commit!

HeuristicCommit

HeuristicHazard forget
 72 Orbix CORBA OTS Guide: C++

for the commit() operation to be invoked. The next time the
coordinator calls commit() the resource receives the invocation and
proceeds as normal.

If the failure occurs before the resource has been prepared, there
is no need to recreate the resource during recovery. When the 2PC
protocol starts the OTS will not be able to contact the resource
and the transaction will be rolled back.

Failure of the Transaction Coordinator
If the process or node hosting the transaction coordinator fails
there are two possible ways in which the failure is resolved:
1. The transaction coordinator recovers and eventually sends the

outcome to the resource. Here, the resource does not need to
participate in the recovery; either the commit() or rollback()
operation will be invoked as normal.

2. The resource detects that no outcome has been delivered and
asks the transaction coordinator to complete the transactions.
This is done using the replay_completion() operation provided
by the recovery coordinator object.

The second way of resolving the failure of the OTS is required
because the OTS supports a behavior called presumed rollback.
With presumed rollback, if a transaction is rolled back the
coordinator is not required to stably store this fact. Instead, on
recovery if there is no information available on a transaction, the
transaction is presumed to have rolled back. This saves on the
amount of data that must be stably stored but means the resource
object must check to see if the transaction has been rolled back.

Figure 13: Recovery after the failure of a resource object

OTS Resource AClient Application
begin

register_resource

commit

prepare

CRASH!

VoteCommit

recreate

create

commit

commit
Orbix CORBA OTS Guide: C++ 73

Recall from “Creating and Registering Resource Objects” on
page 65 when a resource is registered with the coordinator a
reference to a recovery coordinator object is returned. The
recovery coordinator supports the RecoveryCoordinator interface:

The sole operation, replay_completion(), takes a resource object
and returns the status of the transaction. If the transaction has
not been prepared the NotPrepared exception is raised. The
replay_completion() operation is meant to hint to the coordinator
that the resource is expecting the transaction to be completed.
To support detecting presumed rolled-back transactions, the
replay_completion() operation is used to detect if the transaction
still exists. If the transaction still exists the operation will either
return a valid status or the NotPrepared exception. However, if the
transaction no longer exists the OBJECT_NOT_EXIST system
exception will be raised (other system exceptions should be
ignored).
By periodically calling replay_completion() and checking for the
OBJECT_NOT_EXIST exception, the resource object can detect
rolled-back transactions (see Figure 14). This periodic calling of
replay_completion() must be done before the resource has been
prepared, after the resource has been prepared and after recovery
of the resource due to a crash. To implement the latter, the
resource object needs to stably store the recovery coordinator
reference (for example using a stringified IOR) so that after a
failure, the recovery coordinator can be contacted.

// IDL (in module CosTransactions)
interface RecoveryCoordinator
{
 Status replay_completion(in Resource r)
 raises (NotPrepared);
};

Figure 14: Use of the replay_completion() operation

OTS Resource AClient Application
begin

register_resource

replay_completion

NotPrepared
replay_completion

NotPrepared

commit
prepare

replay_completion

CRASH!

replay_completion

OBJECT_NOT_EXIST
Rollback!

VoteCommit

create
 74 Orbix CORBA OTS Guide: C++

Responsibilities and Lifecycle of a Resource Object
This section details the responsibilities of a resource object for
each operation and shows the lifecycle of a resource object.

prepare()
Vote prepare() raises (HeuristicMixed, HeuristicHazard);

The prepare() operation is called during the first phase of the 2PC
protocol allowing the resource to vote in the transaction’s outcome
and if necessary prepare for eventual commitment.
Voting is done by returning one of the three values VoteCommit,
VoteRollback and VoteReadOnly:

If a resource object returns VoteCommit it must stably store
sufficient information so that in the event of a failure, the resource
object and its state can be reconstructed and continue to
participate in the 2PC protocol. The actual information that is
saved depends on the application, but typically it will include the
following:
• The identity of the transaction. This can be obtained from the

otid field in the transaction’s propagation context which in
turn is obtained by the get_txcontext() operation on the
transaction’s coordinator.

• The ObjectID for the resource.
• The reference for the recovery coordinator object associated

with the resource. This can be saved as a stringified IOR
obtained by the object_to_string() operation.

• Sufficient information to redo or undo any modifications made
to application data by the transaction.

VoteCommit This indicates that the resource is willing
to commit its part of the transaction and
has fully prepared itself for the eventual
outcome of the transaction. The next
invocation on the resource will be either
commit() or rollback().

VoteRollback This indicates that the resource has
decided to rollback the transaction. This
ensures that the transaction will be
rolled back. The resource object can
forget about the transaction and no
further operations will be invoked on the
resource object.

VoteReadOnly This indicates that the resource does not
want to be further involved in the 2PC
protocol. This does not affect the
transaction outcome and the resource
object can forget about the transaction.
No further operations will be invoked on
the resource object.
Orbix CORBA OTS Guide: C++ 75

The prepare() operation can raise two exceptions dealing with
heuristic outcomes: HeuristicMixed and HeuristicHazard. These
exceptions may be used internally in an OTS implementation;
most resource implementations do not need to raise these
exceptions.

commit()
void commit() raises (NotPrepared, HeuristicRollback,

HeuristicMixed, HeuristicHazard)

The commit() operation is called during the second phase of the
2PC protocol after the coordinator has decided to commit the
transaction. The commit() operation may be invoked multiple times
due to various failures such as a network error, failure of the OTS
and failure of the application.
Typically the commit() operation does the following:
• Make permanent any modifications made to the data

associated with the resource.
• Cleans up all traces of the transaction, including information

stably stored for recovery.
The commit() operation can raise one of four user exceptions:
NotPrepared, HeuristicRollback, HeuristicMixed, HeuristicHazard.
The NotPrepared exception must be raised if commit() is invoked
before the resource has been prepared (that is, returned
VoteCommit from the prepare() operation).
The HeuristicRollback exception must be raised if the resource
had decided to rollback its part of the transaction after being
prepared and prior to the commit() operation being invoked. If this
exception is raised it must be raised on future invocations of the
commit() operation and the resource must wait for the forget()
operation to be invoked before cleaning up the transaction.
The HeuristicMixed and HeuristicHazard exceptions may be used
internally in an OTS implementation; most resource
implementations do not need to raise these exceptions.

rollback()
void rollback() raises (HeuristicCommit, HeuristicMixed,

HeuristicHazard)

There are two occasions when the rollback() operation is called:
1. During the second phase of the 2PC protocol after the

coordinator has decided to commit the transaction.
2. When the transaction is rolled back prior to the start of the

2PC protocol. This may occur for several reasons including the
client invoking the rollback() operation on the OTS Current
object, the transaction begin timed-out, and an attempt to
commit a transaction that has been marked for rollback.

The rollback() operation may be invoked multiple times due to
various failures such as a network error, failure of the OTS and
failure of the application.
Typically the rollback() operation does the following:
 76 Orbix CORBA OTS Guide: C++

• Undo any modifications made to the data associated with the
resource.

