IONA

fﬁl Orbix®

CORBA Programmer’s Guide,

Java
Version 6.2, December 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 25-Jul-2005

Contents

List of Figures
List of Tables
Preface

Chapter 1 Introduction to Orbix
Why CORBA?
CORBA Objects
Object Request Broker
CORBA Application Basics
Servers and the Portable Object Adapter
Orbix Plug-In Design
Development Tools
Orbix Application Deployment
CORBA Features and Services

Chapter 2 Getting Started with Orbix
Creating a Configuration Domain
Setting the Orbix Environment
Setting ORB Properties for the Orbix ORB
Hello World Example
Development from the Command Line

Chapter 3 First Application
Development Using Code Generation
Development Without Using Code Generation
Locating CORBA Objects
Development Steps
Define IDL interfaces
Generate starting point code
Compile the IDL definitions

Xiii

Xvii

XiX

41
42
44
46
48
49
51
53

CONTENTS

Develop the server program 57
Develop the client program 62

Build the application 68

Run the application 69
Enhancing Server Functionality 71
Initialize the ORB 72
Create a POA for transient objects 74
Create servant objects 77
Activate CORBA objects 78
Export object references 80
Activate the POA manager 81

Shut down the ORB 82
Complete Source Code for server.java 83
Chapter 4 Defining Interfaces 89
Modules and Name Scoping 91
Interfaces 93
Interface Contents 95
Operations 96
Attributes 99
Exceptions 100
Empty Interfaces 101
Inheritance of IDL Interfaces 102
Forward Declaration of IDL Interfaces 106

Local Interfaces 107
Valuetypes 109
Abstract Interfaces 110
IDL Data Types 112
Built-in Types 113
Extended Built-in Types 115
Complex Data Types 118
Pseudo Object Types 123
Defining Data Types 124
Constants 125
Constant Expressions 128
Chapter 5 Developing Applications with Genies 131

Genie Syntax 133

CONTENTS

Specifying Application Components 135
Selecting Interfaces 137
Including Files 138
Implementing Servants 139
Implementing the Server Mainline 142
Implementing a Client 145
Generating Build Files 146
Controlling Code Completeness 147
Servant Code 149

Client Code 151
General Options 153
Compiling the Application 154
Configuration Settings 155
Chapter 6 ORB Initialization and Shutdown 157
Initializing the ORB Runtime 158
Shutting Down the ORB 160
Shutting Down a Client 161
Shutting down a server 162
Chapter 7 Using Policies 163
Creating Policy and PolicyList Objects 165
Setting Orb and Thread Policies 167
Setting Server-Side Policies 170
Setting Client Policies 172
Setting Policies at Different Scopes 173
Managing Object Reference Policies 174
Getting Policies 177
Chapter 8 Developing a Server 179
POAs, Skeletons, and Servants 181
Mapping Interfaces to Skeleton Classes 183
Creating a Servant Class 185
Activating CORBA Objects 187
Handling Output Parameters 189
Delegating Servant Implementations 190

Explicit Event Handling 192

CONTENTS

Chapter 9 Managing Server Objects
Mapping Objects to Servants
Creating a POA
Setting POA Policies
Root POA Policies
Using POA Policies
Enabling the Active Object Map
Processing Object Requests
Setting Object Lifespan
Assigning Object IDs
Activating Objects with Dedicated Servants
Activating Objects
Setting Threading Support
Explicit Object Activation
Implicit Object Activation
Calling _this() Inside an Operation
Calling _this() Outside an Operation
Managing Request Flow
Work Queues
ManualWorkQueue
AutomaticWorkQueue
Using a WorkQueue
Controlling POA Proxification

Chapter 10 Developing a Client
Mapping IDL Interfaces to Proxies
Using Object References
Object Reference Operations
Narrowing Object References
String Conversions
Initializing and Shutting Down the ORB
Invoking Operations and Attributes
Passing Parameters in Client Invocations
Holder Class Types
Holder Class Members
Invoking an Operation With Holder Classes
Client Policies
RebindPolicy

Vi

193
195
197
199
203
204
205
206
208
211
212
213
214
215
216
217
218
220
222
224
226
229
232

235
236
238
239
242
244
248
249
251
252
254
255
258
259

SyncScopePolicy
Timeout Policies
Implementing Callback Objects

Chapter 11 Managing Servants
Using Servant Managers
Servant Activators
Servant Locators
Using a Default Servant
Setting a Default Servant
Creating Inactive Objects

Chapter 12 Exceptions

Exception Code Mapping

User-Defined Exceptions

Handling Exceptions
Handling User Exceptions
Handling System Exceptions
Evaluating System Exceptions

Throwing Exceptions

Throwing System Exceptions

Chapter 13 Using Type Codes
Type Code Components
Type Code Operations
General Type Code Operations
Type Codes for Basic Types
Type Codes for User-Defined Types

Chapter 14 Using the Any Data Type
Constructing an Any Object
Inserting Basic Types
Inserting User-Defined Types
Extracting Basic Types
Extracting User-Defined Types
Inserting and Extracting Bounded String Aliases
Extracting Object References
Any as a Parameter or Return Value

CONTENTS

260
261
271

273
275
278
283
288
291
292

295
297
299
301
302
303
305
310
311

313
314
317
318
324
325

327
330
331
333
335
337
339
340
343

vii

CONTENTS

Using DynAny Objects
Creating a DynAny
create_dyn_any()
create_dyn any from type code()
Inserting and Extracting DynAny Values
Insertion Operations
Extraction Operations
Iterating Over DynAny Components
Accessing Constructed DynAny Values

Chapter 15 Generating Interfaces at Runtime

Using the DII

Constructing a Request Object

_request()

_create_request()

Invoking a Request

Retrieving Request Results

Invoking Deferred Synchronous Requests
Using the DSI

DSI Applications

Programming a Server to Use DSI

Chapter 16 Using the Interface Repository
Interface Repository Data
Abstract Base Interfaces
Repository Object Types
Containment in the Interface Repository
Contained Interface
Container Interface
Repository Object Descriptions
Retrieving Repository Information
Sample Usage
Repository IDs and Formats
Controlling Repository IDs with Pragma Directives

Chapter 17 Naming Service
Naming Service Design
Defining Names

viii

344
347
348
350
352
353
355
358
360

371
373
375
376
379
382
383
384
385
386
387

391
393
394
395
402
405
407
409
412
416
418
420

423
425
427

Representing Names as Strings
Initializing a Name
Converting a Name to a StringName
Obtaining the Initial Naming Context
Building a Naming Graph
Binding Naming Contexts
Binding Object References
Rebinding
Using Names to Access Objects
Exceptions Returned to Clients
Listing Naming Context Bindings
Using a Binding lterator
Maintaining the Naming Service
Federating Naming Graphs
Sample Code
Object Groups and Load Balancing
Using Object Groups in Orbix
Load Balancing Example
Creating an Object Group and Adding Objects
Accessing Objects from a Client

Chapter 18 Event Service

Overview

Event Communication Models

Developing an Application Using Untyped Events
Obtaining an Event Channel
Implementing a Supplier
Implementing a Consumer

Developing an Application Using Typed Events
Creating the Interface
Obtaining a Typed Event Channel
Implementing the Supplier
Implementing the Consumer

Chapter 19 Portable Interceptors
Interceptor Components
Interceptor Types
Service Contexts

CONTENTS

429
430
432
433
434
435
439
440
441
444
445
447
450
452
458
461
465
468
470
475

477
478
480
484
485
488
494
501
502
503
507
511

517
519
520
522

CONTENTS

PICurrent 523
Tagged Components 525
Codec b26

Policy Factory 528

ORB Initializer 529
Writing IOR Interceptors 530
Using Requestinfo Objects 534
Writing Client Interceptors 537
Interception Points 539
Interception Point Flow 540
ClientRequestInfo 544

Client Interceptor Tasks 547
Writing Server Interceptors 551
Interception Points 552
Interception Point Flow 553
ServerRequestinfo 557
Server Interceptor Tasks 560
Registering Portable Interceptors 564
Implementing an ORB Initializer 565
Registering an ORBInitializer 571
Setting Up Orbix to Use Portable Interceptors 572
Chapter 20 Bidirectional GIOP 573
Introduction to Bidirectional GIOP 574
Bidirectional GIOP Policies 576
Configuration Prerequisites 582
Basic BiDir Scenario 583
The Stock Feed Demonstration 584
Setting the Export Policy 587
Setting the Offer Policy 589
Setting the Accept Policy 591
Advanced BiDir Scenario 594
Interoperability with Orbix Generation 3 597
Chapter 21 Locating Objects with corbaloc 599
corbaloc URL Format 600
Indirect Persistence Case 604

Overview of the Indirect Persistence Case 605

Registering a Named Key at the Command Line
Registering a Named Key by Programming
Using the corbaloc URL in a Client
Direct Persistence Case
Overview of the Direct Persistence Case
Registering a Plain Text Key
Using the corbaloc URL in a Client
Named Keys and Plain Text Keys Used by Orbix Services

Chapter 22 Configuring and Logging
The Configuration Interface
Configuring
Logging

Chapter 23 Orbix Compression Plug-in
Introduction to the ZIOP Plug-In
Configuration Prerequisites
Compression Policies
Programming Compression Policies
Implementing Custom Compression

The IT_Buffer Module
Implementing a Compressor
Implementing a Compressor Factory
Registering a Compressor Factory

Appendix A Orbix IDL Compiler Options
Command Line Switches
Plug-in Switch Modifiers
IDL Configuration File

Appendix B IONA Policies
Client Side Policies
POA Policies
Security Policies
Firewall Proxy Policies

Index

CONTENTS

607
609
611
612
613
615
616
617

619
620
622
626

631
632
634
636
638
641
642
646
651
655

659
660
662
667

671
672
675
677
679

681

Xi

CONTENTS

Xii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure b5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

The nature of abstract CORBA objects

The object request broker

Invoking on a CORBA object

The portable object adapter

The Orbix Configuration Welcome Dialog Box
The Domain Type Window

The Service Startup Window

The Security Window

The Fault Tolerance Window

Figure 10: The Select Services Window

Figure 11: The Confirm Choices Window

Figure 12: Configuration Summary

Figure 13:
Figure 14:

Figure 15: Multiple inheritance of IDL interfaces

Figure 16:

dispatches the request to the appropriate servant.

Client makes a single operation call on a server
Simple strategy for passing object references to clients

47
103

The server-side ORB conveys client requests to the POA via its manager, and the POA

182

Figure 17: A portable object adapter (POA) maps abstract objects to their concrete implementations
(servants)

195

Figure 18: On the first request on an object, the servant activator returns a servant to the POA, which
establishes the mapping in its active object map.

278

Figure 19: The POA directs each object request to the servant locator, which returns a servant to the
POA to process the request.

Figure 20: The Java mapping arranges exceptions into a hierarchy
Figure 21: Interfaces that derive from the DynAny interface

Figure 22: Hierarchy of interface repository objects

Figure 23: A naming graph is a hierarchy of naming contexts

283
297
344
398
425

Xiii

LIST OF FIGURES

Figure 24: Checking context bound to initial naming context 436
Figure 25: Savings and Loans naming contexts bound to initial naming context 436
Figure 26: Binding an object reference to a naming context 439
Figure 27: Destroying a naming context and removing related bindings 451
Figure 28: A naming graph that spans multiple servers 453
Figure 29: Multiple naming graphs are linked by binding initial naming contexts of several servers to a
root server. 455
Figure 30: The root server's initial naming context is bound to the initial naming contexts of other
servers, allowing clients to locate the root naming context. 456
Figure 31: Associating a name with an object group 462
Figure 32: Architecture of the stock market example 468
Figure 33: Suppliers and consumers communicating through an event channel 478
Figure 34: Event propagation in a CORBA system 479
Figure 35: Push model of event transfer 480
Figure 36: Pull Model suppliers and consumers communicating through an event channel 481
Figure 37: Push suppliers and pull consumers communicating through an event channel 482
Figure 38: Push consumers pushing typed events to typed push consumers 483
Figure 39: Client interceptors allow services to access outgoing requests and incoming replies.521
Figure 40: PICurrent facilitates transfer of thread context data to a request or reply. 523
Figure 41: Client interceptors process a normal reply. 540
Figure 42: Client interceptors process a LOCATION_FORWARD reply. 41
Figure 43: send_request throws an exception in a client-side interceptor 542
Figure 44: Client interceptors can change the nature of the reply. 543

Figure 45: Server interceptors receive request and send exception thrown by target object. 554

Figure 46: receive_request_service contexts throws an exception and interception flow is aborted.
555

Figure 47: Server interceptors can change the reply type. 556
Figure 48: Basic Bidirectional GIOP Scenario—Stock Feed 585
Figure 49: Advanced Bidirectional GIOP Scenario 594
Figure 50: Orbix 3 Client Receiving a Callback from an Orbix 6.1 Server 597

Xiv

LIST OF FIGURES

Figure 51: Using corbaloc with the Locator-Based Named Key Registry 605
Figure 52: Using corbaloc with the plain_text key Plug-In 613
Figure 53: Overview of ZIOP Compression 632
Figure 54: Configuration file format 667
Figure 55: Distributed IDL configuration file 668

XV

LIST OF FIGURES

Xvi

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:

CORBA::LocalObject pseudo-operation returns
Built-in IDL types

Extended built-in IDL types

Component specifier arguments to java_poa_genie.tcl
Optional switches to java_poa_genie.tcl

Wildcard pattern matching to interface names
Arguments that control servant generation

Options affecting the server

POA policy factories and argument options

POA manager states and interface operations
Timeout Policies

Base minor code values for Orbix subsystems
Type Codes and Parameters

Type-Specific Operations

Information Obtained by Type-Specific Operations
Interface Repository Olbject Types

Portable Interceptor Timeout Attributes
Client Interception Point Access to ClientRequestinfo

Levels of Granularity for Bidirectional Policies
Named Keys and Plain Text Keys for Orbix Services
Modifiers for all C++ plug-in switches

Modifier for -base, -psdl, and -pss_r plug-in switches
Modifiers for -jbase and -jpoa switches

Modifiers for -poa switch

Container and Contained Objects in the Interface Repository

Server Interception Point Access to ServerRequestinfo

108
113
115
133
133
137
139
142
200
220
261
306
315
320
322
395
403
535
545
558
580
617
662
664
664
665

xvii

LIST OF TABLES

xviii

Audience

Organization of this guide

Additional resources

Preface

Orbix is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group. Orbix complies with the following specifications:

®* CORBA2.3

® GIOP 1.2 (default), 1.1, and 1.0

The CORBA Programmer’s Guide is intended to help you become familiar
with Orbix, and show how to develop distributed applications using Orbix
components. This guide assumes that you are familiar with programming in
Java.

This guide does not discuss every API in great detail, but gives a general
overview of the capabilities of the Orbix development kit and how various
components fit together.

Read Chapter 1 for an overview of Orbix. Chapter 2 shows how you can use
code-generation genies to build a distributed application quickly and easily.
Chapter 3 describes in detail the basic steps in building client and server
programs. Subsequent chapters expand on those steps by focusing on topics
that are related to application development.

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products.

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

Xix

http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

Typographical conventions

Constant width

[talic

XX

This guide uses the following typographical conventions:

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

[talic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@iona.com

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

[1]

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

XXi

PREFACE

XXii

In this chapter

CHAPTER 1

Introduction to
Orbix

With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in C++ and Java. Orbix has
an advanced modular architecture that lets you configure and
change functionality without modifying your application code,
and a rich deployment architecture that lets you configure and
manage a complex distributed system.

This chapter contains the following sections:

Why CORBA? page 2
CORBA Application Basics page 7
Servers and the Portable Object Adapter page 8
Orbix Plug-In Design page 10
Development Tools page 12
Orbix Application Deployment page 14
CORBA Features and Services page 16

CHAPTER 1 | Introduction to Orbix

Why CORBA?

Overview

What is CORBA?

Orbix

Today's enterprises need flexible, open information systems. Most
enterprises must cope with a wide range of technologies, operating systems,
hardware platforms, and programming languages. Each of these is good at
some important business task; all of them must work together for the
business to function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet’s
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
parts. CORBA objects communicate directly across a network using
standard protocols, regardless of the programming languages used to create
objects or the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, and
COBOL, running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through COMet, IONA’s dynamic bridge between CORBA and COM, they
can also interoperate with COM objects.

CORBA is widely available and offers an extensive infrastructure that
supports all the features required by distributed business objects. This
infrastructure includes important distributed services, such as transactions,
security, and messaging.

Orbix provides a CORBA development platform for building
high-performance systems. Orbix’s modular architecture supports the most
demanding requirements for scalability, performance, and deployment
flexibility. The Orbix architecture is also language-independent and can be

Why CORBA?

implemented in Java and C++. Orbix applications can interoperate via the
standard 11OP protocol with applications built on any CORBA-compliant
technology.

CHAPTER 1 | Introduction to Orbix

CORBA Objects

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

\
~ _ /\ A server implements

a CORBA object

/ -~ Clients access
y __CORBA objects
S / via object
references
RN
SR
\ IDL interface definitions specify
~ _ / CORBA objects

Figure 1: The nature of abstract CORBA objects

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as C+ + or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions
are available to a client, without making any assumptions about an object’s
implementation.

With a few calls to an ORB's application programming interface (API),

servers can make CORBA objects available to client programs in your
network.

Why CORBA?

To call member functions on a CORBA object, a client programmer needs
only to refer to the object’s interface definition. Clients can call the member
functions of a CORBA object using the normal syntax of the chosen
programming language. The client does not need to know which
programming language implements the object, the object’s location on the
network, or the operating system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients
that access the object. You can also make existing objects available across a
network.

CHAPTER 1 | Introduction to Orbix

Object Request Broker

CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.

An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on
other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Client Host Server Host

ServerQ
Client

/

Object Request Broker

Function
Call

Figure 2: The object request broker

CORBA Application Basics

CORBA Application Basics

You start developing a CORBA application by defining interfaces to objects
in your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler generates C++ or Java code from IDL
definitions. This code includes client stub code with which you develop
client programs, and object skeleton code, which you use to implement
CORBA objects.

When a client calls a member function on a CORBA object, the call is
transferred through the client stub code to the ORB. Because the
implemented object is not located in the client’s address space, CORBA
objects are represented in client code by proxy objects.

A client invokes on object references that it obtains from the server process.
The ORB then passes the function call through the object skeleton code to
the target object.

Client Host Server Host

Client

ServerO
Object

Skeleton I
Object Request Broker

Function
Call

Figure 3: /nvoking on a CORBA object

CHAPTER 1 | Introduction to Orbix

Servers and the Portable Object Adapter

Server processes act as containers for one or more portable object adapters.
A portable object adapter, or POA, maps abstract CORBA objects to their
actual implementations, or servants, as shown in Figure 4. Because the

Client Host Server Host

Client

Server
skeleton

adapter

Object Request Broker

Figure 4: The portable object adapter

POA assumes responsibility for mapping servants to abstract CORBA
objects, the way that you define or change an object’s implementation is
transparent to the rest of the application. By abstracting an object’s identity
from its implementation, a POA enables a server to be portable among
different implementations.

Depending on the policies that you set on a POA, object-servant mappings
can be static or dynamic. POA policies also determine whether object
references are persistent or transient, and the threading model that it uses.
In all cases, the policies that a POA uses to manage its objects are invisible
to clients.

Servers and the Portable Object Adapter

A server can have one or more nested POAs. Because each POA has its own
set of policies, you can group objects logically or functionally among
multiple POAs, where each POA is defined in a way that best
accommodates the needs of the objects that it processes.

CHAPTER 1 | Introduction to Orbix

Orbix Plug-In Design

Plug-ins

ORB core

10

Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB
based on runtime configuration settings.

A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains
objects that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured
into the application rather than compiled in, you can change your choices
as your needs change without rewriting or recompiling applications.

For example, an application that uses the standard [IOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. No one transport is inherent to the ORB core; you simply
load the transport set that suits your application best. This architecture
makes it easy for IONA to support additional transports in the future such as
multicast or special purpose network protocols.

The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local C+ + or Java object within the process. In fact it might be a local
object, or a remote object reached by some network protocol. It is the ORB’s
job to get application requests to the right objects no matter where they live.

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed
by the application. For remote objects, the ORB intercepts local function
calls and turns them into CORBA requests that can be dispatched to a
remote object.

Orbix Plug-In Design

In order to send a request on its way, the ORB core sets up a chain of
interceptors to handle requests for each object. The ORB core neither
knows nor cares what these interceptors do, it simply passes the request
along the interceptor chain. The chain might be a single interceptor which
sends the request with the standard IIOP protocol, or a collection of
interceptors that add transaction information, encrypt the message and send
it on a secure protocol such as SSL. All of this is transparent to the
application, so you can change the protocol or services used by your
application simply by configuring a different set of interceptors.

11

CHAPTER 1 | Introduction to Orbix

Development Tools

Code generation toolkit

Multi-threading support

Configuration and logging
interfaces

12

The CORBA developer’s environment contains a number of facilities and
features that help you and your development team be more productive.

IONA provides a code generation toolkit that simplifies and streamlines the
development effort. You only need to define your IDL interfaces; out-of-the

box scripts generate a complete client/server application automatically from
an IDL file.

The toolkit also can be useful for debugging: you can use an auto-generated
server to debug your client, and vice versa. Advanced users can write code
generation scripts to automate repetitive coding in a large application.

For more information about the code generation toolkit, refer to the CORBA
Code Generation Toolkit Guide.

Orbix provides excellent support for multi-threaded applications. Orbix
libraries are multi-threaded and thread-safe. Orbix servers use standard POA
policies to enable multi-threading. The ORB creates a thread pool that
automatically grows or shrinks depending on demand load. Thread pool
size, growth and request queuing can be controlled by configuration settings
without any coding.

Applications can store their own configuration information in Orbix
configuration domains, taking advantage of the infrastructure for ORB
configuration. CORBA interfaces provide access to configuration information
in application code.

Applications can also take advantage of the Orbix logging subsystem, again
using CORBA interfaces to log diagnostic messages. These messages are
logged to log-stream objects that are registered with the ORB. Log streams
for local output, file logging and system logging (Unix syslogd or Windows
Event Service) are provided with Orbix. You can also implement your own
log streams, which capture ORB and application diagnostics and send them
to any destination you desire.

Portable interceptors

Development Tools

Portable interceptors allow an application to intervene in request handling.
They can be used to log per-request information, or to add extra “hidden”
data to requests in the form of GIOP service contexts for example,
transaction information or security credentials.

13

CHAPTER 1 | Introduction to Orbix

Orbix Application Deployment

Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain
provides the central control of configuration for an entire distributed
application.

Orbix offers a rich deployment environment that lets you structure and

control enterprise-wide distributed applications. Orbix provides central
control of all applications within a common domain.

Location domains A location domain is a collection of servers under the control of a single
locator daemon. The locator daemon can manage servers on any number of
hosts across a network. The locator daemon automatically activates remote
servers through a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is
a database of available servers. The implementation repository keeps track
of the servers available in a system and the hosts they run on. It also
provides a central forwarding point for client requests. By combining these
two functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests
to the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

Configuration domains A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains.

Orbix supports two mechanisms to administer a configuration domain:

14

Orbix Application Deployment

® During development, or for small-scale deployment, configuration can
be stored in an ASCII text file, which is edited directly.

® For larger deployments, Orbix provides a distributed configuration
server that enables centralized configuration for all applications spread
across a network.

The configuration mechanism is loaded as a plug-in, so future configuration

systems can be extended to load configuration from any source such as

example HTTP or third-party configuration systems.

15

CHAPTER 1 | Introduction to Orbix

CORBA Features and Services

Orbix fully supports the latest CORBA specification, and in some cases
anticipates features to be included in upcoming specifications.

Full CORBA 2.3 support and All CORBA 2.3 IDL data types are fully supported, including:

interoperability ® Extended precision numeric types for 64 bit integer and extended

floating point calculations.

® Fixed point decimals for financial calculations.

® International character sets, including support for code-set negotiation
where multiple character sets are available.

® Objects by value: you can define objects that are passed by value as
well as the traditional pass-by-reference semantics of normal CORBA
objects. This is particularly relevant in Java based systems, but also
supported for C++ using object factories.

Orbix supports the most recent 1.2 revision of the CORBA standard General
Inter-ORB Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP), and also
supports previous 1.1 and 1.0 revisions for backwards compatibility with
applications based on other ORBs. Orbix is interoperable with any
CORBA-compliant application that uses the standard IIOP protocol.

Orbix implements quality-of-service policies as specified in CORBA 3.0.
Quality-of-service policies let you control how the ORB processes requests.
For example, you can specify how quickly a client resumes processing after
sending one-way requests.

Interoperable naming service and Orbix supports the interoperable naming service specification. This is a

load balancing extensions superset of the original CORBA naming service which adds some
ease-of-use features and provides a standard URL format for CORBA object
references to simplify configuration and administration of CORBA services.

The Orbix naming service also supports IONA-specific load-balancing
extensions of OrbixNames 3. A group of objects can be registered against a
single name; the naming service hands out references to clients so that the
client load is spread across the group.

16

Object transaction service

Event service

SSL/TLS

COMet

CORBA Features and Services

Orbix includes the object transaction service (OTS) which is optimized for
the common case where only a single resource (database) is involved in a
transaction. Applications built against the single resource OTS can easily be
reconfigured to use a full-blown OTS when it is available, since the
interfaces are identical. With Orbix plug-in architecture, applications will not
even need to be recompiled. For the many applications where transactions
do not span multiple databases, the single-resource OTS will continue to be
a highly efficient solution, compared to a full OTS that performs extensive
logging to guarantee transaction integrity.

Orbix supports the CORBA event service specification, which defines a
model for indirect communications between ORB applications. A client does
not directly invoke an operation on an object in a server. Instead, the client
sends an event that can be received by any number of objects. The sender of
an event is called a supplier; the receivers are called consumers. An
intermediary event channel takes care of forwarding events from suppliers
to consumers.

Orbix supports both the push and pull model of event transfer, as defined in
the CORBA event specification. Orbix performs event transfer using the
untyped format, whereby events are based on a standard operation call that
takes a generic parameter of type any.

Orbix SSL/TLS provides data security for applications that communicate
across networks by ensuring authentication, privacy, and integrity features
for communications across TCP/IP connections.

TLS is a transport layer security protocol layered between application
protocols and TCP/IP, and can be used for communication by all Orbix
SSL/TLS components and applications.

OrbixCOMet provides a high performance dynamic bridge that enables
transparent communication between COM/Automation clients and CORBA
servers.

OrbixCOMet is designed to give COM programmers—who use tools such as
Visual C++, Visual Basic, PowerBuilder, Delphi, or Active Server Pages on
the Windows desktop—easy access to CORBA applications running on

17

CHAPTER 1 | Introduction to Orbix

Dynamic type support: interface
repository and dynany

18

Windows, UNIX, or 0S/390 environments. COM programmers can use the
tools familiar to them to build heterogeneous systems that use both COM
and CORBA components within a COM environment.

Orbix has full support for handling data values that are not known at
compile time. The interface repository stores information about all CORBA
types known to the system and can be queried at runtime. Clients can
construct requests based on runtime type information using the dynamic
invocation interface (DIl), and servers can implement “universal” objects
that can implement any interface at run time with the dynamic skeleton
interface (DSI).

Although all of these features have been available since early releases of the
CORBA specification, they are incomplete without the addition of the
DynAny interface. This interface allows clients and servers to interpret or
construct values based purely on runtime information, without any
compiled-in data types.

These features are ideal for building generic object browsers, type
repositories, or protocol gateways that map CORBA requests into another
object protocol.

In this chapter

CHAPTER 2

Getting Started
with Orbix

You can use the CORBA Code Generation Toolkit to develop
an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the
client and server application code, including build files. You then complete
the distributed application by filling in the missing business logic.

This chapter contains the following sections:

Creating a Configuration Domain page 20
Setting the Orbix Environment page 29
Setting ORB Properties for the Orbix ORB page 30
Hello World Example page 32
Development from the Command Line page 34

19

CHAPTER 2 | Getting Started with Orbix

Creating a Configuration Domain

Overview This section describes how to create a simple configuration domain, si npl e,
which is required for running basic demonstrations. This domain deploys a
minimal set of Orbix services.

Prerequisites Before creating a configuration domain, the following prerequisites must be
satisfied:

® Orbix is installed.

® Some basic system variables are set up (in particular, the
I T_PRCDUCT_DI R, | T_LI CENSE_FI LE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing The location of the license file, 1 i censes. t xt, is specified by the
| T_LI CENSE_FI LE system variable. If this system variable is not already set
in your environment, you can set it now.

Steps To create a configuration domain, si npl e, perform the following steps:
Run itconfigure.

Choose the domain type.

Specify service startup options.

Specify security settings.

Specify fault tolerance settings.

Select services.

Confirm choices.

© N o ok wN

Finish configuration.

20

Creating a Configuration Domain

Run itconfigure To begin creating a new configuration domain, enter it configure at a

command prompt. An Orbix Configuration Welcome dialog box appears, as
shown in Figure 5.

Select Create a new domain and click OK.

" # Orbix Configuration Welcome x|
Welcame to the Orbix Configuration tool. Please select an aption:

@ Create a new domain|
] Qpen an existing domain

(O Go straight into itconfigure

oK]| Cancel

Figure 5: The Orbix Configuration Welcome Dialog Box

21

CHAPTER 2 | Getting Started with Orbix

Choose the domain type

22

A Domain Type window appears, as shown in Figure 6.

In the Configuration Domain Name text field, type si npl e. Under
Configuration Domain Type, click the Select Services radiobutton.

Click Next> to continue.

" # Create a Configuration Domain - Standard Mode

Steps

1. Domain Type

2. Service Startup
3. Security
4

.Fault Tolerance

B. Confirm Choices
7. Deploying ...

8. Summary

Domain Type
Configuration Identification

You can create many different configuration domains and
access thern by their unigue name.
What name do you wish to give this configuration damain®

Configuration Domain Mame: |simple

Configuration Domain Type

The configuration tool can create configuration damains with
different cambinations of Orhix services.
Which Orbix services do you want to include in this domain?

() All Licensed Services

(@ Select Services

Storage Location

Configuration Directony: |c:10rbix_621910

Data Directory: |c:10rbix_6 Zvar

| hext-

||| Finish H Cancel

Figure 6: The Domain Type Window

Creating a Configuration Domain

Specify service startup options A Service Startup window appears, as shown in Figure 7.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

" # Create a Configuration Domain - Standard Made 5 x|
Steps Service Startup
1. Damain Type Startup
2. Senvice Startup The services you are configuring can be programmed to run
3. Security wwhen your camputer starts up or manually. All, exceptfor a
4 Fault Tolerance rinirmal set, can start on demand. Do you want...
5 Salect Services @ A minimal set of senices launched by a script| can run.
B. Confitrn Choices (O All selected services launched on machine startup (as system services).
T. Deplaying ... (O All selected services launched by a script| can run.
8. Summary o

The services need ports to listen for connections.
The easiestway to setthese portwalues is to set a base value.

Base Port:

| <pack || mew || Emisn || cancel

Figure 7: The Service Startup Window

23

CHAPTER 2 | Getting Started with Orbix

Specify security settings

24

Steps

—

. Domain Type
Service Startup
Security

Fault Tolerance
Select Services
Confirm Choices

Deploying ...

G = B @ & B

Summary

A Security window appears, as shown in Figure 8.
You can leave the settings in this Window at their defaults (no security).
Click Next> to continue.

" # Create a Configuration Domain - Standard Mode

Security

Transports

What communication protocols do yvou want enabled in the domain®?
@ Insecure Communication JIOPHTTR)

O Secure and Insecure Comrmunication

O Secure Communication (TLS/HTTPS)

Security Features

What security features do you want enabled in the domain?

[Expose Services through Firewall Details ...
(1]
=Back H Mext=]| Finish H Cancel

Figure 8: The Security Window

Specify fault tolerance settings

Steps

=

. Damain Type
Service Startup
Security

Fault Tolerance
Select Services
Confirm Choices

Deploying ...

e R

Summary

Creating a Configuration Domain

A Fault Tolerance window appears, as shown in Figure 9.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

 Create a Configuration Domain - Standard Mode

d
Fault Tolerance
Replication
You can run multiple replicas of the core Orbix senvices to
make vour systermn fault tolerant. The service instances on
the replica hosts act as hackups.
Replication Hosts:
Host | add
| Eemove |
]
| <pack || met- || Finisn || cancel

Figure 9: The Fault Tolerance Window

25

CHAPTER 2 | Getting Started with Orbix

Select services A Select Services window appears, as shown in Figure 10.

In the Select Services window, select the following services and components
for inclusion in the configuration domain: Location, Node daemon,
Management, CORBA Interface Repository, CORBA Naming, and demos.

Click Next> to continue.

" # Create a Configuration Domain - Standard Made x|
Steps Select Services
1. Damain Type Infrastructure Messaging
2. Senice Startup [] coRBA Motification
3. Security [CORBA Events
4. (PNl TalErEReE @ Waragament [JMS Java Messaging)
3. Select Senices [bistributed Transaction 1 JniSimotification Bridge
6. Canfitm Choices P :
7. Deploving ... Security
8. Summary Directory [
[¥] CORBA Interface Repository O
[¥] CORBA Maming A
[I CORBA Trader M

CORBA Teleo Logging
[Basic Logging
[] Event Logging
[Matify Lagaing

| selectan || clearan |

| <Back |[mew || Emisn || cancel

Figure 10: The Select Services Window

26

Confirm choices

" # Create a Configuration Domain - Standard Mode ! x|

Steps

1

. Domain Type

. Serice Startup

. Security

. Fault Tolerance

. Select Services

. Confirm Choices

. Deploying ...

| o~ ;o B L R

. Summary

Creating a Configuration Domain

You now have the opportunity to review the configuration settings in the
Confirm Choices window, Figure 11. If necessary, you can use the <Back
button to make corrections.

Click Next> to create the configuration domain and progress to the next
window.

Confirmation

This is vour chance ta review the chaoices you have made.

To deploy the services on the local host, press Mext. To modify any of your choices, press Back.
Ifyou don'twant to deploy now butwish to sawe your choices for future use,

press Save to store therm in a deployment descriptar, then press Cancel.

Location Service B
Manual Activation
lanagement Enabled
IlOF Part= 3074
MNode Daemon Service
Manual Activation
lanagement Enabled
NOF Part= 83078
CORBA Interface Repository Service
Autormatic Activation
Management Enabled
IIOF Part= Enabled
CORBA Maming Service
Autormatic Activation
Management Enabled
IIOF Part= Enabled

| Save

| <pack || mew | | cancel

Figure 11: The Confirm Choices Window

27

CHAPTER 2 | Getting Started with Orbix

Finish configuration

28

" # Create a Configuration Domain - Standard Mode

Steps

—

. Domain Type
Service Startup
Security

Fault Tolerance

. Select Services

. Confirn Choices

. Deploying ...

. Summany

The i tconfi gur e utility now creates and deploys the si npl e configuration
domain, writing files into the OrbixInstallDir/ et c/ bi n,

OrbixInstallDirl et c/ domai n, OrbixInstallDirl et c/ 1 og, and

OrbixInstallDirl var directories.

If the configuration domain is created successfully, you should see a
Summary window with a message similar to that shown in Figure 12.

Click Finish to quit the i t confi gur e utility.

Summary

Configuration is now complete, see details helow,

Configuration completed successfully.
ou canview the log in 'eOrhix_B2wansimplellogsisimple_2004_Mov_23_1_539_F.log'

Ta setyour environment far this configuration damain run;
cwOrbix_B2etcbintsimple_eny. bat

To startthe senices in this configuration darmain run:
cACrhix_BXetcbinstan_simple_services.bat

To stop the services in this configuration domain run:
c0rhix_GRetcibimstop_simple_services hat

| <gack || met- || _Emisn][cance

Figure 12: Configuration Summary

Setting the Orbix Environment

Setting the Orbix Environment

Prerequisites

Setting the Domain

Before proceeding with the demonstration in this chapter you need to

ensure:

® The CORBA developer’s kit is installed on your host.

® Orbix is configured to run on your host platform.

® Your Java development kit (JDK) is configured to use the Orbix ORB
runtime (see “Setting ORB Properties for the Orbix ORB” on page 30).

The Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. Consult the
Installation Guide, and the Administrator’s Guide for further details on
configuring your environment.

To set the Orbix environment associated with the domai n- nane domain,
enter:

Windows

> set JAVA HOVE=Your JdkDi r
> confi g-dir\etc\bin\ donai n- name_env. bat

UNIX

% JAVA HOME=Your JdkDi r ; export JAVA HOME
% . config-dir/etc/bin/donai n- name_env

Your JdkDi r is the root directory of the Java development kit that you want
to use with Orbix. See the Installation Guide for details of supported Java
platforms.

confi g-dir is the root directory where the Appliation Server Platform stores
its configuration information. You specify this directory while configuring
your domain. donmai n- nane is the name of a configuration domain.

29

CHAPTER 2 | Getting Started with Orbix

Setting ORB Properties for the Orbix ORB

SUN’s Java development kit (JDK) comes with a built-in ORB runtime that
is used by default. However, you cannot use SUN’s ORB runtime with Orbix
applications. You must configure the JDK to use the Orbix ORB runtime
instead by setting system properties or g. ong. CORBA. CRBA ass and

or g. ong. CORBA. CRBSI ngl et ond ass to the appropriate values. You can set
the ORB properties in one of the following ways:

® Using the iona.properties file
® Using Java interpreter arguments

Using the iona.properties file Setting system properties or g. ong. CORBA. CRBA ass and
or g. omy. GORBA. CRBSI ngl et ond ass in the i ona. properti es file is the
preferred way to configure your JDK to use the Orbix ORB runtime.

Location of the iona.properties file

The i ona. properti es file is located in the JDKHone/ j re/ | i b directory,
where JDKHone is the JDK root directory.

Contents of the iona.properties file

The i ona. properti es file should contain the following two lines of text:

or g. ong. CORBA. CRBd ass=com i ona. corba. art. arti npl . CRBI npl
or g. ong. CORBA. CRBSI ngl et ond ass=
comiona.corba.art.artinpl. CRBSi ngl et on

The first line sets or g. onmg. CORBA. CRBA ass to the name of a class that
implements or g. ony. CCRBA. CRB.

30

Setting ORB Properties for the Orbix ORB

The second line sets or g. ong. CORBA. CORBSI ngl et ond ass to the name of a
class that implements the static ORB instance returned from
org. ong. OCRBA. CRB. i ni t () (taking no arguments).

WARNING: By setting system properties or g. ong. CCRBA CRBd ass and
or g. ongy. QORBA. CRBSi ngl et ond ass in the i ona. properti es file, as
detailed above, you effectively specify the Orbix ORB classes as the ORB
runtime for the JDK. This might affect other applications that use the same
JDK but want to use different ORB classes—if this is the case, you should
consider using one of the alternative mechanisms for setting ORB
properties, given in the following sub-sections.

Using Java interpreter arguments You can use the - Dpr operty_nane=property_val ue option on the Java

Interpreter to specify the or g. ong. CORBA CRBA ass and
or g. ong. GORBA. CRBSI ngl et ond ass properties. For example, to set the ORB
properties for an or bi x_app Orbix application:

java -Dorg. ong. CCRBA. CRB=com i ona. corba. art. arti npl . CRBI npl \
- Dor g. ong. CORBA. ORBSI ngl et ond ass=\
comiona.corba.art.artinpl . CRBSi ngl et on or bi x_app

31

CHAPTER 2 | Getting Started with Orbix

Hello World Example

This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the CORBA code generation toolkit. The
architecture of this example system is shown in Figure 13.

Client Machine Server Machine

Server Application

Client Application
ORB i ORE

Operation Call ;

Object

Code Result Code/' e

IDL Interface

A

Figure 13: Client makes a single operation call on a server

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (II0P), which sits on top of TCP/IP. When a
client invokes a remote operation, a request message is sent from the client
to the server. When the operation returns, a reply message containing its
return values is sent back to the client. This completes a single remote
CORBA invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

/11DL
interface Hello {
string getGeeting();

Ik

The IDL declares a single Hel | o interface, which exposes a single operation
get @ eeting() . This declaration provides a language neutral interface to
CORBA objects of type Hel | o.

32

Hello World Example

The concrete implementation of the Hel | o CORBA object is written in Java
and is provided by the server application. The server could create multiple
instances of Hel | o objects if required. However, the generated code
generates only one Hel | o object.

The client application has to locate the Hel I o object—it does this by reading
a stringified object reference from the file Hel | 0. ref . There is one operation
get @ eeting() defined on the Hel | o interface. The client invokes this
operation and exits.

33

CHAPTER 2 | Getting Started with Orbix

Development from the Command Line

Define the IDL interface

34

Starting point code for CORBA client and server applications can be
generated using the i dl gen command line utility.

The i dI gen utility can be used on Windows and UNIX platforms.

You implement the Hel | o Wor1d! application with the following steps:
1. Define the IDL interface, Hel | o.

2. Generate starting point code.

3. Complete the server program by implementing the single IDL
get @ eet i ng() operation.

4. Complete the client program by inserting a line of code to invoke the
get G eet i ng() operation.

5. Build the demonstration.

6. Run the demonstration.

Create the IDL file for the Hel | o Ver1d! application. First of all, make a
directory to hold the example code:

Windows

> nkdir C \QOGI\ Hel | oExanpl e
UNIX

% nkdi r -p OCGI/ Hel | oExanpl e

Create an IDL file C\ OGN\ Hel | oExanpl e\ hel | 0.idl (Windows) or
QOGT/ Hel | oExanpl e/ hel 1 o.idl (UNIX) using a text editor.

Enter the following text into the file hel 1 o.i dl :

//1DL
interface Hello {

string getGeeting();
ik

This interface mediates the interaction between the client and the server
halves of the distributed application.

Generate starting point code

Complete the server program

Development from the Command Line

Generate files for the server and client application using the CORBA Code
Generation Toolkit.

In the directory C:\ OOGN\ Hel | oExanpl e (Windows) or OOGT/ Hel | oExanpl e
(UNIX) enter the following command:

idlgen java_poa_genie.tcl -all -jP Hell oExanpl e hello.idl

This command logs the following output to the screen while it is generating
the files:

hello.idl:
java_poa_genie.tcl: creating idl gen/ Randonfuncs. j ava
java poa_genie.tcl: creating

i dl gen/ Hel | oExanpl e/ Randontel | 0. j ava
java_poa_genie.tcl: creating idl gen/ Randontel | oExanpl e. j ava
java_poa_genie.tcl: creating Hell oExanpl e/ Hel | oCal | er. j ava
java_poa_genie.tcl: creating Hel | oExanpl e/ client.java
java_poa_genie.tcl: creating Hell oExanpl e/ Hel | ol npl . j ava
java_poa_genie.tcl: creating Hel | oExanpl e/ server.java
java_poa_genie.tcl: creating build. xm

You can edit the following files to customize client and server applications:
Client:
Hel | oExanpl e/ cli ent.java

Server:

Hel | oExanpl e/ server. java
Hel | oExanpl e/ Hel | ol npl . j ava

Complete the implementation class, Hel | ol npl , by providing the definition
of the Hel | ol npl . get G eeting() nethod. This Java method provides the
concrete realization of the Hel | o: : get G eeting() IDL operation.

35

CHAPTER 2 | Getting Started with Orbix

Edit the Hel | ol npl . j ava file, and delete most of the generated boilerplate
code occupying the body of the Hel I ol npl . get G eet i ng method Replace it
with the line of code highlighted in bold font below:

/1 Java
//File "Hellolnpl.java

public java.lang. String get G eeting()
t hrows or g. ong. CORBA. Syst enExcepti on

{
java.lang. String _result;
_result = "Hello Wrld";
return _result;
}
Complete the client program Complete the implementation of the client mai n() function in the

client.java file. You must add a couple of lines of code to make a remote
invocation of the get @ eet i ng() operation on the Hel | o object.

36

Build the demonstration

Development from the Command Line

Edit the client.java file and search for the line where the
Hel | oExanpl e. Hel | oCal | er. get G eeti ng() method is called. Delete this
line and replace it with the line of code highlighted in bold font below:

/1 Java
//File: "client.java

try
{

/] Exercise interface Hel | oExanpl e. Hel | o.
/1
tnp_ref = read_reference("Hello.ref");
Hel | oExanpl e. Hel | o Hel | 01 =
Hel | oExanpl e. Hel | oHel per. narrow(tnp_ref);
Systemout. println("Geeting is: " +
Hel 1 ol. get Geeting());

}
cat ch(Excepti on ex)
{
System out. printl n(" Unexpect ed CCRBA exception: " + ex);

}

The object reference Hel | ol refers to an instance of a Hel | o object in the
server application. It is already initialized for you.

A remote invocation is made by invoking get G eeting() on the Hell ol
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the

Hel | ol npl . get G eet i ng() method in the server application.

Theitant utility—a Java-based build tool—is used to build the generated
Java code. For more details about i t ant, see http://jakarta.apache.org/ant.
The i tant utility is bundled with Orbix.

The generated file bui I d. xm is used to build this demonstration. This file
contains the rules for building the Hello World! application in an XML format
that is understood by the i tant utility.

To build the client and server complete the following steps:
1. Open a command line window.
2. Gotothe../QOGI/ Hel | oExanpl e directory.

37

http://jakarta.apache.org/ant

CHAPTER 2 | Getting Started with Orbix

3. Enter:
> jtant
Run the demonstration Run the application as follows:

1. Run the Orbix services (if required).
If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.
If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.
Open a DOS prompt in Windows, or xt er min UNIX. Enter:
st art _domai n- nane_ser vi ces
Where donai n-nane is the name of the configuration domain.

2. Set the Application Server Platform’s environment.
> donai n- name_env

3. Run the server program.

38

Open a DOS prompt, or xt er mwindow (UNIX). Enter the following
command:

itant runserver
The server outputs the following lines to the screen:
Buil dfile: build.xm

runserver:
[java] Initializing the CRB
[java] Witing stringified object reference to Hell o.ref
[java] Waiting for requests...

The server performs the following steps when it is launched:
. It instantiates and activates a single Hel | o CORBA object.

+ The stringified object reference for the Hel | o object is written to
the local Hel I o. ref file.

Development from the Command Line

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

Run the client program.

Open a new DOS prompt, or xt er mwindow (UNIX). Enter the following
command:

itant runclient
The client outputs the following lines to the screen:
Buil dfile: build. xm

runclient:
[java] Reading stringified object reference fromHello.ref
Qeeting is: Hello Wrl d!

Total tine: 3 seconds

The client performs the following steps when it is run:

. It reads the stringified object reference for the Hel | o object from
the Hel l o. ref file.

. It converts the stringified object reference into an object reference.

. It calls the remote Hel | 0: : get G eet i ng() operation by invoking
on the object reference. This causes a connection to be
established with the server and the remote invocation to be
performed.

When you are finished, terminate all processes.

Shut down the server by typing Gtrl - Cin the window where it is
running.

Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xt er min UNIX, enter:

st op_donai n- nane_ser vi ces

The passing of the object reference from the server to the client in this way
is suitable only for simple demonstrations. Realistic server applications use
the CORBA naming service to export their object references instead (see
Chapter 17).

39

CHAPTER 2 | Getting Started with Orbix

40

In this chapter

CHAPTER 3

First Application

This chapter uses a simple application to describe the basic
programming steps required to define CORBA objects, write
server programs that implement those objects, and write client
programs that access them. The programming steps are the
same whether the client and server run on a single host or are
distributed across a network.

This chapter covers the following topics:

Development Using Code Generation page 42
Development Without Using Code Generation page 44
Locating CORBA Objects page 46
Development Steps page 48
Enhancing Server Functionality page 71
Complete Source Code for server.java page 83

41

CHAPTER 3 | First Application

Development Using Code Generation

With the code generation toolkit, you can automatically generate a large
amount of the code required for the client and server programs:

42

Code Generation
Toolkit

IDL Compiler

Modifies E Stub
Developer ———» Code

Client Program

Client Side

N

A

. Code Generation
IDL Compiler Toolkit

Skeleton Hodifies
Code Developer

v

\ Server Program '

Server Side

First, you define a set of interfaces written in the OMG interface definition
language (IDL). The IDL forms the basis of development for both the client
and the server. The toolkit takes the IDL file as input and, based on the
declarations in the IDL file, generates a complete, working Orbix application.
You can then modify the generated code to add business logic to the

application.

Development Using Code Generation

Client development Client development consists of the following steps:

1.

An IDL compiler takes the IDL file as input and generates client stub
code.

2. The code generation toolkit takes the IDL file as input and generates a
complete client application.
The generated client is a dummy implementation that invokes every
operation on each interface in the IDL file exactly once. The dummy
client is a working application that can be built and run right away.

3. You can modify the dummy client to complete the application.
You do not have to write boilerplate CORBA code.

4. You build the application.
A build file is generated by the code generation toolkit.

Server development Server development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates server
skeleton code.

2. The code generation toolkit takes the IDL file as input and generates a
complete server application.
Dummy implementation classes are generated for each interface
appearing in the IDL file. The dummy server is a working application
that can be built and run right away.

3. You can modify the dummy server to complete the application logic.
You do not have to write boilerplate CORBA code.
The implementations of IDL interfaces can be modified by adding
business logic to the class definitions.

4. You build the application.

A build file is generated by the code generation toolkit.

43

CHAPTER 3 | First Application

Development Without Using Code Generation

The following section outlines the steps for developing clients and servers
without using the code generation toolkit (see page 42):.

Client development

44

L

Developer

Client

IDL Compiler

N ¥

v

Client Program

Client Side

Stub
Code

. Server
IDL Compiler Developerm

Skeleton
Code

Server Program

Server Side

First, you define a set of interfaces written in the OMG interface definition
language (IDL). The IDL file forms the basis of development for both the
client and the server.

Client development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates client stub

code.

The client stub code is a set of files that enable clients to make remote
invocations on the interfaces defined in the IDL file.

2. You write the rest of the client application from scratch.

Development Without Using Code Generation

3. You build the application.
Typically, you write a customized build file to build the client program.

Server development Server development consists of the following steps:

1. An IDL compiler takes the IDL file as input and generates server
skeleton code.

The server skeleton code is a set of files that enables the server to
service requests on the interfaces in the IDL file.

2. You write the rest of the server application from scratch.

You must write an implementation class for each interface appearing in
the IDL file.

3. You build the application.
You typically write a customized build file to build the server program.

45

CHAPTER 3 | First Application

Locating CORBA Objects

Overview Before developing an Orbix application, you must choose a strategy for
locating CORBA objects.
To find a CORBA object, a client needs to know both the identity of the
object and the location of the server process that provides a home for that
object. In general, CORBA encapsulates both the identity and location of a
CORBA object inside an entity known as an object reference.

In this chapter, a simple strategy is adopted to pass the object reference
from the server to the client. The strategy, illustrated in Figure 14, has three
steps:

1 The server converts the object reference into a string (stringified object
reference) and writes this stringified object reference to a file.

2 The client reads the stringified object reference from the file and converts it
to a real object reference.

46

Locating CORBA Objects

3 The client can now make remote invocations by invoking on the object
reference.

Client Server

I invoke ‘

™

servant

object /

reference

stringified
object reference

Figure 14: Simple strategy for passing object references to clients

This approach is convenient for simple demonstrations but is not
recommended for use in realistic applications. The CORBA naming service,
described in Chapter 17 on page 423, provides a more sophisticated and
scalable approach to distributing object references.

47

CHAPTER 3 | First Application

Development Steps

Overview

48

You typically develop an Orbix application in the following steps:

1.

Define IDL interfaces: Identify the objects required by the application
and define their public interfaces in IDL.

Generate starting point code: Use the code generation toolkit to
generate starting point code for the application. You can then edit the
generated files to add business logic.

Compile the IDL definitions: The compiler generates the Java source
files that you need to implement client and server programs.

Develop the server program: The server acts as a container for a variety
of CORBA objects, each of which supports one IDL interface. You must
add code to provide the business logic for each type of CORBA object.
The server makes its CORBA objects available to clients by exporting
object references to a well-known location.

Develop the client program: The client uses the IDL compiler-generated
mappings to invoke operations on the object references that it obtains
from the server.

Build the application.

Run the application.

Development Steps

Define IDL interfaces

Overview

Begin developing an Orbix enterprise application by defining the IDL
interfaces to the application’s objects. These interfaces implement CORBA
distributed objects on a server application. They also define how clients
access objects regardless of the object’s location on the network.