• Cleans up all traces of the transaction, including information
stably stored for recovery.

The rollback() operation can raise one of three user exceptions:
HeuristicCommit, HeuristicMixed, HeuristicHazard. The
HeuristicCommit exception must be raised if the resource had
decided to commit its part of the transaction after being prepared
and prior to the rollback() operation being invoked. If this
exception is raised it must be raised on future invocations of the
rollback() operation and the resource must wait for the forget()
operation to be invoked before cleaning up the transaction.
Heuristic exceptions can only be raised if the resource has been
prepared.
The HeuristicMixed and HeuristicHazard exceptions may be used
internally in an OTS implementation; most resource
implementations do not need to raise these exceptions.

commit_one_phase()
void commit_one_phase() raises (HeuristicHazard)

The commit_one_phase() operation may be invoked when there is
only one resource registered with the transaction. The resource
decides whether to commit or rollback the transaction. Typically
the commit_one_phase() operation does the following:
• An attempt is made to commit any changes made to the

application data. If this succeeds the operation returns
normally; otherwise the changes are undone and the
TRANSACTION_ROLLEDBACK system exception is raised.

• Cleans up all traces of the transaction.
The HeuristicHazard exception must be raised if the resource
cannot determine whether the commit attempt was successful or
not. If this exception is raised the resource must wait for the
forget() operation to be invoked before cleaning up the
transaction.

forget()
void forget()

The forget() operation is called after the resource object raised a
heuristic exception from either commit(), rollback() or
commit_one_phase(). The forget() operation may be invoked
multiple times due to various failures such as a network error,
failure of the OTS and failure of the application. Typically the
resource cleans up all traces of the transaction, including
information stably stored for recovery.
Orbix CORBA OTS Guide: C++ 77

Resource Object Checklist
The following is a list of things to remember when implementing
recoverable resource objects:
• A resource object can only be registered with one transaction.

At the end of the resource’s lifecycle the resource must be
deactivated.

• Resource objects need unique identifiers. This means they
must be created in a POA with a USER_ID ID assignment policy.

• Resource objects must be able to be recreated after a failure.
This means they must be created in a POA with a PERSISTENT
lifecycle policy.

• Resource objects must implement both the 2PC operations
(prepare(), commit(), rollback() and forget()) as well as the
1PC operation (commit_one_phase()).

• Only return VoteCommit from the prepare() operation if the
resource can commit the transaction and has stably stored
sufficient state to be recreated after a failure.

• If a resource object wants to opt out of the 2PC protocol, it
should return VoteReadOnly from the prepare() operation.

• If the resource takes heuristic decisions, the decisions must
be remembered and reported to the OTS.

• Periodically call the replay_completion() operation to check for
presumed rollback transactions.

• Resources are expensive in terms of 2PC messages and stable
storage for recovery. Design your applications to minimize the
number of resources used.
 78 Orbix CORBA OTS Guide: C++

Interoperability
This chapter describes how the Orbix OTS interoperates with older
releases of Orbix and with other OTS implementations including the
Orbix 3 OTS.

Use of InvocationPolicies

Deprecated policies
This release of Orbix introduces the OTSPolicies,
InvocationPolicies and NonTxTargetPolicies that replace the
deprecated TransactionPolicies. The deprecated
TransactionPolicies (for example, Requires_shared and
Allows_shared) are supported allowing interoperability between
different releases of Orbix.
When creating Orbix transactional POAs that must interoperate
with previous releases, the policies for the POA must include the
deprecated TransactionPolicy as well as the OTSPolicy and
InvocationPolicy. See “Migrating from TransactionPolicies” on
page 40 for more details.

Use of the TransactionalObject Interface

Enabling support for the
TransactionalObject interface
Version 1.1 of the OTS specification uses inheritance from the
empty CosTransactions:TransactionalObject interface to indicate
the transactional requirements of an object. For example, the
Orbix 3 OTS only supports the TransactionalObject interface and
not the policies.
Orbix provides support for the TransactionalObject interface,
allowing different behaviors to be configured. This support needs
to be enabled by setting the plugins:ots:support_ots_v11
configuration variable to “true” (by default this support is not
enabled). Once enabled, an object which supports the
TransactionalObject interface is interpreted as having an effective
OTSPolicy which depends on the value of the
plugins:ots:ots_v11_policy configuration variable. Table 7 details

Note: Support for the TransactionPolicy type may be
discontinued in a future Orbix release. It is recommended
that only OTSPolicies and InvocationPolicies be used.
 Orbix CORBA OTS Guide: C++ 79

this mapping:

The default value for the plugins:ots:ots_v11_policy is “requires”
since this is the default behavior for the Orbix 3 OTS. For
backward compatibility with previous Orbix releases a value of
“allows” is interpreted as “adapts”.
It is recommended that the when support for TransactionalObject
is enabled, the NonTxTargetPolicy PERMIT should be used.
If an object supports TransactionalObject and also uses
OTSPolicies, the OTSPolicies take priority; compatibility checks are
not done.
To summarize, to enable support for the TransactionalObject
interface the following is required:
1. Set the plugins:ots:support_ots_v11 configuration variable to

“true”.
2. Set the plugins:ots:ots_v11_policy configuration variable to

either “requires” (the default) or “adapts”.
3. Use the PERMIT NonTxTargetPolicy (for example, by setting the

policies:non_tx_target_policy configuration variable to
“permit”).

Interoperability with Orbix 3 OTS Applications
This section details how an Orbix client can interoperate with an
existing Orbix 3 OTS application. Since Orbix 3 supports only the
TransactionalObject interface this section is an extension of the
previous section “Use of the TransactionalObject Interface” on
page 79
Details on using the Encina OTS are covered in “The Encina
Transaction Manager” on page 89.

Orbix 3 OTS Interoperability
Figure 15 shows an Orbix client working with an existing Orbix 3
OTS application. The first thing to note is that the Orbix 3 OTS
always requires a full 2PC transaction manager such as that
provided by the Encina OTS (see “The Encina Transaction
Manager” on page 89) or the otstf provided with Orbix 3. A
1PC-only transaction created by the OTS Lite transaction manager

Table 7: Mapping TransactionalObject to OTSPolicies

Inherits from
Transactional

Object

Value of
plugins:ots:ots_v11_

policy

Effective
OTSPolicy

Value

No n/a FORBIDS

Yes “requires” REQUIRES

Yes “adapts” ADAPTS
 80 Orbix CORBA OTS Guide: C++

will not be usable by the Orbix 3 OTS. This means that the Orbix
client must be configured to use an external transaction factory to
create transactions.

Using otstf as transaction manager
To get the Orbix client to use the Orbix 3 otstf server as its
transaction manager, the
initial_references:TransactionFactory:reference configuration
variable must be set to the reference of the otstf’s transaction
factory object. This can be done by passing the –T switch to the
otstf and copying the IOR reference output. Alternatively the otstf
can publish its name to the name service using the –t switch and a
suitable corbaname URL can be used as the reference value (see
the section “Resolving Names with corbaname” in the chapter
“Naming Service” in the CORBA Programmer’s Guide).
The Orbix 3 OTS application must be enabled to import standard
transaction contexts. This is done by setting the Orbix 3
OrbixOTS.INTEROP configuration variable to “TRUE”.
The final consideration is the mapping from inheritance from
TransactionalObject to the effective OTSPolicy. The Orbix 3 OTS
provides a proprietary policy mechanism which mimics the
behavior of the OTSPolicies REQUIRES and ADAPTS (the default being
REQUIRES). Therefore, when selecting the value for the
plugins:ots:ots_v11_policy configuration variable, make sure it
matches the policy expected by the Orbix 3 application.

Figure 15: Interoperability with Orbix 3 OTS Applications

Orbix 2000
OTS Client Database

Orbix 3
OTS

Application

Orbix 2000 itotstm
or

Orbix 3 otstf
Orbix CORBA OTS Guide: C++ 81

Bypassing otstf
It is possible to bypass the use of the otstf server and use the
transaction factory provided by the Orbix 3 OTS application. This
is done by modifying the Orbix 3 application to publish its internal
transaction factory reference. This is illustrated in the following
code:

Summary
The following is a checklist for enabling interoperability between
Orbix clients and Orbix 3 OTS applications.
1. Set the plugins:ots:support_ots_v11 configuration variable to

“true”.
2. Set the plugins:ots:ots_v11_policy configuration variable to

match the equivalent Orbix 3 OTS policy for the
TransactionalObject interface.

3. Use the PERMIT NonTxTargetPolicy.
4. Set the initial_references:TransactionFactory:reference

configuration variable to refer to either the Orbix 3 otstf’s
transaction factory another transaction factory that supports
2PC.

5. Set the Orbix 3 OrbixOTS.INTEROP configuration variable to
“TRUE”.

For more information on the use of the otstf server and setting
Orbix 3 transaction policies, refer to the Orbix 3 OTS manual.

// Orbix 3 OTS C++ Application Code
CORBA::ORB_var orb = ...
OrbixOTS::Server_var ots = ...

// Get reference to the local transaction factory.
CosTransactions::TransactionFactory_var tx_factory =
 ots->get_transaction_factory_reference();

// Publish reference (eg, to the name service or a file)
 82 Orbix CORBA OTS Guide: C++

Using the Orbix 3 otstf with Orbix Applications

Using Orbix 3 otstf transaction manager
Another possible use of Orbix 3 is to use the 2PC otstf transaction
manager with an Orbix OTS application. This setup is shown in
Figure 16.

This setup is achieved by setting the
initial_references:TransactionFactory:reference configuration
variable to refer to the otstf’s transaction factory.

Figure 16: Using and alternative OTS Implementation

Orbix 2000
OTS Client Database

Orbix 2000
OTS Server

 Orbix 3 otstf
Orbix CORBA OTS Guide: C++ 83

 84 Orbix CORBA OTS Guide: C++

OTS Plug-Ins and
Deployment Options
Orbix provides a generic OTS plugin that provides an implementation of
the OTS Current object including transaction propagation. In addition
there are two OTS transaction manager implementations: OTS Lite,
which provides a lightweight transaction coordinator supporting only the
1PC protocol, and OTS Encina, which provides full recoverable 2PC
support. This chapter discusses deployment options.

OTS Plug-ins
Orbix provides a generic OTS plugin that provides an
implementation of the OTS Current object including transaction
propagation.
There are two OTS transaction manager implementations:
• OTS Lite
• OTS Encina.

OTS Lite
OTS Lite provides lightweight transaction coordinator supporting
only the 1PC protocol. It is available as an application plug-in and
requires minimal configuration and administration but can only be
used by applications with only a single resource manager.

OTS Encina
OTS Encina provides full recoverable 2PC support allowing it to be
used by applications that are using one or more resource
managers. It is available as a standalone service and as a
application plug-in.

Note:
• OTS Encina is only available in the Orbix Enterprise

Edition.
• OTS Encina is not supported on 64 bit windows plat-

forms.
 Orbix CORBA OTS Guide: C++ 85

Features in OTS
Table 8 shows the features supported by these pieces.

The OTS Plug-In

Purpose of the OTS plug-in
Any application using the OTS Current object needs to load the
OTS plug-in. This plug-in provides an implementation of the OTS
Current object which provides the thread/transaction association,
propagation of the current transaction to transactional objects and
the policies OTSPolicy, InvocationPolicy and NonTxTargetPolicy. In
addition the OTS plug-in provides the client stubs for the
CosTransactions module, so applications need to link with the OTS
plug-in library.

Table 8: Features in OTS Implementation

Feature Generic
OTS

OTS Lite OTS
Encina

Current Object Y

Transaction Policies Y

Old Transaction
Policies

Y

TransactionalObject Y

1PC Protocol Y Y

2PC Protocol N Y

Resource Objects Y Y

Synchronization
Objects

Y Y

Nested
Transactions

N N

iPAC Management N Y

XA Support Y Y

Application Plug-In Y Y Y
 86 Orbix CORBA OTS Guide: C++

In OTS plug-in does not provide any transaction manager
functionality. Instead the OTS plug-in delegates elsewhere using
the standard CosTransactions module APIs (see Figure 17). This
allows different deployment options to be easily supported
through configuration.

Loading the OTS plug-in
There are two ways in which the OTS plug-in can be loaded:
1. Explicitly adding the plug-in name “ots” to the orb_plugins

configuration variable. For example: orb_plugins = [...,
“ots”];

2. Setting the initial_references:TransactionCurrent:plugin
configuration variable to the value “ots”. This causes the OTS
plug-in to be loaded when
resolve_initial_references(“TransactionCurrent”) is called.
When using this way, resolve_initial_references() should be
called immediately after ORB_init() has been called and before
any transaction POAs are created.

When the OTS plug-in is initialized it obtains a reference to a
transaction factory object by calling
resolve_initial_references(“TransactionFactory”). So changing
which transaction manager to use is just a matter of using
configuration to change the outcome of
resolve_initial_references().

Deployment scenarios
The remainder of this section describes three possible deployment
scenarios for C++:
• Using the OTS Lite plug-in when only 1PC transactions are

required.
• Using the itotstm service with the OTS Encina plug-in where

recoverable 2PC transactions are required.
• Using the OTS Encina plug-in loaded into the application itself.
For more information, see the Orbix Deployment Guide.

Figure 17: The Generic OTS Plug-In

 Application

OTS Plug-In

?

Orbix CORBA OTS Guide: C++ 87

The OTS Lite Plug-In
The OTS Lite plug-in is a lightweight transaction manager that
only supports the 1PC protocol. This plug-in allows applications
that only access a single transactional resource to use the OTS
APIs without incurring a large overhead, but allows them to
migrate easily to the more powerful 2PC protocol by switching to a
different transaction manager. Figure 18 shows a client/server
deployment that uses the OTS Lite plug-in.