An interface definition contains operations and attributes:
® Operations correspond to methods that clients can call on an object.
® Attributes give you access to a single data value.

Each attribute corresponds either to a single accessor method
(readonly attribute) or an accessor method and a modifier method
(plain attribute).

For example, the IDL code in Example 1 defines an interface for an object

that represents a building. This building object could be the beginning of a
facilities management application such as a warehouse allocation system.

Example 1: /DL for the Building Interface

/11DL
/IFile: "building.idl"’
interface Building {
readonly attribute string address;

bool ean avai | abl e(in long date);

bool ean reserveDate(in | ong date, out |ong confirmation);
b
The IDL contains these components:

1. The address attribute is preceded by the IDL keyword r eadonl y, SO
clients can read but can not set its value.

2. The Bui | di ng interface contains two operations: avai | abl e() and
reser veDat e() . Operation parameters can be labeled i n, out, or
i nout :

. i n parameters are passed from the client to the object.
. out parameters are passed from the object to the client.

. i nout parameters are passed in both directions.

49

CHAPTER 3 | First Application

avai | abl e() lets a client test whether the building is available on a
given date. This operation returns a boolean (true/false) value.

reserveDat () takes the date as input, returns a confirmation number
as an out parameter, and has a boolean (true/false) return value.

All attributes and operations in an IDL interface are implicitly public. IDL
interfaces have no concept of private or protected members.

50

Development Steps

Generate starting point code

Overview

It's recommended that you start developing a CORBA application by using
the code generation toolkit to generate starting point code. The toolkit
contains two key components:

The i dl gen interpreter is an executable file that processes IDL files based
on the instructions contained in predefined code generation scripts.

A set of genies (code generation scripts) are supplied with the toolkit. Most
important of these is the j ava_poa_geni e. t cl genie that is used to generate
starting point code for a Java application.

Taking the bui | di ng. i dl IDL file as input, the j ava_poa_geni e. tcl genie
can produce complete source code for a distributed application that includes
a client and a server program.

To generate starting point code, execute the following command:

idlgen java_poa_genie.tcl -all -jP Buildi ngExanpl e buil di ng.idl
This command generates all of the files you need for this application. The
-al | flag selects a default set of genie options that are appropriate for

simple demonstration applications. The -j P PackageNane option lets you
specify the name of the Java package that contains the generated code.

The main client file generated by the j ava_poa_geni e. tcl genie is:

Bui | di ngExanpl e/ client.java Implementation of the client.

The main server files generated by the j ava_poa_geni e. tcl genie are:
Bui | di ngExanpl e/ server . java Server mai n() containing the server
initialization code.

Bui | di ngExanpl e/ Bui | di ngl npl Implementation of the Bui | di ngl npl
.java servant class.

One file is generated for building the application: build.xml, which is an
XML file that contains the rules for building the Hello World! application.

The files in the generated i dI gen directory are used to support a dummy
implementation of the client and server programs:

51

CHAPTER 3 | First Application

Dummy implementation of client
and server programs

Modifying dummy client and
server programs

52

The generated starting point code provides a complete dummy
implementation of the client and the server programs. The dummy
implementation provides:

® Aserver program that implements every IDL interface.

Every IDL operation is implemented with default code. Return values,
i nout and out parameters are populated with randomly generated
values. At random intervals a CORBA user exception might be thrown
instead.

® Aclient program that calls every operation on every IDL interface once.

The dummy client and server programs can be built and run as they are.

Later steps describe in detail how to modify the generated code to
implement the business logic of the Bui | di ng application.

In the code listings that follow, modifications are indicated as follows:

® Additions to the generated code are highlighted in bold font. You can
manually add this code to the generated files using a text editor.

® |n some cases the highlighted additions replace existing generated
code, requiring you to manually delete the old code.

Development Steps

Compile the IDL definitions

Overview

Output from IDL compilation

This step is optional if you use the code generation toolkit to develop an
application. The build.xml file generated by the toolkit has a rule to run the
IDL compiler automatically.

After defining your IDL, compile it using the CORBA IDL compiler. The IDL
compiler checks the validity of the specification and generates code in Java
that you use to write the client and server programs.
Compile the Bui | di ng interface by running the IDL compiler as follows:
i dl -jbase=-PBuil di ngExanpl e: - § ava_out put

- j poa=- PBui | di ngExanpl e: - § ava_out put bui | di ng. i dl
The - base option generates Java client stub code. The - PBui | di ngExanpl e
sub-option puts the stub code in the Bui | di ngExanpl e Java package. The
- g ava_out put sub-option puts stub code files in the j ava_out put directory.

The - poa option generates server-side code for the POA in Java. The -j poa
sub-options are analogous to the -j base sub-options.

Run the IDL compiler with the -f1 ags option to get a complete description
of the supported options.

The IDL compiler produces several Java files when it compiles the

bui I di ng.idl file. These files contain Java definitions that correspond to

your IDL definitions. You should never modify this code.

The generated files can be divided into two categories:

® C(Client stub code is compiled and linked with client programs, so they
can make remote invocations on Bui | di ng CORBA objects.

® Server skeleton code is compiled and linked with server programs, so
they can service invocations on Bui | di ng CORBA objects.

Client stub code
The stub code is used by clients and consists of the following files:

Bui | di ng. j ava A file defining a Java Bui | di ng interface. Clients
use this Java interface to invoke IDL Bui I di ng
operations.

53

CHAPTER 3 | First Application

Bui | di ngHel per . j ava A file defining a Java Bui | di ngHel per class.
Every user-defined IDL type has an associated
Java Hel per class.

Bui | di ngHol der . j ava A file defining a Java Bui | di ngHol der class.
Clients use this class to pass i nout and out
parameters. Every IDL type has an associated
Java Hol der class.

_Bui | di ngStub. j ava A file containing stub code that enables remote
access to Bui | di ng objects—not directly used
by clients.

Bui | di ngQper ations. java A file containing the Java Bui | di ngQper at i ons
interface—not directly used by clients.

Server skeleton code

The skeleton code is a superset of the stub code. The additional files contain
code that allows you to implement servants for the Bui | di ng interface. The
skeleton code consists of the following files:

Bui | di ngPQA j ava A file containing the Bui | di ngPQA class.
Servers can use this class to implement the
IDL Bui I di ng interface.

Bui | di ngPQATi e. j ava A file containing the Bui | di ngPQATi e class.
This class provides an alternative approach
to implementing the IDL Bui | di ng interface,
known as the tie approach.

IDL to Java mapping The IDL compiler translates IDL into stub and skeleton code for a given
language—in this case, Java. As long as the client and server programs
comply with the definitions in the generated stub and skeleton code, the
runtime ORB enables type-safe interaction between the client and the
server.

Example 2: Java Stub Code for the Building Interface

/1 File: 'Building.java
package Bui | di ngExanpl e;

54

Development Steps

Example 2: Java Stub Code for the Building Interface

public interface Building

ext ends Bui | di ngQper at i ons,

or g. onmg. CORBA obj ect,

org. onmy. CCRBA portable. I DLEntity
{
}

// File: 'BuildingQperations.java’
package Bui |l di ngExanpl e;

public interface Buil di ngQperations

{
java.lang. String address();
bool ean avai | abl e(int date);
bool ean reserveDat e(
int date,
org. ong. CCRBA. | nt Hol der confirmati on
)
}

The code can be explained as follows:

1. The Java Bui | di ng interface provides the client view of a CORBA
object. The methods inherited from the Java Bui I di ngQper at i ons
interface correspond to the attributes and operations of the IDL
Bui | di ng interface.

When a client program calls methods on an object of Bui I di ng type,
Orbix forwards the method calls to a server object that supports the
IDL Bui | di ng interface.

2. The Java address() method is mapped from the IDL readonly addr ess
attribute. Clients call this method to get the attribute’s current value,
which returns a j ava. | ang. Stri ng.

3. The Java avai | abl e() method is mapped from the IDL avai | abl e()
operation. The parameter and return type are mapped as follows:

+ The dat e parameter (i n parameter) is mapped from an IDL | ong
toaJavaint.

¢+ The return type is mapped from an IDL bool ean to a Java
bool ean.

55

CHAPTER 3 | First Application

56

The Java reser veDat e() method is mapped from the IDL
reser veDat e() operation. The parameters and return type are mapped
as follows:

+ The dat e parameter (i n parameter) is mapped from an IDL | ong
toalJavaint.
. The confi rmati on parameter (out parameter) is mapped from an
IDL I ong to a Java org. ong. OCRBA. | nt Hol der object.
. The return type is mapped from an IDL bool ean to a Java
bool ean.
All'i nout and out parameters are declared as Hol der types in Java.
The org. ony. GCRBA | nt Hol der type is used to pass the confirmation
parameter from the server back to the client. For an example of how to
use the I nt Hol der type, see “Client business logic” on page 65.

Development Steps

Develop the server program

Define the servant class

The main programming task on the server side is the implementation of
servant classes. In this demonstration there is one interface, Bui | di ng, and
one corresponding servant class, Bui | di ngl npl . The code generation toolkit
generates a dummy definition of every servant class. The Bui | di ngl npl
servant class is defined in the Buil di ngl npl . j ava file.

The other programming task on the server side is the implementation of the
server mai n() . For this simple demonstration, the generated server mai n()
does not require any modification. It is discussed in detail in “Enhancing
Server Functionality” on page 71.

The code generation toolkit generates the Bui | di ngl npl . j ava file, which
contains an outline of the method definitions for the Bui | di ngl npl servant
class. You should edit this file to fill in the bodies of methods that
correspond to the operations and attributes of the Bui | di ng interface. It is
usually necessary to edit the constructor of the servant class as well.

Manual additions made to the generated code are shown in bold font. In
some cases, the additions replace existing generated code requiring you to
manually delete the old code.

Example 3: Java Buildinglmpl Servant Implementation
// File: 'Buildinglnpl.java

i:);s\;:kage Bui | di ngExanpl e;

/1 CORBA inports

i nport org. ong. CCRBA CRB;

i nport org. ong. CCRBA Stri ngHol der;

publ i c class Buil di ngl npl extends Buil di ngPQA
{

57

CHAPTER 3 | First Application

Example 3: Java Buildinglmpl Servant Implementation

2 [l mmmmmm e
/1 Private Menber Variabl es
LR TR
private int m confirmation_counter;
private int[] mreservation;

bool ean isCient = fal se;
or g. ong. Port abl eServer. POA mpoa = nul | ;

/**
* The state for the CORBA Attribute ’address’
*/
pr ot ect ed java.lang. String m addr ess;

3 public static Buil dingl npl
_create(org. ong. Port abl eServer. PQA t he_poa)
throws org. ong. CORBA. Syst enExcept i on

{
return new Bui |l di ngl npl (t he_poa) ;

}

4 publ i ¢ Bui | di ngl npl (

or g. ony. Por t abl eSer ver .. PQA t he_poa

)

{
maddress = "200 Wst Street, Waltham M\ ";
m confirmation_counter = 1;
mreservation = new int[366];
for (int i=0; i<366; i++) { mreservation[i] = 0; }

m poa = t he_poa;

Systemout. println("created");

/**

* inpl ementation for | DL operation avail abl e().

*/
public
bool ean avai | abl e(
int date
)
throws org. ong. CORBA. Syst enExcept i on

{

58

Development Steps

Example 3: Java Buildinglmpl Servant Implementation

}

if (1<=date && date<=366) {
return (mreservation[dat e- 1] ==0) ;
}

return true;

}

/**
* inmplenmentation for |DL operation reserveDate().
*/

public
bool ean reserveDat e(
int dat e,
or g. ong. CORBA. | nt Hol der confirmation

)
throws org. ong. CORBA Syst enExcepti on

{

confirmation.value = 0;

if (1<=date && date<=366) {
if (mreservation[date-1]==0) {
mreservation[date-1] = mconfirmati on_counter;
confirmation.value = mconfirmation_counter;
m confi rmati on_count er ++;
return true;

}
}
return fal se;
}
/**

* | nplementation for | DL address accessor.
*/

public

java.lang. String address()

{

return maddress;

}

publ i c org.ong. Portabl eServer. POA _defaul t _PQOA()
{

}

return mpoa;

59

CHAPTER 3 | First Application

The code can be explained as follows:
1. The Buildinglnpl servant class inherits from Bui | di ngPQA.

The Bui | di ngPQA class is a standard name for the base class generated
for the Bui | di ng interface. By inheriting from Bui | di ngPQA, you are
indicating to the ORB that Bui I di ngl npl is the servant class that
implements the Bui | di ng interface. This approach to associating a
servant class with an interface is called the inheritance approach.

2. The lines of code shown in bold font are added to the generated code
to complete the application. Two private member variables are
declared to store the state of a Bui | di ngl npl object.

. The mconfirmation_counter index counter is incremented each
time a reservation is confirmed.

+ The mreservation array has 366 elements (representing the
365 or 366 days in a year). The elements are equal to zero when
unreserved or a positive integer (the confirmation number) when
reserved.

3. _create() is a Buildinglnpl method that creates Bui | di ngl npl
instances.

Note: _create() is not a standard part of CORBA. It is generated by
the code generation toolkit for convenience. You are free to call the
constructor directly, or remove the _creat e() method entirely if you
wish.

4. The Buil di ngl npl constructor is an appropriate place to initialize any
member variables. The three private member variables—m addr ess,
m confirmation_counter and mreservati on—are initialized here.
Replace the dummy initialization code with the highlighted code.

5. The few lines of code here implement avai | abl e() and replace the
generated dummy code. If an element of the array mreservati on is
zero, that means the date is available. Otherwise the array element
holds the confirmation number (a positive integer).

60

Development Steps

The few lines of code here implement r eser veDat e() and replace the
generated dummy code. Because confirmati on is declared as an out
parameter in IDL, it is passed as an or g. ong. GCRBA. | nt Hol der type.

The value of the confi rmati on variable is accessed as

confirmation. val ue.

The use of holder types gets around the Java language feature that
limits parameter passing to pass-by-value. Changes made to
confirmation. val ue can be seen by the calling code. Effectively, the
holder types allow you to imitate pass-by-reference in Java.

The address() accessor method is implemented by returning a
reference to the m addr ess string.

_defaul t_PQA() is inherited from or g. ong. Por t abl eSer ver . Ser vant
by way of Bui | di ngPQA. It is a standard servant method that identifies
the POA object with which this servant is associated. In this example,
the value of m poa is set in the Bui | di ngl npl constructor.

_defaul t _PQA() is overridden to guard against the possibility of
accidental implicit activation. For information about implicit activation,
see page 216.

61

CHAPTER 3 | First Application

Develop the client program

Overview

Client main()

62

1

The generated code in the cl i ent . j ava file takes care of initializing the ORB
and getting a Bui | di ng object reference. This allows the client programmer
to focus on the business logic of the client application.

You modify the generated client code by implementing the logic of the client
program. Use the Bul di ng object reference to access an object’s attributes
and invoke its operations.

The code in the client mai n() initializes the ORB, reads a Bui | di ng object
reference from the file Bui | di ng. ref and hands over control to

run_war ehouse_nenu(), which is described in the next section. When
run_war ehouse_nenu() returns, the generated code shuts down the ORB.

Changes or additions to the code are shown in bold font.
Example 4: Java Client main() Function

//File: 'client.java

package Bui | di ngExanpl e;

inport org.ong. CORBA. *;

i nport org.ong. Portabl eServer. *;

inport java.io.*;

public class client

{

/1 global _orb -- make CRB global so all code can find it.
public static org. ong. CORBA. CRB gl obal _orb = nul | ;

2

(S0

Development Steps

Example 4: Java Client main() Function

static org. ong. CORBA (bj ect read reference(String file)

{

}

System out . print| n(
"Reading stringified object reference from" + file
DE
String ref = null;
try {
Fi | eReader retrieve=new Fil eReader(file);
Buf f er edReader i n=new Buf f eredReader (retri eve);
ref = in.readLine();
}
catch (I Cexception ex) {
Systemout . printl n(
"Error reading object reference from"
+file+" : " + ex.toString()
IE
return nul | ;
}
org. ong. CORBA. (hj ect obj = gl obal _orb.string_to_object(ref);
return obj;

// main() -- the main client program
public static void main (String args[])

{

try {
/1l For tenporary object references
or g. ong. CORBA. (vj ect tnp_ref;

/1 Initialise the CRB
global _orb = GRB.init(args, null);

/1 Exercise the Buil di ngExanpl e. Bui | di ng i nt er f ace.
tnp_ref = read reference("Building.ref");
Bui | di ngExanpl e. Bui | di ng Bui | di ngl =
Bui | di ngExanpl e. Bui | di ngHel per. narrow(t np_ref);
run_war ehouse_nenu(Bui | di ngl) ;
}
cat ch(Exception ex) {
System out. printl n(" Unexpect ed CORBA exception: " + ex);

}

// Ensure that the ORB is properly shutdown and cl eaned up
try {

63

CHAPTER 3 | First Application

Example 4: Java Client main() Function

7 gl obal _orb. shut down(true);

}

catch (Exception ex) {
// Do not hi ng.
}

return;
}
}

The code can be explained as follows:

1. Declare the variable gl obal _or b in the global scope so that all parts of
the program can easily access the ORB object.

The gl obal _or b is temporarily set equal to nul | , which represents a
nil object reference.

2. Define read_reference() to read an object reference from a file. This
method reads a stringified object reference from a file and converts the
stringified object reference to an object reference using
org. ony. CCRBA. CRB. string_to_obj ect (). The return type of
read_ref erence() is org. ong. CORBA. (bj ect —the base type for object
references.

If there is an error, read_reference() returns nul | .

3. Call org. ong. CORBA CRB. i ni t () to get an object reference to an ORB
object.
A client must associate itself with an ORB in order to get object
references to CORBA services such as the naming service or trader
service.

4. Get a reference to a Bui | di ng CORBA object by calling
read_ref erence(), passing the name of the file, Bui I di ng. ref, that
contains its stringified object reference.

5. Narrow the CORBA object to a Bui | di ng object, to get the object
reference, Bui | di ngl.
Every IDL interface has an associated Hel per class in Java. For
example, the Bui | di ng interface has a
Bui | di ngExanpl e. Bui | di ngHel per class. The Hel per class defines a
static narrow() method to let you narrow an object reference from a

64

Client business logic

Development Steps

base type to a derived type. It is similar to a Java cast operation, but is
used specifically for types related via IDL inheritance.

6. Replace the lines of generated code that use the Bui | di ngCal | er class
with a single call to run_war ehouse_nenu() .

run_war ehouse_nenu() uses the Bui | di ngl object reference to make
remote invocations on the server.

7. The ORB must be explicitly shut down before the client exits.

QORBA: : CRB: : shut down() stops all server processing, deactivates all
POA managers, destroys all POAs, and causes the run() loop to
terminate. The boolean argument, true, indicates that shut down()
blocks until shutdown is complete.

When an object reference enters a client’s address space, Orbix creates a
proxy object that acts as a stand-in for the remote servant object. Orbix
forwards method calls on the proxy object to corresponding servant object
methods.

You access an object’s attributes and operations by calling the appropriate
Bui | di ng class methods on the proxy object. The proxy object redirects the
Java calls across the network to the appropriate servant method.

The following code uses the Java member access operator (.) on the
Bui | di ng object war ehouse to access Bui | di ng class methods.

65

CHAPTER 3 | First Application

66

Additions to the code are shown in bold font.
Example 5: Java Client Business Logic

//File: 'client.java
inport org.ong. CORBA. *;

public class client

{

public static void run_warehouse_nenu(Buil di ng war ehouse)
{
String address = war ehouse. address() ;
Systemout. printl n(" The warehouse address is:\n" + address);

I nput St reanReader user | nput St r eam
= new | nput St r eanReader (System i n);
Buf f er edReader user Buf = new Buf f er edReader (user | nput Streanj;

int date;
I nt Hol der confirmati onH = new | nt Hol der () ;
String quit = "n";
try {
do {
System out . printl n(
"Enter day to reserve warehouse (1,2,...):
IE
date = I nteger. parselnt (userBuf.readLine());
i f (war ehouse. avai |l abl e(date)) {
if (warehouse.reserveDate(date, confirmationH) {
System out . print| n(

Development Steps

Example 5: Java Client Business Logic

"Confirmation nunber: " +
confirmati onH val ue
DE
}
el se {
Systemout . print | n(
"Reservation attenpt failed!"

)i
}
}
el se {
Systemout. printl n("That date is unavailable.");
}

Systemout.println("Qit? (y,n)");
quit = userBuf.readLine();

}
while (quit.equals("n"));

}

catch (java.io.|CException ex) {
Systemerr.printin("error: failed to read user input");

}
}

b

The or g. onmg. GORBA | nt Hol der type is used as follows:

1. Because confirmation is an out parameter, a holder type (of
or g. ong. CCRBA | nt Hol der type) must be allocated for it.

2. The content of the confi rmat i onH holder type, confi rnati onH val ue,
does not need to be initialized before the operation invocation.

After invoking reser veDat e() , confi rmat i onH val ue holds the
returned out parameter value.

3. The confirmation number is accessed as confi rmati onH. val ue.

67

CHAPTER 3 | First Application

Build the application

68

The tool used to build the generated Java code is the i tant utility, which is
a Java-based build tool developed by Apache as part of the Jakarta project.
For further details about i t ant, see http://jakarta.apache.org/ant. The i t ant
utility is bundled with Orbix.

The file bui | d. xm is generated when building this demonstration. This file
sets up your environment to use the i t ant utility. This file contains the rules
for building the Hello World! application in an XML format that is
understood by the i tant utility.

To build the client and server, go to the example directory and at a
command line prompt enter:

> jtant build_all

Development Steps

Run the application

Prerequisites

Steps

The prerequisites for running this application are:

® The Orbix deployment environment is installed on the machine where
the demonstration is run.

® Orbix has been correctly configured. See the Application Server
Platform Administrator’s Guide for details.

® Your Java development kit (JDK) is configured to use the Orbix ORB
runtime (see “Setting ORB Properties for the Orbix ORB” on page 30).

This demonstration assumes that both the client and the server run in the
same directory.

Perform the following steps to run the application:

Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xt ermin UNIX. Enter:

start _domai n- nane_ser vi ces
where domai n- nane is the name of the default configuration domain.

Run the server program.
Open a new DOS prompt in Windows, or xt er min UNIX. Enter the following
commands:

set CLASSPATH=%LASSPATH% . / cl asses
java Bui | di ngExanpl e. server

The server outputs the following lines to the screen:
Initializing the CRB
Witing stringified object reference to Building.ref

Waiting for requests...

At this point the server is blocked while executing CRB. run() .

69

CHAPTER 3 | First Application

70

Run the client program.
Open a new DOS prompt in Windows, or xt er min UNIX. Enter the following
command:

set CLASSPATH-%CLASSPATHY% . / cl asses
java Bui |l di ngExanpl e. cl i ent

When you are finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is
running.

Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xt er min UNIX, enter:

st op_donai n- name_ser vi ces
where donmai n- nane is the name of the default configuration domain.

Enhancing Server Functionality

Enhancing Server Functionality

Overview

In this demonstration, the default implementation of mai n() suffices so
there is no need to edit the server. j ava file.

However, for realistic applications, you need to customize the server mai n()
to specify what kind of POAs are created. You also need to select which
CORBA objects get activated as the server boots up.

The default server mai n() contains code to perform these tasks:

1.

2.
3.
4

7.

Initialize the ORB.

Create a POA for transient objects.

Create servant objects.

Activate CORBA objects—the default server code activates one CORBA
object for each of the interfaces defined in the IDL file.

Export object references—an object reference is exported for each of
the activated CORBA objects.

Activate the POA manager—so it can process requests on the CORBA
objects it manages.

Shut down the ORB—shut down the ORB cleanly before exiting.

In this demonstration, there is only one interface, Bui | di ng, and a single
CORBA object of this type is activated.

The following subsections discuss the code in the server. j ava file piece by
piece. For a complete source listing of server. java, see page 83.

71

CHAPTER 3 | First Application

Initialize the ORB

Before a server can make its objects available to the rest of an enterprise
application, it must initialize the ORB:

Example 6: Java Initializing the ORB

public class server {
1 public static ORB global _orb = null;

public static void main(String args[])

{
try {
2 global _orb = GRB.init(args, null);

The code can be explained as follows:

1. The gl obal _orb variable is used to hold a reference to an
or g. ong. GCRBA. CRB object.

2. org.ong. CCRBA CRB.init() is used to create an instance of an ORB.
Command-line arguments are passed to the ORB via the args
parameter. CRB. i ni t () searches ar gs for arguments of the general
form - CRBsuffix, parses these arguments, and removes them from the
argument list.

The second parameter (properties parameter) of CRB. i ni t () is usually left
equal to nul I . The following sub-subsection describes how the properties
parameter can (optionally) be used to set the or g. ony. CORBA. CRBA ass

property.
Programatically setting the This step is not recommended for most Java Orbix applications. See “Setting
orbclass property ORB Properties for the Orbix ORB” on page 30 for the recommended ways

of setting the ORB properties.

72

Enhancing Server Functionality

The or g. ong. CCRBA. CRBA ass property can be set programatically using the
Properti es parameter of CRB.init(), as in the following example:

Example 7:
public static CRB global _orb = null;

public static void main(String args[])

{

java. util.Properties p = new java. util.Properties();
p. set Property("org. ong. CORBA. CRBO ass",
"comiona.corba.art.artinpl.CRB npl");

try {
global _orb = GRB.init(args, p);

The code can be explained as follows:

1. Ajava. util.Properties object is created that can hold one or more
property values. The or g. ong. GCORBA CRBA ass property is set on the
p property object.

2. The property object is passed as the second argument to the
CRB.init() call, which returns a new ORB object that is implemented
by the comi ona. corba. art. arti npl . ORBI npl class.

Note: The org. ong. OCORBA. CRBSi ngl et ond ass property cannot be set
programatically because it is used in a different context to

CRB. i ni t (args, p)— that is, the no argument CRB. i ni t () call. The
or g. ong. QORBA. CRBSI ngl et ond ass property is searched for in a static
initializer on org. ong. CORBA. CRB, and can only be usefully set in the
system properties or the i ona. properti es file.

73

CHAPTER 3 | First Application

Create a POA for transient objects

A simple POA object is created using the following lines of code:

Example 8:
try {
1 tnp_ref
= gl obal _orb.resol ve_initial _references("Root PQA");
}

catch (org. ong. CORBA. CRBPackage. | nval i dNane ex) {
/1 Handl e exception...

}
2 PQA root _poa = PQAHel per. narrow(tnp_ref);
3 PQAManager root _poa_nanager = root _poa.t he_PQAVanager () ;
4 /1 Now create our own PQA

PQA ny_poa = create_sinpl e_poa("ny_poa",

root _poa,
root _poa_nanager) ;

The code can be explained as follows:

1. Get a reference to the root POA object by calling
resol ve_ini tial _references("Root POA") on the ORB.
resol ve_initial _references() provides a bootstrap mechanism for
obtaining access to key Orbix objects. It contains a mapping of
well-known names to important objects such as the root POA
(Root PQA), the naming service (NaneSer vi ce), and other objects and
services.

2. Narrow the root POA reference t np_ref to type Port abl eServer. POA
using Por t abl eSer ver . POAHel per . narrow() .
Because t np_ref is of org. ony. GORBA. (bj ect type—the generic base
class for object references—methods specific to the
Por t abl eSer ver . PQA class are not directly accessible. It is therefore
necessary to down-cast the t np_ref pointer to the actual type of the
object reference using POAHel per. narrow() .

3. Obtain a reference to the root POA manager object.

74

Enhancing Server Functionality

A POA manager controls the flow of messages to a set of POAs.
CORBA invocations cannot be processed unless the POA manager is in
an active state (see page 81).

4. Create the ny_poa POA as a child of root _poa. The ny_poa POA
becomes associated with the root _poa_rmanager POA manager. This
means that the r oot _poa_manager object controls the flow of messages
into ny_poa.

create_simple_poa() The creat e_si npl e_poa() method is defined as follows:

static PQA create_sinpl e_poa(

String poa_nane,
PQA par ent _poa,
PQAVanager poa_manager
)
{

I/l Create a policy list.

/] Policies not set inthe list get default val ues.
org. omg. CCORBA Pol i cy[] policies = new

or g. ong. GORBA. Pol i cy[1] ;

int i =0;

PQA new poa = nul | ;

/1 Make the PQA single threaded.
policies[i++] = parent_poa. create_thread policy(
Thr eadPol i cyVal ue. SI NOLE_THREAD MODEL

)

if(i>1|] i<1) {
Systemout. println("Policy creation failed");
Systemexit(1);

}

75

CHAPTER 3 | First Application

76

}

try {
new poa = parent_poa. creat e_PQA(poa_nane,
poa_nanager ,
policies);
}
catch (
or g. ong. Port abl eSer ver . PQAPackage. Adapt er Al r eadyExi sts ex
) {
System out . printl n(
"Failed to create POA with exception: " +ex.toString());
Systemexit(1);
}
catch (org. ong. Port abl eSer ver. PQAPackage. | nval i dPol i cy ex) {
System out . printl n(
"Failed to create PQA with exception: " +ex.toString());
Systemexit(1);
}

return new poa;

A POA is created by invoking Port abl eSer ver. POA creat e_PQA() on an
existing POA object. The POA on which this method is invoked is known as
the parent POA and the newly created POA is known as the child POA.

create_PQX() takes the following arguments:

poa_nane is the adapter name. This name is used within the ORB to
identify the POA instance relative to its parent.

poa_manager is a reference to a POA manager object with which the
newly created POA becomes associated.

pol i ci es is a list of policies that configure the new POA. For more
information, see “Using POA Policies” on page 204.

The POA instance returned by creat e_si npl e_poa() accepts default values
for most of its policies. The resulting POA is suitable for activating transient
CORBA objects. A transient CORBA object is an object that exists only as
long as the server process that created it. When the server is restarted, old
transient objects are no longer accessible.

Enhancing Server Functionality

Create servant objects

Overview

A number of servant objects must be created. A servant is an object that
does the work for a CORBA object. For example, the Bui | di ngl npl servant
class contains the code that implements the Bui | di ng IDL interface.

A single Bui | di ngl npl servant object is created as follows:

/1 Variables to hold our servants
Servant the_Building = null;

/Il Create a servant for Buildi ngExanpl e. Bui | di ng.
t he_Bui | di ng = Bui | di ngExanpl e. Bui | di ngl npl . _creat e(ny_poa) ;

In this example, _creat e() creates an instance of a Bui | di ngl npl servant.
The POA reference ny_poa that is passed to _creat e() must be the same
POA that is used to activate the object in the next section “Activate CORBA
objects”.

_create()is not a standard CORBA method. It is a convenient pattern
implemented by the code generation toolkit. You can use the Bui I di ngl npl
constructor instead, if you prefer.

77

CHAPTER 3 | First Application

Activate CORBA objects

Overview

78

[

A CORBA object must be activated before it can accept client invocations.
Activation is the step that establishes the link between an ORB, which
receives invocations from clients, and a servant object, which processes
these invocations.

In this step, two fundamental entities are created that are closely associated
with a CORBA object:

® Anobject ID.

This is a CORBA object identifier that is unique with respect to a
particular POA instance. In the case of a persistent CORBA object, the
object ID is often a database key that is used to retrieve the state of the
CORBA object from the database.

® An object reference.

This is a handle on a CORBA object that exposes a set of methods
mapped from the operations of its corresponding IDL interface. It can
be stringified and exported to client programs. Once a client gets hold
of an object reference, the client can use it to make remote invocations
on the CORBA object.

A single Bui | di ng object is activated using the following code:
Example 9:

org. ong. CORBA. (hj ect tnp_ref = null;

.b;/ie []1 oid;

oid = ny_poa. acti vat e_obj ect (t he_Bui | di ng) ;
tnp_ref = ny _poa.id_to_reference(oid);

The code can be explained as follows:
1. Activate the CORBA object.

A number of things happen when acti vat e_obj ect () is called:

. An unique object ID, oi d, is automatically generated by ny_poa to
represent the CORBA object’s identity. Automatically generated
object IDs are convenient for use with transient objects.

Enhancing Server Functionality

. The CORBA object becomes associated with the POA, ny_poa.
+ The POA records the fact that the t he_Bui | di ng servant provides
the implementation for the CORBA object identified by oi d.
2. Useorg. onmy. Portabl eServer. POA i d_to_reference() to generate an
object reference, t np_ref, from the given object ID.
You can activate a CORBA object in various ways, depending on the policies
used to create the POA. For information about activating objects in the POA,

see “Activating CORBA Objects” on page 187; for information about
activating objects on demand, see Chapter 11 on page 273.

79

CHAPTER 3 | First Application

Export object references

Overview

80

A server must advertise its objects so that clients can find them. In this
demonstration, the Bui | di ng object reference is exported to clients using
wite_reference():

wite reference(tnp_ref,"Building.ref");
This call writes the t np_ref object reference to the Bui | di ng. ref file.

write_reference() writes an object reference to a file in stringified form. It
is defined as follows:

static void wite reference(

or g. omg. CORBA. (hj ect ref,
String objref _file
)
{
String stringified_ref = global _orb. object_to_string(ref);
Systemout. printl n(
"Witing stringified object reference to " + objref_file
)i
try {
FileWiter store = new FileWiter(objref_file);
store.wite(stringified ref);
store. flush();
store. cl ose();
}
catch (I Cexception ex) {
Systemout.printin("Failed to wite to " + objref_file);
}
}

The ref object reference is converted to a string by passing ref as an
argument to or g. ong. CORBA. CRB. obj ect _to_string(). The string is then
written to the obj ref _file file.

CORBA clients can read the objref _fil e file to obtain the object reference.

This approach to exporting object references is convenient to use for this
simple demonstration. Realistic applications, however, are more likely to
use the CORBA naming service instead.

Enhancing Server Functionality

Activate the POA manager

Overview After a server has set up the objects and associations it requires during
initialization, it must tell the ORB to start listening for requests:

Example 10:
1 // Activate the POA Manager.
/1
try{
root _poa_manager. activate();

}
catch (

org. ony. Port abl eSer ver . POAManager Package. Adapt er | nacti ve

ex){

/1 Handl e exception. ..
}

2 global _orb.run();

The code can be explained as follows:

1. A POA manager acts as a gatekeeper for incoming object requests. The
manager can be in four different states: active, holding, discarding, or
inactive (see Table 10 on page 220). A POA manager can accept
object requests only after it is activated by calling
or g. ong. Port abl eSer ver . PQAManager . acti vate() .

2. org.ony. OCRBA CRB.run() puts the ORB into a state where it listens
for client connection attempts and accepts request messages from
existing client connections.

or g. ong. CCRBA. CRB. run() is a blocking method that returns only
when or g. ong. CORBA. CRB. shut down() is invoked.

81

CHAPTER 3 | First Application

Shut down the ORB

Overview

82

Shutdown is initiated when a Ctrl-C or similar event is sent to the server

from any source. You can shut down the server application as follows:

® On Windows platforms, switch focus to the MS-DOS box where the
server is running and type Ctrl-C.

® On UNIX platforms, switch focus to the xterm window where the server
is running and type Ctrl-C.

® On UNIX, send a signal to a background server process using the ki | |
system command.

With JDK 1.2, there is no mechanism for the Java Virtual Machine to detect
abnormal program termination (for example, Ctrl-C to exit). It is, therefore,
unlikely that or b. shut down() is ever called but it is good programming
practice to call it before exit, as in the current server example.

With JDK 1.3, an API for Java Virtual Machine shutdown hooks has been
added to the j ava. I ang. Runt i ne class that provides process-shutdown
notification. A JDK 1.3 application can initiate shutdown actions, such as
orb. shut down(), before the Java Virtual Machine exits.

See the release notes for the JDK 1.3 in the documentation pages at SUN'’s
Web site, http://j ava. sun. com for further details.

Complete Source Code for server.java

Complete Source Code for server.java

/1l Java

// Edit idlgen config file to get your own copyright notice
/1 placed here.
L R e

/1l Automatical ly generated server for the follow ng
/1 1DL interfaces:
/1 Bui | di ng

package Bui |l di ngExanpl e;

i mport org. ong. CORBA *;
i nport org. ony. Port abl eServer. *;
inmport java.io.*;

inport java.text.DateFormat;

[**

* server: This class inplenents the OORBA server automatically
* generated fromthe idl file.

*

*/
public class server {
public static ORB global _orb = nul|;

/1 wite_reference() -- export object reference to file.

/1l This is a useful way to advertise objects for sinple tests
/1 and denos.

/1 The OCRBA naning service is a nore scal able way to

/] advertise references.

/1
static void wite_reference(

or g. ong. CORBA. (bj ect ref,

String objref_file
)

83

CHAPTER 3 | First Application

String stringified ref = global _orb.object _to string(ref);
Systemout. printl n(
"Witing stringified object reference to " + objref_file

JE

try {
FileWiter store = new Fil eWiter(objref file);

store.wite(stringified ref);
store. flush();
store. close();
}
catch (I Cexception ex) {
Systemout.println("Failed to wite to " + objref file);
}
}

/] create_sinple poa() --
/I Create a PQA for sinple servant nanagenent.
static PQA create_sinpl e poa(

String poa_nane,
PQA par ent _poa,
PQAManager poa_manager
)
{

/] Oreate a policy list.

I/l Policies not set inthe list get default val ues.
org. omy. CCRBA Pol i cy[] policies = new
org. ong. CORBA. Pol i cy[1] ;

int i =0;

PQA new poa = nul | ;

/1 Make the PQA single threaded.

/1l

policies[i++] = parent_poa.create_thread policy(

ThreadPol i cyVal ue. SI NGLE_THREAD MIDEL

DB

if(i>1|] i<1)

{
Systemout. println("Policy creation failed");
Systemexit(1);

}

84

Complete Source Code for server.java

try {
new _poa = parent _poa. creat e_PQOA(poa_narne,
poa_nanager,

policies);
}
catch (
or g. ong. Por t abl eSer ver . POAPackage. Adapt er Al r eadyExi sts ex
)
{
System out . print | n(

"Failed to create POA with exception: " +ex.toString()
)3
Systemexit(1);
}
catch (org.ong. Portabl eSer ver. POAPackage. | nval i dPol i cy ex)
{
Systemout . printl n(
"Failed to create the PQA with exception :
+ex.toString()
IE
Systemexit(1);

}
return new poa;
}
/Il main() -- set up a PQA, create and export object references
public static void main(String args[])
{

/] Variables to hold our servants
Servant the Building = null;

try {
/1 For tenporary object references
org.ong. CORBA (vj ect tnp_ref = null;

85

CHAPTER 3 | First Application

86

// Initialise the ORB and Root PQA

/1
Systemout.printIn("Initializing the CRB");
try {
global _orb = CRB.init(args, null);
tp_ref
= gl obal _orb.resol ve_initial _references("Root PQA");
}

catch (org.ong. CORBA CRBPackage. | nval i dNane ex) {
Systemout . printl n(
"Caught exception while resolving to RootPQA :
+ ex.toString()
DB
Systemexit(1);
}

PQA root _poa = PQAHel per. narrow(tnp_ref);
PQAMVanager root _poa nanager = root_poa.the PQAVanager () ;

/1 Now create our own PQCA
PQA ny_poa = create_sinpl e_poa("ny_poa",
r oot _poa,
r oot _poa_mnanager) ;

/1 Create servants and export object references

/] Note: _create is a useful convenience function created
/] by the genie; it is not a standard OCCORBA functi on
byte [] oid;

Complete Source Code for server.java

try{
/] Oreate a servant for Buil di ngExanpl e. Bui | di ng
the_Buil ding =

Bui | di ngExanpl e. Bui | di ngl npl . _creat e(ny_poa) ;
oid = ny_poa. acti vat e_obj ect (t he_Bui | di ng) ;
tnp_ref = ny _poa.id_to reference(oid);
wite reference(tnp_ref,"Building.ref");

}

catch

(org. ong. Port abl eSer ver . POAPackage. Servant Al r eadyAct i ve
ex)

{
Systemout. printl n(

"Caught exception trying to activate an object :
+ ex.toString()

DE
Systemexit(1);
}

catch (org. ong. Port abl eSer ver . PQAPackage. WongPol i cy ex)

System out . printl n(

"Caught exception trying to activate an object : "
+ ex.toString()
JE
Systemexit(1);
}

catch (

or g. ong. Por t abl eSer ver . PQAPackage. (bj ect Not Acti ve ex)
{

System out . printl n(
"Caught exception while trying to create reference

+ ex.toString()
DE
Systemexit(1);
}

87

CHAPTER 3 | First Application

// Activate the POA Manager .

try {
root _poa_manager. activate();
}
catch (
or g. ony. Port abl eSer ver . POAManager Package. Adapt er | nact i ve
ex)
{
Systemout . printl n(
"Failed trying to activate root poa manager :
+ ex.toString()
)
Systemexit(1);
}
/l Let the ORB process requests
Systemout.println("Waiting for requests...");
gl obal _orb. run();
}

catch (Exception e) {
System out . print | n(
"Unexpect ed OCRBA exception: " + e.toString()
JE
}

/l Ensure that the ORB is properly shutdown and cl eaned up

try {
gl obal _orb. shut down(true);

}

catch (Exception e) {
// Do not hi ng.

}

return;

88

In this chapter

CHAPTER 4

Defining Interfaces

The CORBA Interface Definition Language (IDL) is used to
describe interfaces of objects in an enterprise application. An
object’s interface describes that object to potential clients—
its attributes and operations, and their signatures.

An IDL-defined object can be implemented in any language that IDL maps
to, such as C++, Java, and COBOL. By encapsulating object interfaces
within a common language, IDL facilitates interaction between objects
regardless of their actual implementation. Writing object interfaces in IDL is
therefore central to achieving the CORBA goal of interoperability between
different languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C+ +, Java, and Smalltalk. Each IDL mapping
specifies how an IDL interface corresponds to a language-specific
implementation. Orbix’s IDL compiler uses these mappings to convert IDL
definitions to language-specific definitions that conform to the semantics of
that language.

This chapter describes IDL semantics and uses. For mapping information,
refer to language-specific mappings in the Object Management Group'’s
latest CORBA specification.

This chapter contains the following sections:

Modules and Name Scoping page 91

Interfaces page 93

89

CHAPTER 4 | Defining Interfaces

90

Valuetypes page 109
Abstract Interfaces page 110
IDL Data Types page 112
Defining Data Types page 124
Constants page 125
Constant Expressions page 128

Modules and Name Scoping

Modules and Name Scoping

Nesting restrictions

You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.

Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface. To resolve a name,
the IDL compiler conducts its search among the following scopes, in this
order:

1. The current interface
2. Base interfaces of the current interface (if any)
3. The scopes that enclose the current interface

In the following example, two interfaces, Bank and Account , are defined
within module BankDeno:

nodul e BankDeno

i{nterface Bank {
/...
h
i nterface Account {
/...
IE
ik

Within the same module, interfaces can reference each other by name
alone. If an interface is referenced from outside its module, its name must
be fully scoped with the following syntax:

nodul e- nane: : i nt er f ace- nane

For example, the fully scoped names of interfaces Bank and Account are
BankDeno: : Bank and BankDeno: : Account , respectively.

A module cannot be nested inside a module of the same name. Likewise,
you cannot directly nest an interface inside a module of the same name. To
avoid name ambiguity, you can provide an intervening name scope as
follows:

91

CHAPTER 4 | Defining Interfaces

92

Interfaces

Interfaces

Interfaces are the fundamental abstraction mechanism of CORBA. An

interface defines a type of object, including the operations that the object

supports in a distributed enterprise application.

An IDL interface generally describes an object’s behavior through operations

and attributes:

® Operations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another
address space on the same machine, or in an address space on a
remote machine.

® An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

For example, the Account interface in module BankDeno describes the
objects that implement bank accounts:

nmodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; // Type for representing account
ids
/...
interface Account {
readonly attribute Accountld account _id;
readonly attribute CashAmount bal ance;
voi d
w t hdraw(i n CashAnmount anount)
rai ses (InsufficientFunds);
voi d
deposi t (i n CashAnmount anount) ;
IE
b

93

CHAPTER 4 | Defining Interfaces

94

This interface declares two readonly attributes, Account | d and bal ance,
which are defined as typedefs of string and 1 oat, respectively. The
interface also defines two operations that a client can invoke on this object,
wi t hdraw() and deposit().

Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementations only through an interface’s operations or attributes.

While every CORBA object has exactly one interface, the same interface can
be shared by many CORBA objects in a system. CORBA object references
specify CORBA objects—that is, interface instances. Each reference denotes
exactly one object, which provides the only means by which that object can
be accessed for operation invocations.

Interfaces

Interface Contents

An IDL interface can define the following components:

Operations
Attributes
Exceptions
Types
Constants

Of these, operations and attributes must be defined within the scope of an

interface; all other components can be defined at a higher scope.

95

CHAPTER 4 | Defining Interfaces

Operations

Parameter direction

96

IDL operations define the signatures of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

® Return value data type
® Parameters and their direction
® Exception clause

A operation’s return value and parameters can use any data types that IDL
supports (see “Abstract Interfaces” on page 110).

For example, the Account interface defines two operations, wi t hdraw() and
deposi t () ; it also defines the exception I nsuf fi ci ent Funds:

nmodul e BankDeno

{
typedef float CashAnount; // Type for representing cash
/...
interface Account {
exception | nsufficientFunds {};
voi d
wi thdraw(i n CashAnmount anount)
rai ses (InsufficientFunds);
voi d
deposit (i n CashAnount arount);
IE
IE

On each invocation, both operations expect the client to supply an argument
for parameter amount, and return voi d. Invocations on wi t hdraw() can also
raise the exception I nsuf fi ci ent Funds, if necessary.

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter passing modes clarify operation
definitions and allow the IDL compiler to map operations accurately to a
target programming language. At runtime, Orbix uses parameter passing
modes to determine in which direction or directions it must marshal a
parameter.

One-way operations

Interfaces

A parameter can take one of three passing mode qualifiers:
in: The parameter is initialized only by the client and is passed to the object.

out: The parameter is initialized only by the object and returned to the
client.

inout: The parameter is initialized by the client and passed to the server; the
server can modify the value before returning it to the client.

In general, you should avoid using i nout parameters. Because an i nout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using two parameters, i n and out , the caller can decide for itself
when to discard the parameter.

By default, IDL operations calls are synchronous—that is, a client invokes
an operation on an object and blocks until the invoked operation returns. If
an operation definition begins with the keyword oneway, a client that calls
the operation remains unblocked while the object processes the call.

Three constraints apply to a one-way operation:

® The return value must be set to voi d.

b Directions of all parameters must be set to i n.
. No rai ses clause is allowed.

For example, interface Account might contain a one-way operation that
sends a notice to an Account object:

nmodul e BankDeno {
/...
interface Account {
oneway void notice(in string text);
/...
IE

97

CHAPTER 4 | Defining Interfaces

Orbix cannot guarantee the success of a one-way operation call. Because
one-way operations do not support return data to the client, the client
cannot ascertain the outcome of its invocation. Orbix only indicates failure of
a one-way operation if the call fails before it exits the client’s address space;
in this case, Orbix raises a system exception.

98

Interfaces

Attributes

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible
to clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which let client applications read and write
attribute values. An attribute that is qualified with the keyword r eadonl y
maps only to a get function.

For example, the Account interface defines two readonl y attributes,
Account | d and bal ance. These attributes represent information about the
account that only the object implementation can set; clients are limited to
read-only access.

99

CHAPTER 4 | Defining Interfaces

Exceptions

100

IDL operations can raise one or more CORBA-defined system exceptions.
You can also define your own exceptions and explicitly specify these in an
IDL operation. An IDL exception is a data structure that can contain one or
more member fields, formatted as follows:

exception exception-nane {
[menber;]. ..
b

After you define an exception, you can specify it through a rai ses clause in
any operation that is defined within the same scope. A rai ses clause can
contain multiple comma-delimited exceptions:

return-val operation-name([parans-list])
rai ses(exception-nane[, exception-name]);

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible only to operations within that interface.

For example, interface Account defines the exception I nsuf fi ci ent Funds
with a single member of data type st ri ng. This exception is available to any
operation within the interface. The following IDL defines the wi t hdr aw()
operation to raise this exception when the withdrawal fails:

nmodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception InsufficientFunds {};
voi d
wi t hdraw(i n CashAmount anount)
rai ses (InsufficientFunds);
/...
b
ik

For more about exception handling, see Chapter 12 on page 295.

Interfaces

Empty Interfaces

IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces. For example, the CORBA Port abl eSer ver module
defines the abstract Servant Manager interface, which serves to join the
interfaces for two servant manager types, servant activator and servant
locator:

nmodul e Port abl eServer

{
i nterface Servant Manager {};
interface Servant Activator : Servant Manager {
/...
IE
interface ServantLocator : Servant Manager {
/...
IE
IE

101

CHAPTER 4 | Defining Interfaces

Inheritance of IDL Interfaces

102

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An
interface specifies the base interfaces from which it inherits as follows:

interface newinterface : base-interface[, base-interface]...

Laac ks

For example, the following interfaces, Checki ngAccount and
Savi ngsAccount , inherit from interface Account and implicitly include all of
its elements:

nmodul e BankDeno{
typedef float CashAnount; // Type for representing cash
interface Account {
/...

}s

i nterface Checki ngAccount : Account {
readonly attribute CashAmount overdraftLimt;
bool ean or der CheckBook ();

}

interface Savi ngsAccount : Account {
float calculatelnterest ();

}s
Ik

An object that implements Checki ngAccount can accept invocations on any
of its own attributes and operations and on any of the elements of interface
Account . However, the actual implementation of elements in a

Checki ngAccount object can differ from the implementation of
corresponding elements in an Account object. IDL inheritance only ensures
type-compatibility of operations and attributes between base and derived
interfaces.

Interfaces

Multiple inheritance The following IDL definition expands module BankDeno to include interface
Pr em umAccount , which inherits from two interfaces, Checki ngAccount and
Savi ngsAccount :

nmodul e BankDeno {
interface Account {
/...

1

i nterface Checki ngAccount : Account {
/...
h

i nterface Savi ngsAccount : Account {
/...
IE

i nterface Prem umAccount
Checki ngAccount, Savi ngsAccount {
/...
IE
I

Figure 15 shows the inheritance hierarchy for this interface.

| Account |

A

Checki ngAccount | Savi ngsAccount

A

Pr em umAccount

Figure 15: Multiple inheritance of IDL interfaces

103

CHAPTER 4 | Defining Interfaces

Inheritance of the object interface

Inheritance redefinition

104

Multiple inheritance can lead to name ambiguity among elements in the

base interfaces. The following constraints apply:

® Names of operations and attributes must be unique across all base
interfaces.

® If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

All user-defined interfaces implicitly inherit the predefined interface Qoj ect .
Thus, all oj ect operations can be invoked on any user-defined interface.
You can also use bj ect as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter. For example, the
following operation get Anynj ect () serves as an all-purpose object locator:

interface (bjectlLocator {
voi d get AnyChj ect (out Chject obj);
b

Note: It is illegal IDL syntax to inherit interface Qoj ect explicitly.

A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed. In the following
example, interface Checki ngAccount modifies the definition of exception

I nsuf fi ci ent Funds, which it inherits from Account :

modul e BankDeno

{
typedef float CashAnount; // Type for representing cash
/...
interface Account {
exception | nsufficientFunds {};
/...
IE
i nt erface Checki ngAccount : Account {
exception | nsufficientFunds {
CashAmount overdraftLimt;
IE
IE
/1.
IE

Interfaces

Note: While a derived interface definition cannot override base operations
or attributes, operation overloading is permitted in interface
implementations for those languages such as C+ + that support it.

105

CHAPTER 4 | Defining Interfaces

Forward Declaration of IDL Interfaces

An IDL interface must be declared before another interface can reference it.
If two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

For example, IDL interface Bank defines two operations that return
references to Account objects—creat e_account () and fi nd_account ().
Because interface Bank precedes the definition of interface Account , Account
is forward-declared as follows:

nmodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
typedef string Accountld; // Type for representing account
ids
/1 Forward decl aration of Account
interface Account;
/1 Bank interface...used to create Accounts
interface Bank {
exception Account Al readyExi sts { Accountld account_id; };
excepti on Account Not Found { Accountld account _id; };
Account
find_account (in Accountld account _id)
rai ses(Account Not Found) ;
Account
creat e_account (
in Accountld account _id,
in CashAmount initial _bal ance
) raises (AccountAl readyExi sts);
IE
/1 Account interface...used to deposit, w thdraw, and query
/] availabl e funds.
interface Account {
/...
IE
IH

106

Interfaces

Local Interfaces

An interface declaration that contains the keyword | ocal defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An
object that implements a local interface is a /local object.