As usual both the client and server applications must load the OTS
plug-in. In addition the client application loads the OTS Lite
plug-in, allowing the client to create 1PC transaction locally.

Figure 18: Deployment using the OTS Lite Plug-In

Client
 Application

OTS Plug-In

OTS Lite Plug-In

Server
 Application

OTS Plug-In

Note: When using the Orbix configuration tool,
itconfigure, the OTS Lite plug-in is deployed by default.
 88 Orbix CORBA OTS Guide: C++

Loading the OTS Lite plug-in
As with the OTS plug-in the OTS Lite plug-in can be loaded in two
ways:
1. Adding the plug-in name “ots_lite” to the orb_plugins

configuration variable. For example: orb_plugins = [...,
“ots”, “ots_lite”];

2. Setting the initial_references:TransactionFactory:plugin
configuration variable to “ots_lite”. This causes the OTS Lite
plug-in to be loaded by the OTS plug-in when
resolve_initial_references(“TransactionFactory”) is called.

The server application does not need to load the OTS Lite plug-in
except when standard interposition is used (that is, when the
plugins:ots:interposition_style configuration variable is set to
“standard”). In this case when the OTS plug-in imports the
transaction from the client a transaction manager is required to
create the sub-coordinated transaction.
This deployment should be used when the application only
accesses on transactional resource (for example, updates a single
database).

The Encina Transaction Manager
The Encina OTS Transaction Manager provides full recoverable
2PC transaction coordination implemented on top of the industry
proven Encina Toolkit from IBM/Transarc.
There are two ways in which the Encina OTS may be used:
1. By configuring the itotstm service to load the Encina OTS

plug-in.
2. By loading the Encina OTS plug-in directly into the application.

Configuring the OTS Encina Plug-In
Whether the OTS Encina plug-in is used in the itotstm service or
directly in the application, there are a number of administration
steps required to successfully use it.

1. Two transient POAs must be created. These serve as
namespace POAs off which the OTS Encina plug-in creates its
persistent POAs. The first POA is called “iOTS” and the second
is a child POA whose name is set by the
plugins:ots_encina:namespace_poa. The default value of this
configuration variable is “otstm” for the itotstm service and
“Encina” for an application loading the plug-in. The POAs
should be created using itadmin as follows:
itadmin poa create –transient –allowdynamic iOTS
itadmin poa create –transient –allowdynamic iOTS/otstm

Note: If you selected Distributed Transaction services
when running the Orbix configuration tool, itconfigure, the
administration steps outlined in this subsection are done
automatically.
Orbix CORBA OTS Guide: C++ 89

2. The Encina OTS is fully recoverable and requires a transaction
log to write the state of its transactions. Assuming the log file
is to be located in “/local/logs/ots.log” the log is created and
initialized using itadmin as follows:
itadmin encinalog create /local/logs/ots.log
itadmin encinalog init /local/logs/ots.log

The effect of initializing the log is to create a restart file. This a
file that contains sufficient information for the OTS Encina
plug-in to restart and includes the location of the transaction
log. In this example, the restart file is called
/local/logs/ots_restart. The name of the restart file must be
passed to the OTS Encina plug-in by setting the
plugins:ots_encina:restart_file configuration variable.

The minimum configuration required to load the OTS Encina
plug-in into an applications is:
<app-scope> {
 initial_references:TransactionFactory:plugin = “ots_encina”;
 plugins:ots_encina:namespace_poa = “<name>”;
 plugins:ots_encina:restart_file = “<path>”;
}

The itotstm Transaction Manager Service
The itotstm program is a standalone transaction manager service
which can be configured to load any transaction manager plug-in.
This section shows how it can be used along with the Encina OTS
plug-in to provide 2PC transactions for an application. The itotstm
service is deployed if you select the Distributed Transaction
service when running the Orbix configuration tool, itconfigure.

Using itconfigure
If you select the Distributed Transaction service when running the
Orbix configuration tool, itconfigure, the OTS Lite plug-in and the
itotstm service are deployed. By default the OTS Lite plug-in is
configured to be used by all clients and servers. To make use of
the itotstm service, however, clients need to pick up the
initial_references:TransactionFactory:reference configuration
variable that is set in the iona_services.otstm client configuration
scope. This can be done this by passing "-ORBname
iona_services.otstm.client" to the ORB_init() operation or by
adding a copy of the variable to the application's configuration
scope.

Example client/server deployment
Figure 19 shows a client/server deployment where the itotstm in
conjunction with the OTS Encina plug-in is used to provide 2PC
transaction management. Here, neither the client nor the server
needs to load any transaction manager plug-in. Instead the client
OTS is configured to pick up its transaction factory reference from
the OTS Encina plug-in loaded into the itotstm standalone service.
 90 Orbix CORBA OTS Guide: C++

There are two parts to setting up such a deployment.
• Configuring the itotstm to load the OTS Encina plug-in.
• Configuring the OTS plug-in to pickup the reference to the

OTS Encina transaction factory within the itotstm service.

Configuring itotstm
The itotstm service uses the configuration scope “otstm” by
default. This can be changed by using a different ORB name using
the -ORBname command line option. Configuring itotstm to load
the OTS Encina plug-in can be done in two ways:
1. Adding the OTS plug-in name “ots_encina” to the orb_plugins

configuration variable. For example, orb_plugins = [...,
“ots”, “ots_encina”];

2. Setting the initial_references:TransactionFactory:plugin
configuration variable to the name of the OTS Encina plug-in
“ots_encina”.

Note that in both cases the orb_plugins configuration variable
must contain “ots” since the OTS plug-in is required for
synchronization objects.
The remainder of the otstm scope should contain the configuration
necessary for the OTS Encina plug-in.

Configuring the OTS plug-in
Next the OTS plug-in loaded into the applications needs to pick up
the transaction factory reference of the OTS Encina plug-in.
Essentially this means setting the

Figure 19: Using the OTS Encina plug-in with the itotstm service

Client
 Application

itotstm

OTS Encina Plug-In

Server
 Application

OTS Plug-InOTS Plug-In

OTS Plug-In
Orbix CORBA OTS Guide: C++ 91

initial_references:TransactionFactory:refererence configuration
variable in the applications configuration scope to any suitable
reference. Three possible ways of achieving this are:
1. Get the OTS Encina plug-in to export its transaction factory

reference to the name service and use a corbaname style URL
for the initial reference. This is done by setting the
plugins:ots_encina:transaction_factory_ns_name configuration
variable to the name for the object reference in the name
service. For example, if this is set to “ots/encina” a URL of the
form “corbaname:rir:#ots/encina” can be used.

2. Get the itotstm to publish the transaction factory IOR to a file
using the “prepare” and “-publish_to_file” command-line
switches. Then use the IOR in the file as the transaction
factory reference.

The deployment should be used when the application requires or
might require full recoverable 2PC transactions. For example, the
application make use of ore or more resource managers.