Local interfaces differ from unconstrained interfaces in the following ways:

® Alocal interface can inherit from any interface, whether local or
unconstrained. However, an unconstrained interface cannot inherit
from a local interface.

® Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

® Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.

® Local types cannot be marshaled, and references to local objects
cannot be converted to strings through ORB: : obj ect _to_string().
Attempts to do so throw OORBA: : MARSHAL.

® Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DII
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such asis_a() or
val i dat e_connecti on() . Attempts to do so throw
CORBA: : NO_| MPLEMENT.

® The ORB does not mediate any invocation on a local object. Thus,
local interface implementations are responsible for providing the
parameter copy semantics that a client expects.

® Instances of local objects that the OMG defines as supplied by ORB
products are exposed either directly or indirectly through
CRB::resolve_initial _references().

107

CHAPTER 4 | Defining Interfaces

108

Local interfaces are implemented by GORBA: : Local Obj ect to provide
implementations of Object pseudo operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the Local (bj ect type is only defined by each language
mapping.

The Local (bj ect type implements the following Object pseudo-operations
to throw an exception of NO | MPLEMENT:

is_a()

get _interface()

get _domai n_nanager s()
get _policy()

get _client_policy()
set _pol i cy_overrides()
get _policy_overrides()
val i dat e_connecti on()

QOCRBA : Local (oj ect also implements the pseudo-operations shown in
Table 1:

Table 1: CORBA::LocalObject pseudo-operation returns

Operation Always returns:
non_exi stent () False
hash() A hash value that is consistent with the object’s
lifetime
i s_equival ent () True if the references refer to the same
Local (oj ect implementation.

Valuetypes

Valuetypes

Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data
such as linked lists, graphs, and dates.

Valuetypes can be seen as a cross between data types such as | ong and
string that can be passed by value over the wire as arguments to remote
invocations, and objects, which can only be passed by reference. When a
program supplies an object reference, the object remains in its original
location; subsequent invocations on that object from other address spaces
move across the network, rather than the object moving to the site of each
request.

Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is
passed as an argument to a remote operation, the receiving address space
creates a copy it of it. The copied valuetype exists independently of the
original; operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype’s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.

109

CHAPTER 4 | Defining Interfaces

Abstract Interfaces

110

An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value. For example, the following IDL
definitions specify that operation Exanpl e: : di spl ay() accepts any
derivation of abstract interface Descri babl e:

abstract interface Describable {
string get_description();

ik

interface Exanple {

voi d di splay(in Descri babl e sone(j ect);
ik

Given these definitions, you can define two derivations of abstract interface
Descri babl e, valuetype Qurrency and interface Account :

interface Account : Describable {
/1 body of Account definition not shown

¥

val uet ype Qurrency supports Describable {
/1 body of Qurrency definition not shown

b

Because the parameter for di spl ay() is defined as a Descri babl e type,

invocations on this operation can supply either Account objects or Qurrency

valuetypes.

All abstract interfaces implicitly inherit from native type

COCRBA: : Abst r act Base, and map to Java interfaces. Abstract interfaces have

several characteristics that differentiate them from interfaces:

® The GIOP encoding of an abstract interface contains a boolean
discriminator to indicate whether the adjoining data is an IOR (TRUE) or
a value (FALSE). The demarshalling code can thus determine whether
the argument passed to it is an object reference or a value.

Abstract Interfaces

Unlike interfaces, abstract interfaces do not inherit from

QCRBA: : hj ect, in order to allow support for valuetypes. If the runtime
argument supplied to an abstract interface type can be narrowed to an
object reference type, then OORBA: : (bj ect operations can be invoked
on it.

Because abstract interfaces can be derived by object references or by
value types, copy semantics cannot be guaranteed for value types that
are supplied as arguments to its operations.

Abstract interfaces can only inherit from other abstract interfaces.

111

CHAPTER 4 | Defining Interfaces

IDL Data Types

In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

® Built-in types such as short, | ong, and f | oat

® Extended built-in types such as I ong | ong and wstri ng

® Complex data types such as enumand struct, and string

® Pseudo object types

112

IDL Data Types

Built-in Types

Table 2 lists built-in IDL types.

Table 2: Built-in IDL types

Data type Size Range of values
short 16 bits 2152151
unsigned short 16 bits 0..216.1
long 32 bits 231 2311
unsigned long 32 bits 0..232.1
float 32 bits IEEE single-precision floating point numbers
double 64 bits IEEE double-precision floating point numbers
char 8 bits ISO Latin-1
string variable length ISO Latin-1, except NUL

string<bound>

variable length

ISO Latin-1, except NUL

bool ean unspecified TRUE ofr FALSE
oct et 8 bits 0x0 to Oxff
any variable length Universal container type
Integer types IDL supports short and | ong integer types, both signed and unsigned. IDL

Floating point types

guarantees the range of these types. For example, an unsigned short can
hold values between 0-65535. Thus, an unsigned short value always maps
to a native type that has at least 16 bits. If the platform does not provide a
native 16-bit type, the next larger integer type is used.

Types fl oat and doubl e follow IEEE specifications for single- and
double-precision floating point values, and on most platforms map to native
|IEEE floating point types.

113

CHAPTER 4 | Defining Interfaces

char

String types

octet

any

114

Type char can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are
reserved for special characters in various European languages, such as
accented vowels.

Type string can hold any character from the ISO Latin-1 character set
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as st ri ng<10>, can hold only the number of
characters specified by the bounds, excluding the terminating NUL character.
Thus, a string<6> can contain the six-character string cheese.

The declaration statement can optionally specify the string’s maximum
length, thereby determining whether the string is bounded or unbounded:

string[<l ength>] name

For example, the following code declares data type Short Stri ng, which is a
bounded string whose maximum length is 10 characters:

typedef string<10> Short String;
attribute ShortString shortName; // max length is 10 chars

Cct et types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using type char for binary data, inasmuch as characters might be subject to
translation during transmission. For example, if client that uses ASCII sends
a string to a server that uses EBCDIC, the sender and receiver are liable to
have different binary values for the string’s characters.

Type any allows specification of values that express any IDL type, which is
determined at runtime. An any logically contains a TypeCode and a value
that is described by the TypeCode. For more information about the any data
type, see Chapter 14 on page 327.

IDL Data Types

Extended Built-in Types

Table 3 lists extended built-in IDL types.

Table 3: Extended built-in IDL types

Data type Size Range of values
| ong | ong 64 bits 2632631
unsi gned | ong | ong 64 bits 0...-264.1
| ong doubl e 79 bits IEEE double-extended floating point number, with an
exponent of at least 15 bits in length and signed
fraction of at least 64 bits. | ong doubl e type is
currently not supported on Windows NT.
wchar Unspecified Arbitrary codesets
wstring Variable length Arbitrary codesets
fixed Unspecified 31 significant digits
long long The 64-bit integer types | ong | ong and unsi gned | ong | ong support
numbers that are too large for 32-bit integers. Platform support varies. If
you compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.
long double Like 64-bit integer types, platform support varies for | ong doubl e, so usage
can yield IDL compiler errors.
wchar Type wchar encodes wide characters from any character set. The size of a
wchar is platform-dependent.
wstring Type wst ri ng is the wide-character equivalent of type string (see

page 114). Like string-types, wst ri ng types can be unbounded or
bounded. Wide strings can contain any character except NUL.

115

CHAPTER 4 | Defining Interfaces

fixed

116

Type fi xed provides fixed-point arithmetic values with up to 31 significant
digits. You specify a fi xed type with the following format:

typedef fixed< digit-size, scale > nane

di gi t - si ze specifies the number's length in digits. The maximum value for
di gi t-sizeis 31 and must be greater than scal e. A fixed type can hold any
value up to the maximum value of a doubl e.

Scaling options

If scal e is a positive integer, it specifies where to place the decimal point
relative to the rightmost digit. For example the following code declares fixed
data type CashAmount to have a digit size of 8 and a scale of 2:

typedef fixed<10, 2> CashAmount ;

Given this typedef, any variable of type CashAmount can contain values of up
to (4+/-)99999999.99.

If scal e is negative, the decimal point moves to the right scal e digits,
thereby adding trailing zeros to the fixed data type’s value. For example, the
following code declares fixed data type bi gNumto have a digit size of 3 and a
scale of - 4:

typedef fixed <3,-4> bi g\Num
bi gNum nyBi gNum

If nyBi gNumhas a value of 123, its numeric value resolves to 1230000.
Definitions of this sort let you store numbers with trailing zeros efficiently.

Constant fixed types

Constant fixed types can also be declared in IDL, where di gi t - si ze and
scal e are automatically calculated from the constant value. For example:

module Grcle {
const fixed pi = 3.142857,
ik

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEEE floating-point values, type fi xed is not subject to
representational errors. IEEE floating point values are liable to represent
decimal fractions inaccurately unless the value is a fractional power of 2.

IDL Data Types

For example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.
Type fixed is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

117

CHAPTER 4 | Defining Interfaces

Complex Data Types

enum

118

IDL provides the following complex data types:

® enum
® struct
® union

® multi-dimensional fixed-size arrays
® sequence

An enum (enumerated) type lets you assign identifiers to the members of a
set of values. For example, you can modify the BankDeno IDL with enum
type bal anceCur r ency:

nmodul e BankDeno {
enum CQurrency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount bal ance;
readonly attribute Qurrency bal anceCurrency;
/...

I

In this example, attribute bal anceQur rency in interface Account can take
any one of the values pound, dol | ar, yen, or franc.

The actual ordinal values of a enumtype vary according to the actual
language implementation. The CORBA specification only guarantees that
the ordinal values of enumerated types monotonically increase from left to
right. Thus, in the previous example, dol | ar is greater than pound, yen is
greater than dol | ar, and so on. All enumerators are mapped to a 32-bit

type.

struct

union

IDL Data Types

A struct data type lets you package a set of named members of various
types. In the following example, struct Qust omer Det ai | s has several
members. Operation get Cust orer Det ai | s() returns a struct of type
Cust omer Det ai | s that contains customer data:

nmodul e BankDeno{

struct CQustonerDetails {
string custlD
string | nane;
string fnane;
short age;
/...

h

interface Bank {
Cust oner Det ai | s get Qust oner Det ai | s
(in string custlD);
/...
b
b

A struct must include at least one member. Because a struct provides a
naming scope, member names must be unique only within the enclosing
structure.

A union data type lets you define a structure that can contain only one of
several alternative members at any given time. A union saves space in
memory, as the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

uni on name swtch (discrimnator) {
case | abel 1 : el enent - spec;
case | abel 2 : el enent - spec;
[---]

case | abel n : el enent-spec;

[default : el ement -spec;]

119

CHAPTER 4 | Defining Interfaces

All IDL unions are discriminated. A discriminated union associates a
constant expression (I abel 1. . | abel n) with each member. The
discriminator’s value determines which of the members is active and stores
the union’s value.

For example, the following code defines the IDL union Dat e, which is
discriminated by an enumvalue:

enum dat eSt or age
{ nuneric, strMVDDYY, strDDMWY };

struct DateStructure {
short Day;
short Mont h;
short Year;

I

uni on Date switch (dateStorage) {
case nuneric: long digital Format;
case strMDDYY:
case strDDMWY: string stringFornat;
defaul t: DateStructure struct Fornat;

IE

Given this definition, if Dat e's discriminator value is nurreri c, then

di gi tal Format member is active; if the discriminator’s value is st r MVDDYY
or strDDMWY, then member stri ngFor mat is active; otherwise, the default
member st ruct For mat is active.

The following rules apply to uni on types:
® A union’s discriminator can be i nt eger, char, bool ean or enum or an

alias of one of these types; all case label expressions must be
compatible with this type.

Because a uni on provides a naming scope, member names must be
unique only within the enclosing union.

Each uni on contains a pair of values: the discriminator value and the
active member.

® |IDL unions allow multiple case labels for a single member. In the
previous example, member st ri ngFor mat is active when the
discriminator is either st r MVDDYY or st r DDMWYY.

120

arrays

sequence

IDL Data Types

® |IDL unions can optionally contain a def aul t case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax:

[typedef] el ement-type array-nane [di nensi on-spec]...

di nensi on- spec must be a non-zero positive constant integer expression.
IDL does not allow open arrays. However, you can achieve equivalent
functionality with sequence types (see page 121).

For example, the following code fragment defines a two-dimensional array of
bank accounts within a portfolio:

t ypedef Account portfolio[MAX ACCT_TYPES] [MAX_ACCTS]

An array must be named by a t ypedef declaration (see “Defining Data
Types” on page 124) in order to be used as a parameter, an attribute, or a
return value. You can omit a t ypedef declaration only for an array that is
declared within a structure definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example C and C+ +
array indexes always start at O, while Pascal uses an origin of 1.
Consequently, clients and servers cannot portably exchange array indexes
unless they both agree on the origin of array indexes and make adjustments
as appropriate for their respective implementation languages. Usually, it is
easier to exchange the array element itself instead of its index.

IDL supports sequences of any IDL data type with the following syntax:

[typedef] sequence < el enment-type[, nmax-elenments] >
sequence- nane

An IDL sequence is similar to a one-dimensional array of elements;
however, its length varies according to its actual number of elements, so it
uses memory more efficiently.

121

CHAPTER 4 | Defining Interfaces

122

A sequence must be named by a t ypedef declaration (see “Defining Data
Types” on page 124) in order to be used as a parameter, an attribute, or a
return value. You can omit a t ypedef declaration only for a sequence that is
declared within a structure definition.

A sequence’s element type can be of any type, including another sequence

type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed

(unbounded):

® Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

® Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimtedAccounts {
string bankSort Code<10>;
sequence<Account, 50> accounts; // nmax sequence length is 50

I

struct UnlimtedAccounts {
string bankSort Code<10>;
sequence<Account > accounts; // no max sequence |ength

I

IDL Data Types

Pseudo Object Types

CORBA defines a set of pseudo object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping
for interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

CORBA: : NaredVal ue
OORBA: : TypeCode

To use these types in an IDL specification, include the file orb. i dl in the
IDL file as follows:

#i ncl ude <orb.idl >
/...

This statement tells the IDL compiler to allow types NamedVal ue and
TypeCode.

123

CHAPTER 4 | Defining Interfaces

Defining Data Types

With t ypedef , you can define more meaningful or simpler names for existing
data types, whether IDL-defined or user-defined. The following IDL defines
t ypedef identifier St andar dAccount , so it can act as an alias for type
Account in later IDL definitions:

nodul e BankDeno {
interface Account {
/...

I8

typedef Account StandardAccount;
ik

124

Constants

Constants

IDL lets you define constants of all built-in types except type any. To define
a constant’s value, you can either use another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

The following constant types are supported:

® Integer

® Floating-point

® Character and string

® Wide character and string

® Boolean
® Octet
® Fixed-point

® Enumeration

Integer IDL accepts integer literals in decimal, octal, or hexadecimal:
const short 11 =-99;
const |ong 12 = 0123; // Cctal 123, decimal 83

0x123; // Hexadeci mal 123, deci mal 291
+0xaB; // Hexadecimal ab, decimal 171

const long long 13
const long long |14

Both unary plus and unary minus are legal.

Floating-point Floating-point literals use the same syntax as C+ +:

const fl oat fl=3.1e-9; // Integer part, fraction part,

/] exponent

const doubl e f2 =-3.14; // Integer part and fraction part
const long double f3 = .1 /] Fraction part only

const doubl e f4 = 1. /] Integer part only

const doubl e f5 = .1E12 // Fraction part and exponent
const doubl e f6 = 2E12 /1 Integer part and exponent

125

CHAPTER 4 | Defining Interfaces

Character and string Character constants use the same escape sequences as C++:
const char Cl1 = 'c'; I/ the character c
const char C = '\007"; /1 ASA| BEL, octal escape
const char C3 = '\x41'; // ASA| A hex escape
const char G4 = '\n'; /1 new ine
const char G5 = "\t'; Il tab
const char G6 = "\Vv'; I/ vertical tab
const char C7 = '\b'; /'l backspace
const char G = "\r"'; /] carriage return
const char C = "\f'; // formfeed
const char Cl0 = '\a'; [/ alert
const char Cl1 = "\\'; I/ backsl ash
const char Cl2 = "\ ?'; // question mark
const char C13 = "\"'"; /'l single quote
/1 String constants support the sane escape sequences as Ct+
const string S1 = "Quote: \""; /] string with doubl e quote
const string S2 = "hello world"; /] sinple string
const string S3 = "hello" " world"; // concatenate
const string $4 = "\xA' "B'; // two characters

/I ("\xA and 'B),
/1 not the single character '\xAB

Wide character and string Wide character and string constants use C+ + syntax. Use Universal
character codes to represent arbitrary characters. For example:

const wchar C=LX;
const wstring QREETING = L"Hello";
const wchar QVEGA = L'\ u03a9';

const wstring QVEGA STR = L"Qrega: \u3A9";

Note: IDL files themselves always use the ISO Latin-1 code set, they
cannot use Unicode or other extended character sets.

Boolean Boolean constants use the keywords FALSE and TRUE. Their use is
unnecessary, inasmuch as they create needless aliases:

// There is no need to define bool ean constants:
const CONTRADI CTlI ON = FALSE; /1 Pointless and conf usi ng
const TAUTALOGY = TRUE /1 Pointless and confusi ng

126

Octet

Fixed-point

Enumeration

Constants

Octet constants are positive integers in the range 0-255.

const octet OL
const octet @

23;
0xf O;

Note: Octet constants were added with CORBA 2.3, so ORBs that are not
compliant with this specification might not support them.

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

// Fixed point constants take digits and scale fromthe
/] initialiser:

const fixed vall = 3D, /] fixed<l, 0>
const fixed val2 = 03. 14d; /] fixed<3, 2>
const fixed val 3 = -03000.00D, // fixed<4, 0>
const fixed val4 = 0.03D /] fixed<3, 2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Note: Currently, there is no way to control the scale of a constant if it
ends in trailing zeros.

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { snall, nedium large };

const Size DFL_SIZE = medi um
const Size MAX SIZE = ::large;

Note: Enumeration constants were added with CORBA 2.3, so ORBs that
are not compliant with this specification might not support them.

127

CHAPTER 4 | Defining Interfaces

Constant Expressions

Operator precedence

Arithmetic operators

128

IDL provides a number of arithmetic and bitwise operators.

The precedence for operators follows the rules for C++. You can override
the default precedence by adding parentheses.

The arithmetic operators have the usual meaning and apply to integral,
floating-point, and fixed-point types (except for % which requires integral
operands). However, these operators do not support mixed-mode
arithmetic; you cannot, for example, add an integral value to a floating-point
value. The following code contains several examples:

/1 You can use arithmetic expressions to define constants.
const long MN = -10;

const |ong MAX = 30;

const long DFLT = (M N + MAX) / 2;

/l Can't use 2 here
const double TWCE Pl = 3.1415926 * 2.0;

/1 5% di scount
const fixed DI SCOUNT = 0.05D
const fixed PR CE = 99. 99D,

// Can't use 1 here
const fixed NET_ PRCE = PRCE * (1.0D - Dl SOOUNT);

Expressions are evaluated using the type promotion rules of C++. The
result is coerced back into the target type. The behavior for overflow is
undefined, so do not rely on it. Fixed-point expressions are evaluated
internally with 62 bits of precision, and results are truncated to 31 digits.

Bitwise operators

Constant Expressions

The bitwise operators only apply to integral types. The right-hand operand
must be in the range 0-63. Note that the right-shift operator >> is
guaranteed to inject zeros on the left, whether the left-hand operand is
signed or unsigned:

/1l You can use bitw se operators to define constants.
const long ALL_ONES = -1; Il Oxffffffff
const long LHWNMASK = ALL_ONES << 16; /1 0Oxf fff0000
const |ong RHAWNMASK = ALL_ONES >> 16; /1 0x0000f f f f

IDL guarantees two’s complement binary representation of values.

129

CHAPTER 4 | Defining Interfaces

130

CHAPTER 5

Developing
Applications with
Genies

The code generation toolkit is packaged with a genie that can
help your development effort get off to a fast start.

The Java genie j ava_poa_geni e. tcl creates a complete, working client and

server directly from your IDL interfaces. You can then add application logic

to the generated code. This can improve productivity in two ways:

® The outlines of your application—class declarations and operation
signatures—are generated for you.

® A working system is available immediately, which you can
incrementally modify and test. With the generated build files, you can
build and test modifications right away, thereby eliminating much of
the overhead that is usually associated with getting a new project
underway.

In a genie-generated application, the client invokes every operation and
each attribute’s get and set methods, and directs all display to standard
output. The server also writes all called operations to standard output.

This client/server application achieves these goals:

®* Demonstrates or tests an Orbix client/server application for a particular
interface or interfaces.

131

CHAPTER 5 | Developing Applications with Genies

® Provides a starting point for your application.
® Shows the right way to initialize and pass parameters for various IDL

data types.
In this chapter This chapter covers the following topics:
Genie Syntax page 133
Specifying Application Components page 135
Selecting Interfaces page 137
Including Files page 138
Implementing Servants page 139
Implementing the Server Mainline page 142
Implementing a Client page 145
Generating Build Files page 146
Controlling Code Completeness page 147
General Options page 153
Compiling the Application page 154
Configuration Settings page 155

132

Genie Syntax

Genie Syntax

j ava_poa_geni e. tcl uses the following syntax:
i dl gen java_poa_genie.tcl conponent-spec [options] idl-file
You must specify an IDL file. You must also specify the application

components to generate, either all components at once, or individual
components, with one of the arguments in Table 4:

Table 4: Component specifier arguments to java_poa_genie.tcl

Component Output
specifier

-all All components: server, servant, client, and antfile (see
page 135).

- servant Servant classes to implement the selected interfaces (see
page 139).

- server Server main program (see page 142)

-client Client main program (see page 145).

-antfile Files used by the i t ant utility to compile server and client
applications (see page 146).

Each component specifier can take its own arguments. For more information
on these, refer to the discussion on each component later in this chapter.

You can also supply one or more of the optional switches shown in Table 5:

Table 5: Optional switches to java_poa genie.tcl

Option Description

-conpl et e/ -inconpl ete | Controls the completeness of the code that is
generated for the specified components (see
page 147).

-dir Specifies where to generate file output (see
page 153).

133

CHAPTER 5 | Developing Applications with Genies

Table 5: Optional switches to java_poa_ genie.tcl

Option Description

-incl ude Specifies to generate code for included files
(see page 138).

-interface-spec Specifies to generate code only for the
specified interfaces (see page 137).

- j Ppackage- nane Specifies the package name to contain the
file output (see page 153).

-v/-s Controls the level of verbosity (see
page 153).

134

Specifying Application Components

Specifying Application Components

The -all argument generates the files that implement all application
components: server, servant, client, and build files. For example, the
following command generates all the files required for an application that is
based on bankdeno. i dI :

> idlgen java_poa genie.tcl -all bankdeno.i dl

java_poa_geni e.tcl: creating idl gen/ Randonfuncs. j ava
java_poa_genie.tcl: creating

i dl gen/ NoPackage/ RandonBankDeno. j ava
java_poa_genie.tcl: creating

i dl gen/ NoPackage/ BankDeno/ RandonBank. j ava
java_poa_genie.tcl: creating

i dl gen/ NoPackage/ BankDeno/ RandomAccount . j ava
java_poa_geni e.tcl: creating idl gen/ Random\oPackage. j ava
java_poa_geni e.tcl: creating NoPackage/ BankDeno/ BankCal | er. j ava
java_poa_genie.tcl: creating

NoPackage/ BankDeno/ Account Cal | er. j ava
java_poa_geni e.tcl: creating NoPackage/client.java
java_poa_geni e.tcl: creating NoPackage/ BankDeno/ Bankl npl . j ava
java_poa_geni e.tcl: creating NoPackage/ BankDeno/ Account | npl . j ava
java_poa_geni e.tcl: creating NoPackage/ server. | ava
java_poa_genie.tcl: creating build. xm

135

CHAPTER 5 | Developing Applications with Genies

136

Alternatively, you can use j ava_poa_geni e. tcl to generate one or more
application components. For example, the following command specifies to
generate only those files that are required to implement a server:

> jdlgen java poa_genie.tcl -server bankdeno.i dl

java_poa_genie.tcl: creating idl gen/PrintFuncs.java
java_poa genie.tcl: creating idl gen/ NoPackage/ Pri nt BankDeno. j ava
java_poa_genie.tcl: creating

i dl gen/ NoPackage/ BankDeno/ Pri nt Bank. j ava
java poa genie.tcl: creating

i dl gen/ NoPackage/ BankDeno/ Pri nt Account . j ava
java_poa_genie.tcl: creating idl gen/ Randonfuncs. j ava
java poa genie.tcl: creating

i dl gen/ NoPackage/ RandonBankDeno. j ava
java_poa_genie.tcl: creating

i dl gen/ NoPackage/ BankDeno/ RandonBank. j ava
java_poa_genie.tcl: creating

i dl gen/ NoPackage/ BankDeno/ RandomAccount . j ava
java_poa genie.tcl: creating id gen/ Random\oPackage. j ava
java_poa_geni e.tcl: creati ng NoPackage/ server.java

By generating output for application components selectively, you can control
genie processing for each one. For example, the following commands
specify different - di r options, so that server and servant files are output to
one directory, and client files are output to another:

> jdlgen java poa genie.tcl -servant - server bankdeno.idl

-dir c:\app\server
> jdlgen java poa _genie.tcl -client bankdeno.idl

-dir c:\app\client

Selecting Interfaces

Selecting Interfaces

By default, j ava_poa_geni e. tcl generates code for all interfaces in the
specified IDL file. You can specify to generate code for specific interfaces
within the file by supplying their fully scoped names. For example, the
following command specifies to generate code for the Bank interface in
bankdeno. i dl :

> jdlgen java poa_genie.tcl -all BankDeno::Bank bankdeno. i dl

You can also use wildcard patterns to specify the interfaces to process. For
example, the following command generates code for all interfaces in module
BankDeno:

> idl gen java_poa_genie.tcl BankDeno::* bankderno.i dl

The following command generates code for all interfaces in f oo. i dl with
names that begin with Foo or end with Bar.

> jdlgen java_poa_genie.tcl foo.idl "Foo*" "*Bar"

Note: For interfaces defined inside modules, the wildcard is matched
against the fully scoped interface name, so Foo* matches FooMbdul e: : Y but
not Bar Modul e: : Foo.

Pattern matching is performed according to the rules of the TCL string
mat ch command, which is similar to Unix or Windows filename matching.
Table 6 contains some common wildcard patterns:

Table 6: Wildcard pattern matching to interface names

Wildcard pattern Matches...
* Any string
? Any single character
[xyz] X, Y, Or z.

137

CHAPTER 5 | Developing Applications with Genies

Including Files

138

By default, j ava_poa_geni e. t cl generates code only for the specified IDL
files. You can specify also to generate code for all #i ncl ude files by
supplying the -i ncl ude option. For example, the following command
specifies to generate code from bankdeno. i dl and any IDL files that are
included in it:

> jdlgen java_poa_genie.tcl -all -include bankdeno.idl

The default for this option is set in the configuration file through

defaul t.java_geni e. want _i ncl ude.

Implementing Servants

Implementing Servants

The - servant option generates POA servant classes that implement IDL
interfaces. For example, this command generates a class header and
implementation code for each interface that appears in IDL file

bankdeno. i dl :

idlgen java_poa_genie.tcl -servant bankdeno.idl

The genie constructs the implementation class name by adding a suffix—by
default, | npl —to the interface name. The default suffix is set in the
configuration file through def aul t . j ava. i npl _cl ass_suf fi x.

For example, BankDeno: : Account is implemented by class Account | npl .
The generated implementation class contains these components:

® Astatic _create() member method to create a servant.

®* A member method to implement each IDL operation for the interface.

The - servant option can take one or more arguments, shown in Table 7,
that let you control how servant classes are generated:

Table 7: Arguments that control servant generation

Argument Purpose
-tie Choose the inheritance or tie (delegation) method
-notie for implementing servants.
-inherit Choose whether implementation classes follow the
- noi nheri t same inheritance hierarchy as the IDL interfaces

they implement.

-default_poa arg Determines the behavior of implicit activation,

which uses the default POA associated with a

given servant. def aul t _poa can take one of these

arguments:

® per_servant : Set the correct default POA for
each servant.

® exception: Throw an exception on all
attempts at implicit activation.

For more information, see page 216.

139

CHAPTER 5 | Developing Applications with Genies

-tie/-notie

140

The actual content and behavior of member methods is determined by the
- conpl et e or -i nconpl et e flag. For more information, see “Controlling Code
Completeness” on page 147.

A POA servant is either an instance of a class that inherits from a POA
skeleton, or an instance of a tie template class that delegates to a separate
implementation class. You can choose the desired approach by supplying
-tieor-notie options. The default for this option is set in the configuration
file through def aul t . j ava_geni e. want _ti e.

With -noti e, the genie generates servants that inherit directly from POA
skeletons. For example:

public class Account|npl extends Account PQA

The _creat e() method constructs a servant as follows:

public static Accountlnpl _create(
or g. ony. Port abl eServer. PQA t he_poa)
throws org. ong. CORBA. Syst enExcept i on
{

}

return new Account | npl (t he_poa) ;

With -ti e, the genie generates implementation classes that do not inherit
from POA skeletons. The following example uses a _creat e method to
create an implementation object (1), and a tie (2) that delegates to it:

Example 11: Java Creating a TIE Object
public static NoPackage. BankDermo. Account POATi e _creat e(

or g. ony. Port abl eServer. PQA t he_poa)
throws org. ong. CORBA. Syst enExcept i on

{
Account | npl tied _object = new Account | npl ();
NoPackage. BankDeno. Account PQATi e the tie =
new NoPackage. BankDeno. Account PQATI e(
tied_object, the poa);
return the_tie;
}

-inherit/-noinherit

-default_poa

Implementing Servants

Note: create() is a useful genie convention that provides a consistent
way to create servants whether you use the tie approach or not. This helps
minimize the impact on your code if you change approaches during
development. You can also create servants and tie objects by calling the
constructors directly in your own code.

IDL servant implementation classes typically have the same inheritance

hierarchy as the interfaces that they implement, but this is not required.

® -inherit generates implementation classes with the same inheritance
as the corresponding interfaces.

® -noinherit generates implementation classes that do not inherit from
each other. Instead, each implementation class independently
implements all operations for its IDL interface, including operations
that are inherited from other IDL interfaces.

The default for this option is set in the configuration file through
defaul t.java_geni e.want _i nherit.

In the standard CORBA Java mapping, each servant class provides a

_thi s() method, which generates an object reference and implicitly

activates that object with the servant. Implicit activation calls

_defaul t_PQA() on the same servant to determine the POA in which this

object is activated. Unless you specify otherwise, _def aul t _PQA() returns

the root POA, which is typically not the POA where you want to activate

objects.

The code that j ava_poa_geni e. t cl generates always overrides

_defaul t _PQA() in a way that prevents implicit activation. Applications

generated by this genie can only activate objects explicitly. Two options are

available that determine how to override defaul t _PQA():

® per_servant : (default) Servant constructors and generated _creat e()
methods takes a POA parameter. For each servant, _defaul t_PQX()
returns the POA specified when the servant was created.

® exception: _default_ PQA() throws a GCRBA: : | NTERNAL system
exception. This option is useful in a group development environment,
in that it allows tests to easily catch any attempts at implicit activation.

For more information about explicit and implicit activation, see page 215.

141

CHAPTER 5 | Developing Applications with Genies

Implementing the Server Mainline

The - server option generates a simple server mainline that activates and
exports some objects. For example, the following command generates a file
called serverj ava that contains a mai n program:

> idlgen java_poa_genie.tcl -server bankdeno.idl
The server program performs the following steps:
1. Initializes the ORB and POA.
2. For each interface:
+ Activates a CORBA object of that interface.

. Exports a reference either to the naming service or to a file,
depending on whether you set the option - ns or - nons.

3. Catches any exceptions and print a message.
The - server option can take one or more arguments, shown in Table 8, that
let you modify server behavior:

Table 8: Options affecting the server

Command line option Purpose
-threads Choose a single or multi-threaded server.
-nothreads
-strategy simple Create servants during start-up.
-strategy activator Create servants on demand with a servant
activator.
-strategy locator Create servants per call with a servant locator.
-strategy For each interface, generate a POA that uses
default_servant a default servant.
-ns Determines how to export object references:
-hons ® -ns: use the naming service to publish
object references.
® -nons: write object references to a file.

142

-threads/-nothreads

-strategy Options

Implementing the Server Mainline

You can specify the threads policy for all POAs in the server with one of
these options:

-nothreads sets the SI NALE_THREAD MCDEL policy on all POAs in the server,
which ensures that all calls to application code are made in the main
thread. This policy allows a server to run thread-unsafe code, but might
reduce performance because the ORB can dispatch only one operation at a
time.

-threads sets the ORB_CTRL_MODEL policy on all POAs in the server, allowing
the ORB to dispatch incoming calls in multiple threads concurrently.

Note: If you enable multi-threading, you must ensure that your
application code is thread-safe and application data structures are
adequately protected by thread-synchronization calls.

The default for this option is set in the configuration file through
defaul t.java_geni e. want _t hr eads.

The POA is a flexible tool that lets servers manage objects with different
strategies. Some servers can use a combination of strategies for different
objects. You can use the genie to generate examples of each strategy, then
cut-and-paste the appropriate generated code into your own server.

You set a server's object management strategy through one of the following
arguments to the - st rat egy option:

-strategy simple: The server creates a POA with a policy of

USE_ACTI VE_CBJECT_MAP_ONLY (see page 206). For each interface in the IDL
file, the server mai n() creates a servant, activates it with the POA as a
CORBA object, and exports an object reference.

This strategy is appropriate for servers that implement a small, fixed set of
objects.

-strategy activator: The server creates a POA and a servant activator (see
“Servant Activators” on page 278). For each interface, the server exports an
object reference. The object remains inactive until a client first calls on its
reference; then, the servant activator is invoked and creates the appropriate
servant, which remains in memory to handle future calls on that reference.

143

CHAPTER 5 | Developing Applications with Genies

-ns/-nons

144

This strategy lets the server start receiving requests immediately and defer
creation of servants until they are needed. It is useful for servers that
normally activate just a few objects out of a large collection on each run, or
for servants that take a long time to initialize.

-strategy locator: The server creates a POA and a servant locator (see
“Servant Locators” on page 283). The server exports references, but all
objects are initially inactive. For every incoming operation, the POA asks the
servant locator to select an appropriate servant. The generated servant
locator creates a servant for each incoming operation.

A servant locator is ideal for managing a cache of servants from a very large
collection of objects in a database. You can replace the prei nvoke and
post i nvoke methods in the generated locator with code that looks for
servants in a database cache, loads them into the cache if required, and
deletes old servants when the cache is full.

-strategy default_servant: The server creates a POA for each interface, and
defines a default servant for each POA to handle incoming requests. A server
that manages requests for many objects that all use the same interface
should probably have a POA that maps all these requests to the same
default servant. For more information about using default servants, see
“Setting a Default Servant” on page 291.

Determines how the server exports object references to the application:

-ns: Use the naming service to publish object references. For each interface,
the server binds a reference that uses the interface name, in naming context
| T_Geni eDeno. For example, for interface Deno_Bank, the genie binds the
reference | T_Geni eDeno/ BankDeno_Bank. If you use this option, the naming
service and locator daemon must be running when you start the server.

For more information about the naming service, see Chapter 17 on
page 423.

-nons: Write stringified object references to a file. For each interface, the
server exports a reference to a file named after the interface with the suffix
r ef —for example BankDero_Bank. r ef

The default for this option is set in the configuration file through defaul t. .

Implementing a Client

Implementing a Client

The -client option generates client source code in client.java. For
example:

> jdlgen java_poa_genie.tcl -client bank.idl

When you run this client, it performs the following actions for each
interface:

1. Reads an object reference from the file generated by the server—for
example, BankDeno_Bank. ref .

2. If generated with the - conpl et e option, for each operation:
. Calls the operation and passes random values.
‘. Prints out the results.
3. Catches raised exceptions and prints an appropriate message.

145

CHAPTER 5 | Developing Applications with Genies

Generating Build Files

146

The -antfil e option generates a bui | d. xni file that contains rules to build
the server and client applications. The bui I d. xm file provides the following
targets:

bui I d_al I : Deletes class files, IDL compiler generated files and
rebuilds everything.

cl ean: Deletes all class files.

cl ean_al | : Deletes all generated files.
runserver : Runs the server.

runcl i ent : Runs the client.

To build the client and server, enter this command:

> jtant build_all

Controlling Code Completeness

Controlling Code Completeness

You can control the extent of the code that is generated for each interface
through the -conpl et e and -i nconpl et e options. These options are valid
for server, servant, and client code generation.

The default for this option is set in the configuration file through
defaul t.java_geni e. want _conpl et e.

For example, the following commands generate complete servant and client
code and incomplete server mainline code:

> idl gen java_poa_genie.tcl -servant -conplete bankdeno.idl
> idlgen java_poa_genie.tcl -client -conplete bankdeno.i dl
> idlgen java_poa_genie.tcl -server -inconplete bankderno.i dl

Setting the - conpl et e option on servant, server, and client components

yields a complete application that you can compile and run. The application

performs these tasks:

® The client application calls every operation in the server application
and passes random values as i n parameters.

® The server application returns random values for i nout /out parameters
and ret urn values.

® Client and server print a message for each operation call, which
includes the values passed and returned.

Using the - conpl et e option lets you quickly produce a demo or
proof-of-concept prototype. It also offers useful models for typical coding
tasks, showing how to initialize parameters properly, invoke operations, and
throw and catch exceptions.

If you are familiar with calling and parameter passing rules and simply want
a starting point for your application, you probably want to use the

-i nconpl et e option. This option produces minimal code, omitting the
bodies of operations, attributes, and client-side invocations.

The sections that follow describe, for each application component, the
differences between complete and incomplete code generation. All examples
assume the following IDL for interface Account:

147

CHAPTER 5 | Developing Applications with Genies

/1 1DL:
nodul e BankDeno

/I CGher interfaces and type definitions omtted...

i nterface Account
{
exception InsufficientFunds {};
readonly attribute Accountld account i d;
readonly attribute CashAmount bal ance;
voi d w t hdraw(
i n CashAnount anount
) raises (InsufficientFunds);

voi d
deposi t (

in CashAmount anount
)

148

Controlling Code Completeness

Servant Code

Incomplete servant

Complete servant

Qualifying the - servant option with -i nconpl et e or - conpl et e yields the
required source files for each IDL interface. Either option generates the
Account | npl . j ava source file.

The -inconpl et e option specifies to generate servant class Account I npl ,
which implements the BankDeno: : Account interface. The implementation of
each operation and attribute throws a GCRBA: : NO | MPLEMENT exception.

For example, the following code is generated for the wi t hdraw() operation:

public void w thdraw fl oat anount)
throws org. ong. CORBA. Syst enExcepti on,
NoPackage. BankDeno. Account Package. | nsuf fi ci ent Funds {

{
}

All essential elements of IDL code are automatically generated, so you can
focus on writing the application logic for each IDL operation.

t hrow org. ong. CCRBA NO_| MPLEMENT() ;

The -conpl et e option specifies to generate the file

i dl gen. NoPackage. RandonmMbdul eNane, which provides the functionality
required to generate random values for parameter passing. For example,

i dl gen. NoPackage. RandonBankDeno is generated for the BankDermo module.

Each i nt er f ace- namel npl method is fully implemented to print parameter
values and, if required, return a value to the client. For example, the
following code is generated for the wi t hdr aw() operation:

149

CHAPTER 5 | Developing Applications with Genies

/1l
bool ean isdient = fal se;
/1
public void w thdraw(fl oat anount)
throws org. ong. CORBA Syst enExcept i on,
NoPackage. BankDeno. Account Package. | nsuf fi ci ent Funds {

// Diagnostics: print the values of "in" and "inout"

par anet er s

Systemout. println("Account!npl.w thdraw(): called
with...");

Systemout. println("anount =" + anount);

[/l Decide if we want to throw back an exception

swi tch (i dl gen. Randonfuncs.init().randomong() %2) {
case 1: {

/l Declare and initialise the exception

NoPackage. BankDeno. Account Package. | nsuf fi ci ent Funds | T_ex;

I T ex =

i dl gen. NoPackage. BankDeno. RandomAccount . | nsuf fi ci ent Funds(
isQient);

throw | T_ex;

}

defaul t:
// Don't throw an exception
br eak;

}

// D agnostics
Systemout.println ("Account!npl.w thdraw(): returning"

150

Controlling Code Completeness

Client Code

In a completely implemented client, j ava_poa_geni e. tcl generates a
source file for each interface, i nt er f ace- naneCal | er . j ava. This source file
defines contains a wrapper method for each operation in i nt er f ace- nane,
and the generated client program calls each of these methods. For example,
the BankDeno client program calls the deposi t () method in

NoPackage. BankDeno. Account Cal | er, which in turn calls deposi t () on the
Account object. Each method assigns random values to the parameters of
operations and prints out the values of parameters that they send, and those
that are received back as out parameters. Utility methods to assign random
values to IDL types are generated in the file

i dl gen. NoPackage. Randommodul e- narre.

An incomplete client contains no invocations.

Both complete and incomplete clients catch raised exceptions and print
appropriate messages.

For example, the following client code is generated for the
Account : : deposi t () operation in
NoPackage. BankDeno. Account Cal | er. deposi t():

151

CHAPTER 5 | Developing Applications with Genies

public static
voi d deposi t (NoPackage. BankDeno. Account | T_obj)

{
/1 Diagnostics: announce our intention to invoke the
oper ati on.
/|l Declare parameters for making the renote call.
float anount;
// Initialise "in" and "inout" parameters wth random val ues
anount =
i dl gen. NoPackage. RandonBankDeno. CashAnount (i s ient);
/1 Make the call and handl e any exceptions that are thrown
try {
| T_obj . deposi t (
amount) ;
}
cat ch(org. ong. GORBA. Syst enExcepti on se) {
System out . print | n(
"deposit failed with the follow ng exception");
se. print StackTrace(System out) ;
return;
}
cat ch(Exception ex) {
System out . print | n(
"deposit failed with the foll ow ng exception");
ex. print StackTrace(System out);
return;
}
/1 1f we get this far then no exception was thrown.
/1 Success depends on us having gotten back expected
/1 val ues
Systemout. printl n("deposit done");
}
}

152

General Options

General Options

You can supply switches that control j ava_poa_geni e. t cl genie output:

-jP: By default, j ava_poa_geni e. t cI writes all generated application files to
a package whose name is initially set in the configuration file through
defaul t. j ava_geni e. package_nane. The distributed configuration file
initially sets the package name to NoPackage. You can override the default
through the -jP switch. For example, the following command puts all
generated files in package ny_package:

> jdlgen java poa_genie.tcl -all -jP ny_package bank.idl

-dir: By default, j ava_poa_geni e. t cl writes all output files to the current
directory. With the - di r option, you can explicitly specify where to generate
file output.

-v/-s: By default, j ava_poa_geni e. tcl runs in verbose (- v) mode. With the
- s option, you can silence all messaging.

153

CHAPTER 5 | Developing Applications with Genies

Compiling the Application

To compile a genie-generated application, Orbix must be properly installed
on the client and server hosts:

1. Build the application using the bui | d. xm file.

2. In separate windows, run first the server, then the client applications.

154

Configuration Settings

Configuration Settings

The configuration file j art _i dI gen. cf g contains default settings for the Java
genie j ava_poa_geni e. tcl at the scope defaul t.java_geni e.

Some other settings are not specific to j ava_poa_geni e. tcl but are used by
the st d/ cpp_poa_boa_lib.tcl library, which maps IDL constructs to their
Java equivalents. j ava_poa_geni e. t cl uses this library extensively, so these
settings affect the output that it generates. They are held in the scope
defaul t.java.

For a full listing of these settings, refer to the CORBA Code Generation
Toolkit Guide.

155

CHAPTER 5 | Developing Applications with Genies

156

Overview

In this chapter

CHAPTER 6

ORB Initialization
and Shutdown

The mechanisms for initializing and shutting down the ORB
on a client and a server are the same.

The mai n() of both sever and client must perform these steps:

® Initialize the ORB by calling org. ong. CORBA CRB.init ().

® Shut down and destroy the ORB, by calling shut down() and dest roy()
on the ORB.

This chapter contains the following sections:

Initializing the ORB Runtime page 158

Shutting Down the ORB page 160

157

CHAPTER 6 | ORB Initialization and Shutdown

Initializing the ORB Runtime

Overview

Calling within main()

Supplying an ORB name

Java mapping

158

Before an application can start any CORBA-related activity, it must initialize
the ORB runtime by calling or g. ong. CCRBA. CRB. i nit (). CRB.ini t() returns
an object reference to the ORB object; this, in turn, lets the client obtain
references to other CORBA objects, and make other CORBA-related calls.

It is common practice to set a global variable with the ORB reference, so the
ORB object is accessible to most parts of the code. However, you should
call arB. i ni t () only after you call mai n() to ensure access to command line
arguments.

You can supply an ORB name as an argument; this name determines the
configuration information that the ORB uses. If you supply null, Orbix uses
the ORB identifier as the default ORB name. ORB names and configuration
are discussed in the Application Server Platform Administrator’s Guide.

The Java mapping provides three forms of initialization:
® Application initialization

® Applet initialization

® Default initialization

These are defined as follows:

package org. ong. CCRBA;
abstract public class CRB {

/...
public static CRBinit(
String[] args,
java.util.Properties props);
public static CRBinit(
j ava. appl et . Appl et app,
java.util.Properties props);
public static GRBinit();
1.

Registering portable interceptors

Initializing the ORB Runtime

Application initialization

The application initialization method is used with a stand-alone Java
application, and returns a new fully functional ORB Java object with each
call. This method is defined with two parameters:

® Command arguments as an array of strings.

® Alist of Java properties.

Either parameter can be null.

Applet initialization

The applet initialization method is called from an applet, and returns a new
fully functional ORB Java object with each call. This method is defined with
two parameters:

® The applet.

® Alist of Java properties.

Either parameter can be null.

Default initialization

The default initialization method returns a singleton ORB. If called multiple
times, it always returns the same Java object. The ORB that this version
returns has restricted capabilities. Only the following ORB methods can be
invoked on a singleton ORB:

create_typecode-type tc()
get_printive_tc()
create_any()

This version of CRB. i ni t () primarily serves these purposes:

® Provide a factory for type codes for use by helper classes implementing
the t ype() method.

® Create Any instances that are used to describe union labels as part of
creating a union TypeCode.

During ORB initialization, portable interceptors are instantiated and
registered through an ORB initializer. The client and server applications
must register the ORB initializer before calling CRB_i nit () . For more
information, see “Registering Portable Interceptors” on page 564.

159

CHAPTER 6 | ORB Initialization and Shutdown

Shutting Down the ORB

Overview

In this section

160

For maximum portability and to ensure against resource leaks, a client or

server must always shut down and destroy the ORB at the end of nmai n():

® shutdown() stops all server processing, deactivates all POA managers,
destroys all POAs, and causes the run() loop to terminate. shut down()
takes a single Boolean argument; if set to true, the call blocks until the
shutdown process completes before it returns control to the caller. If
set to false, a background thread is created to handle shutdown, and
the call returns immediately.

® destroy() destroys the ORB object and reclaims all resources
associated with it.

This section discusses the following topics:

Shutting Down a Client page 161

Shutting down a server page 162

Shutting Down the ORB

Shutting Down a Client

A client is a CORBA application that does not call
org.omg.CORBA.ORB.run() and does not process incoming CORBA
invocations.

Example 12 shows how a client is shut down:
Example 12: Shutting down a CORBA client

/1 Java
void main(String args[])
{

or g. ong. CCRBA CRB or b;

//CRB initialization not shown

1 or b. shut down(true);
2 orb. destroy();
}

1. Aclient calls shut down() with the argument 1(TRUE), causing the

shut down() operation to remain blocked until ORB shutdown is
complete.

The last thing the client does is to call destroy(). You are required to
call destroy() for full CORBA compliancy.

Note: The destroy() function has no effect in Orbix. Hence, it can

be omitted without affecting the runtime behavior of an Orbix
application.

161

CHAPTER 6 | ORB Initialization and Shutdown

Shutting down a server

162

Because servers typically process invocations by calling

org. omy. CORBA. CRB. run() , which blocks indefinitely,

or g. omy. CORBA. CRB. shut down() cannot be called from the main thread.
The following are the main ways of shutting down a server:

® (Call shut down(0) from a subthread.

® Call shut down(0) in the context of an operation invocation.

In this chapter

CHAPTER 7

Using Policies

Orbix supports a number of CORBA and proprietary policies
that control the behavior of application components.

Most policies are locality-constrained; that is, they apply only to the server

or client on which they are set. Therefore, policies can generally be divided

into server-side and client-side policies:

® Server-side policies generally apply to the processing of requests on
object implementations. Server-side policies can be set
programmatically and in the configuration, and applied to the server's
ORB and its POAs.

® client-side policies apply to invocations that are made from the client
process on an object reference. Client-side policies can be set
programmatically and in the configuration, and applied to the client’s
ORB, to a thread, and to an object reference.

The procedure for setting policies programmatically is the same for both
client and server:

1. Create the CORBA: : Pol i cy object for the desired policy.
2. Add the Policy object to a Pol i cyLi st.

3. Apply the Poli cyLi st to the appropriate target—ORB, POA, thread, or
object reference.

This chapter discusses issues that are common to all client and server
policies.

Creating Policy and PolicyList Objects page 165

163

CHAPTER 7 | Using Policies

Setting Orb and Thread Policies page 167
Setting Server-Side Policies page 170
Setting Client Policies page 172
Getting Policies page 177

For detailed information about specific policies, refer to the chapters that
cover client and POA development: “Developing a Client” on page 235, and
“Managing Server Objects” on page 193.

164

Creating Policy and PolicyList Objects

Creating Policy and PolicyList Objects

Using POA policy factories

Calling create_policy()

Two methods are generally available to create policy objects:

® To apply policies to a POA, use the appropriate policy factory from the
Por t abl eSer ver : : PQA interface.

® (Call ORB::create_policy() on the ORB.

After you create the required policy objects, you add them to a Pol i cyLi st .
The Pol i cyLi st is then applied to the desired application component.

The Port abl eServer: : PQA interface provides factories for creating

CCRBA: : Pol i cy objects that apply only to a POA (see Table 9 on page 200).
For example, the following code uses POA factories to create policy objects
that specify PERSI STENT and USER | D policies for a POA, and adds these
policies to a Pol i cyLi st.

i mport org. ong. CORBA* . ;
i nport org. ong. Portabl eServer. *;

Policy[] policies = new Policy[2];

pol i ci es[0] =r oot _poa. create_lifespan_poli cy(
Li f espanPol i cyVal ue. PERSI STENT) ;

pol i ci es[1] =r oot _poa. create_i d_assi gnment _pol i cy(
| dAssi gnnent Pol i cyVal ue. USER | D) ;

Orbix also provides several proprietary policies to control POA behavior (see
page 165). These policies require you to call creat e_pol i cy() on the ORB
to create Pol i cy objects, as described in the next section.

You call creat e_pol i cy() on the ORB to create Pol i cy objects. For
example, the following code creates a Pol i cyLi st that sets a SyncScope
policy of SYNC W TH_SERVER; you can then use this Pol i cyLi st to set client
policy overrides at the ORB, thread, or object scope:

165

CHAPTER 7 | Using Policies

i nport org.ong. Messagi ng. *;

org. ong. CORBA. Pol i cy[] policies = new org.ong. Policy[1];
org. ong. CORBA. Any policy_value =
gl obal _orb. create_any();

SyncScopePol i cyVal ueHel per . insert (
pol i cy_val ue,
SyncScopePol i cyVal ue. SYNC WTH_SERVER) ;

policies[0] = orb.create_policy(
SYNC SCCPE PQLI CY_TYPE. val ue, policy_val ue);

166

Setting Orb and Thread Policies

Setting Orb and Thread Policies

The CORBA: : Pol i cyManager interface provides the operations that a program
requires to access and set ORB policies. QORBA: : Pol i cyQur rent is an empty
interface that simply inherits all Pol i cyManager operations; it provides
access to client-side policies at the thread scope.