Loading the OTS Encina Plug-In into the
Application
An alternative to loading the OTS Encina plug-in into the itotstm
service is to load the plug-in directly into the application. This
deployment is shown in Figure 20.

This deployment options should be used when the application
requires full recoverable 2PC transactions and also wants to
improve performance by eliminating some of the network
messages that are necessary when the standalone itotstm service
is used.
To configure this deployment, follow the instructions for
configuring the OTS Encina plug-in, making sure the configuration
is done within the application’s scope.

Figure 20: Loading the OTS Encina Plug-In into the Application

Client
 Application

Server
 Application

OTS Plug-InOTS Plug-In

OTS Encina Plug-In
 92 Orbix CORBA OTS Guide: C++

OTS Management
This appendix describes the OTS server features that have been exposed
for management. It explains all the managed entities, attributes, and
operations. These can be managed using the Administrator management
consoles.

Introduction to OTS Management
This section provides an introduction to the OTS management
model and the Administrator management consoles.

OTS Management Model
Figure 21 shows the main components of the OTS management
model.

In Figure 21, the components on the left are common to both OTS
Encina and OTS Lite. The components on the right apply to OTS
Encina only.
In this model, each OTS server can have multiple Transactions
and multiple Encina Transaction Volumes. However, each server
can only have one Transaction Manager, and one Encina
Transaction Log.

Figure 21: OTS Management Model

OTS Server

Transaction Manager

Transaction

Encina
Transaction Log

Encina
Transaction

Volume

Encina-Specific Components
 Orbix CORBA OTS Guide: C++ 93

OTS Managed Entities
The following OTS server components have been instrumented for
management:
• TransactionManager / Encina TransactionManager
• Transaction / Encina Transaction
• Encina Transaction Log
• Encina Volume
This means that these features can be managed using the
Administrator management consoles.

Administrator
The Administrator is a set of tools that enables you to manage and
configure server applications at runtime. The Administrator
provides a graphical user interface known as the Administrator
Console. This enables you to manage applications, configuration
settings, event logging, and user roles.
The Administrator also provides a web browser interface known as
the Administrator Web Console. The web console enables you to
manage applications and event logging from anywhere, without
the need for a lengthy download or installation.
For detailed information about the Orbix management tools, see
the Orbix Management User’s Guide.

Example Managed Entity
Figure 22 shows an OTS Encina Transaction Manager running
in the Administrator web console. It shows the attributes and
operations that are exposed for this entity.
 94 Orbix CORBA OTS Guide: C++

The next sections in this chapter describe the attributes and
operations that are displayed for each of the OTS managed
entities.

TransactionManager Entity
This section describes the managed attributes and operations that
are exposed for the TransactionManager and Encina
TransactionManager entity. These attributes and operations are
displayed in the Administrator Console.

TransactionManager Attributes
The managed attributes for the TransactionManager entity are
shown in Table 9. These attributes apply to both OTS Encina and
OTS Lite.

Figure 22: OTS Encina Transaction Manager Entity

Table 9: TransactionManager Attributes (Sheet 1 of 2)

Attribute Type Description

Name string Name of the transaction
manager.
Orbix CORBA OTS Guide: C++ 95

Supports 1PC boolean Whether the manager
supports one-phase
commit.

Supports 2PC boolean Whether the manager
supports two-phase
commit.

Active long Number of active
transactions.

Completed long Number of completed
transactions (since the
server started).

Committed long Number of committed
transactions (since the
server started).

Aborted long Number of aborted
transactions.

In Doubt long Number of transactions
that are in doubt.

TPM long Number of transactions
per minute.

TPM Peak long Maximum number of
transactions per minute
(since the server
started).

TPM Peak Time string Time when the
maximum transactions
per minute was reached.

TPM Peak Average double Average transactions per
minute (since server
started).

Timeout long Default value for
transaction timeout
(same as the
default_transaction_
timeout configuration
variable for the ots_lite
and ots_encina plug-ins).
This attribute is writable.

Transaction Log hyperlink Hyperlink to the
Transaction Log entity
(null for OTS Lite).

Table 9: TransactionManager Attributes (Sheet 2 of 2)

Attribute Type Description
 96 Orbix CORBA OTS Guide: C++

Encina TransactionManager Attributes
The additional managed attributes for the Encina
TransactionManager entity are shown in Table 10. These
attributes apply to OTS Encina only.

Encina TransactionManager Operations
The managed operations for the Encina TransactionManager entity
are shown in Table 11.

Transaction Entity
This section describes the managed attributes and operations
exposed for the Transaction and Encina Transaction entity. These
attributes and operations are displayed in the Administrator
Console.

Table 10: Encina TransactionManager Attributes

Attribute Type Description

Trace File string The file to which the trace output
is written (stderr if the string is
empty).
This attribute is writable.

Trace On boolean Whether Encina tracing is enabled
or not.
This attribute is writable.

Trace Level bde space-separated list of strings,
where each element is one of the
following:
GLOBAL, EVENT, PARAM, NONE,
INTERNAL_PARAM,INTERNAL_EVENT
(for example, "EVENT PARAM")

These attributes specify the trace
level for the corresponding Encina
module (one of bde, log, restart,
tran, util, vol, respectively).

These attributes are writable.

Trace Level log

Trace Level restart

Trace Level tran

Trace Level util

Trace Level vol

Table 11: Encina TransactionManager Operations

Operation Parameters Type Description

dump file name
overwrite

string
boolean

Writes the contents of
the Encina trace buffer
to the specified file.
Depending on the
value of the overwrite
parameter, appends
to an existing file, or
overwrites it.
Orbix CORBA OTS Guide: C++ 97

Transaction Attributes
The managed attributes for the Transaction entity are shown in
Table 12. These attributes apply to both OTS Encina and OTS Lite.

Encina Transaction Attributes
The additional managed attributes for the Encina Transaction
entity are shown in Table 13. These attributes apply to OTS Encina
only.

Transaction Operations
The managed operations for the Transaction entity are shown in
Table 14. These operations apply to both OTS Encina and OTS
Lite.

Table 12: Transaction Attributes

Attribute Type Description

Global TID string Global transaction
identifier.

Timeout boolean Transaction-specific
timeout.

Creation Time boolean Time when the
transaction was
created.

Status long CosTransactions::Statu
s values.

Resources long Available resources for
the transaction.

Table 13: Encina Transaction Attributes

Attribute Type Description

Local TID string Local Encina-specific
transaction identifier.

Table 14: Transaction Operations

Operation Parameter Description

Rollback none Roll back the
transaction.

Mark Rollback none Mark the transaction
for being rolled back.

Commit none Commit the
transaction.
 98 Orbix CORBA OTS Guide: C++

Encina Transaction Log Entity
This section describes the managed attributes and operations
exposed for the Encina Transaction Log entity. These attributes
and operations are displayed in the Administrator Console.

Encina Transaction Log Attributes
The managed attributes for the Encina Transaction Log are shown
in Table 15.