ORB policies override system defaults, while thread policies override policies
set on a system or ORB level. You obtain a PolicyManager or PolicyCurrent
through resol ve_initial _references():

resol ve_initial _references ("CRBPolicyManager") returns the
ORB's PolicyManager. Both server- and client-side policies can be
applied at the ORB level.

resolve initial references ("PolicyQurrent") returns a thread’s
PolicyCurrent. Only client-side policies can be applied to a thread.

The CORBA module contains the following interface definitions and related
definitions to manage ORB and thread policies:

nmodul e CCRBA {

/...
enum Set Overri deType
{
SET_OVERR DE,
ADD OVERR DE
h
exception InvalidPolicies
{
sequence<unsi gned short> i ndi ces;
h

167

CHAPTER 7 | Using Policies

168

interface PolicyManager {
Pol i cyLi st
get_policy overrides(in PolicyTypeSeq ts);

voi d
set_policy_overrides(

in PolicyList policies,

in SetOverrideType set_add
) raises (InvalidPolicies);

}

interface PolicyQurrent : PolicyManager, CQurrent

{
}s
1.,

set_policy_overrides() overrides policies of the same Pol i cyType that are
set at a higher scope. The operation takes two arguments:
® A PolicyList sequence of Pol i cy object references that specify the
policy overrides.
® An argument of type Set Overri deType:
ADD OVERRI DE adds these policies to the policies already in effect.

SET_OVERR DE removes all previous policy overrides and establishes the
specified policies as the only override policies in effect at the given
Scope.

set _pol i cy_overrides() returns a new proxy that has the specified policies
in effect; the original proxy remains unchanged.

To remove all overrides, supply an empty Pol i cyLi st and SET_OVERR DE as
arguments.

get_policy_overrides() returns a Pol i cyLi st of object-level overrides that
are in effect for the specified Pol i cyTypes. The operation takes a single
argument, a Pol i cyTypeSeq that specifies the Pol i cyTypes to query. If the
Pol i cyTypeSeq argument is empty, the operation returns with all overrides
for the given scope. If no overrides are in effect for the specified

Pol i cyTypes, the operation returns an empty Pol i cyLi st .

Setting Orb and Thread Policies

After get _pol i cy_overrides() returns a Pol i cyLi st, you can iterate
through the individual Pol i cy objects and obtain the actual setting in each
one by narrowing it to the appropriate derivation (see “Getting Policies” on
page 177).

169

CHAPTER 7 | Using Policies

Setting Server-Side Policies

170

Orbix provides a set of default policies that are effective if no policy is
explicitly set in the configuration or programmatically. You can explicitly set
server policies at three scopes, listed in ascending order of precedence:

1. In the configuration, so they apply to all ORBs that are in the scope of
a given policy setting. For a complete list of policies that you can set in
the configuration, refer to the Application Server Platform
Administrator’s Guide.

2. On the server's ORB, so they apply to all POAs that derive from that
ORB's root POA. The ORB has a PolicyManager with operations that
let you access and set policies on the server ORB (see “Setting Orb and
Thread Policies” on page 167).

3. Onindividual POAs, so they apply only to requests that are processed
by that POA. Each POA can have its own set of policies (see “Using
POA Policies” on page 204).

You can set policies in any combination at all scopes. If settings are found

for the same policy type at more than one scope, the policy at the lowest
scope prevails.

Setting Server-Side Policies

Most server-side policies are POA-specific. POA policies are typically
attached to a POA when it is created, by supplying a PolicyList object as an
argument to creat e_PQA() . The following code creates POA per si st ent POA
as a child of the root POA, and attaches a PolicyList to it:

//get an object reference to the root PQA
Chj ect poa_obj =
gl obal _orb.resol ve_initial _references("Root PQA");

PQA root _poa = PQAHel per. narrow(poa_obj) ;

Pol i cy[] policies=new Policy[2];

pol i ci es[0] =r oot _poa. create_lifespan_poli cy(
Li f espanPol i cyVal ue. PERS| STENT) ;

pol i cies[1] =root _poa. create_i d_assi gnment _pol i cy(
| dAssi gnnent Pol i cyVal ue. USER | D) ;

//create a POA for persistent objects

PQA persi stent _poa = root _poa. creat e POA(" per si st ent PQA",
poa_nanager ,
policies);

In general, you use different sets of policies in order to differentiate among
various POAs within the same server process, where each POA is defined in
a way that best accommodates the needs of the objects that it processes.
So, a server process that contains the POA per si st ent POA might also
contain a POA that supports only transient object references, and only
handles requests for callback objects.

For more information about using POA policies, see page 204.

171

CHAPTER 7 | Using Policies

Setting Client Policies

Orbix provides a set of default policies that are effective if no policy is
explicitly set in the configuration or programmatically. Client policies can be
set at four scopes, listed here in ascending order of precedence:

172

1.

In the configuration, so they apply to all ORBs that are in the scope of
a given policy setting. For a complete list of policies that you can set in
the configuration, refer to the Application Server Platform
Administrator’s Guide.

On the client’'s ORB, so they apply to all invocations. The ORB has a
PolicyManager with operations that let you access and set policies on
the client ORB (see “Setting Orb and Thread Policies” on page 167).

On a given thread, so they apply only to invocations on that thread.
Each client thread has a PolicyCurrent with operations that let you
access and set policies on that thread (see page 167).

On individual object references, so they apply only to invocations on
those objects. Each object reference can have its own set of policies;
the Object interface provides operations that let you access and set an
object reference’s quality of service policies (see “Managing Object
Reference Policies” on page 174).

Setting Client Policies

Setting Policies at Different Scopes

You can set policies in any combination at all scopes. If settings are found

for the same policy type at more than one scope, the policy at the lowest

scope prevails.

For example, the SyncScope policy type determines how quickly a client

resumes processing after sending one-way requests. The default SyncScope

policy is SYNC_NONE: Orbix clients resume processing immediately after

sending one-way requests.

You can set this policy differently on the client’'s ORB, threads, and

individual object references. For example, you might leave the default

SyncScope policy unchanged at the ORB scope, set a thread to

SYNC W TH_SERVER; and set certain objects within that thread to

SYNC W TH_TARGET. Given these quality of service settings, the client blocks

on one-way invocations as follows:

® Qutside the thread, the client never blocks.

® Within the thread, the client always blocks until it knows whether the
invocations reached the server.

® For all objects within the thread that have SYNC W TH_TARGET policies,
the client blocks until the request is fully processed.

173

CHAPTER 7 | Using Policies

Managing Object Reference Policies

The CCORBA : vj ect interface contains the following operations to manage
object policies:

interface ject {
/...
Pol i cy
get_client_policy(in PolicyType type);

Pol i cy
get_policy(in PolicyType type);

Pol i cyLi st
get _policy_overrides(in PolicyTypeSeq ts);

oj ect
set _policy_overrides(

in PolicyList policies,

in SetOverrideType set_add
) raises (InvalidPolicies);

bool ean
val i dat e_connecti on(out PolicyLi st inconsistent_policies);

Note: These operations will be supported in the future IDL-to-Java
mapping. In the interim, Orbix supports these operations with helper class
com i ona. corba. util . Chbj ect Hel per.

get_client_policy() returns the policy override that is in effect for the
specified Pol i cyType. This method obtains the effective policy override by
checking each scope until it finds a policy setting: first at object scope, then
thread scope, and finally ORB scope. If no override is set at any scope, the
system default is returned.

get_policy() returns the object’s effective policy for the specified

Pol i cyType. The effective policy is the intersection of values allowed by the
object’s effective override —as returned by get _cli ent _pol i cy() —and the
policy that is set in the object’s IOR. If the intersection is empty, the method

174

Setting Client Policies

raises exception I N\V_PQLI CY. Otherwise, it returns a policy whose value is
legally within the intersection. If the IOR has no policy set for the
Pol i cyType, the method returns the object-level override.

get_policy_overrides() returns a Pol i cyLi st of overrides that are in effect
for the specified Pol i cyTypes. The operation takes a single argument, a
Pol i cyTypeSeq that specifies the Pol i cyTypes to query. If the

Pol i cyTypeSeq argument is empty, the operation returns with all overrides
for the given scope. If no overrides are in effect for the specified

Pol i cyTypes, the operation returns an empty Pol i cyLi st.

After get _policy_overrides() returns a Pol i cyLi st, you can iterate
through the individual Pol i cy objects and obtain the actual setting in each
one by narrowing it to the appropriate derivation (see “Getting Policies” on
page 177).

set_policy_overrides() overrides policies of the same Pol i cyType that are
set at a higher scope, and applies them to the new object reference that it
returns. The operation takes two arguments:
® A PolicyList sequence of Pol i cy object references that specify the
policy overrides.
® An argument of type Set Overri deType:
¢+ ADD OVERRI [E adds these policies to the policies already in effect.
. SET_OVERRI DE removes all previous policy overrides and
establishes the specified policies as the only override policies in
effect at the given scope.

To remove all overrides, supply an empty Pol i cyLi st and SET_OVERR DE as
arguments.

validate_connection() returns true if the object’s effective policies allow

invocations on that object. This method forces rebinding if one of these

conditions is true:

® The object reference is not yet bound.

® The object reference is bound but the current policy overrides have
changed since the last binding occurred; or the binding is invalid for
some other reason.

175

CHAPTER 7 | Using Policies

176

The method returns false if the object’s effective policies cause invocations
to raise the exception I N\v_PCLI Cv. If the current effective policies are
incompatible, the output parameter i nconsi st ent _pol i ci es returns with a
Pol i cyLi st of those policies that are at fault.

If binding fails for a reason that is unrelated to policies,
val i dat e_connecti ons() raises the appropriate system exception.

A client typically calls val i dat e_connect i ons() when its Rebi ndPol i cy is
set to NO REBI ND.

Getting Policies

Getting Policies

As shown earlier, CORBA: : Pol i cyManager , OCRBA: : Pol i cyQurrent , and
QORBA: : (nj ect each provide operations that allow programmatic access to
the effective policies for an ORB, thread, and object. Accessor operations
obtain a Pol i cyLi st for the given scope. After you get a Pol i cyLi st, you
can iterate over its Pol i cy objects. Each Pol i cy object has an accessor
method that identifies its Pol i cyType. You can then use the Pol i cy object’s
Pol i cyType to narrow to the appropriate type-specific Pol i cy derivation—
for example, a SyncScopePol i cy object. Each derived object provides its
own accessor method that obtains the policy in effect for that scope.

The Messaging module provides these Pol i cyType definitions:

nmodul e Messagi ng

{
/] Messaging Quality of Service

typedef short Rebi nd\bde;

const Rebi ndMbde TRANSPARENT = 0;
const Rebi ndMbde NO REBIND = 1;
const Rebi ndMbde NO RECONNECT = 2;

typedef short SyncScope;

const SyncScope SYNC NONE = 0;
const SyncScope SYNC W TH TRANSPCRT = 1,
const SyncScope SYNC W TH _SERVER
const SyncScope SYNC W TH TARCET =

2;
3;

/1] PolicyType constants

const CCRBA: : Pol i cyType REBI ND PQLI CY_TYPE
const CCRBA: : Pol i cyType SYNC SCCPE PQLI CY_TYPE

23;
24;

/1 Local | y-Constrai ned Policy (bjects

/] Rebind Policy (default = TRANSPARENT)
readonly attribute Rebi ndMbde rebi nd_node;

}s

177

CHAPTER 7 | Using Policies

interface RebindPolicy : OCORBA :Policy {
/1 Synchroni zation Policy (default = SYNC W TH TRANSPCRT)

interface SyncScopePolicy : OCRBA :Policy {
readonly attribute SyncScope synchroni zati on;
I8
}
For example, the following code gets the ORB’s SyncScope policy:
inport org.ong. Messagi ng. *;

/...
I/ get reference to PolicyManager

org. ong. CORBA. (bj ect obj ect ;
object = orb.resol ve_initial_references("ORBPol i cyManager");

/1 narrow
or g. ong. CORBA. Pol i cyManager policy ngr =
or g. omg. CCRBA. Pol i cyManager Hel per . nar r ow(obj ect) ;

// set SyncScope policy at CRB scope (not shown)
/...

I/ get SyncScope policy at CRB scope

org. ong. CORBA. Pol i cy[] types = new org. ong. CCRBA Pol i cy[1] ;
types[0] = SYNC SCCPE PCLI CY_TYPE;

I/ get PolicyList fromCRB s Pol i cyManager
org. ong. CORBA. Pol i cy[] pList =
pol icy_ngr.get _policy_overrides(types);

// evaluate first Policy in PolicyList
org. ong. Messagi ng. SyncScopePol i cy sync_p =
or g. omg. Messagi ng. SyncScopePol i cyHel per. narrow pList[0]);

org. ong. Messagi ng. SyncScope sync_policy =
sync_p. synchroni zation();

System out . printl n(
"Ef fective SyncScope policy at CRB level is " + sync_policy;

178

Server tasks

In this chapter

CHAPTER 8

Developing a
Server

This chapter explains how to develop a server that implements
servants for CORBA objects.

A CORBA server performs these tasks:

® Uses a POA to map CORBA objects to servants, and to process client
requests on those objects.

® Implements CORBA objects as POA servants.

® Creates and exports object references for these servants.

® Initializes and shuts down the runtime ORB.

® Passes parameters to server-side operations.

For an overview of server code requirements, see “Enhancing Server

Functionality” on page 71. Although throwing exceptions is an important
aspect of server programming, it is covered separately in Chapter 12.

For information on ORB initialization and shutdown, see “ORB Initialization
and Shutdown” on page 157.

This chapter contains the following sections:

POAs, Skeletons, and Servants

Mapping Interfaces to Skeleton Classes

179

CHAPTER 8 | Developing a Server

180

Creating a Servant Class

Activating CORBA Objects

Handling Output Parameters

Delegating Servant Implementations

Explicit Event Handling

POAs, Skeletons, and Servants

POAs, Skeletons, and Servants

CORBA objects exist in server applications. Objects are implemented, or
incarnated, by language-specific servants. Objects and their servants are
connected by the portable object adapter (POA). The POA provides the
server-side runtime support that connects server application code to the
networking layer of the ORB.

POA tasks A POA has these responsibilities:
® Create and destroy object references.
® Convert client requests into appropriate calls to application code.
® Synchronize access to objects.
® Cleanly start up and shut down applications.

For detailed information about the POA, see Chapter 8.

POA skeleton class For each IDL interface, the IDL compiler generates a an abstract POA
skeleton class that you compile into the server application. Skeleton classes
are abstract classes. You implement skeleton classes in the server
application code with servant classes, which define the behavior of the
methods that they inherit. Through a servant’s inherited connection to a
skeleton class, ORB runtime connects that servant back to the CORBA
object that it incarnates.

TIE class The IDL compiler also generates a TIE class, which lets you implement
CORBA objects with classes that are unrelated (by inheritance) to skeleton
classes. Given Java's restriction on multiple inheritance, TIE class
implementations are especially useful for objects that inherit from multiple
IDL interfaces. For more information, see “Delegating Servant
Implementations” on page 190.

Server request handling Figure 16 shows how a CORBA server handles an incoming client request,
and the stages by which it dispatches that request to the appropriate
servant. The server's ORB runtime directs an incoming request to the POA
where the object was created. Depending on the POA’s state, the request is

181

CHAPTER 8 | Developing a Server

either processed or blocked. A POA manager can block requests by rejecting
them outright and raising an exception in the client, or by queueing them for
later processing.

/ Server \
Request|

Servants
N

ORB

|
3
A

-

Figure 16: The server-side ORB conveys client requests to the POA via its
manager, and the POA dispatches the request to the appropriate servant.

182

Mapping Interfaces to Skeleton Classes

Mapping Interfaces to Skeleton Classes

When the ORB receives a request on a CORBA object, the POA maps that
request to an instance of the corresponding servant class and invokes the
appropriate method.

For example, interface Account is defined as follows:

nmodul e BankDeno

{
typedef float CashAnount; // type represents cash
typedef string Accountld; // Type represents account |Ds
...
i nterface Account

{

exception I nsufficientFunds {};

readonly attribute Accountld account _id;
readonly attribute CashAmount bal ance;

voi d
w t hdraw(i n CashAmount anount)
rai ses (InsufficientFunds);

voi d
deposi t(in CashAnount anount);
ik

The IDL compiler maps the Account interface to the abstract skeleton class
Account POA:

package BankDeno;

abstract public class Account POA
ext ends org. ong. Port abl eSer ver. Ser vant
i npl ement s org. ong. CORBA. port abl e. | nvokeHand! er,
Account Qperations {
/...

Ik

The following points are worth noting about the skeleton class:

® Account PQA inherits from or g. ony. Port abl eSer ver . Servant . All
skeleton classes inherit from the Servant class for two reasons:

183

CHAPTER 8 | Developing a Server

184

¢+ Servant provides functionality that is common to all servants.

. Servants can be passed generically—you can pass a servant for
any type of object as a pointer or reference to Servant .

The skeleton class defines methods that correspond to the interface

operations and attributes.

Because a skeleton class is defined as abstract, you cannot instantiate

it. Instead, you must define a concrete servant subclass that

implements the skeleton class methods.

Both the skeleton class and the client stub class implement the same

abstract methods that are defined in interface Account Qper at i ons.

Identical signatures preserve location transparency. If the server and
client are collocated, the proxy can delegate calls directly to the
skeleton without translating or copying data. It also simplifies client
and server application development in that one set of parameter
passing rules apply to both.

Creating a Servant Class

Creating a Servant Class

Each servant class inherits from a skeleton class. The following code defines
servant class Account I npl , which extends skeleton class Account POA.
Unlike the skeleton class, the Account I npl class is not abstract, so the
server can instantiate Account I npl as a servant.

package BankDeno;

i nport org.ong. CCRBA *;

i nport org. ong. CORBA port abl e. *;
inmport java.io.*;

i mport BankDeno. Account Package. *;
i mport BankDeno. *;

publ ic class Account!npl extends Account PQA {

publ i c Account | npl (java.lang. String account_id,
Account Dat abase account _db)

{

m account _db = account _db;

m account _id = account _i d;

m bal ance = m account_db. read_account (m account _i d) ;
}

protected void finalize() {
m account _db. wite_account (maccount _i d, mbal ance);

}

protected void save all () {
m account _db. wi te_account (m account _id, mbal ance);

}

public void w thdraw(fl oat anount) throws |nsufficientFunds {
if (amount > mbal ance) {
t hrow new | nsuf fi ci ent Funds() ;

}

m bal ance -= anount;

185

CHAPTER 8 | Developing a Server

186

public void deposit(float amount) {
m bal ance += anount ;

}

public String account _id() {
return maccount id;

}

public float bal ance() {
return mbal ance;

}

private String maccount_id;
private float m bal ance;
private Account Dat abase m account _db;

Note: The choice of name for servant classes is purely a matter of
convention. The examples here and elsewhere apply the | npl suffix to the
original interface name, as in Account I npl . It is always good practice to
have a naming convention and use it consistently in your code.

Activating CORBA Objects

Activating CORBA Objects

this()

servant_to_reference()

In order to enable clients to invoke on CORBA operations, a server must
create and export object references. These object references must point back
to a CORBA object that is active through its incarnation by a C++ or Java
servant.

Activation of a CORBA object is a two-step process:

1. Instantiate the CORBA object’s servant. Instantiating a servant does
not by itself activate the CORBA object. The ORB runtime remains
unaware of the existence of the servant and the corresponding CORBA
object.

2. Register the servant and the object’s ID in a POA.

The simplest way to activate a CORBA object is by calling _t hi s() on the

servant. The IDL compiler generates a _t hi s() method for each servant

skeleton class. _t hi s() performs two separate tasks:

® Checks the POA to determine whether the servant is registered with an
existing object. If not, _this() creates an object from the servant’s
interface, registers a unique ID for this object in the POA’s active object
map, and maps this object ID to the servant’s address.

® Generates and returns an object reference that includes the object’s ID
and POA identifier.

In other words, the object is implicitly activated in order to return an object
reference.

You can also implicitly activate an object by calling

servant _to_reference() on the desired POA. This requires you to narrow
to the appropriate object; however, there can be no ambiguity concerning
the POA in which the object is active, as can happen through using _t hi s()
(see page 216).

187

CHAPTER 8 | Developing a Server

Explicit activation methods

188

Alternatively, you can explicitly activate a CORBA object: call

activate_obj ect () or activate_object_w th_id() onthe POA. You can
then obtain an object reference by calling _t hi s() on the servant. Because
the servant is already registered in the POA with an object ID, the method
simply returns an object reference.

The ability to activate an object implicitly or explicitly depends on a POA’s
activation policy. For more information on this topic, see “Using POA
Policies” on page 204.

Note: The object reference returned by _t hi s() is independent of the
servant itself; you must eventually call rel ease() on the object. Releasing
the object reference has no effect on the corresponding servant.

Handling Output Parameters

Handling Output Parameters

Server-side rules Server-side rules for passing output (i n/i nout) parameters to the client
complement client-side rules. For example, the following IDL defines
operation creat e_account () with two out parameters:

nmodul e BankDeno {
/1l

/] Forward decl arati on of Account
i nterface Account;

interface Bank {
voi d creat e_account (
(in string nane, out Account acct, out string acc_id)

/1l
}
/1
}
Implementation example The servant that implements this operation must use holder classes for the

two out parameters:

/1l in servant class Bankl npl
public void create_account(java.lang.String name,
Account Hol der acct, StringHolder acc_id) {

Account | npl new acct =
new Account | npl (account _id, account_db);

/] set Account Hol der val ue to Account object reference
acct.val ue = _thi s(new acct);
/1l

}

For more information about holder classes, see “Passing Parameters in
Client Invocations” on page 251.

189

CHAPTER 8 | Developing a Server

Delegating Servant Implementations

Previous examples show how Orbix uses inheritance to associate servant
classes and their implementations with IDL interfaces. By inheriting from
IDL-derived skeleton classes, servants establish their connection to the
corresponding IDL interfaces, and thereby make themselves available to
client requests.

Alternatively, you can explicitly associate, or tie a servant and its operations
to the appropriate IDL interface through tie classes. The tie approach lets
you implement CORBA objects with classes that are unrelated (by
inheritance) to skeleton classes.

The TIE approach is especially useful when implementing CORBA objects
whose IDL definitions inherit from multiple interfaces. Given Java
single-inheritance restrictions on classes, a servant class that inherits from
an abstract POA skeleton class cannot inherit from any other class.
Therefore, it must implement all the methods that the skeleton class
defines; it cannot reuse methods from other classes. By contrast, a tie
servant is free to inherit from any class.

Creating tie-based servants Tie-based servants rely on two components:

® Atie object implements the CORBA object; however, unlike the
inherited approach, the class that it instantiates does not inherit from
any of the IDL-generated base skeleton classes.

® Atie servant instantiates a tie class, which the IDL compiler generates
when you run it with the - xTI E switch. The POA regards a tie servant
as the actual servant of an object. Thus, all POA operations on a
servant such as acti vat e_obj ect () take the tie servant as an
argument. The tie servant receives client invocations and forwards
them to the tie object.

To create a tie servant and associate it with a tie object:

1 Instantiate the tie object

2 Create the tie object through the tie class constructor:

tie-servant = tie-constructor(tied-object, poa);

190

Example

Removing tie objects and servants

Delegating Servant Implementations

For example, given an IDL specification that includes interface
BankDeno: : Bank, the IDL compiler can generate tie class

BankDeno. BankPQATi e. This class supplies a number of operations that
enable its tie servant to control the tie object.

Given implementation class Bankl npl , you can instantiate a tie object and
create tie servant bank_srv_ti e for it as follows:

/Il instantiate tie object and create its tie servant
Bankl npl tie_obj ect = new Bankl npl ();
BankDeno. BankPQATi e bank_srv_tie =

new BankDero. BankPQATi e(ti e_obj ect, the_poa);

Given this tie servant, you can use it to create an object reference:

//create an object reference for bank servant
Bank bankref = bank_srv_tie._this();

When the POA receives client invocations on the bankref object, it relays
them to tie servant bank_srv_ti e, which delegates them to the bank tie
object for processing.

You remove a tie servant from memory like any other servant—for example,
with or g. ong. Port abl eSer ver. POA deact i vat e_obj ect () . If the tie
servant’s tie object implements only a single object, the tie object is also
removed.

191

CHAPTER 8 | Developing a Server

Explicit Event Handling

192

When you call GRB: : run(), the ORB gets the thread of control to dispatch

events. This is acceptable for a server that only processes CORBA requests.

However, if your process must also support a GUI or uses another

networking stack, you also must be able to monitor incoming events that are

not CORBA client requests.

The CRB interface methods wor k_pendi ng() and per f or m wor k() let you poll

the ORB's event loop for incoming requests:

® work_pending() returns true if the ORB’s event loop has at least one
request ready to process.

® performwork() processes one or more requests before it completes
and returns the thread of control to the application code. The amount
of work processed by this call depends on the threading policies and
the number of queued requests; however, per f or m wor k() guarantees
to return periodically so you can handle events from other sources.

In this chapter

CHAPTER 9

Managing Server
Objects

A portable object adapter, or POA, maps CORBA objects to
language-specific implementations, or servants, in a server
process. All interaction with server objects takes place via the
POA.

A POA identifies objects through their object IDs, which are encapsulated
within the object requests that it receives. Orbix views an object as active
when its object ID is mapped to a servant; the servant is viewed as
incarnating that object. By abstracting an object’s identity from its
implementation, a POA enables a server to be portable among different
implementations.

This chapter shows how to create and manage a POA within a server
process, covering the following topics:

Mapping Objects to Servants page 195
Creating a POA page 197
Using POA Policies page 204
Explicit Object Activation page 215
Implicit Object Activation page 216

193

CHAPTER 9 | Managing Server Objects

Managing Request Flow page 220
Work Queues page 222
Controlling POA Proxification page 232

194

Mapping Objects to Servants

Mapping Objects to Servants

Figure 17 shows how a POA manages the relationship between CORBA
objects and servants, within the context of a client request. A client
references an object or invokes a request on it through an interoperable
object reference (/OR). This IOR encapsulates the information required to
find the object, including its server address, POA, and object ID—in this
case, A. On receiving the request, the POA uses the object’s ID to find its
servant. It then dispatches the requested operation to the servant via the
server skeleton code, which extracts the operation’s parameters and passes
the operation as a language-specific call to the servant.

M —————_ Skeleton

POA
/ —
Object IDs encapsulated /§ Q
within IORs Servant
— -@
Client request Object ID Servant
Server

Figure 17: A portable object adapter (POA) maps abstract objects to their
concrete implementations (servants)

195

CHAPTER 9 | Managing Server Objects

Mapping options

196

Depending on a POA’s policies, a servant can be allowed to incarnate only
one object; or it can incarnate multiple objects. During an object’s lifetime,
it can be activated multiple times by successive servant incarnations.

A POA can map between objects and servants in several ways:

An active object map retains object-servant mappings throughout the
lifetime of its POA, or until an object is explicitly deactivated. Before a
POA is activated, it can anticipate incoming requests by mapping
known objects to servants, and thus facilitate request processing.

A servant manager maps objects to servants on demand, either on the
initial object request, or on every request. Servant managers can
enhance control over servant instantiation, and help avoid or reduce
the overhead incurred by a static object-servant mapping.

A single default servant can be used to handle all object requests. A
POA that uses a default servant incurs the same overhead no matter
how many objects it processes.

Depending on its policies, a POA can use just one object-mapping method,
or several methods in combination. For more information, see “Enabling the
Active Object Map” on page 205.

Creating a POA

Creating a POA

All server processes in a location domain use the same root POA, which you
obtain by calling resol ve_initial _references("PQA'). The root POA has
predefined policies which cannot be changed (see page 203). Within each
server process, the root POA can spawn one or more child POAs. Each child
POA provides a unique namespace; and each can have its own set of
policies, which determine how the POA implements and manages
object-servant mapping. Further, each POA can have its own POA manager
and servant manager.

Using multiple POAs

A number of objectives can justify the use of multiple POAs within the same
server. These include:

Partition the server into logical or functional groups of servants. You
can associate each group with a POA whose policies conform with the
group’s requirements. For example, a server that manages Customer
and Account servants can provide a different POA for each set of
servants.

You can also group servants according to common processing
requirements. For example, a POA can be configured to generate
object references that are valid only during the lifespan of that POA, or
across all instantiations of that POA and its server. POAs thus offer
built-in support for differentiating between persistent and transient
objects.

Independently control request processing for sets of objects. A POA
manager’s state determines whether a POA is active or inactive; it also
determines whether an active POA accepts incoming requests for
processing, or defers them to a queue (see “Processing Object
Requests” on page 206). By associating POAs with different
managers, you can gain finer control over object request flow.

Choose the method of object-servant binding that best serves a given
POA. For example, a POA that processes many objects can map all of
them to the same default servant, incurring the same overhead no
matter how many objects it processes.

197

CHAPTER 9 | Managing Server Objects

Procedure for creating a POA Creating a POA consists of these steps:
1. Set the POA policies.

Before you create a POA, establish its desired behavior through a
CORBA PolicyList, which you attach to the new POA on its creation.
Any policies that are explicitly set override a new POA’s default policies
(refer to Table 9 on page 200).
Create the POA by calling creat e_PQOA() on an existing POA.
If the POA has a policy of USE_SERVANT_NANAGER, register its servant
manager by calling set _servant _manager () on the POA.

4. Enable the POA to receive client requests by calling acti vate() on its
POA manager.

198

Creating a POA

Setting POA Policies

Creating Policy objects

A new POA’s policies are set when it is created. You can explicitly set a
POA's policies through a CORBA PolicyList object, which is a sequence of
Policy objects.

Java applications represent a PolicyList object as an array of Policy objects.

The Port abl eServer : : PQA interface provides factories to create CORBA
Policy object types (see Table 9 on page 200). If a Policy object type is
proprietary to Orbix, you must create the Policy object by calling
create_policy() on the ORB (see “Setting proprietary policies for a POA”
on page 201). In all cases, you attach the PolicyList object to the new POA.
All policies that are not explicitly set in the PolicyList are set to their
defaults.

For example, the following code creates policy objects of PERSI STENT and
USER | Dx

i mport org. ong. CORBA*. ;
i nport org. ony. Port abl eServer. *;

Policy[] policies = new Policy[2];

pol i cies[0] =root _poa.create_|ifespan_policy(
Li f espanPol i cyVal ue. PERSI STENT) ;

pol i ci es[1] =r oot _poa. create_i d_assi gnnent _pol i cy(
| dAssi gnnent Pol i cyVal ue. USER | D) ;

With the PERSI STENT policy, a POA can create object references that remain
valid across successive instantiations of this POA and its server process. The

USER | D policy requires the application to autoassign all object IDs for a
POA.

199

CHAPTER 9 | Managing Server Objects

Attaching policies to a POA

POA Policy factories

After you create a PolicyList object, you attach it to a new POA by supplying
it as an argument to create_PQA() . The following code creates POA

per si st ent PQA as a child of the root POA, and attaches to it the PolicyList
object just shown:

//get an object reference to the root PQA
(bj ect poa_obj =
gl obal _orb. resol ve_initial _references("Root POA");

PQA root _poa =
PQAHel per . nar r ow(poa_obj) ;

Pol i cy[] policies=new Policy[2];

pol i ci es[0] =r oot _poa. create_| i f espan_pol i cy(
Li f espanPol i cyVal ue. PERSI STENT) ;

pol i ci es[1] =r oot _poa. creat e_i d_assi gnment _pol i cy(
| dAssi gnnent Pol i cyVal ue. USER | D) ;

//create a POA for persistent objects

PQA persi stent _poa = root _poa. creat e_POA(" per si st ent PQA",
poa_nanager ,
policies);

In general, POA policies let you differentiate among various POAs within the
same server process, where each POA is defined in a way that best
accommodates the needs of the objects that it processes. For example, a
server process that contains the POA per si st ent POA might also contain a
POA that supports only transient object references, and only handles
requests for callback objects.

The Port abl eSer ver : : PQA interface contains factory methods for creating
CORBA Policy objects:

Table 9: POA policy factories and argument options

POA policy factories Policy options
create_id_assi gnment _policy() SYSTEM | D (default)
USER | D
create_i d_uni queness_pol i cy() UNl QUE_I D (default)
MULTI PLE_ID

200

Creating a POA

Table 9: POA policy factories and argument options

POA policy factories Policy options
create_inplicit_activation_policy() NO | MPLI O T_ACTI VATI ON (default)
I MPLI O T_ACTI VATI ON
create_|ifespan_policy() TRANSI ENT (default)
PERSI STENT
creat e_request _processi ng_pol i cy() USE_ACTI VE_CBJECT _MAP_QNLY (default)

USE_DEFAULT_SERVANT
USE_SERVANT MANAGER

create_servant_retention_policy() RETAI N (default)

NCN_RETAI N

create_thread_policy()

CRB_CTRL_MXEL (default)
SI NGLE_THREAD MODEL

Setting proprietary policies for a
POA

For specific information about these methods, refer to their descriptions in
the CORBA Programmer’s Reference.

Orbix provides several proprietary policies to control POA behavior. To set
these policies, call create_pol i cy() on the ORB to create Policy objects
with the desired policy value, and add these objects to the POA’s PolicyList.

For example, Orbix provides policies that determine how a POA handles
incoming requests for any object as it undergoes deactivation. You can
specify a DI SCARD policy for a POA so it discards all incoming requests for
deactivating objects:

inport comiona. corba. *;

org. ong. CORBA. Pol i cy[] policies = new org. omg. CCRBA Pol i cy[1] ;
or g. ong. QORBA. Any obj _deacti vation_policy_val ue =

gl obal _orb. create_any();
bj ect Deact i vati onPol i cyVal ueHel per. i nsert (

obj _deactivati on_pol i cy_val ue,

(bj ect Deact i vat i onPol i cyVal ue. Dl SCARD) ;

policies[0] = global _orb.create_policy(

(OBJECT_DEACTI VATI ON_PQLI CY_I D. val ue,
obj _deactivation_policy value);

201

CHAPTER 9 | Managing Server Objects

Orbix-proprietary policies

202

You can attach the following Orbix-proprietary Policy objects to a POA’s
Pol i cyLi st:

ObjectDeactivationPolicy controls how the POA handles requests that are
directed at deactivating objects. This policy is valid only for a POA that uses
a servant activator to control object activation. For more information, see
“Setting deactivation policies” on page 281.

PersistenceModePolicy can specify a policy of DI RECT_PERS| STENCE, so that
the POA uses a well-known address in the I0Rs that it generates for

persistent objects. This policy is valid only for a POA that has a PERSI STENT
lifespan policy. For more information, see “Direct persistence” on page 208.

WellKnownAddressingPolicy sets transport configuration data—for
example, address information for persistent objects that use a well-known
address, or IIOP buffer sizes. For more information, see “Direct persistence”
on page 208.

DispatchWorkQueuePolicy specifies the work queue used to process
requests for a POA whose threading policy is set to CRB_CTRL_MDEL. All
requests for the POA are dispatched in a thread controlled by the specified
work queue. For more information, see “Work Queues” on page 222.

WorkQueuePolicy specifies the work queue used by network transports to
read requests for the POA. For more information, see “Work Queues” on
page 222.

InterdictionPolicy disables the proxification of the POA when using the lona
firewall proxy service. A POA with this policy set to Dl SABLE will never be
proxified. For more information, see “Controlling POA Proxification” on
page 232.

Creating a POA

Root POA Policies

The root POA has the following policy settings, which cannot be changed:

Policy Default setting
Id Assignment SYSTEM | D
Id Uniqueness UINQE ID
Implicit Activation | MPLI O T_ACTI VATI ON
Lifespan TRANSI ENT
Request Processing USE_ACTI VE_CBJECT _MAP_ONLY
Servant Retention RETAIN
Thread CRB_CTRL_MIDEL

203

CHAPTER 9 | Managing Server Objects

Using POA Policies

Overview A POA’s policies play an important role in determining how the POA
implements and manages objects and processes client requests. While the
root POA has a set of predefined policies that cannot be changed, any POA
that you create can have its policies explicitly set.

In this section The following sections describe POA policies and setting options:
Enabling the Active Object Map page 205
Processing Object Requests page 206
Setting Object Lifespan page 208
Assigning Object IDs page 211
Activating Objects with Dedicated Servants page 212
Activating Objects page 213
Setting Threading Support page 214

204

Using POA Policies

Enabling the Active Object Map

Servant manager and servant
retention policy

A POA's servant retention policy determines whether it uses an active object
map to maintain servant-object associations. Depending on its request
processing policy (see page 206), a POA can rely exclusively on an active
object map to map object IDs to servants, or it can use an active object map
together with a servant manager and/or default servant. A POA that lacks an
active object map must use either a servant manager or a default servant to
map between objects and servants.

You specify a POA’s servant retention policy by calling
creat e_servant _retention_policy() with one of these arguments:

RETAIN: The POA retains active servants in its active object map.

NON_RETAIN: The POA has no active object map. For each request, the
POA relies on the servant manager or default servant to map between an
object and its servant; all mapping information is destroyed when request
processing returns. Thus, a NON_RETAI N policy also requires that the POA
have a request processing policy of USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER (see “Processing Object Requests” on page 206).

If a POA has a policy of USE_SERVANT_MANAGER, its servant retention policy
determines whether it uses a servant activator or servant locator as its
servant manager. A RETAI N policy requires the use of a servant activator; a
NON_RETAI N policy requires the use of a servant locator. For more
information about servant managers, see Chapter 11.

205

CHAPTER 9 | Managing Server Objects

Processing Object Requests

206

A POA's request processing policy determines how it locates a servant for

object requests. Four options are available:

® Maintain a permanent map, or active object map, between object IDs
and servants and rely exclusively on that map to process all object
requests.

® Activate servants on demand for object requests.

® Locate a servant for each new object request.

® Map object requests to a single default servant.

For example, if the application processes many lightweight requests for the
same object type, the server should probably have a POA that maps all
these requests to the same default servant. At the same time, another POA
in the same server might be dedicated to a few objects that each use
different servants. In this case, requests can probably be processed more
efficiently if the POA is enabled for permanent object-servant mapping.

You set a POA’s request processing policy by calling
create_request _processing_pol i cy() and supplying one of these
arguments:

® USE _ACTIVE_OBJECT _MAP_ONLY

® USE _SERVANT_MANAGER

® USE DEFAULT_SERVANT

USE_ACTIVE_OBJECT_MAP_ONLY: All object IDs must be mapped to a
servant in the active object map; otherwise, Orbix returns an exception of
CBJECT_NOT_EXI ST to the client.

During POA initialization and anytime thereafter, the active object map is
populated with all object-servant mappings that are required during the
POA's lifetime. The active object map maintains object-servant mappings
until the POA shuts down, or an object is explicitly deactivated through
deacti vat e_obj ect ().

Typically, a POA can rely exclusively on an active object map when it
processes requests for a small number of objects.

This policy requires POA to have a servant retention policy of RETAI N. (see
“Enabling the Active Object Map” on page 205).

Using POA Policies

USE_SERVANT_MANAGER: The POA'’s servant manager finds a servant for

the requested object. Depending on its servant retention policy, the POA can

implement one of two servant manager types, either a servant activator or a

servant locator:

® Aservant activator can be registered with a POA that has a RETAIN
policy. The servant activator incarnates servants for inactive objects on
receiving an initial request for them. The active object map retains
mappings between objects and their servants; it handles all
subsequent requests for this object.

® |f the POA has a policy of NON_RETAI N (the POA has no active object
map), a servant locator must find a servant for an object on each
request; otherwise, an CBJ_ADAPTER exception is returned when clients
invoke requests.

USE_SERVANT_MANAGER requires the application to register a servant manager
with the POA by calling set _ser vant _manager ().

For more information about servant managers, see Chapter 11.

USE_DEFAULT_SERVANT: The POA dispatches requests to the default
servant when it cannot otherwise find a servant for the requested object.
This can occur because the object’s ID is not in the active object map, or the
POA's servant retention policy is set to NON_RETAI N.

Set this policy for a POA that needs to process many objects that are
instantiated from the same class, and thus can be implemented by the same
servant.

This policy requires the application to register the POA’s default servant by
calling set _servant () on the POA; it also requires the POA’s ID uniqueness
policy to be set to MULTI PLE_I D, so multiple objects can use the default
servant.

207

CHAPTER 9 | Managing Server Objects

Setting Object Lifespan

Transient object references

Persistent object references

Direct persistence

208

A POA creates object references through calls to creat e_ref erence() or
create_reference_with_id(). The POA’s lifespan policy determines
whether these object references are persistent—that is, whether they outlive
the process in which they were created. A persistent object reference is one
that a client can successfully reissue over successive instantiations of the
target server and POA.

You specify a POA’s lifespan policy by calling create_| i f espan_pol i cy()
with one of these arguments

TRANSIENT: (default policy) Object references do not outlive the POA in
which they are created. After a transient object’s POA is destroyed,
attempts to use this reference yield the exception

OCRBA: : CBJECT_NOT_EXI ST,

PERSISTENT: Object references can outlive the POA in which they are
created.

When a POA creates an object reference, it encapsulates it within an IOR. If
the POA has a TRANSI ENT policy, the IOR contains the server process’s
current location—its host address and port. Consequently, that object
reference is valid only as long as the server process remains alive. If the
server process dies, the object reference becomes invalid.

If the POA has a PERSI STENT policy, the IOR contains the address of the
location domain’s implementation repository, which maps all servers and
their POAs to their current locations. Given a request for a persistent object,
the location daemon uses the object’s “virtual” address first, and looks up
the server process’s actual location via the implementation repository.

Occasionally, you might want to generate persistent object references that
avoid the overhead of using the location daemon. In this case, Orbix
provides the proprietary policy of DI RECT_PERSI STENCE. A POA with policies
of PERSI STENT and DI RECT_PERS| STENCE generates I0Rs that contain a
well-known address list for the server process.

Using POA Policies

A POA that uses direct persistence must also indicate where the
configuration sets the well-known address list to be embedded in object
references. In order to do this, two requirements apply:

® The configuration must contain a well-known address configuration
variable, with this syntax:

prefix:transport:addr_list=[address-spec [,...]]

® The POA must have a WELL_KNOM_ADDRESSI NG PQLI CY whose value is
set to prefix.

For example, you might create a well-known address configuration variable
in name scope MyConf i gApp as follows:

M/ Confi gApp {
wka: i i op: addr_Iist=["host.com 1075"];
}

Given this configuration, a POA is created in the ORB M/Conf i gApp can have
its PolicyList set so it generates object references that use direct persistence,
as follows:

inport comiona. corba. *;
inmport comiona. | T _CORBA *;
inport comiona.lT_Portabl eServer. *;

/1 Set up | QONA policies

or g. ong. CCRBA. Any per si st ent _node_pol i cy_val ue =
gl obal _orb. create_any();

org. ong. CORBA. Any wel | _known_addr essi ng_pol i cy_val ue =
gl obal _orb. create_any();

Per si st enceMbdePol i cyVal ueHel per. i nsert (
per si st ent _node_pol i cy_val ue,
Per si st enceMbdePol i cyVal ue. Dl RECT_PERS| STENCE) ;
wel | _known_addressi ng_pol i cy_val ue. i nsert_string(
"wka");

209

CHAPTER 9 | Managing Server Objects

Object lifespan and ID assignment

210

org. ong. CORBA. Pol i cy[] policies=new Policy[] {

root _poa.create_|ifespan_policy(
Li f espanPol i cyVal ue. PERSI STENT) ,

root _poa. create_i d_assi gnnent _pol i cy(
| dAssi gnrent Pol i cyVal ue. USER | D),

gl obal _orb. create_poli cy(
PERSI STENCE_MCDE _PCLI CY_I D. val ue,
per si st ence_node_pol i cy_val ue),

gl obal _orb. create_poli cy(
VELL_KNOWN_ADDRESSI NG PQLI CY_I D. val ue,
wel | _known_addr essi ng_pol i cy_val ue),

A POA's lifespan and ID assignment policies have dependencies upon one
another.

TRANSI ENT and SYSTEM | D are the default settings for a new POA, becuase
system-assigned IDs are sufficient for transient object references. The
appication does not need tight control over the POA’s ID becuase the POA’s
object reference is only valid for the POA’s current incarnation.

However, PERSI STENT and USER | D policies are usually set together,
because applications require explicit control over the object IDs of its
persistent object references. When using persistent object references the
POA's name is part of the information used to resolve an object’s IOR. For
this reason, there is a possibility of conflicts when using multiple POA's with
the same name and a lifespan policy of PERSI STENT. This is particularly true
when using indirect persistent IORs.

Using POA Policies

Assigning Object IDs

The ID assignment policy determines whether object IDs are generated by
the POA or the application. Specify the POA’s ID assignment policy by
calling create_i d_assi gnment _pol i cy() with one of these arguments:

SYSTEM_ID: The POA generates and assigns IDs to its objects. Typically, a
POA with a SYSTEM I D policy manages objects that are active for only a
short period of time, and so do not need to outlive their server process. In
this case, the POA also has an object lifespan policy of TRANSI ENT. Note,
however, that system-generated IDs in a persistent POA are unique across
all instantiations of that POA.

USER_ID: The application assigns object IDs to objects in this POA. The
application must ensure that all user-assigned |IDs are unique across all
instantiations of the same POA.

USER | Dis usually assigned to a POA that has an object lifespan policy of
PERSI STENT—that is, it generates object references whose validity can span
multiple instantiations of a POA or server process, so the application
requires explicit control over object IDs.

211

CHAPTER 9 | Managing Server Objects

Activating Objects with Dedicated Servants

A POA’s ID uniqueness policy determines whether it allows a servant to
incarnate more than one object. You specify a POA’s ID uniqueness policy
by calling creat e_i d_uni queness_pol i cy() with one of these arguments:

UNIQUE_ID: Each servant in the POA can be associated with only one
object ID.

MULTIPLE_ID: Any servant in the POA can be associated with multiple
object IDs.

Note: If the same servant is used by different POAs, that servant
conforms to the uniqueness policy of each POA. Thus, it is possible for the
same servant to be associated with multiple objects in one POA, and be
restricted to one object in another.

212

Using POA Policies

Activating Objects

A POA's activation policy determines whether objects are explicitly or
implicitly associated with servants. If a POA is enabled for explicit
activation, you activate an object by calling act i vat e_obj ect () or
activate_object_wi th_id() onthe POA. A POA that supports implicit
activation allows the server application to call the _t hi s() function on a
servant to create an active object (see “Implicit Object Activation” on
page 216).

The activation policy determines whether the POA supports implicit
activation of servants.

Specify the POA’s activation policy by supplying one of these arguments:

NO_IMPLICIT_ACTIVATION: (default) The POA only supports explicit
activation of servants.

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants.
This policy requires that the POA’s object ID assignment policy be set to
SYSTEM | D, and its servant retention policy be set to RETAI N.

For more information, see “Implicit Object Activation” on page 216.

213

CHAPTER 9 | Managing Server Objects

Setting Threading Support

Default work queues

214

Specify the POA’s thread policy by supplying one of these arguments:

ORB_CTRL_MODEL: The ORB is responsible for assigning requests for an
ORB-controlled POA to threads. In a multi-threaded environment,
concurrent requests can be delivered using multiple threads.

SINGLE_THREAD_MODEL: Requests for a single-threaded POA are
processed sequentially. In a multi-threaded environment, all calls by a
single-threaded POA to implementation code (servants and servant
managers) are made in a manner that is safe for code that does not account
for multi-threading.

Multiple single-threaded POAs might need to cooperate to ensure that calls
are safe when they share implementation code such as a servant manager.

Orbix maintains for each ORB two default work queues, one manual and the

other automatic. Depending on its thread policy, a POA that lacks its own

work queue uses one of the default work queues to process requests:

® A POA with a threading policy of SI NGLE THREAD MDEL uses the
manual work queue. To remove requests from the manual work queue,
you must call either GRB: : per f or m wor k() or CRB: : run() within the
main thread.

® A POA with a threading policy of ORB_CTRL_MODEL uses the automatic
work queue. Requests are automatically removed from this work
queue; however, because CRB: : run() blocks until the ORB shuts
down, an application can call this method to detect when shutdown is
complete.

Both threading policies assume that the ORB and the application are using
compatible threading synchronization. All uses of the POA within the server
must conform to its threading policy.

For information about creating a POA workqueue, see page 222.

Explicit Object Activation

Explicit Object Activation

If the POA has an activation policy of NO | MPLI O T_ACTI VATI CN, the server

must call either acti vate_obj ect () or activate_obj ect _with_id() on the

POA to activate objects. Either of these calls registers an object in the POA

with either a user-supplied or system-generated object ID, and maps that

object to the specified servant.

After you explicitly activate an object, you can obtain its object reference in

two ways:

® Use the object’s ID to call i d_to_reference() on the POA where the
object was activated. i d_to_reference() uses the object’s ID to obtain
the information needed to compose an object reference, and returns
that reference to the caller.

® Call _this() on the servant. Because the servant is already registered
in the POA with an object ID, the function composes an object
reference from the available information and returns that reference to
the caller.

215

CHAPTER 9 | Managing Server Objects

Implicit Object Activation

Calling _this()

216

A server activates an object implicitly by calling _t hi s() on the servant
designated to incarnate that object. _t hi s() is valid only if the POA that
maintains these objects has policies of RETAI N, SYSTEM | D, and

I MPLI O T_ACTI VATI Q\; otherwise, it raises a WongPol i cy exception. Thus,
implicit activation is generally a good option for a POA that maintains a
relatively small number of transient objects.

_this() performs two separate tasks:

® Checks the POA to determine whether the servant is registered with an
existing object. If it is not, _t hi s() creates an object from the servant’s
interface, registers a new ID for this object in the POA’s active object
map, and maps this object ID to the servant.

® Generates and returns an object reference.

In other words, the object is implicitly activated in order to return an object
reference.

You can call _thi s() on a servant in two ways:

® Within an operation that is invoked on the servant’s object.
® Qutside an operation.

Implicit Object Activation

Calling _this() Inside an Operation

If called inside an operation, _thi s() returns a reference to the object on
which the operation was invoked. Thus, a servant can always obtain a
reference to the object that it incarnates—for example, in order to register
the object as a callback with another object.

The following interface defines the get _sel f () operation, whose
implementation returns a reference to the same interface:

interface Watever {
What ever get_sel f();

ik
You might implement this operation as follows:

What ever get_sel f() throws org. omg. CORBA Syst enExcept i on
{

}

return _this(); I/l Return reference to self

217

CHAPTER 9 | Managing Server Objects

Calling _this() Outside an Operation

Servant inheritance of
_default_POA() implementation

218

You can activate an object and obtain a reference to it by calling _t his() on
a servant. This object reference must include information that it obtains
from the POA in which the object is registered: the fully qualified POA
name, protocol information, and the object ID that is registered in the POA's
active object map. _t hi s() determines which POA to use by calling
_defaul t_PQA() on the servant.

_defaul t_PQX() is inherited from the Servant Base class:

public cl ass org. onyg. Port abl eServer Servant {
public PQA _default_POA() {}
/...

I

All skeleton classes and the servants that implement them derive from
Servant , and therefore inherit its implementation of _default _PQA(). The
inherited _defaul t _PQA() always returns the root POA. Thus, calling
_this() on a servant that does not override _def aul t _PQA() returns a
transient object reference that points back to the root POA. All invocations
on that object are processed by the root POA.

As seen earlier, an application typically creates its own POAs to manage
objects and client requests. For example, to create and export persistent
object references, you must create a POA with a PERSI STENT lifespan policy
and use it to generate the desired object references. If this is the case, you
must be sure that the servants that incarnate those objects also override
_def aul t _PQA() ; otherwise, calling _t hi s() on those servants returns
transient object references whose mappings to servants are handled by the
root POA.

Note: To avoid ambiguity concerning the POA in which an object is
implicitly activated, call servant _to_reference() on the desired POA
instead of _t hi s(). While using servant _to_reference() requires you to
narrow to the appropriate object, the extra code is worth the extra degree
of clarity that you achieve.

Overriding _default_POA()

Implicit Object Activation

To ensure that _t hi s() uses the right POA to generate object references, an
application’s servants must override the default POA. You can do this three
ways:

Override _default_POA() to throw a system exception. For example,
_defaul t_PQA() can return system exception CORBA : | NTERNAL. This
prevents use of _t hi s() to generate any object references for that servant.

By overriding _def aul t _PQA() to throw an exception, you ensure that
attempts to use _t hi s() yield an immediate error instead of a subtly
incorrect behavior that must be debugged later. Instead, you must create
object references with calls to either creat e_ref erence() or
create_reference_with_id() (see page 292), then explicitly map objects
to servants—for example, through a servant manager, or via the active
object map by calling activate_object_with_id.().

Disabling _def aul t _PQA() also prevents you from calling _t hi s() to obtain
an existing object reference for a servant. To obtain the reference, you must
call servant _to_reference().

Override _default_POA() in each servant to return the correct POA. Calls
to _this() are guaranteed to use the correct POA. This approach also raises
a WongPol i cy exception if the POA that you set for a servant has invalid
policies for implicit activation. such as USER | D.

This approach requires the application to maintain a reference for the
servant’s POA. If all servants use the same POA, you can set the reference in
a global variable or a static private member. However, if a server uses
unique POAs for different groups of servants, each servant must carry the
overhead of an additional (non-static) data member.

Override _default_POA() in a common base class. Servant classes that

need to override _defaul t _PQA() can inherit from a common base class that

contains an override definition. This approach to overriding _def aul t _PQX()

has two advantages:

® You only need to write the overriding definition of _def aul t _PQA()
once.

® If you define a servant class that inherits from multiple servant classes,
you avoid inheriting conflicting definitions of the _defaul t _PQX()
method.

219

CHAPTER 9 | Managing Server Objects

Managing Request Flow

POA manager states

220

Each POA is associated with a POAVanager object that determines whether
the POA can accept and process object requests. When you create a POA,
you specify its manager by supplying it as an argument to create_PQA() .
This manager remains associated with the POA throughout its life span.

create_PQA() can specify either an existing POA manager, or nul | to create
a POaManager object. You can obtain the POaManager object of a given POA
by calling t he_PQaManager () on it. By creating POA managers and using
existing ones, you can group POAs under different managers according to
their request processing needs. Any POA in the POA hierarchy can be
associated with a given manager; the same manager can be used to manage
POAs in different branches.

A POA manager can be in four different states. The PQAManager interface
provides four operations to change the state of a POA manager, as shown in
Table 10.

Table 10: POA manager states and interface operations

State Operation Description
Active activate() Incoming requests are accepted for processing. When
a POA manager is created, it is initially in a holding
state. Until you call act i vate() on a POA’'s manager,
all requests sent to that POA are queued.
Holding hol d_r equest s() All incoming requests are queued. If the queue fills to

capacity, incoming requests are returned with an
exception of TRANSI ENT.

Managing Request Flow

Table 10: POA manager states and interface operations

State

Operation Description

Discarding

di scard_request s() All incoming requests are refused and a system

exception of TRANSI ENT is raised to clients so they can
reissue their requests. A POA manager is typically in
a discarding state when the application detects that
an object or the POA in general cannot keep pace
with incoming requests. A POA manager should be in
a discarding state only temporarily. On resolution of
the problem that required this call, the application
should restore the POA manager to its active state
with activate().

Inactive

deacti vat e() The POA manager is shutting down and destroying all

POAs that are associated with it. Incoming requests
are rejected with the exception CORBA: : CBJ_ADAPTER

Holding state

The POA manager of the root POA is initially in a holding state, as is a new
POA manager. Until you call activate() on a POA’s manager, all requests
sent to that POA are queued. acti vat e() can also reactivate a POA
manager that has reverted to a holding state (due to a hol d_request s()
call) or is in a discarding state (due to a di scard_request s() call).

If a new POA is associated with an existing active POA manager, it is
unnecessary to call acti vat e() . However, it is generally a good idea to put
a POA manager in a holding state before creating a new POA with it.

The queue for a POA manager that is in a holding state has limited capacity,
so this state should be maintained for a short time only. Otherwise, the
queue is liable to fill to capacity with pending requests. When this happens,
all subsequent requests return to the client with a TRANSI ENT exception.

221

CHAPTER 9 | Managing Server Objects

Work Queues

Overview

Interface

222

Orbix provides two proprietary policies, which allow you to associate a
Wr kQueue with a POA and thereby control the flow of incoming requests for
that POA:

DispatchWorkQueuePolicy associates a work queue with an
CRB_CTRL_MXEL POA. All work items for the POA are processed by the work
queue in a thread owned by the work queue.

WorkQueuePolicy associates a work queue with any POA. The specified
work queue will be used by the underlying network transports for reading
requests from the POA.

A work queue has the following interface definition:

/1l 1D
interface WrkQueue

{

readonly attribute |ong max_si ze;
readonly attribute unsigned |ong count;

bool ean enqueue(in Wrkltemwork, in long timeout);
bool ean enqueue_i mredi at e(i n Wr kl t em wor k) ;

bool ean is_full();

bool ean is_enpty();

bool ean activate();

bool ean deactivate();

bool ean owns_current _thread();

voi d flush();

Work Queues

WorkQueue types You can implement your own Wer kQueue interface, or use IONA-supplied
Wr kQueue factories to create one of two Wor kQueue types:

® ManualWorkQueue

®* AutomaticWorkQueue

223

CHAPTER 9 | Managing Server Objects

ManualWorkQueue

Overview

IDL

Creating

How requests are processed

224

A Manual Vor kQueue is a work queue that holds incoming requests until they
are explicitly dequeued. It allows the developer full control over how
requests are processed by the POA.

The interface is defined as follows:

\\ 1D
i nterface Manual Wr kQueue : Wor kQueue

{
bool ean dequeue(out Wrkltemwork, in |ong tineout);

bool ean do_wor k(in |ong nunber_of _jobs, in long tineout);

voi d shut down(i n bool ean process_renai ni ng_j obs);

You create a Manual Wor kQueueFact ory by calling
resolve_initial _references("|T_Manual Wr kQueueFactory"). The
Manual Wor kQueueFact ory has the following interface:

i nterface Manual Wr kQueueFact ory

{
Manual Wr kQueue creat e_work_queue(in | ong max_si ze);

h

create_wor k_queue takes the following argument:

max_size is the maximum number of work items that the queue can hold. If
the queue becomes full, the transport considers the server to be overloaded
and tries to gracefully close down connections to reduce the load.

Applications that use a Manual Vor kQueue must periodically call dequeue()
or do_wor k() to ensure that requests are processed. The developer is in full
control of time between calls and if the events are processed by multiple

Work Queues

threads or in a single thread. If the developer chooses a multithreaded
processing method, they are responsible for ensuring that the code is thread
safe.

A false return value from either do_wor k() or dequeue() indicates that the
timeout for the request has expired or that the queue has shut down.

225

CHAPTER 9 | Managing Server Objects

AutomaticWorkQueue

Overview

IDL

226

An Aut omat i cVr kQueue is a work queue that feeds a thread pool.
Automatic work queues process requests in the same way that the standard
ORB does; however, it does allow the developer to assign a customized
thread pool to a particular POA. Also, the developer can implement several
automatic work queues to process different types of requests at different
priorities.

The interface is defined as follows:

/1 1D
interface Automati cWrkQueue : WrkQueue

{

readonly attribute unsigned |long threads total;
readonly attribute unsigned | ong threads_worki ng;

attribute |ong high water nark;
attribute | ong | ow wat er _mark;

voi d shutdown(in bool ean process_remai ni ng_j obs);

Work Queues

Creating You create an Aut onat i cWor kQueue through the
Aut omat i cWor kQueueFact ory, obtained by calling
resol ve_initial _references("IT_AutonaticWrkQueue"). The
Aut omat i cWr kQueueFact ory has the following interface:

interface Automati cWr kQueueFact ory

{
Aut omat i cWr kQueue cr eat e_wor k_queue(
in long max_si ze,
in unsigned long initial _thread_count,
in long hi gh_wat er _nark,
in long | ow wat er_nark) ;
Aut omat i cWr kQueue creat e_wor k_queue_wi t h_t hr ead_st ack_si ze(
in long max_si ze,
in unsigned long initial _thread _count,
in long hi gh_wat er _nark,
in long | ow wat er _nark,
in long thread_stack_si ze);
b

creat e_wor k_queue() takes these arguments:

max_size is the maximum number of work items that the queue can hold.
To specify an unlimited queue size, supply a value of - 1.

initial_thread_count is the initial number of threads in the thread pool; the
ORB automatically creates and starts these threads when the workqueue is
created.

high_water_mark specifies the maximum number of threads that can be
created to process work queue items. To specify an unlimited number of
threads, supply a value of - 1.

low_water_mark lets the ORB remove idle threads from the thread pool,
down to the value of | ow wat er _mar k. The number of available threads is
never less than this value.

If you wish to have greater control of the size of the work queue’s thread
stack, use create_work_queue_wi th_t hread_st ack() . It adds one
argument, t hread_st ack_si ze, to the end of the argument list. This
argument specifies the size of the workqueues thread stack.

227

CHAPTER 9 | Managing Server Objects

How requests are processed

228

Applications that use an Aut omat i cWr kQueue do not need to explicitly
dequeue work items; instead, work items are automatically dequeued and
processed by threads in the thread pool.

If all threads are busy and the number of threads is less than

hi gh_wat er _nmark, the ORB can start additional threads to process items in
the work queue, up to the value of hi gh_wat er _nar k. If the number of
threads is equal to hi gh_wat er _mar k and all are busy, and the work queue
is filled to capacity, the transport considers the server to be overloaded and
tries to gracefully close down connections to reduce the load.

Work Queues

Using a WorkQueue

Creating the WorkQueue

To create a POA with a vr kQueue policy, follow these steps:

1. Create a work queue factory by calling
resol ve_initial _references() with the desired factory type by
supplying an argument of I T_Aut omat i cVr kQueueFact ory or
| T_Manual Wor kQueueFact ory.

Set work queue parameters.

3. Create the work queue by calling cr eat e_wor k_queue() on the work
queue factory.

4. Insert the work queue into an Any.
5. Add a work queue policy object to a POA’s Pol i cyLi st.

Example 13 illustrates these steps:
Example 13: Creating a POA with a WorkQueue policy

import com i ona. corba. | T_WrkQueue. *;
import comiona.corba.l T Portabl eServer. *;

/1 get an automatic work queue factory

org. ong. CORBA. (hj ect obj = orb.resolve_initial _references(
"1 T_Aut omat i cWr kQueueFact ory") ;

Aut onat i cWr kQueueFactory wgf =
Aut onat i cWr kQueueFact or yHel per. narrow(obj) ;

/'l set work queue parareters
int max_size = 20;

int init_thread_count = 1;
int high water_mark = 10;
int lowwater mark = 2;

/] create work queue
Aut omat i cWr kQueue auto_wg = wgf. creat e_wor k_queue(
nmax_si ze,
init_thread count,
hi gh_wat er _nark,
| ow wat er _mark) ;

229

CHAPTER 9 | Managing Server Objects

Example 13: Creating a POA with a WorkQueue policy

4 I/ insert the work queue into an any
org. ong. CORBA. Any wor k_queue_pol i cy_val = orb.create_any();
wor k_queue_pol i cy_val .insert_Qbj ect (auto_wq) ;

I/ set other PQA policies set
/...

I/ create PolicylLi st
org. ong. CORBA. Pol i cy[] pol i ci es=new or g. ong. GORBA Pol i cy[];

5 // add work queue policy object to POA's PolicylLi st
orb. create_policy(D SPATCH WRKQUEUE PCLI CY_I D. val ue,
wor k_queue_policy val),

// add ot her PQA policies to PolicylList

...
Processing events in a manual When using a manual work queue, the developer must implement the loop
work queue which removes requests from the queue.

230

Processing events in an automatic
work queue

Work Queues

Example 14 demonstrates one way to remove requests from a manual work
queue. The code loops indefinitely and continuously polls the queue for
requests. When there are requests on the queue, they are removed from the
queue using the dequeue() method and then they processed with the
execut e() method of the Wr ki t emobject returned from dequeue() .

Example 14: Removing requests from a work queue.

Wr kQueue: : Wrkl temwork_i tem

while (1)
{
if (wg.is_enpty())
{

// Since there are no requests to process
/1l the object can sleep, or do whatever other work
Il the devel oper needs done.

}....

el se

{

manual _wor k_queue. dequeue(work_i tem 5000) ;

wor k_i t em execut e() ;

/1 no need to explicitly destroy as execute del etes the
/1 work item once conpl et ed.

}

Alternatively, you remove requests from the queue using the do_wor k()
method. The difference is that using do_wor k() you can process several
requests at one time.

Automatic work queues handle request processing under the covers.
Therefore, the developer does not need to implement any request handling
logic.

231

CHAPTER 9 | Managing Server Objects

Controlling POA Proxification

Overview

Policy

Example

232

The lona firewall proxy service, if it is activated, default behavior is to proxify
all POAs. This can consume resources and degrade performance of a system
if a large number of POAs are placed behind the firewall proxy service. In
many instances only specific POAs will need to face outside the firewall.
Using the I nt erdi cti onPoi | cy you can control if a specific POA is proxified.

The I'nterdi cti onPol i cy controls the behavior of the firewall proxy service
plug-in, if it is loaded. The policy has two settings:

ENABLE This is the default behavior of the firewall proxy service
plug-in. A POA with its I nterdi cti onPol i cy set to
ENABLE will be proxified.

D SABLE This setting tells the firewall proxy service plug-in to not
proxify the POA. A POA with its I nt erdi cti onPol i cy set
to DI SABLE will not use the firewall proxy service and
requests made on objects under its control will come
directly from the requesting clients.

The following code samples demonstrate how to set the
I nt erdi ctionPol i cy on a POA. In the examples, the policy is set to
Dl SABLE.

Java

i nport comiona. corba. | T_FPS. *;

I/l Oreate a PREVENT interdiction policy.

Any interdiction = morb.create_any();

I nterdi cti onPol i cyVal ueHel per.insert(interdiction,
I nterdi cti onPol i cyVal ue. Dl SABLE) ;

Policy[] policies = new Policy[1];
polices[0] = morb.create_policy(lINTERD CTI ON_PCLI CY_I D. val ue,
interdiction);

/l Oreate and return new POA
return mpoa. create_PQOA("no_fps_poa", null, policies);

Controlling POA Proxification

233

CHAPTER 9 | Managing Server Objects

234

In this chapter

CHAPTER 10

Developing a
Client

A CORBA client initializes the ORB runtime, handles object
references, invokes operations on objects, and handles
exceptions that these operations throw.

This chapter covers the following topics:

Mapping IDL Interfaces to Proxies

Using Object References

Initializing and Shutting Down the ORB

Invoking Operations and Attributes

Passing Parameters in Client Invocations

Client Policies

Implementing Callback Objects

For information about exception handling, see Chapter 12.

235

CHAPTER 10 | Developing a Client

Mapping IDL Interfaces to Proxies

When you compile IDL, the compiler maps each IDL interface to a
client-side Java interface of the same name. A class of the name
_interface-nameSt ub implements this interface and acts as the client-side
proxy for the corresponding server object. Proxy classes implement the
client-side call stubs that marshal parameter values and send operation
invocations to the correct destination object. When a client invokes on a
proxy method that corresponds to an IDL operation, Orbix conveys the call
to the corresponding server object, whether remote or local.

The client application accesses proxy methods only through an object
reference. When the client brings an object reference into its address space,
the client runtime ORB instantiates a proxy to represent the object. In other
words, a proxy acts as a local ambassador for the remote object.

For example, interface Bank: : Acount has this IDL definition:

nodul e BankDeno

{
typedef float CashAnount;

exception | nsufficientFunds {};

/...

i nterface Account {
void withdraw(in CashAnount anount)
rai ses (InsufficientFunds);

[l ... other operations not shown

I8

236

Mapping IDL Interfaces to Proxies

Given this IDL, the IDL compiler generates the following definitions for the
client implementation:

package BankDeno;

public interface Account Cperations {
java.lang. String account id();

/1l
void wi thdraw(fl oat anount)
throws BankDeno. Account Package. | nsuf fi ci ent Funds;

/] other operations not shown ...

}
package BankDeno;

public interface Account
ext ends Account Qper at i ons,
or g. onmg. CORBA (b ect
org. ong. CORBA portable. | DLEntity {}

package BankDeno;

public class _Account Stub
ext ends org. ong. CORBA. port abl e. Cbj ect | npl
i npl ement s Account {
public void wthdrawfloat anount)
throws BankDeno. Account Package. | nsuf fi ci ent Funds {
/] inplenentation details not shown...

}
}

This proxy class demonstrates several characteristics that are true of all

proxy classes:

® Member methods derive their names from the corresponding interface
operations—in this case, wi t hdr awal ().

® The proxy class inherits from or g. omg. CORBA. por t abl e. Cbj ect | npl ,
so the client can access all the inherited functionality of a CORBA
object.

237

CHAPTER 10 | Developing a Client

Using Object References

For each IDL interface definition, a POA server can generate and export
references to the corresponding object that it implements. To access this
object and invoke on its methods, a client must obtain an object reference—

generally, from a CORBA naming service.

238

Using Object References

Object Reference Operations

Because all object references inherit from OCRBA: : Obj ect , you can invoke its
operations on any object reference. OORBA: : (j ect is a pseudo-interface
with this definition:

modul e CORBA{ //PIDL

/..
interface (bject({
(pj ect dupli cat e()
voi d rel ease();
bool ean is nil();
bool ean is_a(in string repository_id);
bool ean non_exi stent();
bool ean i s_equivalent(in Coject other_object);
bool ean hash(in unsigned | ong nax);
/1
}
b

Mappings

In Java, these operations are mapped to or g. ong. GCORBA. (hj ect member
methods as follows:

package org. ong. CORBA;

public interface (oject {
bool ean _is a(String Identifier);
bool ean _i s_equival ent ((hj ect that);
bool ean _non_exi stent () ;
int _hash(int maxi mun);
or g. onmg. CORBA (bj ect _duplicate();
void _rel ease();

...

}

_duplicate() and _rel ease() are not implemented in the Java version of
Orbix. To duplicate an object reference In Java, simply assign the original
object reference to the new reference. For example:

Account acctl = ...; I/l Get ref from sonewhere...
Account acct 2; // acc2 has undefined contents
acc2 = acct 1, /1 Both reference same Account

239

CHAPTER 10 | Developing a Client

Operation descriptions

240

Given JVM garbage collection, _rel ease() is redundant.

The following sections describe the remaining operations.

_is_a() is similar to narrow() in that it lets you to determine whether an
object supports a specific interface. For example:

org. ong. CORBA. (hj ect obj = ...; /] Get a reference

if (obj !'=null &% obj._is_a("IDL: BankDeno/ Account: 1.0"))
// 1t's an Account object...

el se

/1 Sone other type of object...

The test for nul | in this code example prevents the client program from
making a call via a null object reference.

_is_a() lets applications manipulate IDL interfaces without static
knowledge of the IDL—that is, without having linked the IDL-generated
stubs. Most applications have static knowledge of IDL definitions, so they
never need to call _i s_a() . In this case, you can rely on the helper class’s
narrow() method to ascertain whether an object supports the desired
interface.

_non_existent() tests whether a CORBA object exists. _non_exi stent ()
returns true if an object no longer exists. A return of true denotes that this
reference and all copies are no longer viable and should be released.

If _non_exi stent () needs to contact a remote server, the operation is liable
to raise system exceptions that have no bearing on the object’s existence—
for example, the client might be unable to connect to the server.

If you invoke a user-defined operation on a reference to a non-existent
object, the ORB raises the CBJECT_NOT_EXI ST system exception. So,
invoking an operation on a reference to a non-existent object is safe, but the
client must be prepared to handle errors.

_is_equivalent() tests whether two references are identical. If
_is_equival ent () returns true, you can be sure that both references point
to the same object.

Using Object References

A false return does not necessarily indicate that the references denote
different objects, only that the internals of the two references differ in some
way. The information in references can vary among different ORB
implementations. For example, one vendor might enhance performance by
adding cached information to references, to speed up connection
establishment. Because _i s_equi val ent () tests for absolute identity, it
cannot distinguish between vendor-specific and generic information.

_hash() returns a hash value in the range 0. . max- 1. The hash value remains
constant for the lifetime of the reference. Because the CORBA specifications
offer no hashing algorithm, the same reference on different ORBs can have
different hash values.

_hash() is guaranteed to be implemented as a local operation—that is, it
will not send a message on the wire.

_hash() is mainly useful for services such as the transaction service, which
must be able to determine efficiently whether a given reference is already a
member of a set of references. _hash() permits partitioning of a set of
references into an arbitrary number of equivalence classes, so set
membership testing can be performed in (amortized) constant time.
Applications rarely need to call this method.

241

CHAPTER 10 | Developing a Client

Narrowing Object References

242

Before a client can use an object reference, it must narrow it to the
appropriate interface. For each IDL interface, the IDL compiler generates a
helper class with a narrow() method that returns the narrowed object
reference. Each helper class name has the format I nt er f ace- nameHel per,
with the first letter capitalized.

For example, the IDL compiler generates the Account Hel per class for the
Account interface. The Account Hel per class defines the following narr ow()
method to return Account objects:

public static BankDeno. Account narrow
org. ong. CORBA. (hj ect _obj
) throws org. omy. CORBA BAD PARAM {
if (_obj == null) {
return null;

if (_obj instanceof BankDeno.Account) {
return (BankDeno. Account) _obj ;
}
if (_obj instanceof BankDeno. Account Stub) {
return (BankDeno. _Account St ub) _obj ;
}
if (_obj. is a(id())) {
BankDeno. _AccountStub _ref =
new BankDero. _Account St ub();
_ref. _set_del egat e(

((org. ong. GORBA portabl e. Chj ect I npl) _obj)._get _del egate());
return _ref;

}
el se {

t hrow new or g. ong. CORBA. BAD PARAM) ;
}

Using Object References

A client program might call this narrow() method as follows:

org. ong. CORBA. (hject obj = ...; // get object reference sonehow

// Narrow obj to an Account obj ect
Account acct = Account Hel per. narrow(obj);

/1 do stuff with Account object
/1

If the parameter that is passed to Account Hel per. narrow() is not of class
Account or one of its derived classes, Account . narrow() raises the

QOCRBA. BAD_PARAMexception.

243

CHAPTER 10 | Developing a Client

String Conversions

Operations

object_to_string()

244

Object references can be converted to and from strings, which facilitates
persistent storage. When a client obtains a stringified reference, it can
convert the string back into an active reference and contact the referenced
object. The reference remains valid as long as the object remains viable.
When the object is destroyed, the reference becomes permanently invalid.

The obj ect _to_string() and string_to_object () operations are defined
in Java as follows:

package org. omy. CORBA;
public abstract class ORB {
public abstract org.omy. CORBA (hj ect
string_to object(String str);

public abstract String
obj ect _to_string(org. omg. CORBA Chj ect obj);

For example, the following code stringifies an Account object reference:
BankDeno. Account acct = ...; I/ Account reference

/Il Wite reference as a string to stdout

try {
java.lang. String str = orb.object_to_string(acct);
Systemout. println(str);

} catch (Exception ex) {
// Deal with error...

}

This code prints an IOR (interoperable reference) string whose format is
similar to this:

IR

010000002000000049444¢3a61636d652e636f 6d2f 4943532 436f 6e74726f 6¢
€65723a312e300001000000000000004a2000000010102000e0000003139322e3
36382e312e3231300049051b0000003a3e0231310c01000000c 7010000234800
008000000000000000000010000000600000006000000010000001100

string_to_object()

Constraints

Using Object References

The stringified references returned by obj ect _to_string() always contain
the prefix 1 R , followed by an even number of hexadecimal digits.
Stringified references do not contain any unusual characters, such as control
characters or embedded newlines, so they are suitable for text 1/0.

To convert a string back into a reference, call string_to_object():

/1 Assume stringified reference is in accv[O0]
try {
or g. omg. CORBA. (hj ect obj ;
obj = orb.string_to_object(accv[0]);
if (obj == null)
Systemexit(1);

BankDeno. Account acct = BankDeno. Account Hel per. narrow(obj);
if (acct = null)
Systemexit(1); /1 Not an Account reference

/] Use acct reference
/...

} catch (Exception ex) {
// Deal with error...

}

The CORBA specification defines the representation of stringified IOR
references, so it is interoperable across all ORBs that support the Internet
Inter-ORB Protocol (//OP).

Although the IOR shown earlier looks large, its string representation is
misleading. The in-memory representation of references is much more
compact. Typically, the incremental memory overhead for each reference in
a client can be as little as 30 bytes.

You can also stringify or destringify a null reference. Null references look like
one of the following strings:

I CR 00000000000000010000000000000000
I CR 01000000010000000000000000000000

IOR string references should be used only for these tasks:

® Store and retrieve an IOR string to and from a storage medium such as
disk or tape.

® Conversion to an active reference.

245

CHAPTER 10 | Developing a Client

Using corbaloc URL strings

246

It is inadvisable to rely on IOR string references as database keys for the

following reasons:

® Actual implementations of IOR strings can vary across different
ORBs—for example, vendors can add proprietary information to the
string, such as a time stamp. Given these differences, you cannot rely
on consistent string representations of any object reference.

® The actual size of IOR strings—between 200 and 600 bytes— makes
them prohibitively expensive to use as database keys.

In general, you should not compare one IOR string to another. To compare
object references, use i s_equi val ent () (see page 240).

Note: Stringified IOR references are one way to make references to initial
objects known to clients. However, distributing strings as e-mail messages
or writing them into shared file systems is neither a distributed nor a
scalable solution. More typically, applications obtain object references
through the naming service (see Chapter 17 on page 423).

string_to_object () can also take as an argument a corbaloc-formatted
URL, and convert it into an object reference. A corbaloc URL denotes
objects that can be contacted by [IOP or resol ve_initial _references().

A corbaloc URL uses one of the following formats:

corbaloc:rir:/rir-argunent
corbal oc:iiop-address[, iiop-address].../key-string

rir-argument: A value that is valid for resol ve_i ni ti al _ref erences(),
such as NaneSer vi ce.

iiop-address: Identifies a single IIOP address with the following format:
[iiop]:[najor-version-num m nor-ver si on- nun@ host - spec| : port - nunj
I1OP version information is optional; if omitted, version 1.0 is assumed.
host - spec can specify either a DNS-style host name or a numeric IP
address; specification of port - numis optional.

key-string: corresponds to the octet sequence in the object key member of
a stringified object reference, or an object’'s named key that is defined in the
implementation repository.

Using Object References

For example, if you register the named key BankSer vi ce for an IOR in the
implementation repository, a client can access an object reference with
string_to_object() as follows:

/] assume that xyz.com specifies a |ocation donain’s host
gl obal _orb. string_to_object
("corbal oc:iiop: xyz. coni BankSer vi ce") ;

The following code obtains an object reference to the naming service:
gl obal _orb. string_to_object("corbal oc:rir:/NaneService");

You can define a named key in the implementation repository through the
«itadm n naned_key create command. For more information, see the
Application Server Platform Administrator’'s Guide.

247

CHAPTER 10 | Developing a Client

Initializing and Shutting Down the ORB

Before a client application can start any CORBA-related activity, it must
initialize the ORB runtime by calling or g. omg. CORBA. CRB. i ni t ().

CRB. i nit() returns an object reference to the ORB object; this, in turn, lets
the client obtain references to other CORBA objects, and make other
CORBA-related calls.

Procedures for ORB initialization and shutdown are the same for both
servers and clients. For detailed information, see “ORB Initialization and
Shutdown” on page 157.

248

Invoking Operations and Attributes

Invoking Operations and Attributes

For each IDL operation in an interface, the IDL compiler generates a method
with the name of the operation in the corresponding proxy. It also maps
each unqualified attribute to a pair of overloaded methods with the name of
the attribute, where one method acts as an accessor and the other acts as a
modifier. For readonl y attributes, the compiler generates only an accessor
method.

An IDL attribute definition is functionally equivalent to a pair of set/get
operation definitions, with this difference: attribute accessors and modifiers
can only raise system exceptions, while user exceptions apply only to
operations.

For example, the following IDL defines a single attribute and two operations
in interface Test : : Exanpl e:

nodul e Test {

interface Exanpl e {
attribute string naneg;
oneway voi d set_address(in string addr);
string get _address();

}
IE

The IDL compiler maps this definition’s members to the following methods
in the Java interface Exanpl eQper ati ons, which is inherited by the
generated interface Exanpl e. A client invokes on these methods as if their
implementations existed within its own address space:

249

CHAPTER 10 | Developing a Client

package Test;

public interface Exanpl eQerations {
java.lang. String nane();
voi d nane(java.lang. String _val);
voi d set_address(java.lang. String addr);
java.lang. String get_address();

}

package Test;

public interface Exanpl e
ext ends Exanpl eQper ati ons,
or g. ong. CCRBA. (bj ect,
org. ong. CCRBA portable. | DLEntity {}

250

Passing Parameters in Client Invocations

Passing Parameters in Client Invocations

IDL i n parameters always map directly to the corresponding Java type. This
mapping is possible because i n parameters are always passed by value, and
Java supports by-value passing of all types. Similarly, IDL return values
always map directly to the corresponding Java type.

IDL i nout and out parameters must be passed by reference because they
might be modified during an operation call, and do not map directly into the
Java parameter passing mechanism. In the IDL-to-Java mapping, IDL i nout
and out parameters are mapped to Java holder classes. Holder classes
simulate passing by reference. For each IDL out orinout parameter, the
client supplies an instance of the appropriate Java holder class. The
contents of the holder instance are modified by the call, and the client uses
the contents when the call returns.

251

CHAPTER 10 | Developing a Client

Holder Class Types

Holders for basic types

Holders for user-defined types

252

There are two categories of holder classes:
® Holders for basic types.
® Holders for user-defined types.

Holder classes for basic Java types and the Java string type are available
in the package or g. ong. CORBA. Each holder class is named TypeHol der,
where Type is the name of a basic Java type with the first letter capitalized.
For example, the I nt Hol der class is defined for i nt types as follows:

package org. omy. CORBA;

i nport org.ong. CORBA. portabl e. St reanabl e;
i nport org.ong. CORBA. portabl e. | nput Stream
i nport org.ong. CCRBA. port abl e. Qut put St ream

public final class IntHolder inplenents Streanabl e {
public int val ue;

public IntHolder() {

}

public IntHolder(int initial) {
value = initial;

}

public void _read(lnputStreaminput) {
value = input.read_|l ong();

}

public void _wite(QutputStreamoutput) {
out put.wite_l ong(val ue);

}

publ i ¢ org. ong. CORBA. TypeCode _type() {
return GRB.init().get_primtive tc(TCK nd.tk_| ong);

}

Holder classes for user-defined types, including IDL interface types, are
generated by the Java mapping. The name format is t ypeHol der . For
example, given the user-defined interface Account , the following holder
class is generated:

Passing Parameters in Client Invocations

public final class AccountHol der
i npl enent s org. ong. CORBA. port abl e. Streanabl e {

publ i ¢ BankDeno. Account val ue;

publ i ¢ Account Hol der () {}
publ i ¢ Account Hol der (BankDeno. Account val ue) {
this. val ue = val ue;

public void _read(
org. ong. CCRBA portabl e. | nput Stream _strean) {
val ue = BankDeno. Account Hel per. read(_strean);
}
public void wite(
org. ong. CCORBA portabl e. Qut put Stream _strean) {
BankDeno. Account Hel per. wite(_stream val ue);
}
publ i c org. ong. CCRBA TypeCode _type() {
return BankDeno. Account Hel per.type();

}

253

CHAPTER 10 | Developing a Client

Holder Class Members

All Holder classes, basic and user-defined, contain these members:

® val ue contains the value that the client supplies as the out or i nout
argument, and which the server runtime ORB resets before the
operation returns.

® A constructor for out parameters that initializes a new holder object’s
val ue to empty—for example, O for numeric types and null for string.

® A constructor for i nout parameters that initializes a new holder
object’s value field to the supplied argument’s value.

® _read() reads unmarshalled data from input and assigns it to val ue.

® wite() marshals the data in val ue.

® _type() returns the TypeCode object that corresponds to val ue’ s data
type.

254

Passing Parameters in Client Invocations

Invoking an Operation With Holder Classes

A client that invokes operations with i nout and out parameters must supply

holder objects as arguments for those parameters. For each IDL out or

i nout parameter, the client program instantiates the appropriate holder

class and supplies it to the method call. On return, the client can evaluate

the contents of the holder object.

® For out parameters, the client calls the default constructor, so the
holder object’s value field is initialized to empty. The servant’s
implementation of the invoked operation resets the holder object’s
value on return.

® Forinout parameters, the client initializes each holder with a valid
value by calling the appropriate constructor.

For example, the following IDL modifies the creat e_account () operation in
the BankDeno module so that it supplies two out parameters, the account
object and the new account’s ID:

/1 1DL
nmodul e BankDeno {
/...

/] Forward decl arati on of Account
i nterface Account;

interface Bank {
voi d create_account (
(in string nane, out Account acct, out string acc_id)
/...

}

The IDL compiler maps creat e_account () to the Java method

BankDeno. Bank. cr eat e_account () ; the operation’s two out parameters
require two holder classes: Account Hol der and Stri ngHol der, so the client
program can pass these two parameters by reference to a Bank object
servant:

public void create_account (
java.lang. String nanme, BankDeno.Account Hol der acct,
org. onmg. CCORBA. Stri ngHol der acc_id);

255

CHAPTER 10 | Developing a Client

The servant sets the two out parameter values; when the invocation returns,
the client receives these values.

The following client code shows how this operation might be invoked:
i nport org.ong. CCRBA. Syst enExcept i on;

public class client {

org. onyg. CORBA. CRB gl obal _or b;

public static void main (java.lang. String[] args) {

try {
gl obal _orb = org.ong. CORBA. GRB.init(args, null);
Bank b_ref = ...; // get object reference to bank

if (b_ref = null)
Systemexit(1);

/| create hol der objects
StringHol der acct_i d_hol der = new Stri ngHol der();
Account Hol der acct _hol der = new Account Hol der () ;

try {
/1 create a bank account

b_ref.create_account (

"Joe", acct_hol der, acct_id_hol der);
}
catch (SystenkException se) {

Systemout. println ("Unexpected exception on bind");
Systemout.println ("Exception: " + se);
Systemexit(1);

}

// Retrieve val ues from hol der objects
Account acct_ref = acct_hol der. val ue;
java.lang. String acct_id = acct_id_hol der. val ue

try {
/1 invoke operations on account object
/1 not shown ...

}

catch (SystenException se) {
/] catch clauses not shown ...

}

256

Passing Parameters in Client Invocations

In the server, the servant implementation of creat e_account () receives the
holder object for type Account and can manipulate its val ue field. For
information about how servants handle out and i nfout parameter types, see
“Handling Output Parameters” on page 189.

257

CHAPTER 10 | Developing a Client

Client Policies

258

Orbix supports a number of quality of service policies, which can give a

client programmatic control over request processing:

® RebindPolicy specifies whether the ORB transparently reopens closed
connections and rebinds forwarded objects.

® SyncScopePolicy determines how quickly a client resumes processing
after sending one-way requests.

®* Timeout policies offer different degrees of control over the length of
time that an outstanding request remains viable.

You can set quality of service policies at three scopes, in descending order of

precedence:

1. Onindividual objects, so they apply only to invocations on those
objects.

2. On a given thread, so they apply only to invocations on that thread

3. On the client ORB, so they apply to all invocations.

You can set policies in any combination at all three scopes; the effective

policy is determined on each invocation. If settings are found for the same
policy type at more than one scope, the policy at the lowest scope prevails.

For detailed information about setting these and other policies on a client,
see “Setting Client Policies” on page 172.

Client Policies

RebindPolicy

A client’s Rebi ndPol i cy determines whether the ORB can transparently
reconnect and rebind. A client’s rebind policy is set by a Rebi ndMbde
constant, which describes the level of transparent binding that can occur
when the ORB tries to carry out a remote request:

TRANSPARENT The default policy: the ORB silently reopens closed
connections and rebinds forwarded objects.

NO_REBIND The ORB silently reopens closed connections; it disallows
rebinding of forwarded objects if client-visible policies have changed since
the original binding. Objects can be explicitly rebound by calling

QCRBA: : (j ect : : val i dat e_connection() on them.

NO_RECONNECT The ORB disallows reopening of closed connections and

rebinding of forwarded objects. Objects can be explicitly rebound by calling
OCRBA: : (j ect : : val i dat e_connection() on them.

Note: Currently, Orbix requires rebinding on reconnection. Therefore,
NO_REBI ND and NO_RECONNECT policies have the same effect.

259

CHAPTER 10 | Developing a Client

SyncScopePolicy

260

A client’s SyncScopePol i cy determines how quickly it resumes processing
after sending one-way requests. You specify this behavior with one of these
SyncScope constants:

SYNC_NONE The default policy: Orbix clients resume processing
immediately after sending one-way requests, without knowing whether the
request was processed, or whether it was even sent over the wire.

SYNC_WITH_TRANSPORT The client resumes processing after a transport
accepts the request. This policy is especially helpful when used with
store-and-forward transports. In that case, this policy offer clients assurance
of a high degree of probable delivery.

SYNC_WITH_SERVER The client resumes processing after the request
finds a server object to process it—that is, the server ORB sends a
NO_EXCEPTI CNreply. If the request must be forwarded, the client continues
to block until location forwarding is complete.

SYNC_WITH_TARGET The client resumes processing after the request
processing is complete. This behavior is equivalent to a synchronous
(two-way) operation. With this policy in effect, a client has absolute
assurance that a its request has found a target and been acted on. The
object transaction service (OTS) requires this policy for any operation that
participates in a transaction.

Note: This policy only applies to GIOP 1.2 (and higher) requests.

Client Policies

Timeout Policies

A responsive client must be able to specify timeouts in order to abort
invocations. Orbix supports several standard OMG timeout policies, as
specified in the Messaging module; it also provides proprietary policies in
the I T_0CRBA module that offer more fine-grained control. Table 11 shows
which policies are supported in each category:

Table 11: Timeout Policies

OMG Timeout Rel ati veRoundt ri pTi meout Pol i cy
Policies

Repl yEndTi mePol i cy
Rel at i veRequest Ti meout Pol i cy
Request EndTi nePol i cy

Proprietary Bi ndi ngEst abl i shment Pol i cy
Timeout Policies Rel at i veBi ndi ngExcl usi veRoundt ri pTi meout Pol i cy

Rel at i veBi ndi ngExcl usi veRequest Ti neout Pol i cy
Rel ati veConnecti onCreat i onTi meout Pol i cy
I nvocat i onRetryPol i cy

Setting absolute and relative times

If a request’s timeout expires before the request can complete, the client
receives the system exception CORBA: : TI MEQUT.

Note: When using these policies, be careful that their settings are
consistent with each other. For example, the

Rel ati veRoundt ri pTi meout Pol i cy specifies the maximum amount of time
allowed for round-trip execution of a request.

Orbix also provides its own policies, which let you control specific
segments of request execution—for example,

Bi ndi ngEst abl i shnent Pol i cy lets you set the maximum time to establish
bindings.

It is possible to set the maximum binding time to be greater than the
maximum allowed for roundtrip request execution. Although these settings
are inconsistent, no warning is issued; and Orbix silently adheres to the
more restrictive policy.

Two policies, Request EndTi nePol i cy and Repl yEndTi mePol i cy, set absolute
deadlines for request and reply delivery, respectively, through the
Ti meBase: : W cT type. Other policies set times that are relative to a specified

261

CHAPTER 10 | Developing a Client

Imported Java packages

Policies

262

event—for example, Rel ati veRoundt ri pTi meout Pol i cy limits how much
time is allowed to deliver a request and its reply, starting from the request
invocation.

Orbix libraries include the com i ona. common. ti me. UTQWti 1ty helper class,
which provides static utility methods for working with the types defined in
the Ti nreBase module. For example, future_ti me() lets you get an absolute
time that is relative to the current time.

You can specify absolute times in long epoch (15 Oct. 1582 to ~30000AD)
Universal Time Coordinated (UTC), or relative times in 100 nano-seconds
units using the OMG Time Service's Ti meBase: : Ut cT type. You can also
convert times to short epoch (Jan. 1 1970 to ~2038) UTC in millisecond
units. All times created have zero displacement from GMT.

For more information, refer to the CORBA Programmer’s Reference.

Programs that use timeout policies typically include the following i npor t
statements:

i nport org.ong. Messagi ng. *;
inport org.ong. Ti nebase. *;
inport comiona.corba. | T_CORBA *;

The examples that follow all assume that these packages are imported.

RelativeRoundtripTimeoutPolicy specifies how much time is allowed to
deliver a request and its reply. Set this policy’s value in 100-nanosecond
units. No default is set for this policy; if it is not set, a request has unlimited
time to complete.

The timeout countdown begins with the request invocation, and includes
the following activities:

® Marshalling in/inout parameters
® Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of reply
data, all received reply data is discarded. In some cases, the client might
attempt to cancel the request by sending a GIOP Cancel Request message.

Client Policies

For example, the following code sets a Rel ati veRoundt ri pTi meout Pol i cy
override on the ORB PolicyManager, setting a four-second limit on the time
allowed to deliver a request and receive the reply:

long relative_expiry = 4L * 10000000L; // 4 seconds

try{
Any rel ative_roundtrip_tineout_value = orb. create_any();

Ti meTHel per. i nsert (
relative_roundtrip_tinmeout_val ue,
relative_expiry
)i
Policy [] policies = new Policy[1];
policies[0] = orb.create_policy(
RELATI VE_RT_TI MEQUT_PCLI CY_TYPE. val ue,
relative_roundtrip_tineout_val ue);
pol i cy_nmanager . set _pol i cy_overri des(
polici es,
Set Overri deType. ADD OVERR DE) ;

catch(Pol i cyError pe){
Systemexit(1);

}
catch(l nval idPolicies ip){

Systemexit(1);

}
cat ch(Syst enExcepti on se){

Systemexit(1);
}

ReplyEndTimePolicy sets an absolute deadline for receipt of a reply. This
policy is otherwise identical to Rel at i veRoundt ri pTi meout Pol i cy. Set this
policy’s value with a Ti neBase: : U cT type (see “Setting absolute and
relative times” on page 261).

No default is set for this policy; if it is not set, a request has unlimited time
to complete.

RelativeRequestTimeoutPolicy specifies how much time is allowed to
deliver a request. Request delivery is considered complete when the last
fragment of the GIOP request is sent over the wire to the target object. The
timeout-specified period includes any delay in establishing a binding. This
policy type is useful to a client that only needs to limit request delivery time.
Set this policy’s value in 100-nanosecond units.

263

CHAPTER 10 | Developing a Client

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

For example, the following code sets a Rel at i veRequest Ti meout Pol i cy
override on the ORB PolicyManager, setting a three-second limit on the time
allowed to deliver a request:

long relative_expiry = 3L * 10000000L; // 3 seconds

try{
Any rel ative request _tineout_value = orb.create_any();

Ti meTHel per. i nsert (
rel ati ve_request _timeout val ue,
rel ative_expiry);
Policy [] policies = new Policy[1];
policies[0] = orb.create policy(
RELATI VE_REQ TI MEQUT_PQLI CY_TYPE. val ue,
rel ative_request _timeout val ue);
pol i cy_nanager. set _pol i cy_overri des(
polici es,
Set Qverri deType. ADD OVERRI DE) ;

}
cat ch(Pol i cyError pe){

Systemexit(1);

catch(lnvalidPolicies ip){
Systemexit(1);

}
cat ch(Syst enExcepti on se){

Systemexit(1);
}

RequestEndTimePolicy sets an absolute deadline for request delivery. This
policy is otherwise identical to Rel at i veRequest Ti meout Pol i cy. Set this
policy's value with a Ti neBase: : U cT type (see “Setting absolute and
relative times” on page 261).

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

BindingEstablishmentPolicy limits the amount of effort Orbix puts into
establishing a binding. The policy equally affects transparent binding (which
results from invoking on an unbound object reference), and explicit binding
(which results from calling (oj ect : : _val i dat e_connecti on() .

264

Client Policies

A client’s Bi ndi ngEst abl i shnent Pol i cy is determined by the members of
its Bi ndi ngEst abl i shnent Pol i cyVal ue, which is defined as follows:

struct Bi ndi ngEst abl i shnent Pol i cyVal ue

{

Ti neBase: : Ti meT rel ative_expiry;

unsi gned short nax_binding_iterations;
unsi gned short max_f orwards;

TineBase: : TimeT initial _iteration_del ay;
f | oat backof f _rati o;

rel ative_expiry limits the amount of time allowed to establish a
binding. Set this member in 100-nanosecond units. The default value
is infinity.

max_bi ndi ng_i terati ons limits the number of times the client tries to
establish a binding. Set to -1 to specify unlimited retries. The default
value is 5.

Note: If location forwarding requires that a new binding be
established for a forwarded IOR, only one iteration is allowed to bind
the new IOR. If the first binding attempt fails, the client reverts to the
previous IOR. This allows a load balancing forwarding agent to
redirect the client to another, more responsive server.

max_f orwards limits the number of forward tries that are allowed
during binding establishment. Set to -1 to specify unlimited forward
tries. The default value is 20.

initial _iteration_delay sets the amount of time, in
100-nanosecond units, between the first and second tries to establish
a binding. The default value is 0.1 seconds.

265

CHAPTER 10 | Developing a Client

® backoff_ratio lets you specify the degree to which delays between
binding retries increase from one retry to the next. The successive
delays between retries form a geometric progression:

0,

initial iteration_delay x backoff rati o?,
initial iteration delay x backoff ratio?,
initial _iteration_delay x backoff _rati 0%,

initial iteration_delay x backoff ratio(m*_binding iterations -
2)

The default value is 2.

For example, the following code sets an Bi ndi ngEst abl i shnent Pol i cy
override on an object reference:

...
inport comiona.corba.util.QjectHel per

try
{
Any bind_est_value = orb.create_any();
Bi ndi ngEst abl i shrent Pol i cyVal ueHel per. i nsert (
bi nd_est _val ue,
new Bi ndi ngEst abl i shnent Pol i cyVal ue(
(long) 30 * 10000000; // 30 seconds

(short)5, // 5 binding tries
(short) 20, /1 20 forwards

(1 ong) 1000000, /1 0.1s del ay
(float)2.0) /1 back-off ratio

)

Policy [] policies = new Policy[1];

policies[0] = orb.create policy(
Bl NDI NG_ESTABLI SHVENT_PQLI CY_I D. val ue,
bi nd_est _val ue);

org. ong. CCRBA. (hj ect 0 =
bj ect Hel per. set_policy_overrides(obj ref,
policies,
Set Overri deType. ADD OVERR DE) ;

266

Client Policies

cat ch(Pol i cyError pe){
Systemexit(1);

}
cat ch(l nval idPolicies ip){

Systemexit(1);

}
cat ch (SystenException se){

Systemexit(1);
}

RelativeBindingExclusiveRoundtripTimeoutPolicy limits the amount of time
allowed to deliver a request and receive its reply, exclusive of binding
attempts. The countdown begins immediately after a binding is obtained for
the invocation. This policy’s value is set in 100-nanosecond units.

RelativeBindingExclusiveRequestTimeoutPolicy limits the amount of time
allowed to deliver a request, exclusive of binding attempts. Request delivery
is considered complete when the last fragment of the GIOP request is sent
over the wire to the target object. This policy’s value is set in
100-nanosecond units.

RelativeConnectionCreationTimeoutPolicy specifies how much time is
allowed to resolve each address in an IOR, within each binding iteration.
Defaults to 8 seconds.

An IOR can have several TAG | NTERNET_I CP (IIOP transport) profiles, each
with one or more addresses, while each address can resolve via DNS to
multiple IP addresses. Furthermore, each I0OR can specify multiple
transports, each with its own set of profiles.

This policy applies to each IP address within an IOR. Each attempt to
resolve an IP address is regarded as a separate attempt to create a
connection. The policy’s value is set in 100-nanosecond units.

InvocationRetryPolicy applies to invocations that receive the following

exceptions:

® A TRANSI ENT exception with a completion status of COMPLETED NO
triggers a transparent reinvocation.

® A COM FAI LURE exception with a completion status of COMPLETED NO
triggers a transparent rebind attempt.

267

CHAPTER 10 | Developing a Client

A client’s I nvocat i onRet ryPol i cy is determined by the members of its
I nvocat i onRet ryPol i cyVal ue, which is defined as follows:

struct |nvocati onRetryPolicyVal ue

{
unsi gned short nmax_retries;
unsi gned short max_rebi nds;
unsi gned short max_f orwards;
TineBase: : TimeT initial _retry_del ay;
f1 oat backof f _rati o;

b

® max_retries limits the number of transparent reinvocation that are
attempted on receipt of a TRANSI ENT exception. The default value is 5.

® max_rebinds limits the number of transparent rebinds that are
attempted on receipt of a COW FAI LURE exception. The default value is
5.

Note: This setting is valid only if the effective RebindPolicy is
TRANSPARENT; otherwise, no rebinding occurs.

® max_forwards limits the number of forward tries that are allowed for a
given invocation. Set to -1 to specify unlimited forward tries. The
default value is 20.

® initial_retry_delay sets the amount of time, in 100-nanosecond units,
between the first and second retries. The default value is 0.1 seconds.

Note: The delay between the initial invocation and first retry is
always 0.

This setting only affects the delay between transparent invocation
retries; it has no affect on rebind or forwarding attempts.

268

Client Policies

® backoff_ratio lets you specify the degree to which delays between
invocation retries increase from one retry to the next. The successive
delays between retries form a geometric progression:

0,

initial _iteration_delay x backoff rati ?,
initial _iteration delay x backoff ratio?,
initial iteration_delay x backoff_rati 0%,

initial iteration delay x backoff ratijo(mx_retries - 2

The default value is 2.

For example, the following code sets an I nvocat i onRet ryPol i cy override on
an object reference:

/...
import com i ona.corba. util.Chject Hel per

try
{
Any no_retries _value = orb.create_any();
I nvocat i onRet ryPol i cyVal ueHel per. i nsert (
no_retries_val ue,
new | nvocati onRet r yPol i cyVal ue(

(short)O0, /Il O retries
(short)5, /1 5 rebinds
(short) 20, /1 20 forwards

(1 ong) 1000000, /1 0.1s del ay
(float)2.0)); /'l back-of f ratio

Policy [] policies = new Policy[1];
policies[0] = orb.create_policy(

| N\VOCATI ON_RETRY_PCLI CY_I D. val ue,

no_retries_val ue);
org. ong. OCRBA. (hj ect 0 =
bj ect Hel per. set_policy_overrides(obj ref,

policies,
Set Overri deType. ADD OVERR DE) ;

269

CHAPTER 10 | Developing a Client

270

cat ch(Pol i cyError pe){
Systemexit(1);

catch(lnvalidPolicies ip){
Systemexit(1);

}

cat ch (SystenkException se){
Systemexit(1);

}

Implementing Callback Objects

Implementing Callback Objects

Many CORBA applications implement callback objects on a client so that a
server can notify the client of some event. You implement a callback object
on a client exactly as you do on a server, by activating it in a client-side POA
(see “Activating CORBA Objects” on page 187). This POA’s LifeSpanPolicy
should be set to TRANSI ENT. Thus, all object references that the POA exports
are valid only as long as the POA is running. This ensures that a late server
callback is not misdirected to another client after the original client shuts
down.

It is often appropriate to use a client’s root POA for callback objects,
inasmuch as it always exports transient object references. If you do so,
make sure that your callback code is thread-safe; otherwise, you must
create a POA with policies of SI NGLE_THREAD MCDEL and TRANS| ENT.

271

CHAPTER 10 | Developing a Client

272

Drawbacks of active object map
usage

CHAPTER 11

Managing
Servants

A POA that needs to manage a large number of objects can be
configured to incarnate servants only as they are needed.
Alternatively, a POA can use a single servant to service all
requests.

A POA's default request processing policy is USE_ACTI VE_CBJECT_MAP_CON\LY.
During POA initialization, the active object map must be populated with all
object-servant mappings that are required during the POA’s lifetime. The
active object map maintains object-servant mappings until the POA shuts
down, or an object is explicitly deactivated.