Remove
Resource

string Remove (unregister)
the resource identified
by the stringified object
reference from the
transaction.
For example, this
enables a transaction
to complete if repeated
attempts to deliver an
outcome to a resource
are failing.

Table 14: Transaction Operations

Operation Parameter Description

Note: These operations are applicable to all transactions.
In practice however, these operations will most likely fail
for well-behaved transactions because of their short
lifetime. They would only be applied in critical situations
(for example, on a transaction with resource failures).

Table 15: Encina Transaction Log Attributes (Sheet 1 of 2)

Attribute Type Description

Name string Name of the log (always
tranLog for the Encina
Transaction Log).

Size long Size (in pages of 512 K).

Free long Free space (in pages).

Threshold long Percentage of used pages
versus total pages that (when
exceeded) cause a
management event to be sent
to the management service.
This attribute is writable.

Check
Interval

long Interval (in seconds) for
checking the amount of free
space in the log.
This attribute is writable.
Orbix CORBA OTS Guide: C++ 99

Encina Transaction Log Operations
The managed operations for the Encina Transaction Log are shown
in Table 16.

Encina Volume Entity
This section describes the managed attributes and operations
exposed for the Encina (Physical) Volume entity. These attributes
and operations are displayed in the Administrator Console.

Growth long Difference of free space in the
log at beginning and end of
the last check interval.

Average
Growth

double Average of the growth rate in
the lifetime of the OTS server.

Archive
Device

string File name of the archive
device of the log.

Mirrors list of
hyperlinks

List of hyperlinks to Encina
Volume entities.

Table 16: Encina Transaction Log Operations

Operation Parame
ters

Description

Expand none Expands the log to maximum
possible size. This is
necessary to avail of the
increased disk space after a
mirror has been added.

Add Mirror string Creates a new physical
volume backed up by the
specified disk, and adds it to
the list of volumes currently
mirroring the transaction log.
The raw partition or file
specified by the string
parameter must exist. You can
create files using the itadmin
tool.

Table 15: Encina Transaction Log Attributes (Sheet 2 of 2)

Attribute Type Description
 100 Orbix CORBA OTS Guide: C++

Encina Volume Attributes
The managed attributes for the Encina (Physical) Volume entity
are shown in Table 17.

Encina Volume Operations
The managed operations for the Encina (Physical) Volume are
shown in Table 18.

Management Events
The following OTS events are logged with the Administrator
management service:
• The heuristic outcome of a transaction.

This event includes the otid and the heuristic outcome type.
• When the used space in the transaction log exceeds the

threshold.
This event includes the actual percentage of used versus the
total number of pages in the transaction log.

Table 17: Encina (Physical) Volume Attributes

Attribute Type Description

Name string Logical name of the physical
volume.

Disks list of
strings

List of fully qualified file or
raw partition names for the
different disks that backup
the volume.

Table 18: Encina (Physical) Volume Operations

Operation Parameter Description

Remove none Removes this physical
volume.

Add Disk string Adds the specified disk to
the physical volume. The
raw partition or file must
exist. You can create files
using the itadmin tool.
Orbix CORBA OTS Guide: C++ 101

 102 Orbix CORBA OTS Guide: C++

Glossary
A administration

All aspects of installing, configuring, deploying, monitoring, and
managing a system.

C client
An application (process) that typically runs on a desktop and
requests services from other applications that often run on different
machines (known as server processes). In CORBA, a client is a
program that requests services from CORBA objects.

configuration
A specific arrangement of system elements and settings.

configuration domain
Contains all the configuration information that Orbix ORBs, services
and applications use. Defines a set of common configuration
settings that specify available services and control ORB behavior.
This information consists of configuration variables and their values.
Configuration domain data can be implemented and maintained in
a centralised Orbix configuration repository or as a set of files
distributed among domain hosts. Configuration domains let you
organise ORBs into manageable groups, thereby bringing scalability
and ease of use to the largest environments. See also configuration
file and configuration repository.

configuration file
A file that contains configuration information for Orbix components
within a specific configuration domain. See also configuration
domain.

configuration repository
A centralised store of configuration information for all Orbix
components within a specific configuration domain. See also
configuration domain.

configuration scope
Orbix configuration is divided into scopes. These are typically
organized into a root scope and a hierarchy of nested scopes, the
fully-qualified names of which map directly to ORB names. By
organising configuration properties into scopes, different settings
can be provided for individual ORBs, or common settings for groups
of ORB. Orbix services have their own configuration scopes.

CORBA
Common Object Request Broker Architecture. An open standard
that enables objects to communicate with one another regardless
of what programming language they are written in, or what
operating system they run on. The CORBA specification is produced
and maintained by the OMG. See also OMG.
 Orbix CORBA OTS Guide: C++ 103

CORBA objects
Self-contained software entities that consist of both data and the
procedures to manipulate that data. Can be implemented in any
programming language that CORBA supports, such as C++ and
Java.

D deployment
The process of distributing a configuration or system element into
an environment.

E event
The occurrence of a condition or state change, or the availability of
some information that is of interest to one or more modules in a
system. Suppliers generate events and consumers subscribe to
receive them.

I IDL
Interface Definition Language. The CORBA standard declarative
language that allows a programmer to define interfaces to CORBA
objects. An IDL file defines the public API that CORBA objects expose
in a server application. Clients use these interfaces to access server
objects across a network. IDL interfaces are independent of
operating systems and programming languages.

IIOP
Internet Inter-ORB Protocol. The CORBA standard messaging
protocol, defined by the OMG, for communications between ORBs
and distributed applications. IIOP is defined as a protocol layer
above the transport layer, TCP/IP.

installation
The placement of software on a computer. Installation does not
include configuration unless a default configuration is supplied.

Interface Definition Language
See IDL.

invocation
A request issued on an already active software component.

IOR
Interoperable Object Reference. See object reference.

M management
To direct or control the use of a system or component. Sometimes
used in a more general way meaning the same as Administration.
management console

N node daemon
Starts, monitors, and manages servers on a host machine. Every
machine that runs a server must run a node daemon.
 104 Orbix CORBA OTS Guide: C++

O object reference
Uniquely identifies a local or remote object instance. Can be stored
in a CORBA naming service, in a file or in a URL. The contact details
that a client application uses to communicate with a CORBA object.
Also known as interoperable object reference (IOR) or proxy.

object transaction service
See Orbix OTS.

OMG
Object Management Group. An open membership, not-for-profit
consortium that produces and maintains computer industry
specifications for interoperable enterprise applications, including
CORBA. See www.omg.com.

ORB
Object Request Broker. Manages the interaction between clients
and servers, using the Internet Inter-ORB Protocol (IIOP). Enables
clients to make requests and receive replies from servers in a
distributed computer environment. Key component in CORBA.

Orbix OTS
Object Transaction Service. An implementation of the OMG
Transaction Service Specification. Provides interfaces to manage
the demarcation of transactions and the propagation of transaction
contexts.

POA
Portable Object Adapter. Maps object references to their concrete
implementations in a server. Creates and manages object
references to all objects used by an application, manages object
state, and provides the infrastructure to support persistent objects
and the portability of object implementations between different ORB
products. Can be transient or persistent.

protocol
Format for the layout of messages sent over a network.