For example, you might implement the BankDeno: : Account interface so that
at startup, a server instantiates a servant for each account and activates all
the account objects. Thus, a servant is always available for any client
invocation on that account—for example, bal ance() or wi t hdraw() .

Given the potential for many thousands of accounts, and the likelihood that

account information changes—accounts are closed down, new accounts are

created—the drawbacks of this static approach become obvious:

® Code duplication: For each account, the same code for servant creation
and activation must be repeated, increasing the potential for errors.

® Inflexibility: For each change in account information, you must modify
and recompile the server code, then stop and restart server processes.

273

CHAPTER 11 | Managing Servants

Policies for managing many
objects

In this chapter

274

® Startup time: The time required to create and activate a large number
of servants prolongs server startup and delays its readiness to process
client requests.

® Memory usage: An excessive amount of memory might be required to
maintain all servants continuously.

This scenario makes it clear that you should usually configure a POA to rely

exclusively on an active object map only when it maintains a small number
of objects.

If a POA is required to maintain a large number of objects, you should set its

request processing policy to one of the following:

® USE SERVANT MANAGER specifies that servants are instantiated on
demand.

® USE DEFAULT_SERVANT specifies a default servant that handles requests
for any objects that are not registered in the active object map, or for
all requests in general.

This chapter shows how to implement both policies.

This chapter contains the following sections:

Using Servant Managers page 275
Using a Default Servant page 288
Creating Inactive Objects page 292

Using Servant Managers

Using Servant Managers

Servant manager types

Registering a servant manager

A POA whose request processing policy is set to USE_SERVANT MANAGER

supplies servants on demand for object requests. The POA depends on a

servant manager to map objects to servants. Depending on its servant

retention policy, the POA can implement one of two servant manager types,

either a servant activator or servant locator:

® Aservant activator is registered with a POA that has a RETAI N policy.
The servant activator supplies a servant for an inactive object on
receiving an initial request for it. The active object map retains the
mapping between the object and its servant until the object is
deactivated.

® Aservant locator is registered with a POA that has a policy of
NON_RETAI N. The servant locator supplies a servant for an inactive
object each time the object is requested. In the absence of an active
object map, the servant locator must deactivate the object and delete
the servant from memory after the request returns.

Because a servant activator depends on the active object map to maintain
the servants that it supplies, its usefulness is generally limited to minimizing
an application’s startup time. In almost all cases, you should use a servant
locator for applications that must dynamically manage large numbers of
objects.

An application registers its servant manager —whether activator or
locator— with the POA by calling set _servant _nmanager () on it; otherwise,
an CBJ_ADAPTER exception is returned to the client on attempts to invoke on
one of its objects.

The following sections show how to implement the BankDeno: : Account
interface with a servant activator and a servant locator. Both servant
manager types activate account objects with instantiations of servant class
Account | npl , which inherits from skeleton class Account POA:

275

CHAPTER 11 | Managing Servants

i nport org.onyg. CCRBA. *;
inport org.ong. Port abl eServer. *;
inport java.io.*;

i nport denos. servant _nanagenent . BankDeno. Account Package. *;
i nport denos. servant _nanagenent . BankDeno. *;

public class Account | npl
ext ends Account PQA
{
publ i ¢ Account I npl (String account _id,
Account Dat abase account _db)
{
m account _db = account _db;
m account _id = account _i d;
m bal ance = m account _db. read_account (m account _i d);

}
protected void finalize()
{ m account _db. wite_account (maccount_id, m bal ance);
}
protected voi d save all ()
{ m account _db. wite_account (maccount _id, m bal ance);
}
public void wi thdraw(float amount) throws |nsufficientFunds
{ if (amount > m bal ance)
{ t hrow new | nsuf fi ci ent Funds() ;
En_bal ance -= anount;
}
publ ic void deposit(float armount)
{ m bal ance += anount;
}
public String account _id()
{ return maccount _id,;
}

276

Using Servant Managers

public float bal ance()

{

return mbal ance;

}

private String maccount_id;
private float mbal ance;
pri vat e Account Dat abase m account _db;

277

CHAPTER 11 | Managing Servants

Servant Activators

278

A POA with policies of USE_SERVANT MANAGER and RETAI N uses a servant
activator as its servant manager. The POA directs the first request for an
inactive object to the servant activator. If the servant activator returns a
servant, the POA associates it with the requested object in the active object
map and thereby activates the object. Subsequent requests for the object

are routed directly to its servant.

servant

Initial object requests are activator
directed to servant activator

®

Subsequent requests on X
activated objects : //
are routed through : A :

active object
map :

the active
object map ‘/

./_)

@ Servant activator activates

servants on
demand
‘\A "\ servants

/ \< >
servant-object ID

mappings

Figure 18: On the first request on an object, the servant activator returns a
servant to the POA, which establishes the mapping in its active object

map.

ServantActivator interface

Using Servant Managers

Servant activators are generally useful when a server can hold all its
servants in memory at once, but the servants are slow to initialize, or they
are not all needed each time the server runs. In both cases, you can
expedite server startup by deferring servant activation until it is actually
needed.

The Port abl eServer: : Servant Acti vat or interface is defined as follows:

interface Servant Activator : Servant Manager

{

Ser vant
i ncar nat e(
in Cojectld oid,
in PQA adapt er
rai ses (ForwardRequest);

voi d
et hereal i ze(
in hjectld oid,
in PQA adapt er,
in Servant serv,
in bool ean cleanup_in_progress,
in bool ean renaining_activations

IE

A POA can call two methods on its servant activator:

® incarnate() is called by the POA when it receives a request for an
inactive object, and should return an appropriate servant for the
requested object.

® etherealize() is called by the POA when an object is deactivated or
the POA shuts down. In either case, it allows the application to clean
up resources that the servant uses.

279

CHAPTER 11 | Managing Servants

Implementing a servant activator You can implement a servant activator as follows:
Example 15: Servant activator implementation

i nport org.ong. CCRBA. *;

i nport org.ony. Portabl eServer. *;

i nport denos. servant _nanagenent . BankDeno. Account Package. *;
i nport denos. servant _nmanagenent . BankDeno. *;

public cl ass Account Servant Acti vat or | npl
ext ends Local (bj ect
i mpl ement s Servant Acti vat or

{
/] servant activator constructor
publ i ¢ Account Servant Acti vat or | npl (
Account Dat abase account _db,
or g. ong. GORBA. CRB or b)
{
m account _db = account _db;
morb = orb;
}
1 publ i ¢ Servant i ncarnat e(
byte[] oid,
PQA adapter) throws Forwar dRequest
{
String account _id = new String(oid);
2 Si ngl eAccount | npl account =
new Si ngl eAccount | npl (account _id, maccount_db);
return account;
}
public void etherealize(byte[] oid,
PQA adapt er,
Servant serv,
bool ean cl eanup_i n_pr ogr ess,
bool ean renai ni ng_acti vati ons)
{1
private Account Dat abase m account _db;
private org. ong. CORBA. CRB m orb;
}

280

Activating objects

Deactivating objects

Setting deactivation policies

Using Servant Managers

In this example, the servant activator’s constructor takes two arguments that
enable interaction between Account objects and persistent account data: an
AccountDatabase object, and the application’s ORB

i ncar nat () instantiates a servant for a requested object and returns the
servant to the POA. The POA registers the servant with the object’s ID,
thereby activating the object and making it available to process requests on
it.

In theimplementation shownshown in Example 15, i ncar nat e() performs
these tasks:

1. Takes the object ID of a request for a BankDeno: : Account object, and
the POA that relayed the request.

2. Instantiates an Si ngl eAccount | npl servant, passing account
information to the servant’s constructor, and returns the servant to the
POA.

The POA calls et hereal i ze() when an object deactivates, either because
the object is destroyed or as part of general cleanup when the POA itself
deactivates or is destroyed.

Because Java automatically disposes of servants for deactivated objects, the
et hereal i ze() method is generally used to perform required cleanup or
database interaction before objects deactivate. For example, it can check
the cl eanup_i n_pr ogr ess parameter to determine whether etherealization
results from POA deactivation or destruction; this lets you differentiate
between this and other reasons to etherealize a servant.

By default, a POA that uses a servant activator lets an object deactivate
(and its servant to etherealize) only after all pending requests on that object
return. You can modify the way the POA handles incoming requests for a
deactivating object by creating an Orbix-proprietary

(oj ect Deact i vat i onPol i cy object and attaching it to the POA'’s Pol i cyLi st
(see “Setting proprietary policies for a POA” on page 201).

Three settings are valid for this Policy object:

281

CHAPTER 11 | Managing Servants

DELIVER: (default) The object deactivates only after processing all pending
requests, including any requests that arrive while the object is deactivating.
This behavior complies with CORBA specifications.

DISCARD: The POA rejects incoming requests with an exception of
TRANSI ENT. Clients should be able to reissue discarded requests.

HOLD: Requests block until the object deactivates. A POA with a HOLD
policy maintains all requests until the object reactivates. However, this
policy can cause deadlock if the object calls back into itself.

Setting a POA’s servant activator The following example shows how you can establish a POA’s servant
activator in two steps:

Example 16: Java Setting the POA’s Servant Activator

Account Dat abase account _dat abase = new Account Dat abase() ;

1 // instantiate servant activator
org. ony. Port abl eServer. Servant Activator activator =
new Account Servant Act i vat or | npl (account _dat abase, orb);

2 /] Associate the activator with the accounts PQA
acct _poa. set _servant _manager(activator);

Instantiate the servant activator.

2. Call set_servant _nmanager () on the target POA and supply the servant
activator.

282

Using Servant Managers

Servant Locators

Required policies

object locator
request

; — preinvoke() —— servant
object .
request v —I— operation() _4>’

A server that needs to manage a large number of objects might only require
short-term access to them. For example, the operations that are likely to be
invoked on most customer bank accounts—such as withdrawals and
deposits—are usually infrequent and of short duration. Thus, it is
unnecessary to keep account objects active beyond the lifetime of any given
request. A POA that services requests like this can use a servant locator,
which activates an object for each request, and deactivates it after the
request returns.

A POA with policies of USE_SERVANT_MANAGER and NON_RETAI N uses a
servant locator as its servant manager. Because the POA lacks an active
object map, it directs each object request to the servant locator, which
returns a servant to the POA in order to process the request. The POA calls
the request operation on the servant; when the operation returns, the POA
deactivates the object and returns control to the servant locator. From the
POA's perspective, the servant is active only while the request is being
processed.

POA servant

— preinvoke() ——p
\ —I- operation() —4
— postinvoke() —p» servant

‘/ — postinvoke() ——p»

Figure 19: The POA directs each object request to the servant locator,
which returns a servant to the POA to process the request.

283

CHAPTER 11 | Managing Servants

Controlling servant lifespan

ServantLocator interface

284

An application that uses a servant locator has full control over servant
creation and deletion, independently of object activation and deactivation.
Your application can assert this control in a number of ways. For example:

Servant caching: A servant locator can manage a cache of servants for
applications that have a large number of objects. Because the locator
is called for each operation, it can determine which objects are
requested most recently or frequently and retain and remove servants
accordingly.

Application-specific object map: A servant locator can implement its
own object-servant mapping algorithm. For example, a POA’s active
object map requires a unique servant for each interface. With a servant
locator, an application can implement an object map as a simple fixed
table that maps multiple objects with different interfaces to the same
servant. Objects can be directed to the appropriate servant through an
identifier that is embedded in their object IDs. For each incoming
request, the servant locator extracts the identifier from the object ID
and directs the request to the appropriate servant.

The Port abl eServer : Servant Locat or interface is defined as follows:

interface ServantlLocator : Servant Manager

{

native Cooki e;

Ser vant

pr ei nvoke(
in hjectld oid,
in POA adapter,
in CCRBA: :ldentifier operation,
out Cooki e the_cookie

rai ses (ForwardRequest);

voi d
post i nvoke(
in Cojectld oid,
in POA adapt er,
in OORBA: :ldentifier operation,
i n Cooki e the_cooki e,
in Servant the_servant

Implementing a servant locator

Using Servant Managers

A servant locator processes each object request with a pair of methods,
pr ei nvoke() and posti nvoke() :

® preinvoke() is called on a POA’s servant locator when the POA
receives a request for an object. prei nvoke() returns an appropriate
servant for the requested object.

® postinvoke() is called on a POA’s servant locator to dispose of the
servant when processing of the object request is complete. For
example, the postinvoke() implementation can cache the servant for
later reuse.

The following code implements a servant locator that handles account

objects:

Example 17: Servant locator implementation

package denos. servant _managenent ;

i mpor t
i npor t
i npor t
i npor t
i npor t
i npor t

org. ony. CCRBA *;

or g. ony. Port abl eServer. POA *;

org. ony. Por t abl eServer. *;

org. ony. Port abl eSer ver . Servant Locat or Package. *;
denos. servant _managenent . BankDeno. Account Package. *;
denos. servant _managenent . BankDeno. *;

publ i c cl ass Account Servant Locat or | npl
ext ends Local (oj ect
i npl ement s Ser vant Locat or

{

publ i ¢ Account Ser vant Locat or | npl (Account Dat abase account _db,

{

org. omg. CCRBA. CRB or b)

m account _db = account _db;
morb = orb;

285

CHAPTER 11 | Managing Servants

Example 17: Servant locator implementation

publ i ¢ org. ong. Port abl eServer. Servant prei nvoke(
byte[] oid,
PQA adapt er,
String operati on,
Cooki eHol der t he_cooki €)
t hrows Forwar dRequest
{
String account _id = new String(oid);
Si ngl eAccount | npl account =
new Si ngl eAccount | npl (account i d, maccount db);
return account;

}

publ i c voi d postinvoke(
byte[] oid,
PQA adapt er,

String operation,
j ava. |l ang. (bj ect the_cooki e,
org. ony. Port abl eServer. Servant the_servant)

{
if (the_servant instanceof S ngleAccountlnpl)
{
Si ngl eAccount | npl account =
(Singl eAccount | npl) t he_servant ;
account . save_al l ();
}
}

Account Dat abase m account _db;
or g. onmg. CORBA CRB m or b;
}

Each request is guaranteed a pair of prei nvoke() and postinvoke() calls.
This can be especially useful for applications with database transactions.
For example, a database server can use a servant locator to direct
concurrent operations to the same servant; each database transaction is
opened and closed within the prei nvoke() and posti nvoke() operations.

The signatures of prei nvoke() and posti nvoke() are differentiated from
those of i nvoke() and incarnate() by two parameters, t he_cooki e and
operation:

286

Setting a POA’s servant locator

1

2

Using Servant Managers

the_cookie lets you explicitly map data between prei nvoke() and its
corresponding posti nvoke() call. This can be useful in a multi-threaded
environment and in transactions where it is important to ensure that a pair
of prei nvoke() and postinvoke() calls operate on the same servant. For
example, each prei nvoke() call can set its t he_cooki e parameter to data
that identifies its servant; the posti nvoke() code can then compare that
data to its t he_servant parameter.

operation contains the name of the operation that is invoked on the CORBA
object, and thus provides the context of the servant’s instantiation. The
servant can use this to differentiate between different operations and
execute the appropriate code.

You establish a POA's servant locator in two steps, as shown in the
following example:

Example 18:Java Setting a POA’s Servant Locator
/l instantiate a servant |ocator
or g. ony. Port abl eServer. Servant Locat or | ocator =

new Account Ser vant Locat or | npl (account _dat abase, orb);

/| Associate the locator with the accounts PQA
acct _poa. set _servant _manager (| ocator);

1. Instantiate the servant locator.

2. Call set_servant_manager () on the target POA and supply the servant
locator.

287

CHAPTER 11 | Managing Servants

Using a Default Servant

Obtaining the current object

Implementing a default servant

288

If a number of objects share the same interface, a server can most efficiently
handle requests on them through a POA that provides a single default
servant. This servant processes all requests on a set of objects. A POA with
a request processing policy of USE_DEFAULT_SERVANT dispatches requests to
the default servant when it cannot otherwise find a servant for the requested
object. This can occur because the object’s ID is not in the active object
map, or the POA’s servant retention policy is set to NON RETAI N.

For example, all customer account objects in the bank server share the
same BankDeno: : Account interface. Instead of instantiating a new servant
for each customer account object as in previous examples, it might be more
efficient to create a single servant that processes requests on all accounts.

A default servant must be able to differentiate the objects that it is serving.
The Portabl eServer: : Qurrent interface offers this capability:

nodul e Port abl eSer ver

{
interface Qurrent : COORBA : CQurrent
{
exception NoCont ext{};
PQA get _PQA () raises (NoContext);
Chj ect| D get _obj ect _id() raises (NoContext);
b
}

You can call a Port abl eServer: : Qurrent operation only in the context of
request processing. Thus, each Bank: : Account operation such as deposi t ()
or bal ance() can call Portabl eServer:: Qurrent::get_object_id() to
obtain the current object’s account ID number.

To implement a default servant for account objects, modify the code as

follows:

® The Singl eAccount | npl constructor identifies the ORB instead of an
object’s account ID.

Using a Default Servant

® Each Account operation calls resol ve_i ni ti al _references() on the
ORB to obtain a reference to the Port abl eServer:: Qurrent object,
and uses this reference to identify the current account object.

So, you might use the following servant code to implement an account
object:

Example 19: /mplementation of a default servant
package denos. servant _managenent ;

import org.ong. CORBA *;

i nport org. ony. Port abl eServer. *;

i nmport denos. servant _nanagenent . BankDeno. Account Package. *;
i mport denos. servant _nanagenent . BankDeno. *;

public class Singl eAccount| npl extends Account POA
{
/] construct or
publ i ¢ S ngl eAccount | npl (ORB or b,
Account Dat abase account _db)

{
m account _db = account _db;
morb = orb;
}
protected voi d updat e_bal ance(fl oat bal ance)
{
m account _db. wite_account (get _account _id(), bal ance);
}
public float bal ance()
{
fl oat bal ance =
m account _db. read_account (get _account _id());
return bal ance;
}

289

CHAPTER 11 | Managing Servants

Example 19: /mplementation of a default servant

public void withdraw(fl oat amount) throws |nsufficient Funds

{
float bal ance = bal ance();
i f (amount > bal ance)
{
t hr ow new | nsuf fi ci ent Funds() ;
}
updat e_bal ance(get _account _id(), bal ance - anmount);
}
private String get_account _id()
{
org. ong. CCRBA. (oj ect obj =
morb.resol ve_initial _references("PQAurrent");
org. ong. Port abl eServer. Qurrent poa_current =
org. ony. Port abl eServer. Qurrent Hel per. narrow obj) ;
try {
byte[] account_oid = poa_current.get_object_id();
} catch (org.ong. Portabl eServer. Qurrent. NoCont ext) {
/...
}
return new String(account_oid);
}

private ORB morb;
private Account Dat abase m account _db;

}

In this implementation, the servant constructor takes a single argument, a
reference to the ORB. Each method such as bal ance() calls the private
helper method get _account _i d(), which obtains a reference to the current
object (Port abl eServer: : Qurrent) and gets its object ID. The method
converts the object ID to a string and returns with this string.

This implementation assumes that account object IDs are generated from
account ID strings. See “Creating Inactive Objects” on page 292 to see how
you can create object IDs from a string and use them to generate object
references.

290

Using a Default Servant

Setting a Default Servant

You can establish a POA’s default servant by instantiating the desired
servant class and supplying it as an argument to set _servant (), which you
invoke on that POA. The following code fragment from the server's mai n()
instantiates servant def _serv from servant class Si ngl eAccount | npl , and
sets this as the default servant for POA acct _poa:

// Initialize the CRB
CORBA: : CRB var orb = CORBA: CRB init(argc, argv);

// Instantiate default account object servant
Si ngl eAccount | npl def _serv(orb);

I/ Set default servant for PQA
acct _poa->set _servant (&def _serv);

i nport org.ong. CCRBA *;
i mport org.ong. Port abl eServer. *;
...

I/ Initialize the CRB
public static CRB orb = GRB.init(args, null);

/] create account PQA with policy of DEFAULT_SERVANT policy
/1 (not shown)
/...

/1 Instantiate default account object servant

try {
Singl eAccount | npl def _serv = new Si ngl eAccount I npl (orb);

[/ Set default servant for PQCA
acct _poa. set_servant (def _serv);

}
catch (org. ong. Port abl eServer. WongPol i cy ex) {

/1 wrong policy for default servant

}
...

291

CHAPTER 11 | Managing Servants

Creating Inactive Objects

An application that uses a servant manager or default servant typically
creates objects independently of the servants that incarnate them. The
various implementations shown earlier in this chapter assume that all
account objects are available before they are associated with servants in the
POA. Thus, the account objects are initially inactive—that is, servants are
unavailable to process any requests that are invoked on them.

You can create inactive objects by calling either creat e_ref erence() or
create_reference_with_id() onaPOA. In the next example, the POA that
is to maintain these objects has an ID assignment policy of USER | D
therefore, the server code calls create_reference with_id() to create
objects in that POA:

Note: The repetitive mechanism used in this example to create objects is
used only for illustrative purposes. A real application would probably use a
factory object to create account objects from persistent data.

i nport org. ong. CORBA. *;
i nport org.ony. Portabl eServer. *;

public static main(String args[]) {
[l initialize CRB
CRB orb = GRB.init(args, null);

/1 get object reference to the root PQA
org. ong. CORBA. Chj ect obj =
orb.resolve_initial _references("Root PQA");
PQA root _poa = PQAHel per. narrow(obj);

/] set policies for persistent POA that uses servant | ocator
Policy[] policies = new Policy[] {
root _poa. create_|ifespan_policy(
Li f espanPol i cyVal ue. PERSI STENT) ;
root _poa. create_i d_assi gnnent _pol i cy(
| dAssi gnnent Pol i cyVal ue. USER | D) ;
root _poa. create_servant_retention_policy(
Ser vant Ret ent i onPol i cyVal ue. NON_ RETAI N) ;
r oot _poa. creat e_request_processi ng_pol i cy(
Request Pr ocessi ngPol i cyVal ue. USE_SERVANT_MANAGER) ;

292

}

Creating Inactive Objects

/] create the accounts PQA
PQA acct _poa = root_poa. creat e POA(
"acct_poa", null, policies);

// instantiate a servant | ocator
org. ony. Port abl eServer. Servant Locator |ocator =
new Account Ser vant Locat or | npl (orb) ;

/|l Associate the |ocator with the accounts PQA
acct _poa. set _servant _nmanager (| ocator);

/] Set Bank Account interface repository ID
String repository_id = "IDL: BankDeno/ Account : 1. 0";

/] create account object
String acct_id = "112-1110001";
byte[] acct_oid = acct_id. getBytes();

or g. omg. CORBA (hj ect acct_obj =
acct _poa. create reference with_id(
acct_oid, repository id);

/] Export object reference to Nami ng Service (not shown)

/'l create another account object

acct _id = "112-1110002";

acct_oid = acct _id.getBytes();

acct _obj = acct_poa. create_reference_with_id(
acct_oid, repository id);

/|l Export object reference to Naming Service (not shown)
/] Repeat for each account object...
[/l Start CRB

orb.run();
return O;

As shown, mai n() executes as follows:

1.
2.
3.

Creates all account objects in acct _poa without incarnating them.
Calls run() on the ORB so it starts listening to requests.

As the POA receives requests for objects, it passes them on to the
servant locator. The servant locator instantiates a servant to process
each request.

293

CHAPTER 11 | Managing Servants

4. After the request returns from processing, the servant locator destroys
its servant.

294

Example IDL

CHAPTER 12

Exceptions

Implementations of IDL operations and attributes throw
exceptions to indicate when a processing error occurs.

An IDL operation can throw two types of exceptions:

® User-defined exceptions are defined explicitly in your IDL definitions.

® System exceptions are predefined exceptions that all operations can
throw.

While IDL operations can throw user-defined and system exceptions,
accessor methods for IDL attributes can only throw system-defined
exceptions.

This chapter shows how to throw and catch both types of exceptions. The
Bank interface is modified to include two user-defined exceptions:

AccountNotFound is defined by fi nd_account ().

AccountAlreadyExists is defined by creat e_account ().

295

CHAPTER 12 | Exceptions

The account _i d member in both exceptions indicates an invalid account ID:

nodul e BankDeno

{
interface Bank {
exception Account Al readyExi sts { Accountld account_id; };
except i on Account Not Found { Accountld account _id; };
Account find_account(in Accountld account _id)
rai ses(Account Not Found) ;
Account create_account (
in Accountld account _id,
in CashAnmount initial _bal ance
) raises (AccountAl readyExi sts);
b
ha
In this chapter This chapter contains the following sections:
Exception Code Mapping page 297
User-Defined Exceptions page 299
Handling Exceptions page 301
Throwing Exceptions page 310
Throwing System Exceptions page 311

296

Exception Code Mapping

Exception Code Mapping

All CORBA exceptions ultimately derive from j ava. | ang. Except i on, as
shown in Figure 20, and can be instantiated and manipulated like any Java
exception object:

org.omg.CORBA.portable.IDLEntity

java.lang.Exception

/ \ implements

java.lang.RuntimeException org.omg.CORBA.UserException

/(

java.lang.SystemException

AccountAlreadyExists
AccountNotFound
org.omg.CORBA.TRANSIENT
org.omg.CORBA.OBJ_ADAPTER

org.omg.CORBA.BAD_PARAM

Figure 20: The Java mapping arranges exceptions into a hierarchy

Subclasses CORBA exceptions are subdivided into two subclasses:
® System exceptions are subclasses of or g. ong. CCRBA. Syst enExcept i on.
All system exceptions are defined by the OMG.
® User exceptions are described in the IDL that you write; these are
subclasses of or g. ony. GCRBA. User Except i on. The IDL compiler places
user exceptions into Java packages that are scoped to the interface or
module in which the exception was defined.

297

CHAPTER 12 | Exceptions

Given this hierarchy, you can catch all CORBA exceptions in a single catch
handler. Alternatively, you can catch system and user exceptions separately,
or handle specific exceptions individually.

298

User-Defined Exceptions

User-Defined Exceptions

Exception design guidelines

Operations are defined to raise one or more user exceptions to indicate
application-specific error conditions. An exception definition can contain
multiple data members to convey specific information about the error, if
desired. For example, you might include a graphic image in the exception
data in order to display an error icon.

When you define exceptions, be sure to follow these guidelines:

Exceptions are thrown only for exceptional conditions. Do not throw
exceptions for expected outcomes. For example, a database lookup
operation should not throw an exception if a lookup does not locate
anything; it is normal for clients to occasionally look for things that are not
there. It is harder for the caller to deal with exceptions than return values,
because exceptions break the normal flow of control. Do not force the caller
to handle an exception when a return value is sufficient.

Exceptions carry complete information. Ensure that exceptions carry all the
data the caller requires to handle an error. If an exception carries insufficient
information, the caller must make a second call to retrieve the missing
information. However, if the first call fails, it is likely that subsequent calls
will also fail.

Exceptions only carry useful information. Do not add exception members
that are irrelevant to the caller.

Exceptions carry precise information Do not lump multiple error conditions
into a single exception type. Instead, use a different exception for each
semantic error condition; otherwise, the caller cannot distinguish between
different causes for an error.

299

CHAPTER 12 | Exceptions

Java mapping for user exceptions If an exception is defined within an interface, then its Java class name is
defined within a package that corresponds to the IDL interface’s name.
Thus, exception class Account Al readyExi st s is defined within package
BankDeno. BankPackage:

package BankDeno. BankPackage;
public final class AccountA readyExists
ext ends org. ong. CORBA User Excepti on

{

public java.lang. String account _i d;

publ i ¢ Account Al r eadyExi sts() {
super (Account Al r eadyExi st sHel per.id());

}

publ i ¢ Account Al r eadyExi st s(
java.lang. String account _id

)

{
super (Account Al r eadyExi st sHel per.id());
this.account_id = account _i d;

}

publ i c Account Al r eadyExi st s(
java.lang. String _reason,
java.lang. String account _id

)

{
super (Account Al r eadyExi st sHel per.id() + " " + _reason);
this.account_id = account _i d;

}

}
Constructors Three constructors are provided:

® The default constructor takes no arguments.

® The user-defined constructor takes an argument for each exception
member—in this case, account i d.

® The full constructor contains an additional r eason parameter that is
concatenated to the ID before calling the superclass constructor.

300

Handling Exceptions

Handling Exceptions

Overview Client code uses standard try and cat ch blocks to isolate processing logic
from exception handling code. You can associate multiple cat ch blocks with
each try block. You should write the code so that handling for specific
exceptions takes precedence over handling for other unspecified exceptions.

In this section This section contains the following subsections:
Handling User Exceptions page 302
Handling System Exceptions page 303
Evaluating System Exceptions page 305

301

CHAPTER 12 | Exceptions

Handling User Exceptions

302

If an operation might throw a user exception, its caller should be prepared to
handle that exception with an appropriate cat ch clause.

Example 20 shows how you might program a client to catch exceptions. In
it, the handler for the Account Al r eadyExi st s exception outputs an error
message and exits the program.

Example 20: Programming a client to catch user exceptions

protected void do_create() // create bank account

{

try {
Systemout. printl n("Enter account nanme :");

String name = m.i nput.readLine();
Systemout. println("Enter account starting bal ance :");
String bal ance = minput.readLi ne();
Fl oat bal ance_converter = new Fl oat (bal ance);
float float_bal ance = bal ance_converter. fl oat Val ue();
Systemout.println("Calling create account with " +
f1 oat _bal ance);

Account account = m bank. create_account (

narre, float_bal ance);
Account Menu sub_menu = new Account Menu(account);
sub_nenu. run();

}
catch (
BankDeno. BankPackage. Account Al readyExi sts al ready_exi sts)
{
Systemerr.println("This account already exists.");
return;
}

catch (java.io.lCException io_exc) {
Systemerr.println("Bank nenu | O exception.");
return;

}

Handling Exceptions

Handling System Exceptions

Precedence of exception handlers

A client often provides a handler for a limited set of anticipated system
exceptions. It also must provide a way to handle all other unanticipated
system exceptions that might occur.

The Java runtime first tries to match an exception to a catch block that
specifies that exception; otherwise it matches the exception’s superclass.
Because all CORBA exceptions are derived from j ava. | ang. Excepti on,
catch blocks with specific exception handling must precede more general
catch blocks.

The following client code specifically tests for a cwl FAI LURE exception; it
can also handle any other system and I/O exceptions:

Example 21: Handling system exception OOMW FAl LURE

public void run() {
if (mbank == null) {
Systemerr.println(
"Cannot proceed bank reference is null.");
return;
}
el se {
for (55) {
Systemerr.println("");
Systemerr.println("0 - quit");
Systemerr.println("1l - create account");
Systemerr.printin("2 - find account");
Systemerr.println("Selection [0-2] :");

303

CHAPTER 12 | Exceptions

Example 21: Handling system exception COMM FAl LURE

try {
String user_sel ection = minput.readLine();
System out . print | n(
"You choose [" + user_selection + "]");

if (user_selection.equals("0")) {

return;
}
el se {
if (user_selection.equal s("1")) {
do_create();
}
el se {
if (user_selection.equals("2")) {
do_find();
}
}
}

}
catch (org. ong. CORBA. COW FAl LURE com) {

Systemerr. println(
" Communi cati on failure exception"+con);
return;

}

cat ch (org. ong. CORBA Syst enExcepti on sys_exc) {

Systemerr. printl n(
"System exception in bank nenu"+sys_exc);

return;

}

catch (java.io.|CException io_exc) {
Systemerr.println("lO exception in bank menu");
return;

304

Handling Exceptions

Evaluating System Exceptions

Obtaining invocation completion
status

Evaluating minor codes

Each system exception has two members that let a client evaluate the status
of an invocation:

abstract public class SystenException extends
java.l ang. Runt i neException {

public int mnor;
publ i ¢ Conpl eti onStat us conpl et ed,;

}

completed is set to an integer value that indicates how far the operation or
attribute call progressed. You can obtain this value by calling
or g. ony. CORBA. Conpl et i onSt at us. val ue() on it.

minor offers more detail about the particular system exception that was
thrown.

Each standard exception includes a conpl eti on_st at us code that takes one
of the following integer values:

COMPLETED_NO: The system exception was thrown before the operation
or attribute call began to execute.

COMPLETED_YES: The system exception was thrown after the operation or
attribute call completed execution.

COMPLETED_MAYBE: It is uncertain whether or not the operation or
attribute call started to execute, and if so, whether execution completed. For
example, the status is COVWPLETED MAYEE if a client’s host receives no
indication of success or failure after transmitting a request to a target object
on another host.

mi nor () returns an IDL unsi gned | ong that offers more detail about the
particular system exception thrown. For example, if a client catches a

COW _FAI LURE system exception, it can access the system exception’s minor
field to determine why this occurred

305

CHAPTER 12 | Exceptions

Subsystem minor codes

All standard exceptions have an associated minor code that provides more
specific information about the exception in question. Given these minor
codes, the ORB is not required to maintain an exhaustive list of all possible
exceptions that might arise at runtime.

Minor exception codes are defined as an unsigned long that contains two
components:

® 20-bit vendor minor code ID (VMCID)

® Minor code that occupies the 12 low order bits

All minor codes are based on the IONA vendor minor code ID (I GONA VMO D),
which is 0x49540000. The space reserved to IONA ends at 0x49540FFF.

The VMCID assigned to OMG standard exceptions is 0x4f 4d000. You can
obtain the minor code value for any exception by OR'ing the VMCID with the
minor code for the exception in question. All minor code definitions are
associated with readable strings.

Orbix defines minor codes within each subsystem. When an exception is
thrown, the current subsystem associates the exception with a valid minor
code that maps to a unique error condition. Table 12 lists Orbix subsystems
and base values for their minor codes:

Table 12: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID
| T_ACTI VATCR | T_ACTI VATCR I ONA VMO D + 0xD00
I T_ARM I T_ARM | ONA VMO D + 0xE80
I T_ATLI _ICP None | ONA VMO D + 0x440

I T_ATLI _MLTI CAST

I T_ATLI _MALTI CAST I CNA_ VMO D + 0x980

I T_ATLI _SHV | T_ATLI _SHV | ONA VMO D + 0x880
| T_ATLI _TCP | T_ATLI _TCP | ONA VMO D + 0x480
| T_ATLI 2_HTTP | T_ATLI 2_HTTP | ONA VMO D + O0x7Q0
IT_ATLI2 I CP I T_ATLI2_ I CP | ONA VMO D + 0x4Q0
ITATLI2_IP ITATLI2_IP | ONA VMO D + 0x3Q0
| T_ATLI 2_SHM | T_ATLI 2_SHM | ONA VMO D + Ox5Q0

306

Handling Exceptions

Table 12: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID
| T_ATLI 2_| TRP | T_ATLI 2_I TRP | CNA VMO D + Ox6Q0
| T_ATLI 2_SQAP | T_ATLI 2_SQAP | CNA VMO D + OXACD
| T_ATLI2_TLS | T_ATLI 2_TLS | CNA VMO D + OXx7Q0
| T_CCDESET | T_CCDESET | ONA VMO D + 0x280
| T_CONFI G_REP | T_CONFI G REP | CNA VMO D + 0x140
I T Core I T_CORE | CNA VMO D + 0x100
| T_CPLM | T_CPLM | CNA VMO D + OxF40
I T_CSl I T_Csl | CNA VMO D + 0xDBO
| T_Daernon | T_DAEMON I ONA WO D + OxXEOO
| T_EGM CP | T_EGM CP | CNA VMO D + 0xC80

| T_EGM CP_Conponent

| T_EGM CP_COVPONENT

| ONA VWO D + 0xBSO

| T_EVENT | T_EVENT | ONA VWO D + 0x2Q0
I T_FPS I T_FPS | ONA VMO D + OxD40
ITacoP ITA | ONA VMO D + 0x200
I T_GSP | T_GSP | ONA VMO D + 0x1QD
IT_IFR IT_IFR

ITIIoP ITIICP | ONA VMO D + 0x300

I T_I'1 OP_PRCFI LE

I T_I'1 GP_PRCFI LE

| ONA WO D + 0x400

IT I1CP_TLS

ITI1CP_TLS

| ONA VMO D + OXA4O

i PAS subsyst ens

| T i PAS *

I ONA WO D + 0x740

| T_JAVA SERVER

| T_JAVA SERVER

None

I T JTA I T JTA | ONA VMO D + OXE40
| T_KDM | T_KDM | ONA VMO D + OxC40
| T_LEASE | T_LEASE None

307

CHAPTER 12 | Exceptions

308

Table 12: Base minor code values for Orbix subsystems

Subsystem

Logging ID

Minor Code ID

| T_LOCATCR

| T_LOCATCR

| ONA VWO D + 0xBOO

| T_Managenent Loggi ng

| T_MANAGEMENT LOGGE NG

I ONA_ VWO D + 0x8Q0

| T_MANAGEMENT MBEAN MONI TCR NG

| T_MANAGEMENT MBEAN MNI TCR

I ONA_ VWO D + 0xDQ0

I NG
| T_Mavr | T_MavIr None
| T_MaWI_SVC | T_MaWI_SVC None
I T_M/S I T_WS I CNA VMO D + OXF80
I T_NAM NG I T_NAM NG I CONA VMO D + OXFOO
I T_NodeDaenon | T_NCDE_DAEMON | ONA VWO D + OxB40

I T_NOTI FI CATI ON

I T_NOTI FI CATI ON

I CNA_ VMO D + 0x840

IT_OrS | T_OTS | ONA VMO D + 0x900
| T_OTS_Enci na | T_OTS_ENCI NA | ONA VMO D + 0x680
IT OTS Lite | T_OTS LI TE | ONA VMO D + OxAQ0
| T_OTS_RRS | T_OTS_RRS | ONA VMO D + OxBQD
IT_ OIS T™ I T_OTS_T™ | ONA VMO D + 0x580
I T_POA I T_POA | ONA VMO D + 0x500

| T_POA LOCATOR

| T_POA_LOCATOR

I CNA_ VMO D + 0xQ00

| T_Port abl el nt er cept or

| T_PCRTABLE | NTERCEPTCR

I CNA_VMOI D + 0x540

I T_PSS I T_PSS | ONA VMO D + 0x800
| T_PSS_DB | T_PSS_DB | ONA VMO D + 0x700
IT_PSS R IT_PSS R | ONA VMO D + 0x600
IT_Rmi IT_RM | ONA VMO D + OXxFQD
| T_SCHANNEL | T_SCHANNEL None

IT_SHMCP IT_SHMICP | ONA VMO D + 0x780
| T_SoapP | T_SOAP | ONA VMO D + 0x080

Handling Exceptions

Table 12: Base minor code values for Orbix subsystems

Subsystem Logging ID Minor Code ID
I T_SOAP Profile | T_SOAP_PRCFI LE | CNA VMO D + 0x180
I T_TLS I T_TLS | CNA VMO D + 0x940
Thr ead/ Synch Package IT_TS I ONA WO D + 0x240
| T_WsDL I T_WsDL | CNA_ VMO D + 0x380
I T_XA I T_XA | CNA VMO D + 0x640
IT ZICP ITZICP | CNA VMO D + OxCCD

Displaying minor code strings

For example, the locator subsystem defines a number of minor codes for the
BAD PARAMSstandard exception. These distinguish among the various
conditions under which the locator might throw the BAD _PARAMexception.

Definitions for all subsystem minor codes can be found in the directory
asp/ Version/ xm / m nor _codes.

Note: OMG minor code constants are Orbix-specific mappings to minor
codes that are set by the OMG. If you define minor codes for your own
application, make sure that they do not overlap the ranges that are
reserved for IONA-defined minor codes.

In order to provide user-readable output for minor codes, Orbix provides
helper class comi ona. corba. uti| . Syst enExcept i onDi spl ayHel per . The
following cat ch statement shows how a program typically uses this class:

/...
catch (SystenException ex) {
Systemerr. println("Caught exception: " +
Syst enExcept i onDi spl ayHel per.toString(ex));
}

This yields output such as the following:

Caught exception: org.ong. CCRBA | N Tl ALI ZE
m nor _code: 1230242048 conpl et ed: No (| T_Cor e: ERRCR | N_DOVAI N)

309

CHAPTER 12 | Exceptions

Throwing Exceptions

310

Client code uses standard Java syntax to initialize and throw both
user-defined and system exceptions.

This section modifies Bankl npl . cr eat e_account () to throw an exception.
You can implement creat e_account () as follows:

Example 22: Throwing an exception

// create a new account given an id and initial bal ance
/1 throw Account Al readyExi sts if account already in database

publ i c Account create_account (

String account_id, float initial_bal ance)
throws Account Al r eadyEXi st s

{
System out . print | n(
"Oreating an account with account id of ["
+ account_id + "].");
if (!(maccount_db. create_account(account _id,
initial _balance))) {
t hrow new Account Al r eadyExi sts();
}
return create_account_ref(account _id);

Throwing System Exceptions

Throwing System Exceptions

Occasionally, a server program might need to throw a system exception.
Specific system exceptions such as COMM FAI LURE inherit the
Syst enExcept i on constructor:

abstract public class
Syst enExcept i on extends java. | ang. Runti meException {
public int mnor;
publ i c Conpl eti onSt atus conpl et ed;

/] constructor
protected SystenException(String reason,
int mnor,
Conpl eti onSt at us conpl et ed) {
super (reason) ;
this.mnor = mnor;
this. conpleted = conpl et ed;
}
}

final public class
OOW FAI LURE ext ends org. ong. CORBA. Syst enExcepti on {

publ i ¢ GOWMM FAI LURE(
int mnor, ConpletionStatus conpleted) { ... }

311

CHAPTER 12 | Exceptions

The following code uses this constructor to throw a COW FAI LURE exception
with minor code SOCKET_WR TE_FAI LED and completion status
COMPLETED NO

I/l initiate a wite for the nessage

/1
try {
m connection. wit e(
nmessage_buffer, numbytes to wite, offset, tineout);
}

catch (Exception ex) {
Il wite failed
Systemout . printl n("exception occurred during wite: " + ex);

/1 synchronous wite fail ed

/1l

t hrow new COW FAI LURE(
SOKET_WR TE_FAI LED. val ue, // mnor code
Conpl eti onSt at us. COMPLETED NO) ;

312

CHAPTER 13

Using Type Codes

Orbix uses type codes to describe IDL types. The IDL pseudo
interface oorea: : Typecode /ets you describe and manipulate type
code values.

Type codes are essential for the DIl and DSI, to specify argument types. The
interface repository also relies on type codes to describe types in IDL
declarations. In general, type codes figure importantly in any application
that handles CORBA: : Any data types.

In this chapter This chapter contains the following sections:
Type Code Components page 314
Type Code Operations page 317
Type Codes for Basic Types page 324
Type Codes for User-Defined Types page 325

313

CHAPTER 13 | Using Type Codes

Type Code Components

TCKind enumerators

314

Type codes are encapsulated in CORBA: : TypeCode pseudo objects. Each
TypeCode has two components:

kind: A OORBA: : TCKi nd enumerator that associates the type code with an
IDL type. For example, enumerators t k_short, t k_bool ean, and

t k_sequence correspond to IDL types short, bool ean, and sequence,
respectively.

description: One or more parameters that supply information related to the
type code’s kind. The number and contents of parameters varies according
to the type code.

The type code description for IDL type fi xed<5, 3> contains two
parameters, which specify the number of digits and the scale.

The type code description for a string or wstri ng contains a single
parameter that specifies the string’s bound, if any.

Type codes for primitive types require no description, and so have no
parameters associated with them—for example, tk_short and

tk_I ong.

The OCORBA : TCKi nd enumeration defines all built-in IDL types:

/1 In nodul e CCRBA
enum TCKi nd {

IE

tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ul ong,
tk_float, tk _double, tk bool ean, tk char, tk octet, tk_any,
tk_TypeCode, tk_Principal, tk_objref, tk_struct, tk_union,
tk_enum tk_string, tk_sequence, tk_ array, tk_ alias,
tk_except, tk_longlong, tk_ulonglong, tk_|ongdouble,

t k_wchar,

tk_wstring, tk_fixed, tk_ value, tk_value box, tk_native,
tk_abstract _interface

Most of these are self-explanatory—for example, a type code with a TCKi nd
of t k_bool ean describes the IDL type boolean. Some, however, have no
direct association with an IDL type:

Type Code Components

tk_alias describes an IDL type definition such as typedef string.

tk_null describes an empty value condition. For example, if you construct an
Any with the default constructor, the Any’s type code is initially set to
tk_null.

tk_Principal is deprecated for applications that are compliant with CORBA
2.3 and later; retained for backward compatibility with earlier applications
that use the BOA.

tk_TypeCode describes another type code value.
tk_value describes a value type.
tk_value_box describes a value box type.

tk_void is used by the interface repository to describe an operation that
returns no value.

Table 13 shows type code parameters. The table omits type codes with an
empty parameter list.

Table 13: Type Codes and Parameters

TCKind

Parameters

tk_abstract _interface

repository-id, name

tk_alias repository-id, nane, type-code
tk_array type-code, length...
tk_enum repository-id, nane, { menber-nane }...
t k_except repository-id, nane,
{ nenber-nane, nenber-type-code }...
tk_fixed digits, scale
tk_native repository-id, nane
tk_obj ref repository-id, nane

t k_sequence

el ement -t ype- code, max- | engt h?

315

CHAPTER 13 | Using Type Codes

316

Table 13: Type Codes and Parameters

TCKind Parameters

tk_string max- | engt h?

tk_wstring

tk_struct repository-id, nane,
{ menber-nane, menber-type-code }...

t k_uni on repository-id, nane, switch-type-code, default-index,
{ menber-Iabel, menber-name, nenber-type-code }...

tk_val ue repository-id, name, type-nodifier, type-code,

{ mnenber-nane, nenber-type-code, visibility }...

t k_val ue_box

repository-id, nane,
{ nenber-nane, menber-type-code} ...

a. For unbounded sequences, strings, and wstrings, this value is O

Type Code Operations

Type Code Operations

The CORBA: : TypeCode interface provides a number of operations that you
can use to evaluate and compare TypeCode objects. These operations can be
divided into two categories:

® General type code operations that can be invoked on all TypeCode

objects.

Type-specific operations that are associated with TypeCode objects of a
specific TQKi nd, and raise a BadKi nd exception if invoked on the wrong
type code.

317

CHAPTER 13 | Using Type Codes

General Type Code Operations

The following operations are valid for all TypeCode objects:
® equal(), equivalent()

® get compact_typecode()

® kind()

equal(), equivalent()

bool ean equal (in TypeCode tc);
bool ean equi val ent (in TypeCode tc);

equal () and equi val ent () let you evaluate a type code for equality with the
specified type code, returning true if they are the same:

equal() requires that the two type codes be identical in their TCKi nd and all
parameters—member names, type names, repository IDs, and aliases.

equivalent() resolves an aliased type code (TCKi nd = tk_ali as) to its base,
or unaliased type code before it compares the two type codes’ TGk nd
parameters. This also applies to aliased type codes of members that are
defined for type codes such as tk_struct.

For both operations, the following parameters are always significant and

must be the same to return true:

® Number of members for TCKi nds of t k_enum t k_excep, tk_struct,
and tk_uni on.

® Digits and scale for tk_fi xed type codes.

® The value of the bound for type codes that have a bound parameter—
tk_array, tk_sequence, tk_string and tk_wstring.

® Default index for t k_uni on type codes.

® Member labels for t k_uni on type codes. Union members must also be
defined in the same order.

318

get_compact_typecode()

kind()

Type Code Operations

You must use equal () and equi val ent () to evaluate a type code. For
example, the following code is illegal:

org. ong. CORBA. Any anot her _any =
org.omg. CORBA CRB.init().create_any();
anot her _any.insert_string("Hello world");

or g. ong. OCRBA. TypeCode tc_string =
org.onmy. CORBA CRB.init().create_string_tc(0);
org. ong. CORBA. TypeCode t = anot her _any. type();

if (t==tc_string) { ... } // ERRCR Bad code.
You can correct this code as follows:

or g. ong. CCRBA. Any anot her _any =
org.omy. CORBA CRB.init().create_any();
anot her _any.insert_string("Hello world");

or g. ong. CORBA. TypeCode tc_string =
org.omy. CORBA CRB.init().create_string_tc(0);
or g. ong. OORBA. TypeCode t = anot her _any. type();

//Test for exact equality
if (t.equal (tc_string)) { ... }

//Test for equality, ignoring aliases
if (t.equivalent(tc_string)) { ... }

TypeCode get_conpact _t ypecode();

get _conpact _t ypecode() removes type and member names from a type
code. This operation is generally useful only to applications that must
minimize the size of type codes that are sent over the wire.

TOKi nd ki nd() ;

319

CHAPTER 13 | Using Type Codes

ki nd() returns the T nd of the target type code. You can call ki nd() on a
TypeCode to determine what other operations can be called for further
processing:

or g. ong. CORBA. Any anot her _any = nul | ;
/I Oreate and initialize 'another_any’ (not shown)...

or g. ong. CORBA. TypeCode t = anot her _any. type();

if (t.kind()==org.onmy. CORBA TCKi nd.tk_short) {

/...

}

else if (t.kind()==org.ony. CCRBA. TCKi nd.tk_| ong) {
/...

}

Type-Specific Operations

Table 14 shows operations that can be invoked only on certain type codes.
In general, each operation gets information about a specific type-code
parameter. If invoked on the wrong type code, these operations raise an
exception of BadKi nd.

Table 14: Type-Specific Operations

TCKind Operations

tk_alias id()
nane()
content _type()

tk_array I engt h()
content _type()
tk_enum id()
nane()

menber _count ()
nmenber _nane()

t k_except id()

nane()

menber _count ()
menber _nane()
menber _t ype()

320

Type Code Operations

Table 14: Type-Specific Operations

TCKind Operations
tk_fixed fixed_digits()
fixed_scal e()
tk_native id()
narre()
t k_obj ref id()
nane()
t k_sequence I engt h()

content _type()

tk_string I engt h()
tk_wstring
tk_struct id()
nane()
menber _count ()
nmenber _nane()
menber _t ype()
tk_uni on id()
narre()
menber _count ()
menber _nare()
menber _| abel ()
di scrimnator_type()
def aul t _i ndex()
tk_val ue id()

narre()

menber _count ()
menber _nare()
nmenber _t ype()
type_nodifier()
concerte_base_type()
menber _visibility()

t k_val ue_box

id()
narre()
menber _nare()

321

CHAPTER 13 | Using Type Codes

Table 15 briefly describes the information that you can access through type
code-specific operations. For detailed information about these operations,
see the CORBA Programmer’s Reference.

Table 15: Information Obtained by Type-Specific Operations

Operation Returns:

concrete_base_type() | Type code of the concrete base for the target
type code; applies only to value types.

cont ent _type() For aliases, the original type. For sequences
and arrays, the specified member's type.

def aul t _i ndex() Index to a union’s default member. If no
default is specified, the operation returns - 1.

discrimnator_type() | Type code of the union’s discriminator.

fixed_digits() Number of digits in a fixed-point type code.

fixed_scal e() Scale of a fixed-point type code.

id() Type code’s repository ID.

I engt h() Value of the bound for a type code with TCKi nd
of tk_string, tk_wstring, tk_sequence, or
tk_array.

menber _count () Number of members in the type code.

menber | abel () An Any value that contains the value of the

union case label for the specified member.

menber _name() Name of the specified member. If the supplied
index is out of bounds (greater than the
number of members), the function raises the
TypeCode: : Bounds exception.

menber _type() Type code of the specified member. If the
supplied index is out of bounds (greater than
the number of members), the function raises
the TypeCode: : Bounds exception.

322

Type Code Operations

Table 15: Information Obtained by Type-Specific Operations

Operation Returns:

menber _visibility() The Vi sibi ity (PR VATE_MEMBER or
PUBLI C MEMBER) of the specified member.

nane() Type code’s user-assigned unscoped name.

type_nodifier() Value modifier that applies to the value type
that the target type code represents.

323

CHAPTER 13 | Using Type Codes

Type Codes for Basic Types

The Java mapping provides the get _primtive_tc() method for generating
basic type codes:

publ i c org. ong. CORBA. TypeCode
org. ong. CORBA. CRB. get _primtive_tc(
or g. omg. CORBA TCKi nd t cKi nd
)

get_primtive_tc() takes one of the basic TOki nd enumerated constants
as an argument and returns a reference to the corresponding basic type
code.

For example, the following code obtains a reference to a bool ean type code:
i mport org. ong. CORBA. *;

TypeCode tc_bool =
ORB.init().get_primtive_tc(TCK nd.tk_bool ean);

324

Type Codes for User-Defined Types

Type Codes for User-Defined Types

For each user-defined type in your IDL, the IDL compiler generates a
corresponding user _def i ned_t ypeHel per class. A type code for
user _defined_type is returned by the following method:
public static org.ong. CORBA TypeCode
user _def i ned_t ypeHel per. type();
This method is useful when testing the contents of an any (see page 327).
For example, given the following IDL:
interface Interesting {
typedef | ong | ongType;

struct Useful

{
}

| ongType | ;
ik
type codes for the user-defined types can be obtained as follows:
i mport org. ong. CORBA *;
TypeCode tc_lI nteresting = I nterestingHel per.type();

TypeCode tc_| ongType = InterestingPackage. | ongTypekel per. type();
TypeCode tc_Usef ul I nt er est i ngPackage. Usef ul Hel per. type();

325

CHAPTER 13 | Using Type Codes

326

IDL-Java mapping

CHAPTER 14

Using the Any
Data Type

IDL’s any type lets you specify values that can express any IDL
type.
This allows a program to handle values whose types are not known at

compile time. The any type is most often used in code that uses the
interface repository or the dynamic invocation interface (DII).

The IDL any type maps to the Java org. ong. CCRBA Any class. Conceptually,
this class contains the following two instance variables:

type is a TypeCode object that provides full type information for the value
contained in the any. The Any class provides a t ype() method to return the
TypeCode object.

value is the internal representation used to store Any values and is
accessible via standard insertion and extraction methods.

327

CHAPTER 14 | Using the Any Data Type

For example, the following interface, AnyDeno, contains an operation that
defines an any parameter:

/1 1DL

interface AnyDeno {
/] Takes in any type that can be specified in | DL
voi d passSonet hingln (in any any_type_paraneter);

/| Passes out any type specified in | DL
any get Sonet hi ngBack() ;

IE

Given this interface, a client that calls passSonet hi ngl n() constructs an any
that specifies the desired IDL type and value, and supplies this as an
argument to the call. On the server side, the AnyDeno implementation that
processes this call can determine the type of value the any stores and
extract its value.

In this chapter This chapter covers the following topics:
Constructing an Any Object page 330
Inserting Basic Types page 331
Inserting User-Defined Types page 333
Extracting Basic Types page 335
Extracting User-Defined Types page 337
Inserting and Extracting Bounded String Aliases page 339
Extracting Object References page 340
Any as a Parameter or Return Value page 343
Using DynAny Objects page 344
Creating a DynAny page 347
Inserting and Extracting DynAny Values page 352

328

329

CHAPTER 14 | Using the Any Data Type

Constructing an Any Object

You must use the CRB class (in package or g. omy. OCRBA) to construct Any
objects. This is illustrated by the following example:

i mport org. ong. CORBA. *;

Any a = CRB.init().create any();

330

Inserting Basic Types

Inserting Basic Types

The Java class Any contains a number of insertion methods that you can use
to insert any of the pre-defined IDL types into an Any object. The insertion
methods for basic types are:

/1 dass 'org.onyg. CORBA Any’ nethod si gnat ures

public void
public void
public void
public void
public void
public void
public void
public void
public void
public void
public void
public void
public void
public void

nsert_short (short s);
nsert _long(int i);
nsert | onglong(long I);
nsert_ushort (short s);
nsert_ulong(int i);
nsert _ul ongl ong(long |);
nsert_float(float f);
nsert _doubl e(doubl e d);
nsert _bool ean(bool ean b);
nsert_char(char c);
nsert_wchar (char c);
nsert_octet(byte b);
nsert_any(Any a);

nsert _Cbj ect ((bj ect 0);

I/ throw exception when type code inconsistent with val ue
public void insert_(bject(Chject o, TypeCode t)
throws org. ong. CORBA. MARSHAL ;
public void insert_string(String s)
throws org. ong. CORBA. DATA CONVERSI QN,
or g. ony. CORBA. VARSHAL ;
public void insert_wstring(String s)
t hrows org. ong. CORBA. MARSHAL ;
public void insert_TypeCode(TypeCode t);
public void insert_fixed(java. math. Bi gDeci mal val ue);
public void insert_fixed(
j ava. mat h. Bi gDeci nal val ue,
or g. ong. CORBA. TypeCode t ype
)
throws org. ong. CORBA. BAD | NV_CRDER,

Assume that a client programmer wishes to pass an any containing an IDL
short as the parameter to the AnyDeno: : passSonet hi ngl n() operation. The
following insertion method, which is a member of class Any, can be used:

public void insert_short(short s);

331

CHAPTER 14 | Using the Any Data Type

The client programmer can then write the following code:
/l dient.java

inport org.ong. CCRBA. *;

AnyDeno anyDenoGbj = nul | ;

Any a = ORB.init().create_any();
short toPass = 26;

try {
anyDenoCbj = // initialize the object reference...

a.insert_short (t oPass);
anyDenoQbj . passSonet hi ngl n(a) ;
}
cat ch (SystenException se) {

}

332

Inserting User-Defined Types

Inserting User-Defined Types

Helper classes for user-defined types provide i nsert () methods to support
the insertion of user-defined types into an any. The general form of the
signature for i nsert () is:

publ i c voi d user-defined-typeHel per.insert (
org. onmg. CORBA Any a,
user _defi ned_t ype val ue

)

user - def i ned-t ype is the Java type mapped from the user-defined IDL
type.

For example, consider the following Foo struct defined in IDL:

/1 1DL
struct Foo {
string bar;

float nunber;

Ik

To pass the Foo struct inside an any parameter, the client programmer can
write the following:

Example 23: /nserting a short into an Any
/l dient.java,

i nport org.ong. CCRBA *;

AnyDeno anyDenoCbj = nul | ;

Any a = CRB.init().create_any();

/] Initialize the 'Foo' struct

Foo toPass = new Foo();

toPass. bar = "Bar";
toPass. nunber = (float) 34.5;

333

CHAPTER 14 | Using the Any Data Type

Type safety

334

Example 23: /nserting a short into an Any

try {
anyDemo(hj = // initialize the object reference...

FooHel per.insert(a, toPass);
anyDenmo(hj . passSonet hi ngl n(a) ;
}
cat ch (SystenkException se) {

}

These insertion methods provide a type-safe mechanism for insertion into an
any. Both the type and value of the Any are assigned at insertion. If an

attempt is made to insert a value that has no corresponding IDL type, it
results in a compile-time error.

Extracting Basic Types

Extracting Basic Types

The Any Java class contains a number of methods for extracting pre-defined
IDL types from an Any object. These extraction methods are named
extract _long(), extract_ul ong(), extract_fl oat (), and so on. Each
extraction method simply returns a value of the appropriate type.

For example, the signature of the method to extract an IDL short from an
any is:

/1 Defined in class 'org. ong. CCRBA Any’
publ i c short extract_short ()
throws org. ong. CORBA. BAD CPERATI O\

The BAD_CPERATI ON system exception is thrown if the type inside the any
does not match the type you are trying to extract.

You can extract a basic type from an any as follows:
Example 24: Extracting a basic type from an Any

/l dient.java
i mport org. ong. CORBA *;

AnyDeno anyDenoCbj = nul | ;

Any a;
short toRecei ve;

try {
anyDenoCbj = // initialize the object reference...

a = anyDenoQbj . get Sonet hi ngBack() ;
Il extract a short val ue

if ((a.type()).kind() == TCKi nd.tk_short) {
toRecei ve = a.extract_short();
}

}
cat ch (org. ong. CORBA BAD CPERATI ON bo) {

}
catch (SystenException se) {

}

335

CHAPTER 14 | Using the Any Data Type

Before extracting the value from an any, you must check its type code with
org. ong. CORBA. Any. type() . For basic types, it is enough to check the
ki nd() field of the type code.

336

Extracting User-Defined Types

Extracting User-Defined Types

User-defined type helper classes provide ext r act () methods, which support
the extraction of user-defined types from an any. The general form of the
signature for extract () is:

publ i c user _defined_t ype user_defined_t ypeHel per. extract (
org. ong. CORBA Any a
)

t hrows org. ong. CORBA BAD CPERATI O\

user _defined_type is the Java type mapped from the user-defined IDL
type. The BAD _CPERATI ON system exception is thrown if the type inside the
any does not match the type you are trying to extract.

For example, consider the following LongSeq sequence defined in IDL:

/1 1DL
t ypedef sequence<l ong, 10> LongSeq;

To extract the LongSeq sequence from an any parameter, you can write the
following:

Example 25: Extracting a user-defined type from an Any
/l dient.java

AnyDeno anyDenoChj = nul | ;

or g. ong. CCRBA. Any a;

long[] toRecei ve;

try {
anyDenoCbj = // initialize the object reference...

a = anyDenoQbj . get Sonet hi ngBack() ;
/] extract a sequence of |ongs

if ((atype()).equal (LongSeqHel per.type())) {
t oRecei ve = LongSeqgHel per. extract (a);
}

337

CHAPTER 14 | Using the Any Data Type

Example 25: Extracting a user-defined type from an Any

catch (org.ony. CCRBA. BAD CPERATI ON bo) {

catch (SystenException se) {
}

Orbix does not destroy the value of an any after extraction. You can therefore
extract the value of an any more than once.

338

Inserting and Extracting Bounded String Aliases

Inserting and Extracting Bounded String

Aliases

Inserting a bounded string

Extracting a bounded string

Bounded strings are usually given an alias using an IDL t ypedef declaration.
For example, consider the following definition of the BoundedStri ng IDL

type:

//1DL
typedef string<128> BoundedStri ng;

When the IDL is compiled, a BoundedSt ri ngHel per class is generated. You
can insert a bounded string of BoundedSt ri ng type into an any using the
standard approach for user-defined types. For example:

i nport org.ong. CCRBA *;

Any a = CRB.init().create_any();

/...

BoundedStri ngHel per.insert(a, "Less than 128 characters.");

Extraction is performed in a similar way to other user-defined types. To
extract the bounded string alias, you can use the extract () method of the
BoundedSt ri ngHel per class. For example:

i mport org. ong. CORBA *;

Any a = CRB.init().create_any();

/...

if ((a type()).equal (BoundedStringHel per.type())) {
String s = BoundedStri ngHel per. extract(a);

}

339

CHAPTER 14 | Using the Any Data Type

Extracting Object References

extract()

340

You can use two methods to extract object references from an any:
® extract() is defined on the associated Hel per class.
extract_Object() is defined on the Any class.

The examples in the following sections use the following two IDL interfaces,
Basel ntf and Derivedintf:

/11DL
interface Baselntf { };

interface Derivedintf : Baselntf { };

Deri vedl nt f Hel per. extract () is used to extract an object reference when
the most derived type of the object is Deri vedi nt f. It follows the usual
pattern for extracting user-defined types. For example:

Example 26: Extracting an object reference

AnyDeno anyDenoChj = nul | ;
org. ong. CCRBA. Any a;
Derivedlntf toReceive = null;

try {
anyDenoCbj = // initialize the object reference...

/I 'a contains a 'Derivedlntf’ object reference
a = anyDenoQbj . get Sonet hi ngBack() ;

/] extract a ’'Derivedlintf’ object reference

if ((a.type()).kind()==org.ong. CORBA TCKi nd.tk_objref) {
t oRecei ve = DerivedlntfHel per.extract(a);

}

extract_Object()

Extracting Object References

Example 26: Extracting an object reference

catch (org. ong. CORBA BAD CPERATI ON bo) {

catch (SystenException se) {

}

Any. extract _Qbj ect () is useful when you need to perform a polymorphic
extraction from an any—that is, the any contains a derived object reference
type and you want to extract it as a base type.

The following example extracts a Deri vedl nt f object reference as a
Basel ntf object reference:

Example 27: Extracting a derived object reference type
/Il dient.java

AnyDeno anyDenoCbj = nul | ;
org. ong. CORBA. Any a;
Basel ntf toReceive = null;

try {
or g. omg. CORBA (hj ect obj ;
anyDenmoCbj = // initialize the object reference...

// "a contains a 'Derivedlntf’ object reference
a = anyDenobj . get Sorret hi ngBack() ;

Il extract a 'Derivedlntf’ object reference as a 'Baselntf’
if ((a.type()).kind()==org.ony. CCRBA TCKi nd. tk_objref) {
obj = a.extract_Cbject();
t oRecei ve = Basel nt f Hel per. narrow(obj) ;
}
}
cat ch (org. ong. CORBA BAD CPERATI ON bo) {

}
catch (SystenException se) {

}

341

CHAPTER 14 | Using the Any Data Type

The any is extracted to obj of type CORBA. (bj ect using

Any. extract _Qbj ect (). The obj object reference is then narrowed to type
Basel nt .

The remote Deri vedI ntf object can now be invoked on polymorphically,
using the object reference of Basel ntf type.

342

Any as a Parameter or Return Value

Any as a Parameter or Return Value

The mapping for IDL any operation parameters and return values are
illustrated by the following IDL operation:

/1 1DL
any opl (in any al, out any a2, inout any a3);

This IDL operation maps to the following Java method:

i mport org. ong. CORBA. Any;
i mport org. ony. CORBA AnyHol der ;

public Any opl (Any al, AnyHol der a2, AnyHol der a3);

Both i nout and out parameters map to type AnyHol der as explained in
“Holder Class Types” on page 252.

343

CHAPTER 14 | Using the Any Data Type

Using DynAny

Interface hierarchy

344

Objects

The DynAny interface allows applications to compose and decompose any
type values dynamically. With DynAny, you can compose a value at runtime
whose type was unknown when the application was compiled, and transmit
that value as an any. Conversely, an application can receive a value of type
any from an operation, and interpret its type and extract its value without
compile-time knowledge of its IDL type.

The DynAny API consists of nine interfaces. One of these, interface
DynAnyFact ory, lets you create DynAny objects. The rest of the DynAny API
consists of the DynAny interface itself and derived interfaces, as shown in
Figure 21.

DynFi xed
DynSt ruct
DynSequence
DynArray
DynUni on
DynEnum
DynVal ue
DynVal ueBox

DynAny: :

Figure 21: Interfaces that derive from the DynAny interface

The derived interfaces correspond to complex, or constructed IDL types such
as array and struct . Each of these interfaces contains operations that are
specific to the applicable type.

The DynAny interface contains a number of operations that apply to all
DynAny objects; it also contains operations that apply to basic IDL types
such as I ong and string.

The DynStruct interface is used for both IDL struct and except i on types.

Using DynAny Objects

Generic operations The DynAny interface contains a number of operations that can be invoked
on any basic or constructed DynAny object:

interface DynAny {
exception |nvalidVal ue{};
exception TypeM sMatch {};
/...

voi d assi gn(in DynAny dyn_any) raises (TypeM smatch);
DynAny copy();
voi d destroy();

bool ean equal (i n DynAny da);

voi d from any(
in any val ue) raises(TypeM smatch, InvalidVval ue);
any to_any();

CCRBA: : TypeCode type();
/...
b

assign() initializes one DynAny object’s value from another. The value must
be compatible with the target DynAny’s type code; otherwise, the operation
raises an exception of TypeM snat ch.

copy() creates a DynAny whose value is a deep copy of the source DynAny’s
value.

destroy() destroys a DynAny and its components.

equal() returns true if the type codes of the two DynAny objects are
equivalent and if (recursively) all component DynAny objects have identical
values.

from_any() initializes a DynAny object from an existing any object. The
source any must contain a value and its type code must be compatible with
that of the target DynAny; otherwise, the operation raises an exception of
TypeM snat ch.

to_any() initializes an any with the DynAny’s value and type code.

345

CHAPTER 14 | Using the Any Data Type

type() obtains the type code associated with the DynAny object. A DynAny
object’s type code is set at the time of creation and remains constant during
the object’s lifetime.

346

Creating a DynAny

Creating a DynAny

Create operations

Returned types

The DynAnyFact ory interface provides two creation operations for DynAny
objects:

nodul e Dynam cAny {
interface DynAny; // Forward decl aration

/...
interface DynAnyFact ory
{

exception | nconsi stent TypeCode {};

DynAny create_dyn_any(in any val ue)
rai ses (I nconsi stent TypeCode);
DynAny creat e_dyn_any_fromtype_code(i n CORBA : TypeCode type)
rai ses (I nconsi stent TypeCode) ;
Ik
ha

The create operations return a DynAny object that can be used to manipulate
any objects:

create_dyn_any() is a generic create operation that creates a DynAny from
an existing any and initializes it from the any’s type code and value.

The type of the returned DynAny object depends on the any’s type code. For
example: if the any contains a struct, create_dyn_any() returns a
DynSt ruct object.

create_dyn_any_from_type_code() creates a DynAny from a type code. The
value of the DynAny is initialized to an appropriate default value for the given
type code. For example, if the DynAny is initialized from a string type code,
the value of the DynAny is initialized to " (empty string).

The type of the returned DynAny object depends on the type code used to
initialize it. For example: if a struct type code is passed to
create_dyn_any_fromtype_code(), a DynStruct object is returned.

If the returned DynAny type is one of the constructed types, such as a
DynStruct, you can narrow the returned DynAny before processing it further.

347

CHAPTER 14 | Using the Any Data Type

create_dyn_any()

create_dyn_any() is typically used when you need to parse an any to
analyse its contents. For example, given an any that contains an enumtype,
you can extract its contents as follows:

Example 28: Creating a DynAny

/1 Java
i nport org.ong. CCRBA. *;
i nport org.ong. CCRBA. CRBPackage. *;
/...
public void get_any val (org.ong. CCRBA Any a) {
or g. omg. Dynam cAny. DynAnyFactory dyn_fact = nul | ;

/l Get a reference to a ' Dynam cAny:: DynAnyFact ory’ obj ect

try {
1 or g. ong. GORBA. (hj ect obj
= orb.resol ve_initial _references("DynAnyFactory");
dyn_f act

= org. ong. Dynam cAny. DynAnyFact or yHel per . narr ow(obj) ;

[/l Cet the Any’s type code
or g. onmy. CCRBA. TypeCode tc = a.type();
if (tc.kind()==TC< nd.tk_enunm {
2 or g. ong. Dynam cAny. DynAny da
= dyn_fact.create_dyn_any(a);
or g. ong. Dynam cAny. DynEnum de
= or g. ong. Dynam cAny. DynEnuntel per. narr ow(da) ;

...
3 de. destroy();
}
else if (tc.kind()==...) {
/...
}

}
catch (SystenkException se) {
/1 error: handl e exception
}
catch (Exception ex) {
/1 error: handl e exception

}

348

Creating a DynAny

The code executes as follows:

1.

To obtain an initial reference to the DynAnyFact ory object, call
resolve_initial _references("DynAnyFactory").

The or b refers to an existing CRB object that has been initialized prior to
this code fragment.

The plain org. ong. CCRBA. bj ect object reference must be narrowed to
the DynAnyFact ory type before it is used.

The DynAny created in this step is initialized with the same type and
value as the given CCRBA Any data type.

Because the any argument of creat e_dyn_any() contains an enum the
return type of creat e_dyn_any() is a DynEnum The return value can
therefore be narrowed to this type.

destroy() must be invoked on the DynAny object when you are
finished with it.

349

CHAPTER 14 | Using the Any Data Type

create_dyn_any from_type code()

create_dyn_any_fromtype_code() is typically used to create an any when
stub code is not available for the particular type.

For example, consider the IDL st ri ng<128> bounded string type. In Java
there is no Hel per type available to insert this anonymous bounded string
type. You can create an any containing this type as follows:

Example 29: /nserting an anonymous bounded string.

i nport org.onyg. CCRBA. *;

i nport org. ong. CORBA. CRBPackage. *;

/...

or g. ong. Dynam cAny. DynAnyFactory dyn fact = null;

/Il Get a reference to a ’'Dynami cAny:: DynAnyFactory’ object

try {
1 or g. ong. CORBA (bj ect obj
= orb.resolve_initial _references("DynAnyFactory");
dyn_f act

= or g. ong. Dynam cAny. DynAnyFact or yHel per . narrow obj) ;

/I Create type code for an anonynous bounded string type
int bound = 128;

2 TypeCode tc_v = orb.create string_tc(bound);
I/l Initialize a’DynAny’ containing a bounded string
3 or g. ong. Dynani cAny. DynAny dyn_bounded_str
= dyn_fact.create_dyn_any fromtype_code(tc_v);
4 dyn_bounded_str.insert_string("Less than 128 characters.");

/1 Convert 'DynAny’ to a plain 'any’

5 org. onmg. CCRBA Any a = dyn_bounded_str.to_any();
/...
/1 deanup ' DynAny’
6 dyn_bounded_str. destroy();
}

catch (SystenException se) {
/1 error: handl e exception

}
catch (Exception ex) {

/1 error: handl e exception

}

350

Creating a DynAny

The code can be explained as follows:

1.

The initialization service gets an initial reference to the DynAnyFact ory
object by calling resol ve_i ni ti al _ref erences(" DynAnyFact ory").

The or b refers to an existing CRB object that has been initialized prior to
this code fragment.

The plain org. ong. CCRBA. bj ect object reference must be narrowed to
the DynAnyFact ory type before it is used.

The CRB class supports a complete set of functions for the dynamic
creation of type codes. For example, create_string_tc() creates
bounded or unbounded string type codes. The argument of
create_string_tc() can be non-zero, to specify the bound of a
bounded string, or zero, for unbounded strings.

A DynAny object, called dyn_bounded_str, is created using
create_dyn _any fromtype _code(). dyn _bounded_str is initialized
with its type equal to the given bounded string type code, and its value
equal to a blank string.

The value of dyn_bounded_str is set to the given argument of
insert_string(). Insertion operations of the form i nsert _Basi cType
are defined for all basic types, as described in “Accessing basic
DynAny values” on page 352.

The dyn_bounded_str object is converted to a plain any that is
initialized with the same type and value as the DynAny.
destroy() must be invoked on the DynAny object when you are
finished with it.

Note: A DynAny object’s type code is established at its creation and
cannot be changed thereafter.

351

CHAPTER 14 | Using the Any Data Type

Inserting and Extracting DynAny Values

The interfaces that derive from DynAny such as DynArray and DynStr uct
handle insertion and extraction of any values for the corresponding IDL
types. The DynAny interface contains insertion and extraction operations for
all other basic IDL types such as string and I ong.

Accessing basic DynAny values The DynAny interface contains two operations for each basic type code, to
insert and extract basic DynAny values: +
® Aninsert operation is used to set the value of the DynAny. The data
being inserted must match the DynAny’s type code.

The TypeM snat ch exception is raised if the value to insert does not
match the DynAny’s type code.

The I nval i dval ue exception is raised if the value to insert is
unacceptable—for example, attempting to insert a bounded string that
is longer than the acceptable bound. The I nval i dval ue exception is
also raised if you attempt to insert a value into a DynAny that has
components when the current position is equal to - 1. See “Iterating
Over DynAny Components” on page 358.

® Each extraction operation returns the corresponding IDL type.
The Dynani cAny: : DynAny: : TypeM smat ch exception is raised if the
value to extract does not match the DynAny’s type code.
The Dynani cAny: : DynAny: : | nval i dval ue exception is raised if you
attempt to extract a value from a DynAny that has components when
the current position is equal to - 1. See “Iterating Over DynAny
Components” on page 358.

It is generally unnecessary to use a DynAny object in order to access any
values, as it is always possible to access these values directly (see page 331
and see page 335). Insertion and extraction operations for basic DynAny
types are typically used in code that iterates over components of a
constructed DynAny, in order to compose and decompose its values in a
uniform way (see page 360).

The IDL for insertion and extraction operations is shown in the following
sections.

352

Inserting and Extracting DynAny Values

Insertion Operations
The DynAny interface supports the following insertion operations:

voi d insert_bool ean(i n bool ean val ue)
rai ses (TypeM smatch, |nvalidVval ue);
void insert_octet(in octet val ue)
rai ses (TypeM snatch, |nvalidVal ue);
voi d insert_char(in char val ue)
rai ses (TypeM smatch, |nvalidVval ue);
void insert_short(in short val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_ushort (in unsigned short val ue)
rai ses (TypeM snatch, |nvalidVal ue);
void insert_long(in | ong val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_ul ong(in unsigned | ong val ue)
rai ses (TypeM smatch, |nvalidVval ue);
void insert_float(in float val ue)
rai ses (TypeM snatch, |nvalidVal ue);
voi d i nsert_doubl e(i n doubl e val ue)
rai ses (TypeM smatch, |nvalidVval ue);
void insert_string(in string val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_reference(in Cbject val ue)
rai ses (TypeM snatch, |nvalidVal ue);
voi d insert_typecode(i n OCORBA: : TypeCode val ue)
rai ses (TypeM smatch, |nvalidVval ue);
void insert_longlong(in |ong | ong val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_ul ongl ong(in unsigned | ong | ong val ue)
rai ses (TypeM snatch, |nvalidVal ue);
voi d insert_| ongdoubl e(i n | ong doubl e val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_wchar (i n wchar val ue)
rai ses (TypeM smatch, |nvalidVval ue);
void insert_wstring(in wstring val ue)
rai ses (TypeM snatch, |nvalidVal ue);
voi d insert_any(in any val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_dyn_any(in DynAny val ue)
rai ses (TypeM smatch, |nvalidVval ue);
voi d insert_val (i n Val ueBase val ue)
rai ses (TypeM snatch, |nvalidVal ue);

353

CHAPTER 14 | Using the Any Data Type

354

For example, the following code fragment invokes i nsert _string() on a
DynAny to create an any value that contains a string:

Example 30: Creating an any with insert_string()

i nport org.ong. CCRBA. *;

i nport org. ong. CORBA. CRBPackage. *;

/...

or g. ong. Dynam cAny. DynAnyFactory dyn fact = null;

try {
/l Get a reference to a ' Dynam cAny:: DynAnyFact ory’ obj ect
or g. omg. CCRBA. (bj ect obj
= orb.resolve_initial _references("DynAnyFactory");
dyn_f act
= or g. ong. Dynam cAny. DynAnyFact or yHel per . narrow obj) ;

Il create DynAny with a string val ue

or g. omg. Dynani cAny. DynAny dyn_a;

dyn_a = dyn_fact.create_dyn_any fromtype_code(
orb.get_primtive tc(TCKind.tk_string));

dyn_a.insert_string("not to worry!");

/1 convert DynAny to any
org.onyg. CCRBA Any a = dyn_a.to_any();
/...
/] destroy the DynAny
dyn_a. destroy();

}

cat ch (SystenException se) {
/1 error: handl e exception

}

catch (Exception ex) {
/1 error: handl e exception

}

Inserting and Extracting DynAny Values

Extraction Operations

The IDL extraction operations supported by the DynAny interface are:

bool ean get _bool ean()

rai ses (TypeM smatch, |nvalidVval ue);
oct et get_octet()

rai ses (TypeM snatch, |nvalidVal ue);
char get _char ()

rai ses (TypeM smatch, |nvalidVval ue);
short get _short ()

rai ses (TypeM smatch, |nvalidVval ue);
unsi gned short get _ushort ()

rai ses (TypeM snatch, |nvalidVal ue);
| ong get _long()

rai ses (TypeM smatch, |nvalidVval ue);
unsi gned | ong get _ul ong()

rai ses (TypeM smatch, |nvalidVval ue);
f 1 oat get _float()

rai ses (TypeM snatch, |nvalidVal ue);
doubl e get _doubl e()

rai ses (TypeM smatch, |nvalidVval ue);
string get _string()

rai ses (TypeM smatch, |nvalidVval ue);
j ect get _reference()

rai ses (TypeM snatch, |nvalidVal ue);
CORBA: : TypeCode get _typecode()

rai ses (TypeM smatch, |nvalidVval ue);
I ong | ong get _I ongl ong()

rai ses (TypeM smatch, |nvalidVval ue);
unsi gned | ong | ong get _ul ongl ong()

rai ses (lnvalidVal ue, TypeM snat ch);
| ong doubl e get _| ongdoubl e()

rai ses (TypeM smatch, |nvalidVval ue);
wchar get _wchar ()

rai ses (TypeM smatch, |nvalidVval ue);
wstring get_wstring()

rai ses (TypeM snatch, |nvalidVal ue);
any get _any()

rai ses (TypeM smatch, |nvalidVval ue);
DynAny get _dyn_any()

rai ses (TypeM smatch, |nvalidVval ue);
Val ueBase get _val ()

rai ses (TypeM snatch, |nvalidVal ue);

355

CHAPTER 14 | Using the Any Data Type

356

For example, the following code converts a basic any to a DynAny. It then
evaluates the DynAny’s type code in a switch statement and calls the
appropriate get _ operation to obtain its value:

Example 31: Converting a basic any to a DynAny.

i nport org.ong. CCRBA. *;

i nport org. ong. CORBA. CRBPackage. *;

/...

or g. ong. Dynam cAny. DynAnyFactory dyn fact = null;

try {
/l Get a reference to a ' Dynam cAny:: DynAnyFact ory’ obj ect
or g. omg. CCRBA. (bj ect obj
= orb.resolve_initial _references("DynAnyFactory");
dyn_f act
= or g. ong. Dynam cAny. DynAnyFact or yHel per . narrow obj) ;

org.omg. CCRBA Any a = ...; // get Any from sonewhere

/1l create DynAny from Any
or g. ong. Dynam cAny. DynAny dyn_a = dyn_fact. create_dyn_any(a);

/1 get DynAny’s type code
TypeCode tcode = dyn_a.type();

/] eval uate type code
i f (tcode.kind()==TCKi nd.tk_short)

{
short s = dyn_a. get_short();
Systemout . println("any contains short value of " + s);
}
else if (tcode.kind()==TCKi nd. tk_| ong)
{
int | = dyn_a.get_|ong();
Systemout. println("any contains long value of " +1);
}
/] other cases follow
/...

Inserting and Extracting DynAny Values

Example 31: Converting a basic any to a DynAny.

dyn_a. destroy();

}
catch (SystenException se) {

/1 error: handl e exception

}
catch (Exception ex) {

/1 error: handl e exception

}

357

CHAPTER 14 | Using the Any Data Type

Iterating Over DynAny Components

358

Five types of DynAny objects contain components that must be accessed to
insert or extract values: DynStruct, DynSequence, DynArr ay, DynUni on, and
Dynval ue. On creation, a DynAny object holds a current position equal to the
offset of its first component. The DynAny interface has five operations that let
you manipulate the current position to iterate over the components of a
complex DynAny object:

nmodul e Dynam cAny {

/...
i nt erface DynAny{
/...
/] lteration operations
unsi gned | ong comnponent _count () ;
DynAny current _conponent () raises (TypeM snatch);
bool ean seek(in | ong index);
bool ean next ();
voi d rew nd();
I8

IE

component_count() returns the number of components of a DynAny. For
simple types such as | ong, and for enumerated and fixed-point types, this
operation returns 0. For other types, it returns as follows:

® sequence: number of elements in the sequence.
® struct, exception and val uet ype: number of members.
® array: number of elements.

® union: 2 if a member is active; otherwise 1.

current_component() returns the DynAny for the current component:
DynAny current _conponent ()

You can access each of the DynAny’s components by invoking this operation
in alternation with the next () operation. An invocation of
current _conponent () alone does not advance the current position.

If an invocation of current _conponent () returns a derived type of DynAny,
for example, DynStruct, you can narrow the DynAny to this type.

If you call current _conponent () on a type that has no components, such as
a | ong, it raises the TypeM smat ch exception.

Undefined current position

Inserting and Extracting DynAny Values

If you call current _conponent () when the current position of the DynAny is
-1, it returns a nil object reference.

next() advances the DynAny’s current position to the next component, if
there is one:

bool ean next();

The operation returns true if another component is available; otherwise, it
returns false. Thus, invoking next () on a DynAny that represents a basic
type always returns false.

seek() advances the current position to the specified component:
bool ean seek (in |ong index);

Like next (), this operation returns true if the specified component is
available; otherwise, it returns false.

rewind() resets the current position to the DynAny object’s first component:
void rew nd();

It is equivalent to calling seek() with a zero argument.

In some circumstances the current position can be undefined. For example,
if a DynSequence object contains a zero length sequence, both the current
component and the value of the DynAny’s current position are undefined.

The special value -1 is used to represent an undefined current position.

When the current position is - 1, an invocation of current _conponent ()
yields a nil object reference.

The current position becomes undefined (equal to - 1) under the following
circumstances:

® When the DynAny object has no components.

For example, a DynAny containing a zero-length sequence or array
would have no components.
® |Immediately after next () returns false.

® If seek() is called with a negative integer argument, or with a positive
integer argument greater than the largest valid index.

359

CHAPTER 14 | Using the Any Data Type

Accessing Constructed DynAny Values

DynEnum

360

Each interface that derives from DynAny, such as DynArray and DynStruct,
contains its own operations which enable access to values of the following
DynAny types:

® DynEnum

® DynStruct

® DynUnion
® DynSequence and DynArray
® DynFixed
® DynValue

® DynValueBox

The DynEnuminterface enables access to enumerated any values:

nmodul e Dynam cAny {

/...

interface DynEnum: DynAny {
string get_as_string();
void set_as _string(in string val) raises(lnvalidValue);
unsi gned | ong get _as_ul ong();
voi d set_as_ul ong(in unsigned | ong val)

rai ses(I nval i dval ue);

}s
Ik

The DynEnuminterface defines the following operations:

get_as_string() and set_as_string() let you access an enumerated value by
its IDL string identifier or its ordinal value. For example, given this
enumeration:

enum Exchange{ NYSE, NASD, AMVEX, CH3O DAX, FTSE };

set _as_string("NASD') sets the enunis value as NASD, while you can get its
current string value by calling get _as_string().

get_as_ulong() and set_as_ulong() provide access to an enumerated value
by its ordinal value.

Inserting and Extracting DynAny Values

The following code uses a DynEnumto decompose an any value that contains
an enumeration:

Example 32: Using DynEnum

i nport org. ong. CCRBA *;
i mport org. ong. CORBA CRBPackage. *;
/...

public void extract_any(org. ong. CCRBA Any a){
or g. omg. Dynani cAny. DynAnyFactory dyn_fact = nul | ;

try {
/Il Get a reference to a ' Dynam cAny:: DynAnyFact ory’
obj ect
or g. ong. CCRBA. (bj ect obj
= orb.resolve_initial _references("DynAnyFactory");
dyn_fact
= or g. ong. Dynam cAny. DynAnyFact or yHel per . narr ow obj) ;
or g. ong. Dynam cAny. DynAny dyn_a
= dyn_fact.create_dyn_any(a);
TypeCode tcode = dyn_a. type();

if (tcode.kind()==TCKi nd. tk_enum

{
or g. ong. Dynam cAny. DynEnum dyn_e
= org. ong. Dynam cAny. DynEnuntl per. narrow dyn_a);
String s = dyn_e.get_as_string();
System out. println(s);
dyn_e. destroy();
}
Il other cases follow
/1

}

catch (SystenkException se) {
/1l error: handl e exception

}
catch (Exception ex) {
/1l error: handl e exception

}

361

CHAPTER 14 | Using the Any Data Type

DynStruct The DynStruct interface is used for struct and excepti on types. The
interface is defined as follows:

modul e Dynam cAny {

/...
typedef string Fiel d\ane;
struct NanmeVal uePai r{
Fi el d\are i d;
any val ue;
I8
typedef sequence<NaneVal uePai r> NanmeVal uePai r Seq;
struct NameDynAnyPair {
Fi el d\are i d;
DynAny val ue;
I8
typedef sequence<NaneDynAnyPair> NaneDynAnyPai r Seq;
interface DynStruct : DynAny{
Fi el dNarme current _nenber _narre()
rai ses(TypeM smat ch, |nvalidVal ue);
CCRBA: : TXKi nd current _nenber ki nd()
rai ses(TypeM smat ch, |nvalidVval ue);
NarreVal uePai r Seq get _nmenbers();
void set_nenbers (in NaneVal uePai r Seq val ue)
rai ses(TypeM smat ch, |nvalidVal ue);
NarmeDynAnyPai r Seq get _nenbers_as_dyn_any();
voi d set_nenbers_as_dyn_any(
i n NameDynAnyPai r Seq val ue
) raises(TypeM snatch, |nvalidVal ue);
I8
b

The DynStruct interface defines the following operations:

® set_menbers() and get_nenbers() are used to get and set
member values in a DynsStruct. Members are defined as a
NaneVal uePai r Seq sequence of name-value pairs, where each
name-value pair consists of the member's name as a string, and
an any that contains its value.

362

Inserting and Extracting DynAny Values

® current_nenber_nane() returns the name of the member at the
current position, as established by Dynany base interface
operations. Because member names are optional in type codes,
current _menber _nane() might return an empty string.

® current_nenber ki nd() returns the TCKi nd value of the current
DynStruct member's type code.

® get_nenbers_as_dyn any() and set _nmenbers_as_dyn_any() are
functionally equivalent to get _nenbers() and set_nenbers(),
respectively. They operate on sequences of name-DynAny pairs. Use
these operations if you work extensively with DynStruct objects; doing
so allows you to avoid converting a constructed DynAny into an any
before using the operations to get or set struct members.

The following code iterates over members in a DynStruct and passes each
member over to eval _menber () for further decomposition:

Example 33: Using a DynStruct

i nport org. ong. CCRBA *;

i mport org. ong. CORBA CRBPackage. *;

/...

or g. ong. Dynam cAny. DynStruct dyn_s = ...;
TypeCode tcode = dyn_s.type();

OORBA: : ULong count er = t code. menber _count () ;

for (OCRBA :Uong i = 0; i < counter; i++) {
or g. ong. Dynam cAny. DynAny nenber = dyn_s. current _conponent () ;
eval _menber (nmenber) ;
dyn_s. next ();

363

CHAPTER 14 | Using the Any Data Type

DynUnion

364

The Dynuni on interface enables access to any values of uni on type:

modul e Dynam cAny {
/...
typedef string Fiel d\ane;

interface DynUnion : DynAny {
DynAny get _di scrimnator();
void set_discrimnator(in DynAny d) raises(TypeM snatch);
void set_to default_menber () rai ses(TypeM snatch);
voi d set_to_no_active_nenber () raises(TypeM smatch);
bool ean has_no_acti ve_nenber () raises(lnvalidVal ue);
CCRBA: : TQKi nd di scrim nator_Kkind();
DynAny menber () rai ses(lnvalidval ue);
Fi el dNane nenber _nane() rai ses(IlnvalidVval ue);
CCRBA: : T&Ki nd enber _ki nd() rai ses(lnvalidVal ue);

IH
The Dynuni on interface defines the following operations:

get_discriminator() returns the current discriminator value of the Dynuni on.

set_discriminator() sets the discriminator of the Dynuni on to the specified
value. If the type code of the parameter is not equivalent to the type code of
the union’s discriminator, the operation raises TypeM snat ch.

set_to_default_member() sets the discriminator to a value that is consistent
with the value of the default case of a union; it sets the current position to
zero and causes conponent _count to return 2. Calling

set _to_def aul t _menber () on a union that does not have an explicit default
case raises TypeM snat ch.

set_to_no_active_member() sets the discriminator to a value that does not
correspond to any of the union’s case labels; it sets the current position to
zero and causes conponent _count to return 1. Calling

set _to_no_active_menber () on a union that has an explicit default case or
on a union that uses the entire range of discriminator values for explicit case
labels raises TypeM snat ch.

DynSequence and DynArray

Inserting and Extracting DynAny Values

has_no_active_member() returns true if the union has no active member
(that is, the union’s value consists solely of its discriminator, because the
discriminator has a value that is not listed as an explicit case label). Calling
this operation on a union that has a default case returns false. Calling this
operation on a union that uses the entire range of discriminator values for
explicit case labels returns false.

discriminator_kind() returns the TCKi nd value of the discriminator's
TypeCode.

member() returns the currently active member. If the union has no active
member, the operation raises | nval i dval ue. Note that the returned
reference remains valid only as long as the currently active member does not
change. Using the returned reference beyond the life time of the currently
active member raises CBJECT _NOT_EXI ST.

member_name() returns the name of the currently active member. If the
union’s type code does not contain a member name for the currently active
member, the operation returns an empty string. Calling nenber _nane() on a
union that does not have an active member raises I nval i dval ue.

member_kind() returns the TCKi nd value of the currently active member’s
TypeCode. Calling this operation on a union that does not have a currently
active member raises I nval i dval ue.

The interfaces for DynSequence and DynArray are virtually identical:

nmodul e Dynam cAny {
/...
t ypedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynArray : DynAny {
AnySeq get _el enents();
voi d set _el enent s(in AnySeq val ue)
rai ses (TypeM smatch, InvalidVval ue);
DynAnySeq get _el enents_as_dyn_any();
voi d set _el enents_as_dyn_any(i n DynAnySeq val ue)
rai ses (TypeM smatch, InvalidVval ue);

365

CHAPTER 14 | Using the Any Data Type

366

i nterface DynSequence : DynAny {
unsi gned | ong get | ength();
void set_|ength(in unsigned | ong | en)
rai ses(I nval i dval ue);

/1 renaining operations same as for DynArray
/...

}s
IE

You can get and set element values in a DynSequence or DynArray with
operations get _el enent s() and set _el enent s(), respectively. Members are
defined as an AnySeq sequence of any objects.

Operations get _el enent s_as_dyn_any() and set_el enents_as_dyn_any()
are functionally equivalent to get _el ement s() and set _el enent s() ; unlike
their counterparts, they return and accept sequences of DynAny elements.

DynSequence has two of its own operations:
get_length() returns the number of elements in the sequence.

set_length() sets the number of elements in the sequence.

If you increase the length of a sequence, new elements are appended to the
sequence and default-initialized. If the sequence’s current position is
undefined (equal to -1), increasing the sequence length sets the current
position to the first of the new elements. Otherwise, the current position is
not affected.

If you decrease the length of a sequence, set _| ength() removes the
elements from its end.

Inserting and Extracting DynAny Values

You can access elements with the iteration operations described in “Iterating

Over DynAny Components” on page 358. For example, the following code
iterates over elements in a DynArray:

/1 Java

i nport org.ong. CCRBA *;

i nport org. ong. CCRBA. CRBPackage. *;

/...

or g. ong. Dynam cAny. DynArray dyn_array = ...;
TypeCode tcode = dyn_array. type();

CORBA: : ULong counter = tcode. | ength();

for (OCRBA::Uong i = 0; i < counter; i++) {
or g. ong. Dynani cAny. DynAny el em
= dyn_array. current_conponent () ;
eval _menber (nmenber) ;
dyn_array. next ();

DynFixed The DynFi xed interface lets you manipulate an any that contains fixed-point

values.
interface DynAny{

interface DynFi xed : DynAny{
string get_val ue();
voi d set_val ue(in string val)
rai ses (TypeM snatch, |nvalidVal ue);

}s
IE

The DynFi xed interface defines the following operations:
get_value() returns the value of a DynFi xed as a string.
set_value() sets the value of a DynFi xed. If val is an uninitialized string or

contains a fixed point literal that exceeds the scale of DynFi xed, the

I nval i dVal ue exception is raised. If val is not a valid fixed point literal, the
TypeM snat ch exception is raised.

367

CHAPTER 14 | Using the Any Data Type

DynValue The DynVal ue interface lets you manipulate an any that contains a value
type (excluding boxed value types):

modul e Dynam cAny {
/...
typedef string Fiel d\ane;

struct NanmeVal uePai r

{
Fi el d\arre i d;
any val ue;
IE
typedef sequence<NaneVal uePai r > NameVal uePai r Seq;

struct NaneDynAnyPair
{
Fi el d\arre i d;
DynAny val ue;
I8
typedef sequence<NaneDynAnyPai r> NameDynAnyPai r Seq;

interface DynVal ue : DynAny
{

Fi el dNanme current _nenber _narre()
rai ses (TypeM snatch, |nvalidVal ue);
CCRBA: : TOKi nd current _nenber ki nd()
rai ses (TypeM snatch, |nvalidVal ue);
NarreVal uePai r Seq get _nenbers();
voi d set_nenbers(i n NaneVal uePai r Seq val ues)
rai ses (TypeM snatch, |nvalidVal ue);
NarmreDynAnyPai r Seq get _nenbers_as_dyn_any();
voi d set_nenbers_as_dyn_any(i n NaneDynAnyPai r Seq val ue)
rai ses (TypeM snatch, |nvalidVal ue);

I
The DynVal ue interface defines the following operations:

current_member_name() returns the name of the value type member
indexed by the current position.

current_member_kind() returns the type code kind for the value type
member indexed by the current position.

368

DynValueBox

Inserting and Extracting DynAny Values

get_members() returns the complete list of value type members in the form
of a NareVal uePai r Seq.

set_members() sets the contents of the value type members using a
NaneVal uePai r Seq.

get_members_as_dyn_any() is similar to get _nenbers(), except that the
result is returned in the form of a NanmeDynAnyPai r Seq.

set_members_as_dyn_any() is similar to set _nenbers(), except that the
contents are set using a NaneDynAnyPai r Seq.

The Dynval ueBox interface lets you manipulate an any that contains a boxed
value type:

nmodul e Dynam cAny {
/...
i nterface DynVal ueBox : DynAny
{

any get _boxed_val ue();

voi d set _boxed_val ue(in any val)
rai ses (TypeM smat ch);

DynAny get _boxed_val ue_as_dyn_any();

voi d set _boxed_val ue_as_dyn_any(i n DynAny val)
rai ses (TypeM snmat ch);

H

The DynVval ue interface defines the following operations:
get_boxed_value() returns the boxed value as an any.
set_boxed_value() sets the boxed value as an any.
get_boxed_value_as_dyn_any() returns the boxed value as a DynAny.

set_boxed_value_as_dyn_any() sets the boxed value as a DynAny.

369

CHAPTER 14 | Using the Any Data Type

370

CHAPTER 15

Generating
Interfaces at
Runtime

The dynamic invocation interface lets a client invoke on
objects whose interfaces are known only at runtime; similarly,
the dynamic skeleton interface lets a server process requests
on objects whose interfaces are known only at runtime.

An application’s IDL usually describes interfaces to all the CORBA objects
that it requires at runtime. Accordingly, the IDL compiler generates the stub
and skeleton code that clients and servers need in order to issue and
process requests. The client can issue requests only on those objects whose
interfaces are known when the client program is compiled; similarly, the
server can process requests only on those objects that are known when the
server program is compiled.

Some applications cannot know ahead of time which objects might be

required at runtime. In this case, Orbix provides two interfaces that let you

construct stub and skeleton code at runtime, so clients and servers can

issue and process requests on those objects:

® The dynamic invocation interface (DIl) builds stub code for a client so
it can call operations on IDL interfaces that were unknown at compile
time.

371

CHAPTER 15 | Generating Interfaces at Runtime

® Thedynamic skeleton interface (DSI) builds skeleton code for a server,
so it can receive operation or attribute invocations on an object whose
IDL interface is unknown at compile time.

In this chapter This chapter discusses the following topics:
Using the DIl page 373
Using the DSI page 385

372

Using the DIl

Using the DII

Overview Some application programs and tools must be able to invoke on objects
whose interfaces cannot be determined ahead of time—for example,
browsers, gateways, management support tools, and distributed debuggers.

With DI, invocations can be constructed at runtime by specifying the target
object reference, the operation or attribute name, and the parameters to
pass. A server that receives a dynamically constructed invocation request
does not differentiate between it and static requests.

Clients that use DII Two types of client programs commonly use the DlI:

® Aclient interacts with the interface repository to determine a target
object’s interface, including the name and parameters of one or all of
its operations, then uses this information to construct DIl requests.

® Aclient, such as a gateway, receives the details of a request. In the
case of a gateway, the request details might arrive as part of a network
package. The gateway can then translate this into a DIl call without
checking the details with the interface repository. If a mismatch
occurs, an exception is raised to the gateway, which in turn can report
an error to the caller.

Steps To invoke on an object with DI, follow these steps:
1. Construct a Request object with the operation’s signature.
2. Invoke the request.

3. Retrieve results of the operation.

373

CHAPTER 15 | Generating Interfaces at Runtime

Example IDL

In this section

374

The bank example is modified here to show how to use the DII. The

Bank: : newAccount () operation now takes an i nout parameter that sets a
new account’s initial balance:

/1 1DL
interface Account {
readonly attribute float bal ance;

voi d nakeDeposit(in float f);
voi d makeWthdrawal (in float f);

B

interface Bank {
exception Reject {string reason;};

/Il Create an account
Account newAccount (
in string owner,
inout float initialBalance,
out |ong status)
rai ses (Reject);

/] Del ete an account
voi d del et eAccount (i n Account a);

Ik

The following section shows how to construct a Request object that can
deliver client requests for newAccount () operations such as this one:

bank. newAccount (owner Nane, initial Bal ance, status);

This section discusses the following topics:

Constructing a Request Object page 375
Invoking a Request page 382
Retrieving Request Results page 383
Invoking Deferred Synchronous Requests page 384

Using the DIl

Constructing a Request Object

Overview

In this section

To construct a Request object and set its data, you must first obtain a
reference to the target object. You then create a request object by invoking
one of these methods on the object reference:

® request() returns an empty request object whose signature—return

type and parameters—must be set.

_create_request() returns with a request object that can contain all the
data required to invoke the desired request.

This section discusses the following topics:

_request() page 376

_create_request() page 379

375

CHAPTER 15 | Generating Interfaces at Runtime

_request()

Overview

Create a request object

Set the operation’s return type

Set operation parameters

376

You can use _request () to create a Request object in these steps:

1. Create a request object and set the name of its operation.

Set the operation’s return type.

Set operation parameters and supply the corresponding arguments.
Set exception type codes.

ok W

Set the operation’s context clause, if necessary.

Call _request () on the target object and specify the name of the operation
to invoke:

I/ Get object reference
org. ong. CORBA. (hj ect target = ...

// COreate Request object for operation newAccount ()
org. ong. CCRBA. Request newAcct Request =
target._request ("newAccount");

After you create a Request object, set the TypeCode of the operation’s return
value by calling set _return_type() on the Request object.
set_return_type() takes a single argument, the TypeCode constant of the
return type. For example, given the Request object newAcct Request , set the
return type of its newAccount () operation to Account as follows:

newAcct Request . set _return_type(_tc_Account);

For information about supported TypeCodes, see Chapter 13 on page 313.

A request object uses an NvLi st to store the data for an operation’s
parameters. To set the parameters in the NvLi st you need to know the
operations parameters and insert the proper values in the exact order the
parameters are specified in the operation’s IDL. The _request () operation
creates an empty NWLi st into which you insert the values needed by the
operation.

Set exception type codes

Using the DIl

To fill in the NVLi st you can use the following operations on the Request
object:

add_in_arg();

any add_naned_in_arg();
any add_i nout _arg();

any add_narmed_i nout _arg();
any add_out _arg();

any add_naned_out _arg();

These operations return a reference to an Any. For more information on
inserting values into an Any see “Using the Any Data Type” on page 327.

Example 34 on page 377 sets the parameter list for the newAccount
operation.

Example 34: Setting the parameter list

/[Java

newAcct Request . add_in_arg().insert_string("Norman Fel | ons");
float initBal = 1000. 00;

newAcct Request . add_i nout _arg().insert_float(initBal);

int status;

newAcct Request . add_out _arg().insert | ong(status);

The values for the out parameters of an operation do not need to be set
because they will be changed when the operation returns. However, the
values for all i n and i nout parameters must be specified.

You can also fill the NVLi st object using NVLi st : : add_val ue() . This
operation has the following signature:

NanedVal ue NVLi st::add_val ue(String itemname, Any val, int
flags);

The f | ags parameter is set to one of the following values:
® (ORBA ARG IN

® (OORBA ARG I NOUT

® (OORBA : ARG QUT

You must set the type codes for any exceptions defined for the Request
object’s operation. To do this use the add() operation defined for the
Request object’s exceptions() list.

377

CHAPTER 15 | Generating Interfaces at Runtime

Set the operation’s context clause

378

add() takes the exceptions type codes as its only argument. To add the
Rej ect exception to newAcct Request use the following operation:

newAcct Request . except i ons() . add(BankPackage. Rej ect Hel per. t ype())

If the type code for the exception was not available in the stub code, you
would need to dynamically generate the exceptions type code.

If the IDL operation has a cont ext clause, you can add a Cont ext object to
its Request object with GCRBA: : Request : : ct x() .