S server
A program that provides services to clients. CORBA servers act as
containers for CORBA objects, allowing clients to access those
objects using IDL interfaces.

T transaction manager
Manages global transactions on behalf of application programs. A
transaction manager coordinates commands from application
programs and resource managers to start and complete global
transactions. When an application completes a transaction, either
with a commit or rollback request, the transaction manager
communicates the outcome with each resource manager.
Orbix CORBA OTS Guide: C++ 105

http://www.omg.com

 106 Orbix CORBA OTS Guide: C++

Index
Numerics
1PC 5, 98

operation 108
Orbix 3 OTS 115
OTS Lite 120
OTS Lite deployment 124
resource objects 89
successful 99

2PC 96
ACID properties 4
commit() 106
operations 108
OTS Encina 120
OTS plug-in configuration 130
otstf transaction manager 118
prepare() 105
resource objects 89, 92
rollback() 107
rollbacks 96
successful 97
transaction management 128
transaction manager 115

A
ADAPTS policy 42

AUTOMATIC policy 52
code example 45
default_ots_policy 134
InvalidPolicy exception 44
Orbix 3 OTS 116
ots_v11_policy 133
POA policies 19
policy mappings 55
SERVER_SIDE policy 53
Transactional objects 113
using 50

after_completion() 77
agent_ior_file 139
allow_registration_after_rollback_only

OTS Encina 137
OTS Lite 136

Allows_either TransactionPolicy 55
Allows_unshared TransactionPolicy 55
asynchronous XA 62
AUTOMATIC policy 52

policy mappings 55
SEVER_SIDE policy 53

automatic transactions 52

B
backup_restart_file 138
before_completion 72

after_completion 77
before_completion() 76
BeforeCompletionCallback interface 12
BeforeCompletionCallback objects,
registering 72

begin() 9
current interface 28
invoking 17
JIT transactions 53
nested transactions 33
new transactions 30

bindings 25

C
C API

resource manager integration 12
XA specification 60

client_binding_list 25
client OTS policy 40
close_string 141

Orbix namespace 66
commit() 9

2PC 96
code example 36
exceptions 17
functions 106
heuristic exceptions 32
heuristic outcomes 100
invoking 17
JIT transactions 53
new transactions 31
resoruce failure 101
resource interface 88
resource objects 91

commit_on_completion_of_next_call() 54
commit_one_phase() 98

invoking 107
Connector interface 12
Control interface 10
Coordinator interface 10

identity operations 79
relationship operations 83
status operations 81

CosTransactions.hh 16
create()

Control interface 10
new top-level transactions 85
timeouts 36

create_POA() 45
exceptions 55

create_policy() 45
create_resource_manager() 21

calling 22
CurrentConnection interface 12
Orbix CORBA OTS Guide: C++ 107

CurrentConnection object 22
Current interface 9, 10

commit_on_completion_of_next_call()
54

definition 28
Transaction Factory 9

Current object
nested transactions 33
transaction demarcation 16

D
database access 22
default_ots_policy 134
default_transaction_policy 134
default_transaction_timeout 133
direct mode transactions 11
direct_persistence 137

E
EITHER policy 44

policy mappings 55
Encina plug-In

configuring 126
loading 130

Encina plug-in
configuring 129
itotstm service 128

Encina Transaction Manager 126
exceptions

forget() 108
heuristic 100, 106
HeuristicCommit 107
HeuristicMixed and HeuristicHazard 32
inactive 94
InvalidControl 35
InvalidPolicy 44, 55
INVALID_TRANSACTION 42, 43
NotPrepared 103
NoTransaction 32, 36
OBJECT_NOT_EXIST 103
See Also system exceptions
TRANSACTION_MODE 44
TRANSACTION_REQUIRED 42
TRANSACTION_ROLLBACK 52
TRANSACTION_ROLLEDBACK 17, 31,
99

user 106, 107
explicit mode transactions 11
explicit propagation

IDL 57
TransactionFactory reference 40

F
FORBIDS policy 20, 42

InvalidPolicy exception 44
forget() 108

G
get_control() 35

real transactions 53
get_parent_status() 82

get_status() 35
Current interface return values 81

get_timeout() 34
get_top_level_status() 82
get_transaction_name() 35, 79

real transactions 53
get_txcontext() 80

PropagationContext 86
global_namespace_poa 137

H
hash_top_level_transaction() 80
hash_transaction() 79

maintaining data 80
tracking resource objects 92

HeuristicCommit exception 100, 107
heuristic exception 100
HeuristicMixed and HeuristicHazard
exceptions 32

HeuristicRollbackException 106
heuristics outcomes 99

I
implicit propagation policy 40
Inactive exception 94
indirect(implicit) mode transactions 11
indirect mode transactions 11
initial_disk 139
initial_disk_size 139
initial_references:OTSManagement:plugin

132
initial_references:TransactionFactory:plu
gin 132

initial_references:TransactionFactory:refe
rence 132

interposition_style 133
InvalidControl exception 35
InvalidPolicy exception 44

create_POA() 55
INVALID_TRANSACTION exception

FORBIDS policy 42
PREVENTS policy value 43

InvocationPolicy 40
transaction models 41
values 44

is_ancestor_transaction() 83
is_descendant_transaction() 84
is_related_transaction(83
is_same_transaction() 79

description 83
maintaining data 80
tracking resource objects 92

is_top_level_transaction() 84
itadmin

transient POAs 126
itotstm

configuring 129
service 126
transaction manager service 128

itotstm service 126
 108 Orbix CORBA OTS Guide: C++

J
JIT transaction creation 53
jit_transactions 134

L
Lite plug-in

deployment 124
loading 124
transaction manager 115

log_check_interval 140
log_threshold 139

M
max_resource_failures 140
Multi-threading 63

N
namespace_poa 137
nested transaction families 82
nested transactions 33
NonTxTargetPolicy 40

default value 49
steps for using 47
values 43

non_tx_target_policy 142
NotPrepared exception 103
NoTransaction exception 32, 36

O
OBJECT_NOT_EXIST exception 103
one-phase-commit (1PC) protocol See
1PC

open_string 141
open-string specification 21
Oracle database example 21
orbix/cos_transactions.hh 54
orbix/xa.hh 21
Orbix 3 OTS applications 115
OrbixOTS.INTEROP variable 117
orb_name 135, 137
orb_plugins configuration variable 129
otid field 92
otid_format_id 136, 138
OTS Application example

funds transfer 14
OTS application example

completion steps 15
ots_encina Namespace Variables 137
OTS Encina See Under Enicna
OTS Interfaces 10
ots_lite Namespace Variables 135
OTS Lite See Lite
OTS plug-in

loading 122
OTS plug-ins 120

deployment scenarios 123
loading 25
purpose of 122

OTSPolicies, Orbix specific 52
OTSPolicy 40

creating objects 45
values 19, 42

OTS Resource interface 9
otstf

bypassing 116
server 116

OTS transaction modes 11
ots_v11_policy 133

P
PERMIT NonTxTargetPolicy 117
PERMIT policy 113

value 43
PERSISTENT lifespan policy 92
ping_period 141
plugins:ots_encina:orb_name 137
plugins:ots_encina Namespace
Variables 137

plugins:ots_lite Namespace Variables 135
poa_name 141
POA policies 19

transaction propagation 40
POAs and Encina plug-in 126
PolicyCurrent object 47
PolicyManager object 47
prepare() 96, 105
PREVENT policy value 43
propagate_separate_tid_optimization 13
4

PropagationContext structure 85
propagation policies 40

R
RecoveryCoordinator interface 10, 103
recovery coordinator object 94
recreate() 85
register_resource() 24, 93
register_synchronization() 77
replay_completion() 94, 102

usage model 104
using 109

REQUIRES policy value 19
resolve_initial_references() 16

transaction factory object 36
XAConnector 22

Resource interface 9, 10
resource interface operations 24
Resource interface transaction
operations 88

ResourceManager interface 12
ResourceManager object 22
resource managers, XA compliant 12
resource objects

creating 92
failure/recovery 101
implementation checklist 108
implementing servants 91
protocols supported 95
registering 93
tracking 92
usage model 89
Orbix CORBA OTS Guide: C++ 109

ResourcePOA class 91
resource_retry_timeout 138
restart_file 138
resume() 34
rmid 141
rollback() 96

current transactions 33
invoking 18
occasions when called 107
transaction demarcation 9
user exceptions 107

rollback_only() 33, 76
real transactions 53

rollback_only_on_system_ex 134
rollbacks, reasons for 95

S
server_binding_list 25
SERVER_SIDE policy value 52, 134

JIT 53
set_policy_overrides() 47
set_timeout() 34
SHARED policy 44
shared transaction model 41
StatusActive value 81
StatusCommitted value 81
StatusCommitting value 81
StatusMarkedRollback 81
StatusMarkedRollback value 81
StatusNoTransaction value 81
StatusPrepared value 81
StatusPreparing value 81
StatusRolledBack value 81
StatusRollingBack value 81
StatusUnknown value 81
SubtransactionAwareResource
interface 10

superior_ping_timeout 136
support_ots_v11 133
supports_async_rollback 141
suspend() 34

real transactions 53
Synchronization interface 11, 76
synchronization objects 78
system exceptions

effects of raising 76
INVALID_TRANSACTION 43
OBJECT_NOT_EXIST 103
rollback_only_on_system_ex 134
TRANSACTION_MODE 44
TRANSACTION_REQUIRED 42
TRANSACTION_ROLLEDBACK 17, 31,
52, 101, 108

T
Terminator interface 11, 36
thread_model configuration variable 21
threads 29
timeouts 34, 96
trace_comp 139
trace_file 139

trace_on 139
TransactionalObject interface 11, 15

Orbix support 113
transaction coordinator failure 102
transaction demarcation 9
TransactionFactory interface 11

Current interface 9
declaring 85

transaction_factory_name 133
ots_encina 138
ots_lite 135

transaction_factory_ns_name 138
transaction family 33
transaction identifier 92
Transaction interface 8

resource manager integration 9
transaction management

OTS interfaces 9
TransactionManager 4
TRANSACTION_MODE exception

SHARED policy value 44
transaction modes 11
TransactionPolicies 112
TransactionPolicy

migrating from 55
transaction propagation 9
TRANSACTION_REQUIRED exception 42
transaction rollbacks, reasons for 95
TRANSACTION_ROLLEDBACK
exception 17, 31, 52, 101, 108

transactions 2
automatic 52
creating 30
creating new 17
database access steps 22
example 2
maintaining data 80
nested 33
obrix support 2
POA policies 19
propagation policies 40
properties 3
suspending/resuming 34
threads 29

transaction_timeout_period 135, 138
two-phase-commit (2PC) protocol See
2PC

U
UNSHARED policy value 44
unshared transaction model 41
use_internal_orb 135, 138
use_raw_disk 139
user exceptions 106, 107
USER_ID ID assignment policy 92, 108

V
VoteCommit value 96

using 109
VoteReadOnly value 96, 105

using 109
 110 Orbix CORBA OTS Guide: C++

VoteRollback value 105

X
X/Open XA interface 12
xa_close() 12, 61
xa_commit() 12, 61
xa_complete() 62
XA-compliant database 23
xa_end() 12, 62
xa_forget() 12, 61
XA interfaces 12
xa_open() 12, 61

open-string 21
xaosw 22, 61
xa_prepare() 12, 61
xa_recover() 12, 62
XA resource manager

OTS managed transactions
integration 21

XA Resource Manager Variables 141
xa_rollback() 12, 61
xa_start() 12, 62
xa_switch_t instance 61
XID transaction identifier format 86
Orbix CORBA OTS Guide: C++ 111

 112 Orbix CORBA OTS Guide: C++

	Preface
	Contacting Micro Focus

	Transaction Service
	About Transactions
	Transaction Managers

	OMG OTS and X/Open XA Interfaces
	Transaction Interfaces
	OTS Interfaces
	The X/Open XA Interface

	Getting Started with Transactions
	Application Overview
	Transaction Demarcation
	Transaction Propagation and POA Policies
	XA Resource Manager Integration
	Application-Specific Resources
	Configuration Issues

	Transaction Demarcation and Control
	The OTS Current Object
	Direct Transaction Demarcation

	Propagation and Transaction Policies
	Implicit Propagation Policies
	Shared and Unshared Transactions
	Policy Meanings
	Example Use of an OTSPolicy
	Example Use of a NonTxTargetPolicy
	Use of the ADAPTS OTSPolicy
	Orbix-Specific OTSPolicies
	Migrating from TransactionPolicies
	Explicit Propagation

	Using XA Resource Managers with OTS
	The XA Interface
	XA and Multi-Threading
	Using the Orbix XA Plug-In
	Associations between Transactions and Connections
	Association State Diagram
	Using a Remote Resource Manager

	Transaction Management
	Synchronization Objects
	Transaction Identity Operations
	Transaction Status
	Transaction Relationships
	Recreating Transactions

	Writing Recoverable Resources
	The Resource Interface
	Creating and Registering Resource Objects
	Resource Protocols
	Responsibilities and Lifecycle of a Resource Object

	Interoperability
	Use of InvocationPolicies
	Use of the TransactionalObject Interface
	Interoperability with Orbix 3 OTS Applications
	Using the Orbix 3 otstf with Orbix Applications

	OTS Plug-Ins and Deployment Options
	The OTS Plug-In
	The OTS Lite Plug-In
	The Encina Transaction Manager
	The itotstm Transaction Manager Service

	OTS Management
	Introduction to OTS Management
	TransactionManager Entity
	Transaction Entity
	Encina Transaction Log Entity
	Encina Volume Entity
	Management Events

	Glossary
	Index