Using the DIl

_create_request()

Overview

Creating the parameter list

You can also create a Request object by calling _creat e_request () on an
object reference and passing the request details as arguments. The
advantage of using _creat e_request () is that you can create a Request
object that contains all of the information needed to invoke a request.
_create_request () has the following signature:

Request _creat e_request (Context ctx,
String operation,
NWList arg_|ist,
NanedVal ue resul t,
Excepti onLi st exclist,
Cont ext Li st ctxlist);

At a minimum, you must provide two arguments when using
_create_request():

® The name of the operation
o A NanedVal ue that holds the operation’s return value

You can also supply a populated parameter list and a populated exception
list to _create_request (). If you supply null for either list,
_create_request () creates an empty list for the returned Request object. In
this case you must populate the list as described above in “_request()” on
page 376.

There are two operations provided by OORBA: : ORB to create the NwLi st
passed to _create_obj ect () to specify the Request object’s parameter list:

® create_list()
® create_operation_list()

create_list()
create_|ist() has the fololwing signiture:

NVLi st create_list(int count);

379

CHAPTER 15 | Generating Interfaces at Runtime

Example

380

The operation allocates the space for an NvLi st of the specified number of
elements and returns a pointer to the empty NWLi st. You then add the
required parameters using the following operation on the NvLi st :

add()
add_i ten()
add_val ue()

create_operation_list()

create_operation_|ist() extends the functionality of create_list() by
creating a prefilled parameter list based on informaiton stored in the
interface repository. It has the following signature:

NVLi st create operation_|ist(QperationDef operation);

Using the Qper at i onDef object passed as a parameter,
create_operation_|ist() retrieves the parameter list for the specified
operation from the interface repository. When creat e_operati on_li st ()
returns, the NVLi st contains one NarmedVal ue object for each operation
parameter. Each NanedVal ue object contains the parameter’s passing mode,
name, and initial value of type Any.

Once you have the prefilled parameter list, you can modify the parameters
by iterating over the NvLi st elements with or g. ong. NVLi st . i ten() . Use the
appropriate insert operation to set each NamedVval ue’s val ue member.

The code in Example 35 constructs a parameter list using
create_operation_|ist(). It then uses the parameter list to construct a
Request object for invoking operation newAccount () :

Using the DIl

Example 35: Create a Request object using _create _request()

/1 get an object reference
org.ong. CCRBA. (hj ect target = ... ;

or g. ong. CORBA. Request newAcct Request ;

// construct Any for return val ue
org. ong. CORBA. Any result_any = orb. create_any();
or g. ong. CCRBA. NanedVal ue result =
orb. create_named_val ue("result", result_any, ARG QUJT.val ue);

|/ Get QperationDef object fromlFR
Il reference to the IFR ifr, obtained previously
org. ong. CORBA. Cont ai ned cont = ifr. | ookup("Bank:: newAccount");
or g. ong. CCRBA. (per at i onDef opDef =
or g. ong. GORBA. (per at i onDef Hel per. _narrow(cont.in());

// Initialize the paraneter |ist
or g. ong. QORBA. NVLi st paranii st =
orb.create operation_|ist(opDef, paraniist);
paranti st.iten{0).val ue.insert_string("Nornman Fel |l ows");
float initBal = 1000. 00;
paranii st.iten(1l).value.insert float(initBal);
int status;
paranti st.iten(2).val ue.insert_| ong(status);

// Construct the Request object

newAcct Request = target._create_request (null, "newAccount",
paraniist, result);

381

CHAPTER 15 | Generating Interfaces at Runtime

Invoking a Request

382

After you set a Request object’s data, you can use one of severalmethods to
invoke the request on the target object. The following methods are invoked
on a Request object:

invoke() blocks the client until the operation returns with a reply. Exceptions
are handled the same as static function invocations.

send_deferred() sends the request to the target object and allows the client
to continue processing while it awaits a reply. The client must poll for the
request’s reply (see “Invoking Deferred Synchronous Requests” on

page 384).

send_oneway() invokes one-way operations. Because no reply is expected,
the client resumes processing immediately after the invocation.

The following methods are invoked on the ORB, and take a sequence of
requests:

send_multiple_requests_deferred() calls multiple deferred synchronous
operations.

send_multiple_requests_oneway() calls multiple oneway operations
simultaneously.

For example:

Example 36: /nvoking on a request

try {
request . i nvoke())
}

catch (org.ong. CCRBA Syst enException se) {
Systemout. println("Unexpected exception" + se);

}

Using the DIl

Retrieving Request Results

When a request returns, Orbix updates out and i nout parameters in the
Request object’s NvLi st. To get an operation’s output values:

1. Call argunent s() on the Request object to get a reference to its
NVLi st .

2. lterate over the NanedVal ue items in the Request object’s NVLi st by
successively calling i ten() on the NWLi st. Each call to this methods
returns a NarredVal ue reference.

3. Call val ue() on the NanedVal ue to get a pointer to the Any value for
each parameter.

4. Extract the parameter values from the Any.

To get an operation’s return value, call ret urn_val ue() on the request
object. This operation returns the request’s return value as an any.

For example, the following code gets an object reference to the new account
returned by the newAccount () operation:

Example 37: Obtaining the return value from a request object

or g. ong. CORBA. (bj ect newAccount ;
org. ong. OCRBA. Any acct = request.return_val ue();
newAccount = acct.extract_Cbject();

383

CHAPTER 15 | Generating Interfaces at Runtime

Invoking Deferred Synchronous Requests

You can use the DIl to make deferred synchronous operation calls. A client
can call an operation, continue processing in parallel with the operation,
then retrieve the operation results when required.

384

You can invoke a request as a deferred synchronous operation as follows:

1.
2.
3.

Construct a Request object and call send_deferred() on it.

Continue processing in parallel with the operation.

Check whether the operation has returned by calling pol | _response()
on the Request object. This methods returns a non-zero value if a
response has been received.

To get the result of the operation, call get _response() on the Request
object.

Using the DSI

Using the DSI

Overview

In this section

A server uses the dynamic skeleton interface (DSI) to receive operations or
attribute invocations on an object whose IDL interface is unknown to it at
compile time. With DSI, a server can build the skeleton code that it needs to
accept these invocations.

The server defines a function that determines the identity of the requested
object; the name of the operation and the types and values of each
argument are provided by the user. The function carries out the task that is
being requested by the client, and constructs and returns the result. Clients
are unaware that a server is implemented with the DSI.

This section discusses the following topics:

DSI Applications page 386

Programming a Server to Use DSI page 387

385

CHAPTER 15 | Generating Interfaces at Runtime

DSI Applications

Overview

Invoking on a gateway

Bidirectional gateways

386

The DSl is designed to help write gateways that accept operation or attribute
invocations on any specified set of interfaces and pass them to another
system. A gateway can be written to interface between CORBA and some
non-CORBA system. This gateway is the only part of the CORBA system that
must know the non-CORBA system’s protocol; the rest of the CORBA
system simply issues IDL calls as usual.

The IIOP protocol lets an object invoke on objects in another ORB. If a
non-CORBA system does not support 1I0P, you can use DSI to provide a
gateway between the CORBA and non-CORBA systems. To the CORBA
system, this gateway appears as a CORBA-compliant server that contains
CORBA objects. In reality, the server uses DSI to trap incoming invocations
and translate them into calls that the non-CORBA system can understand.

You can use DSI and DIl together to construct a bidirectional gateway. This
gateway receives messages from the non-CORBA system and uses the DIl to
make CORBA client calls. It uses DSI to receive requests from clients on a
CORBA system and translate these into messages in the non-CORBA
system.

DSI has other uses. For example, a server might contain many non-CORBA
objects that it wants to make available to its clients. In an application that
uses DSI, clients invoke on only one CORBA object for each non-CORBA
object. The server indicates that it uses DSI to accept invocations on the IDL
interface. When it receives an invocation, it identifies the target object, the
operation or attribute to call, and its parameters. It then makes the call on
the non-CORBA object. When it receives the result, it returns it to the client.

Using the DSI

Programming a Server to Use DSI

Overview

Dynamic implementation routine

The DSl is implemented by servants that instantiate dynamic skeleton
classes. All dynamic skeleton classes are derived from
CCRBA. Dynami cl npl enent at i on:

package org. ong. Port abl eSer ver ;
abstract public class Dynam cl npl enent ati on ext ends Servant

{
abstract public void i nvoke(org.ong. QORBA. Ser ver Request

request);

}

Note: The ORB user must also provide an implementation to the
_all _interfaces() method declared by the Servant class.

A server program uses DSI as follows:

1. Instantiates one or more DSI servants and obtains object references to
them, which it makes available to clients.

2. Associates each DSI servant with a POA—for example, through a
servant manager, or by registering it as the default servant.

When a client invokes on a DSI-generated object reference, the POA delivers
the client request as an argument to the DSI servant’s i nvoke() method—
also known as the dynamic implementation routine (DIR). i nvoke() takes a
single argument, a OORBA: : Ser ver Request pseudo-object, which

387

CHAPTER 15 | Generating Interfaces at Runtime

encapsulates all data that pertains to the client request—the operation’s
signature and arguments. OCRBA: : Ser ver Request maps to the following
Java class:

package org. ony. CORBA;
public abstract class ServerRequest {

public String operation() {

public void argunment s(NVLi st args) {

}
public void set_result(Any any) {

}
public void set_exception(Any any) {

publ i c abstract Context ctx();

}
invoke() processing i nvoke() processing varies across different implementations, but it always
includes the following steps:

1. Obtains the operation’s name by calling oper ati on() on the
Server Request object.

2. Builds an NvLi st that contains definitions for the operation’s
parameters—often, from an interface definition obtained from the
interface repository. Then, i nvoke() populates the NVLi st with the
operation’s input arguments by calling ar gument s() on the
Server Request object.

3. Reconstructs the client invocation and processes it.

388

If required, sets the operation’s output in one of two ways:

. If the operation’s signature defines output parameters, i nvoke()
sets the NVLi st as needed. If the operation’s signature defines a
return value, i nvoke() calls set _resul t () on the Server Request
object.

Using the DSI

. If the operation’s signature defines an exception, i nvoke() calls
set _exception() on the ServerRequest object.

Note: invoke() can either set the operation’s output by initializing its
output parameters and setting its return value, or by setting an exception;
however, it cannot do both.

389

CHAPTER 15 | Generating Interfaces at Runtime

390

Benefits

CHAPTER 16

Using the Interface
Repository

An Orbix application uses the interface repository for
persistent storage of IDL interfaces and types. The runtime
ORB and Orbix applications query this repository at runtime
to obtain IDL definitions.

The interface repository maintains full information about the IDL definitions
that have been passed to it. The interface repository provides a set of IDL
interfaces to browse and list its contents, and to determine the type
information for a given object. For example, given an object reference, you
can use the interface repository to obtain all aspects of the object’s
interface: its enclosing module, interface name, attribute and operation
definitions, and so on.

These capabilities are important for a number of tools:

® Browsers that allow designers and code writers to determine what
types have been defined in the system, and to list the details of chosen
types.

® CASE tools that aid software design, writing, and debugging.

® Application level code that uses the dynamic invocation interface (DII)
to invoke on objects whose types were not known to it at compile time.
This code might need to determine the details of the object being
invoked in order to construct the request using the DII.

391

CHAPTER 16 | Using the Interface Repository

®* A gateway that requires runtime information about the type of an
object being invoked.
In order to populate the interface repository with IDL definitions, run the IDL

compiler with the - Roption. For example, the following command populates
the interface repository with the IDL definitions in bank. i dl :

id -R bank.idl
In this chapter This chapter contains the following sections
Interface Repository Data page 393
Containment in the Interface Repository page 402
Repository Object Descriptions page 409
Retrieving Repository Information page 412
Sample Usage page 416
Repository IDs and Formats page 418
Controlling Repository IDs with Pragma Directives page 420

392

Interface Repository Data

Interface Repository Data

Interface repository data can be viewed as a set of CORBA objects, where
the repository stores one object for each IDL type definition. All interface

repository objects are derived from the abstract base interface | Rtyj ect .,
which is defined as follows:

// I'n nodul e CORBA
enum Def i ni ti onKi nd

{
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_|nterface,
dk_Modul e, dk_Qperation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Vétring, dk_Fixed,
dk_Val ue, dk_Val ueBox, dk_Val ueMenber, dk_Native
ik

interface | RObj ect

{
Il read interface
readonly attribute DefinitionKi nd def ki nd;
I/l wite interface
voi d
destroy();
ik

Attribute def _ki nd identifies a repository object’s type. For example, the
def ki nd attribute of an i nt erf aceDef object is dk_i nterface. The
enumerate constants dk_none and dk_al | are used to search for objects in a
repository. All other enumerate constants identify one of the repository
object types in Table 16, and correspond to an IDL type or group of types.

destroy() deletes an interface repository object and any objects contained
within it. You cannot call dest roy() on the interface repository object itself
or any PrimtiveDef object.

393

CHAPTER 16 | Using the Interface Repository

Abstract Base Interfaces

394

Besides | Rtoj ect , the interface repository defines four other abstract base
interfaces, all of which inherit directly or indirectly from | Rpj ect :

Container: The interface for container objects. This interface is inherited by
all interface objects that can contain other objects, such as Repository,
Modul eDef and I nt er f aceDef . These interfaces inherit from Cont ai ner . See
“Container Interface” on page 407.

Contained: The interface for contained objects. This interface is inherited by
all objects that can be contained by other objects—for example, attribute
definition (At t ri but eDef) objects within operation definition (Cper at i onDef)
objects. See “Contained Interface” on page 405.

IDLType: All interface repository interfaces that hold the definition of a type
inherit directly or indirectly from this interface. See “IDL-type objects” on
page 398.

TypedefDef: The base interface for the following interface repository types
that have names: St ruct Def , Uni onDef , EnunDef , and Al i asDef , which
represents IDL t ypedef definitions.

Interface Repository Data

Repository Object Types
Objects in the interface repository support one of the IDL types in Table 16:

Table 16: Interface Repository Olbject Types

Object type Description

Reposi tory The repository itself, in which all other objects are
nested. A repository definition can contain
definitions of other types such as module and
interface. Table 17 lists all possible container
components.

Modul eDef A module definition is logical grouping of interfaces
and value types. The definition has a name and
can contain definitions of all types except

Reposi tory. Table 17 on page 403 lists all
possible container components.

I nt er f aceDef An interface definition has a name, a possible
inheritance declaration, and can contain definitions
of other types such as attribute, operation, and
exception. Table 17 lists all possible container
components.

Val ueDef A value type definition has a name, a possible
inheritance declaration, and can contain definitions
of other types such as attribute, operation, and
exception. Table 17 lists all possible container

components.
Val ueBoxDef A value box definition defines a value box type.
Val ueMenber Def A value member definition defines a member of a
value.
At tri but eDef An attribute definition has a name, a type, and a

mode to indicate whether it is readonly.

395

CHAPTER 16 | Using the Interface Repository

Table 16: Interface Repository Olbject Types

Object type

Description

Qper at i onDef

An operation definition has a name, return value,
set of parameters and, optionally, r ai ses and
cont ext clauses.

Const ant Def

A constant definition has a name, type, and value.

Except i onDef

An exception definition has a name and a set of
member definitions.

Struct Def

A struct definition has a name, and holds the
definition of each of its members.

Uni onDef

A union definition has a name, and holds a
discriminator type and the definition of each of its
members.

EmunDef

An enum definition has a name and a list of
member identifiers.

Al i asDef

An aliased definition defines a typedef definition,
which has a name and a type that it maps to.

PrimtiveDef

A primitive definition defines primitive IDL types
such as short and | ong, which are predefined in
the interface repository.

Stri ngDef

A string definition records its bound. Objects of this
type are unnamed. If they are defined with a
typedef statement, they are associated with an

Al i asDef object. Objects of this type correspond to
bounded strings.

SequenceDef

Each sequence type definition records its element
type and its bound, where a value of zero indicates
an unbounded sequence type. Objects of this type
are unnamed. If they are defined with a t ypedef
statement, they have an associated Al i asDef
object.

396

Interface Repository Data

Table 16: Interface Repository Olbject Types

Object type Description

Arr ay Def Each array definition records its length and its
element type. Objects of this type are unnamed. If
they are defined with a typedef statement, they
are associated with an Al'i asDef object. Each
ArrayDef object represents one dimension;
multiple ArrayDef objects can represent a
multi-dimensional array type.

Given an object of any interface repository type, you can obtain its full
interface definition. For example, I nt erf aceDef defines operations or
attributes to determine an interface’s name, its inheritance hierarchy, and
the description of each operation and each attribute.

397

CHAPTER 16 | Using the Interface Repository

Figure 22 shows the hierarchy for all interface repository objects.

| Rbj ect
Cont ai ned | DLType Cont ai ner
Typedef Def
Repository
Except i onDef
Modul eDef
Named types Unnamed types
Attri but eDef . Aiasbef " interfaceDef . © ArrayDef T
Const ant Def ' Enundef Val ueDef ' ' Fi xedDef '
Qper at i onDef + NativeDef ' v Prmiti veDef '
' Struct Def ' ' SequenceDef '
+ Uni onDef ' v StringDef '
. Val ueBoxDef ' ' W8t ri ngDef '
Figure 22: Hierarchy of interface repository objects
IDL-type objects Most repository objects represent IDL types—for example, | nt er f aceDef

objects represent IDL interfaces, Struct Def interfaces represent struct
definitions, and so on. These objects all inherit, directly or indirectly, from
the abstract base interface | DLType:

/1 In nodul e CCRBA

interface | DLType : | RObject {
readonly attribute TypeCode type;

b

This base interface defines a single attribute that contains the TypeCode of
the defined type.

398

Interface Repository Data

IDL-type objects are themselves subdivided into two groups:
® Named types
® Unnamed types

Named types
The interface repository can contain these named IDL types:

Al i asDef St ruct Def
EnunDef Uni onDef

I nt er f aceDef Val ueBoxDef
Nat i veDef Val ueDef

For example, the following IDL defines enumtype UDand t ypedef type
Account Nane, which the interface repository represents as named object
types EnunDef and Al i asDef objects, respectively:

/1 1DL
enum UD {UP, DOM};
typedef string Account Nane;

The following named object types inherit from the abstract base interface
Typedef Def :

Al i asDef St ruct Def
EnunDef Val ueBoxDef
Nat i veDef Uni onDef

Typedef Def is defined as follows:

/1 1D
// I'n nodul e CORBA
interface TypedefDef : Contained, |DLType {

IE

Typedef Def serves the sole purpose of enabling its derived object types to

inherit Cont ai ned and | DLType attributes and operations:

® Attribute Cont ai ned: : nane enables access to the object’s name. For
example, the IDL enumdefinition UDshown earlier is represented by the
repository object EnunDef , whose inherited nane attribute is set to UD.

® Operation Cont ai ned: : descri be() gets a detailed description of the
object. For more information about this operation, see “Repository
Object Descriptions” on page 409.

399

CHAPTER 16 | Using the Interface Repository

Interfaces I nt er f aceDef and Val ueDef are also named object types that
inherit from three base interfaces: Cont ai ned, Cont ai ner, and | DLType.
Because IDL object and value references can be used like other types,

I nt ef aceDef and Val ueDef inherit from the base interface | DLType. For
example, given the IDL definition of i nt erface Account, the interface
repository creates an I nt er f aceDef object whose nane attribute is set to
Account . This name can be reused as a type.

Unnamed types
The interface repository can contain the following unnamed object types:

Ar r ayDef SequenceDef
Fi xedDef Stri ngDef
PrimtiveDef W&t r i ngDef

Getting an object’s idl type

Repository objects that inherit the | DLType interface have their own
operations for identifying their type; you can also get an object’s type
through the TypeCode interface. Repository objects such as At tri but eDef
that do not inherit from | DLType have their own TypeCode or | DLType
attributes that enable access to their types.

For example the following IDL interface definition defines the return type of
operation get LongAddr ess as a string sequence:

/1 1D
interface Miler {

string getLongAddress();
b

get LongAddr ess() maps to an object of type Qper ati onDef in the
repository. You can query this object for its return type’s definition—
string—in two ways:
Method 1:
1. Get the object’s per ati onDef : : resul t _def attribute, which is an
object reference of type | DLType.
2. Getthe I DLType's def ki nd attribute, which is inherited from
| RQoj ect . In this example, def _ki nd resolves to dk_primtive.

3. Narrow the | DLType to Prim i veDef .

400

Interface Repository Data

4, Get the PrimtiveDef’s ki nd attribute, which is a Printi veki nd of
pk_string.

Method 2:

1. Get the object’'s perati onDef: :resul t attribute, which is a TypeCode.

2. Obtain the TypeCode’s TCKi nd through its ki nd() operation. In this
example, the TOK nd is tk_stri ng.

401

CHAPTER 16 | Using the Interface Repository

Containment in the Interface Repository

Most IDL definitions contain or are contained by other definitions, and the
interface repository defines its objects to reflect these relationships. For
example, a module typically contains interface definitions, while interfaces
themselves usually contain attributes, operations, and other definition types.

Containment interfaces The interface repository abstracts the properties of containment into two
abstract base interfaces:

® (ontained

® Container

These interfaces provide operations and attributes that let you traverse the
hierarchy of relationships in an interface repository in order to list its
contents, or ascertain a given object’s container. Most repository objects are
derived from one or both of Cont ai ner or Cont ai ned; the exceptions are
instances of PrimtiveDef, StringDef, SequenceDef, and ArrayDef.

Example In the following IDL, module Fi nance is defined with two interface
definitions, Bank and Account . In turn, interface Account contains attribute
and operation definitions:

/1 1DL
nodul e Fi nance {
interface Account {
readonly attribute fl oat bal ance;
voi d makeDeposit(in float anount);
voi d nakeWt hdrawal (i n float anount);
b
interface Bank {
Account newAccount () ;
b
ik

The corresponding interface repository objects for these definitions are each
described as Cont ai ner or Cont ai ned objects. Thus, the interface repository
represents module Fi nance as a Modul eDef container for | nt er f aceDef

402

Containment properties of
interface repository objects

Containment in the Interface Repository

objects Account and Bank; these, in turn, serve as containers for their
respective attributes and operations. Modul eDef object Fi nance is also
viewed as a contained object within the container object Reposi t or yDef .

Table 17 shows the relationship between Cont ai ner and Cont ai ned objects
in the interface repository.

Table 17: Container and Contained Objects in the Interface Repository

Containerobject Contained Objects
type

Repository Const ant Def
Typedef Def
Except i onDef

I nt erfaceDef *
Modul eDef *
Val ueDef *

Modul eDef Const ant Def
Typedef Def
Except i onDef
Modul eDef *

I nterfaceDef*
Val ueDef *

I nt er f aceDef Const ant Def
Typedef Def
Except i onDef
Attri but eDef
Qper at i onDef

Val ueDef Const ant Def
Typedef Def
Except i onDef
Attri but eDef
Qper at i onDef
Val ueMenber Def

* Also a Container object
Only a Reposi tory is a pure Cont ai ner . An interface repository server has
only one Reposi t ory object, and it contains all other definitions.

403

CHAPTER 16 | Using the Interface Repository

404

Objects of type Modul eDef , I nt er f aceDef , and Val ueDef are always
contained within a Reposi t ory, while I nt er f aceDef , and Val ueDef can also
be within a Modul eDef ; these objects usually contain other objects, so they
inherit from both Cont ai ner and Cont ai ned.

All other repository object types inherit only from Cont ai ned.

Containment in the Interface Repository

Contained Interface

Name attribute

The Cont ai ned interface is defined as follows:

/11DL
typedef string VersionSpec;

interface Contained : |RMDject

{

/] read/wite interface
attribute Repositoryld id;
attribute ldentifier nare;
attribute VersionSpec version;

/1 read interface

readonly attribute Container defined in;

readonly attribute ScopedNane absol ut e_nane;
readonly attribute Repository containing repository;

struct Description

{
Definitionkind ki nd;
any val ue;

}s

Descri pti on
descri be();

I/l wite interface

voi d

nmove(
in Contai ner new contai ner,
in Identifier new nane,
in VersionSpec new version

Attribute Cont ai ned: : nare is of type | dent i fi er, a t ypedef for a string, and
contains the IDL object’s name. For example, module Fi nance is
represented in the repository by a Modul eDef object. Its inherited

Mbdul eDef : : nane attribute resolves to the string Fi nance. Similarly the
makeWt hdr awal operation is represented by an Qper at i onDef object whose
Qper at i onDef : : nane attribute resolves to makeWwt hdr awal .

405

CHAPTER 16 | Using the Interface Repository

defined_in attribute

balance attribute

406

Cont ai ned also defines the attribute def i ned_i n, which stores a reference to
an object’s Cont ai ner. Because IDL definitions within a repository must be
unique, defi ned_i n stores a unique Cont ai ner reference. However, given
inheritance among interfaces, an object can be contained in multiple
interfaces. For example, the following IDL defines interface Qurrent Account
to inherit from interface Account :

/11DL

// in nodul e Fi nance

interface Qurrent Account : Account {
readonly attribute overDraftLinit;

IE

Given this definition, attribute bal ance is contained in interfaces Account
and Qurrent Account ; however, attribute bal ance is defined only in the base
interface Account . Thus, if you invoke Attri but eDef: : defined_i n() on
either Account : : bal ance or Qurrent Account : : bal ance, it always returns
Account as the Container object.

A Qont ai ned object can include more than containment information. For
example, an Qper at i onDef object has a list of parameters associated with it
and details of the return type. The operation Cont ai ned: : descri be()
provides access to these details by returning a generic Descri ption
structure (see “Repository Object Descriptions” on page 409).

Containment in the Interface Repository

Container Interface

Interface Cont ai ner is defined as follows:

//1DL
enum Defi ni ti onKi nd

{

I

dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Modul e, dk_Qperation, dk_Typedef,

dk_Alias, dk_Struct, dk_Union, dk_Enum

dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk _Wtring, dk_Fi xed,

dk_Val ue, dk_Val ueBox, dk_Val ueMenber, dk_Native

t ypedef sequence<Cont ai ned> Cont ai nedSeq;

interface Container : |RMDject

{

/] read interface

Cont ai ned
| ookup(
in ScopedNane sear ch_name

JE

Cont ai nedSeq

cont ent s(
in DefinitionKind |imt_type,
in bool ean exclude_i nherited

JE

Cont ai nedSeq
| ookup_nare (
in ldentifier search_nane,
in long |level s_to_search,
in DefinitionKind linmt_type,
in bool ean excl ude_i nherited

407

CHAPTER 16 | Using the Interface Repository

struct Description

{
Cont ai ned cont ai ned_obj ect ;
Definitionki nd ki nd;
any val ue;

b

typedef sequence<Descri pti on> Descri pti onSeq;

Descri pti onSeq

descri be_cont ent s(
in DefinitionKind limt_type,
i n bool ean excl ude_i nheri t ed,
in |long max_returned_objs

)
/] wite interface

/] operations to create container objects

lookup operations The container interface provides four lookup operations that let you browse
a given container for its contents: | ookup(), | ookup_name(), contents(),
and descri be_cont ent s() . For more information about these operations,
see “Browsing and listing repository contents” on page 412.

408

Repository Object Descriptions

Repository Object Descriptions

Each repository object, in addition to identifying itself as a Cont ai ned or
Cont ai ner object, also maintains the details of its IDL definition. For each
contained object type, the repository defines a structure that stores these
details. Thus, a Mbdul eDef object stores the details of its description in a
Modul eDescri pti on structure, an I nt erf aceDef object stores its description
in an I nterfaceDescri ption structure, and so on.

How to obtain object descriptions You can generally get an object’s description in two ways:

® The interface for each contained object type often defines attributes
that get specific aspects of an object’s description. For example,
attribute QperationDef: :resul t gets an operation’s return type.

® You can obtain all the information stored for a given object through the
inherited operation Cont ai ned: : descri be() , which returns the general
purpose structure Cont ai ned: : Descri pti on. This structure’s val ue
member is of type any, whose value stores the object type’s structure.

For example, interface Qper at i onDef has the following definition:

interface QperationDef : Contained

{
readonly attribute TypeCode result;
attribute | DLType resul t_def;
attribute ParDescriptionSeq parans;
attribute Qperati onMbde node;
attribute ContextldSeq contexts;
attribute ExceptionDef Seq excepti ons;

Accessing attributes Interface Qper ati onDef defines a number of attributes that allow direct
access to specific aspects of an operation, such as its parameters (par ans)
and return type (resul t _def).

409

CHAPTER 16 | Using the Interface Repository

Invoking describe()

410

In a distributed environment, it is often desirable to obtain all information
about an operation in a single step by invoking descri be() on the

Qper at i onDef object. This operation returns a Cont ai ned: : Descri pti on
whose two members, ki nd and val ue, are set as follows:

kind is set to dk_Qper ati on.
value is an any whose TypeCode is set to _tc_Qperati onDescri ption. The

any’s value is an Qper at i onDescri pti on structure, which contains all the
required information about an operation:

/1 1DL
struct QperationDescription
{

Identifier nane;

Repositoryld id;

Reposi toryld defined_in;

Ver si onSpec ver si on;

TypeCode resul t;

Qper at i onMbde node;

Cont ext | dSeq cont ext s;

Par Descri pti onSeq par anet ers;

ExcDescri pti onSeq excepti ons;
b

OperationDescription structure
Qper at i onDescri pti on members store the following information:
nane The operation’s name. For example, for operation

Account : : makeWt hdr awal (), nane contains
makeWt hdr aval .

id Reposi t oryl d for the Qper at i onDef object.

defined_in The Repositoryld for the parent Cont ai ner of the
Qper at i onDef object.

version Currently not supported. When implemented, this member
allows the interface repository to distinguish between
multiple versions of a definition with the same name.

result The TypeCode of the result returned by the defined
operation.

Repository Object Descriptions

nmode Specifies whether the operation returns (CP_NORMAL) or is
oneway (CP_CNEWAY).

cont ext s Lists the context identifiers specified in the operation’s
context clause.

par anet ers A sequence of Par anet er Descri pti on structures that
contain details of each operation parameter.

except i ons A sequence of Excepti onDescri pti on structures that

contain details of the exceptions specified in the operation’s
rai ses clause.

TypeDescription structure

Several repository object types use the TypeDescri pti on structure to store
their information: EnunDef , Uni onDef , Al i asDef, and Struct Def .

FullinterfaceDescription and FullValueDescription structures

Interfaces I nt erf aceDef and Val ueDef contain extra description structures,
Ful I I nterfaceDescri ption and Ful | Val ueDescri pti on, respectively.
These structures let you obtain a full description of the interface or value and
all its contents in one step. These structures are returned by operations

I nterfaceDef::describe_ interface() and Val ueDef: : descri be val ue().

411

CHAPTER 16 | Using the Interface Repository

Retrieving Repository Information

Getting a CORBA object’s
interface

Browsing and listing repository
contents

412

You can retrieve information from the interface repository in three ways:

® Given an object reference, find its corresponding I nt er f aceDef object
and query its details.

® Given an object reference to a Reposi t ory, browse its contents.

® Given a Reposi toryl d, obtain a reference to the corresponding object
in the interface repository and query its details.

Given a reference to a CORBA object, you can obtain its interface from the
interface repository by invoking _get _i nt erface() on it. For example, given
CORBA object obj Var, you can get a reference to its corresponding
I nt erfaceDef object as follows:
org. onmy. CORBA I nterfaceDef ifVar =

obj Var. _get _interface();
The member function _get _i nterface() returns a reference to an object
within the interface repository. You can then use this reference to browse
the repository, and to obtain the details of an interface definition.

After you obtain a reference to a Reposi t ory object, you can browse or list
its contents. To obtain a Reposi t ory’s object reference, invoke
resolve_initial _references("InterfaceRepository") on the ORB. This
returns an object reference of type CORBA: : Obj ect , which you narrow to a
QOCRBA : Reposi t ory reference.

The abstract interface Cont ai ner has four operations that enable repository
browsing:

® | ookup()

® | ookup_name()

® contents()

® describe_contents()
Finding repository objects

Cont ai ner operations | ookup() and | ookup_nare() are useful for searching
the contents of a repository for one or more objects.

Retrieving Repository Information

lookup() conducts a search for a single object based on the supplied
ScopedNane argument, which contains the entity’'s name relative to other
repository objects. A Scopedhane that begins with : : is an absolute scoped
name—that is, it uniquely identifies an entity within a repository—for
example, : : Fi nance: : Account : : makeWt hdr awal . A ScopedNanre that does
not begin with : : identifies an entity relative to the current one.

For example, if module Fi nance contains attribute Account : : bal ance, you
can get a reference to the operation’s corresponding At t ri but eDef object by
invoking the module’s | ookup() operation:

or g. ong. QORBA. Cont ai ned cVar;
cVar = nodul eVar. | ookup(" Account : : bal ance");

The ScopedNarre argument that you supply can specify to search outside the
cope of the actual container on which you invoke I ookup() . For example,
the following statement invokes | ookup() on an I nt er f aceDef in order to
start searching for the newAccount operation from the Reposi t ory container:

or g. ong. CCRBA. Cont ai ned_var cVar;
cVar = ifVar.|ookup("::Fi nance:: Bank:: newAccount");

lookup_name() searches the target container for objects that match a
simple unscoped name. Because the name might yield multiple matches,

I ookup() returns a sequence of Cont ai ned objects. | ookup_name() takes the
following arguments:

sear ch_nane A string that specifies the name of the objects to find.
You can use asterisks (*) to construct wildcard
searches.

| evel s_t o_search Specifies the number of levels of nested containers to
include in the search. 1 restricts searching to the current
object. - 1 specifies an unrestricted search.

limt_type Supply a Defi ni ti onKi nd enumerator to include a
specific type of repository object in the returned
sequence. For example, setlimt_type to
dk_oper at i on to find only operations. To return all
objects, supply dk_al I . You can also supply dk_none to
match no repository objects, and dk_Typedef , which
encompasses dk_Al i as, dk_St ruct, dk_Uni on, and
dk_Enum

413

CHAPTER 16 | Using the Interface Repository

414

excl ude_i nheri t edValid only for I nt er f aceDef and Val ueDef objects.
Supply TRUE to exclude inherited definitions, FALSE to
include.

Unlike 1 ookup(), | ookup_narne() searches are confined to the target
container.

Getting object descriptions

Cont ai ner operations content s() and descri be_contents() let you obtain
object descriptions:

contents() returns a sequence of Cont ai ned objects that belong to the
Cont ai ner. You can use this operation to search a given container for a
specific object. When it is found, you can call Cont ai ned: : descri be(),
which returns a Cont ai ned: : Descri pti on for the contained object (see
“Repository Object Descriptions” on page 409).

describe_contents() combines operations Cont ai ner: : content s() and
Cont ai ned: : descri be(), and returns a sequence of

Cont ai ned: : Descri pti on structures, one for each of the Cont ai ned objects
found.

You can limit the scope of the search by cont ent s() and
descri be_content s() by setting one or more of the following arguments:

limt_type Supply a Defi ni ti onKi nd enumerator to limit the
contents list to a specific type of repository object. To
return all objects, supply dk_al | . You can also supply
dk_none to match no repository objects, and
dk_Typedef , which encompasses dk_Al i as, dk_Str uct,
dk_Uni on, and dk_Enum

excl ude_i nheri t edValid only for I nt er f aceDef and Val ueDef objects.
Supply TRUE to exclude inherited definitions from the
contents listing, FALSE to include.

max_r et ur ned_obj sAvailable only for descri be_cont ent s(), this argument
specifies the maximum length of the sequence returned.

Retrieving Repository Information

Finding an object using its You can use a repository ID to find any object in a repository by invoking

repository id Cont ai ner: : 1 ookup_i d() on that repository. | ookup_i d() returns a
reference to a Cont ai ned object, which can be narrowed to the appropriate
object reference type.

415

CHAPTER 16 | Using the Interface Repository

Sample Usage

This section contains code that uses the interface repository; it prints the list
of operation names and attribute names that are defined in a given object’s
interface.

i mport org. ong. CORBA. *;
import java.io.*;
i nport org.ong. CCRBA. | nt er f aceDef Package. *;

int i;

Reposi tory repository;

Cont ai ned cont ai ned;

I nterfaceDef interface;

Ful I I nterfaceDescription full;
or g. ong. CORBA. (hj ect obj ;

try {
/] get an object reference to the IFR

obj = orb.resolve_initial_references("lnterfaceRepository");
repository = RepositoryHel per.narrow obj);

/1 get the interface definition
contai ned = repository.|ookup("grid");
interface = InterfaceDef Hel per. narrow cont ai ned);

/] get a full interface description
full = interface.describe_interface();

/1 print out operation nanes

Systemout.println ("The operation nanes are:");

for (i=0; i < full.operations.length(); i++)
Systemout.println (full.operations[i].nane);

/] print out the attribute nanes
Systemout.println ("The attribute nanes are:");

for (i=0; i < full.attributes.length(); i++)

Systemout.println (full.attributes[i].nane);

}

catch (SystenException ex) {

}

416

Sample Usage

The example can be extended by finding the Qper at i onDef object for an
operation called doi t () . Operation Cont ai ner: : | ookup_nane() can be used
as follows:

Cont ai ned[] opSeq;
Qper at i onDef doi t Op;

try {
Systemout . println ("Looking up operation doit()");
opSeq = interface. | ookup_nane(

"doit", 1, dk_Cperation, 0);

if (opSeqg.length() !'=1) {

Systemout.println ("Incorrect result for
| ookup_nane()");

exit(1);
} else {

// Narrow the result to an Qperati onDef

doitQp =

Qper at i onDef Hel per . narr ow opSeq[0])

}

catch (SystenException ex) {

}

417

CHAPTER 16 | Using the Interface Repository

Repository IDs and Formats

OMG IDL

DCE UUID

418

Each interface repository object that describes an IDL definition has a
repository ID. A repository ID globally identifies an IDL module, interface,
constant, typedef, exception, attribute, or operation definition. A repository
ID is simply a string that identifies the IDL definition.

Three formats for repository IDs are defined by CORBA. However, repository
IDs are not, in general, required to be in one of these formats:

* OMGIDL

® DCE UUID

* |OCAL

The default format used by Orbix, the OMG IDL format is derived from the
IDL definition’s scoped name:

IDL:identifier[/identifier]...:version-nunber
This format contains three colon-delimited components:

® The first component identifies the repository ID format as the OMG IDL
format.

® Alist of identifiers specifies the scoped name, substituting backslash
(1) for double colon (: :).

® version-nunber contains a version number with the following format:

maj or . m nor

For example, given the following IDL definitions:

/1 1D

interface Account {
readonly attribute float bal ance;
voi d makeDeposit(in float anount);

Ik

The IDL format repository ID for attribute Account : : bal ance looks like this:
I DL: Account/ bal ance: 1.0

The DCE UUID has the following format:

DCE: UJ D m nor - ver si on- nunber

Repository IDs and Formats

LOCAL Local format IDs are for local use within an interface repository and are not
intended to be known outside that repository. They have the following
format:

LOCAL: I D

Local format repository IDs can be useful in a development environment as
a way to avoid conflicts with repository IDs that use other formats.

419

CHAPTER 16 | Using the Interface Repository

Controlling Repository IDs with Pragma

Directives

ID pragma

420

You can control repository ID formats with pragma directives in an IDL
source file. Specifically, you can use pragmas to set the repository ID for a
specific IDL definition, and to set prefixes and version numbers on repository
IDs.

You can insert prefix and version pragma statements at any IDL scope; the
IDL compiler assigns the prefix or version only to objects that are defined
within that scope. Prefixes and version numbers are not applied to
definitions in files that are included at that scope. Typically, prefixes and
version numbers are set at global scope, and are applied to all repository
IDs.

You can explicitly associate an interface repository ID with an IDL definition,
such as an interface name or typedef. The definition can be fully or partially
scoped and must conform with one of the IDL formats approved by the OMG
(see “Repository IDs and Formats” on page 418).

For example, the following IDL assigns repository IDidl:test:1. 110
interface test :

nodul e Y {
interface test {
/...
i
#pragna ID test "idl:test:1.1"

Prefix pragma

Version pragma

Controlling Repository IDs with Pragma Directives

The IDL prefix pragma lets you prepend a unique identifier to repository
IDs. This is especially useful in ensuring against the chance of name
conflicts among different applications. For example, you can modify the IDL
for the Fi nance module to include a prefi x pragma as follows:

/1 1D
pragna prefix "USB"
nmodul e Fi nance {
interface Account {
readonly attribute float bal ance;

i}nt erface Bank {
Account newAccount () ;
IE
IE
These definitions yield the following repository IDs:

| DL: USB/ Fi nance: 1. 0

I DL: USB/ Fi nance/ Account: 1.0

I DL: USB/ Fi nance/ Account / bal ance: 1. 0
| DL: USB/ Fi nance/ Bank: 1. 0

I DL: USB/ Fi nance/ Bank/ newAccount: 1.0

A version number for an IDL definition’s repository ID can be specified with
a versi on pragma. The ver si on pragma directive uses the following format:

#pragna versi on nane naj or. ni nor

nane can be a fully scoped name or an identifier whose scope is interpreted
relative to the scope in which the pragma directive is included. If no version
pragma is specified for an IDL definition, the default version number is 1.0.
For example:

/1 1D
nmodul e Fi nance {
#pragna version Account 2.5
interface Account {
/1
h
ik

These definitions yield the following repository IDs:
I DL: Fi nance: 1. 0

421

CHAPTER 16 | Using the Interface Repository

I DL: Fi nance/ Account: 2.5

Version numbers are embedded in the string format of an object reference. A
client can invoke on the corresponding server object only if its interface has
a matching version number, or has no version associated with it.

Note: You cannot populate the interface repository with two IDL
interfaces that share the same name but have different version numbers.

422

Benefits

CHAPTER 17

Naming Service

The Orbix naming service lets you associate names with
objects. Servers can register object references by name with
the naming service repository, and advertise those names to
clients. Clients, in turn, can resolve the desired objects in the
naming service by supplying the appropriate name.

The Orbix naming service implements the OMG COS Interoperable Naming
Service, which describes how applications can map object references to
names.

Using the naming service can offer the following benefits:

® Clients can locate objects through standard names that are
independent of the corresponding object references. This affords
greater flexibility to developers and administrators, who can direct
client requests to the most appropriate implementation. For example,
you can make changes to an object’s implementation or its location
that are transparent to the client.

® The naming service provides a single repository for object references.
Thus, application components can rely on it to obtain an application’s
initial references.

423

CHAPTER 17 | Naming Service

In this chapter This chapter describes how to build and maintain naming graphs
programmatically. It also shows how to use object groups to achieve load
balancing. It contains these sections:

Naming Service Design

Defining Names

Obtaining the Initial Naming Context

Building a Naming Graph

Using Names to Access Objects

Listing Naming Context Bindings

Maintaining the Naming Service

Federating Naming Graphs

Sample Code

Object Groups and Load Balancing

Load Balancing Example

Many operations that are discussed here can also be executed
administratively with Orbix tools. For more information about these and
related configuration options, refer to the Application Server Platform
Administrator’s Guide.

424

Naming Service Design

Naming Service Design

Naming graph organization

Example

@ Basic

The naming service is organized into a naming graph, which is equivalent to
a directory system. A naming graph consists of one or more naming
contexts, which correspond to directories. Each naming context contains
zero or more name-reference associations, or name bindings, each of which
refers to another node within the naming graph. A name binding can refer
either to another naming context or to an object reference. Thus, any path
within a naming graph finally resolves to either a naming context or an
object reference. All bindings in a naming graph can usually be resolved via
an initial naming context.

Figure 23 shows how the Account interface described in earlier chapters
might be extended (through inheritance) into multiple objects, and
organized into a hierarchy of naming contexts. In this graph, hollow nodes
are naming contexts and solid nodes are application objects. Naming
contexts are typically intermediate nodes, although they can also be leaf
nodes; application objects can only be leaf nodes.

Initial naming context

Checking Loans

Savings

NOW Premium
Mortgage

Personal

° Auto

Regular Pension

UTMA

Figure 23: A naming graph is a hierarchy of naming contexts

425

CHAPTER 17 | Naming Service

426

Each leaf node in this naming graph associates a name with a reference to
an account object such as a basic checking account or a personal loan
account. Given the full path from the initial naming context—for example,
Savi ngs/ Regul ar—a client can obtain the associated reference and invoke
requests on it.

The operations and types that the naming service requires are defined in the
IDL file CosNanmi ng. i dI . This file contains a single module, CosNami ng,
which in turn contains three interfaces: Nam ngCont ext , Nam ngCont ext Ext ,
and Bindingl terator.

Defining Names

Defining Names

Name sequence

Name components

A naming graph is composed of Nane sequences of NameConponent
structures, defined in the CosNani ng module:

nmodul e CosNani ng{
typedef string Istring;
struct NaneConponent {
Istring id;
Istring Kind;
}

typedef sequence<NarmeConponent > Nane;
ik

A Nare sequence specifies the path from a naming context to another
naming context or application object. Each name component specifies a
single node along that path.

Each name component has two string members:

® Theid field acts as a name component’s principle identifier. This field
must be set.

® The ki nd member is optional; use it to further differentiate name
components, if necessary.

Both i d and ki nd members of a name component are used in name
resolution. So, the naming service differentiates between two name
components that have the same ids but different kinds.

For example, in the naming graph shown in Figure 23 on page 425, the
path to a Personal loan account object is specified by a Name sequence in
which only the i d fields are set:

Figure 0.1:
Index id kind
0 Loans
1 Personal

427

CHAPTER 17 | Naming Service

In order to bind another Personal account object to the same Loan naming
context, you must differentiate it from the existing one. You might do so by
setting their ki nd fields as follows:

Figure0.2:
Index id kind
0 Loans
1 Personal unsecured
1 Personal secured

Note: If the ki nd field is unused, it must be set to an empty string.

428

Defining Names

Representing Names as Strings

The CosNami ng: : Nami ngCont ext Ext interface defines a Stri ngNane type,
which can represent a Nane as a string with the following syntax:
idl.kind][/id[.kind]] ...

Name components are delimited by a forward slash (/); i d and ki nd

members are delimited by a period (.). If the name component contains
only the i d string, the ki nd member is assumed to be an empty string.

St ri ngNane syntax reserves the use of three characters: forward slash (/),
period (.), and backslash (\). If a name component includes these
characters, you can use them in a StringFor nat by prefixing them with a
backslash (\) character.

The CosNam ng: : Nami ngCont ext Ext interface provides several operations
that allow conversion between Stri ngNane and Nane data:

® to_name() converts a Stri ngNane to a Nane (see page 430).

to_string() converts a Nane to a Stri ngNane (see page 432).

resol ve_str () uses a StringNane to find a Nane in a naming graph
and returns an object reference (see page 442).

Note: You can invoke these and other CosNani ng: : Nani ngCont ext Ext
operations only on an initial naming context that is narrowed to
CosNam ng: : Nam ngCont ext Ext .

429

CHAPTER 17 | Naming Service

Initializing a Name

Setting name component
members

Converting a stringname to a
name

430

You can initialize a CosNani ng: : Nare sequence in one of two ways:

® Set the members of each name component.

® Call to_nanme() on the initial naming context and supply a St ri ngNane

argument. This operation converts the supplied string to a Nane
sequence.

Given the loan account objects shown earlier, you can set the name for an
unsecured personal loan as follows:

Example 38:/nitializing a name

or g. ong. CosNani ng. N\aneConponent[] name =
new or g. ong. CosNani ng. NanmeConponent []
{
new NaneConponent ("Loans", "");
new naneConponent (" Personal ", "unsecured");

IE

The name shown in the previous example can also be set in a more
straightforward way by calling t o_nane() on the initial naming context (see
“Obtaining the Initial Naming Context” on page 433):

Example 39: Using to_name() to initialize a Name

// get initial nam ng cont ext
or g. ong. CosNanm ng. Nam ngCont ext Ext root_cxt = ...;

or g. ong. CosNani ng. NameConponent [] nane =
root _cxt.to_nane("Loans/ Personal . unsecured");

The t o_nane() operation takes a string argument and returns
aCosNam ng: : Narre, which the previous example sets as follows:

Figure0.3:

Index id kind

0 Loans

Figure 0.3:
Index id kind
Personal unsecured

Defining Names

431

CHAPTER 17 | Naming Service

Converting a Name to a StringName

You can convert a CosNami ng: : Nane to @ CosNami ngExt : : St ri ngNane by
calling to_string() on the initial naming context. This lets server programs
to advertise human-readable object names to clients.

For example, the following code converts Name sequence nane to a
Stri ngNane:

Example 40: Converting a Name to a StringName

// get initial nam ng context
or g. ong. CosNani ng. Nam ngCont ext Ext root_cxt = ...

// initialize nane
or g. ong. CosNani ng. NameConponent[] nane = ...

or g. ong. CosNani ng. Nam ngCont ext Ext . Stri ngName str_n;
str_n = root_cxt.to_string(namne);

432

Obtaining the Initial Naming Context

Obtaining the Initial Naming Context

Clients and servers access a naming service through its initial naming
context, which provides the standard entry point for building, modifying,
and traversing a naming graph. To obtain the naming service’s initial

naming context, call resol ve_initial _references() on the ORB. For
example:

Example 41: Obtaining the inital naming context

// Initialize the CRB

global _orb = org. ong. CCRBA. ORB.init(args, null);
I/l Get reference to initial nam ng context
org. ong. CCRBA. (hj ect obj =

gl obal _var.resol ve_initial _references("NaneService");

To obtain a reference to the naming context, narrow the result with
CosNam ng. Nam ngCont ext Ext Hel per. narrow() :

or g. ong. CosNanm ng. Nam ngCont ext Ext root _cxt;
if (root_cxt =

or g. ong. CosNam ng. Nam ngCont ext Ext Hel per. narrow(obj)) {

} else {...} // Deal with failure to narrow)

A naming graph’s initial naming context is equivalent to the root directory.
Later sections show how you use the initial naming context to build and
modify a naming graph, and to resolve names to object references.

Note: The Nani ngCont ext Ext interface provides extra functionality over
the Nam ngCont ext interface; therefore, the code in this chapter assumes

that an initial naming context is narrowed to the Nam ngCont ext Ext
interface

433

CHAPTER 17 | Naming Service

Building a Naming Graph

434

A name binding can reference either an object reference or another naming
context. By binding one naming context to another, you can organize
application objects into logical categories. However complex the hierarchy,

almost all paths within a naming graph hierarchy typically resolve to object
references.

In an application that uses a naming service, a server program often builds a

multi-tiered naming graph on startup. This process consists of two repetitive
operations:

® Bind naming contexts into the desired hierarchy.

® Bind objects into the appropriate naming contexts.

Building a Naming Graph

Binding Naming Contexts

A server that builds a hierarchy of naming contexts contains the following
steps:

1. Gets the initial naming context (see page 433).
2. Creates the first tier of naming contexts from the initial naming context.
3. Binds the new naming contexts to the initial naming context.
4. Adds naming contexts that are subordinate to the first tier:
. Creates a naming context from any existing one.
. Binds the new naming context to its designated parent.

The naming graph shown in Figure 23 on page 425 contains three naming
contexts that are directly subordinate to the initial naming context:
Checking, Loans, and Savings. The following code binds the Checking
naming context to the initial naming context, as shown in Figure 24:

Example 42: Binding a naming context to the initial naming context

//get initial nam ng context
or g. ong. CosNanm ng. Nam ngCont ext Ext root _cxt = ...;

// create nam ng context
or g. ong. CosNani ng. Nam ngCont ext checki ng_cxt =
root _cxt.new context();

// initialize nane
or g. ong. CosNani ng. NamreConponent [] name = new NarmeConponent [1] ;
nane[0] = new NaneConponent (" Checki ng", "");

/1 bind new cont ext
root _cxt. bi nd_cont ext (name, checking_cxt);

435

CHAPTER 17 | Naming Service

Orphaned naming contexts

436

Initial naming context

Checking

O
Figure 24: Checking context bound to initial naming context
Similarly, you can bind the Savings and Loans naming contexts to the initial
naming context. The following code uses the shortcut operation

bi nd_new cont ext (), which combines new cont ext () and bi nd(). It also
uses the t o_name() operation to set the Narre variable.

Example 43: Binding a naming context with bind_new_context()

or g. ong. CosNani ng. Nam ngCont ext savi ngs_cxt, |oan_cxt;

// create nam ng contexts
nane = root_cxt.to_nane("Savi ngs");
savi ngs_cxt = root_cxt. bi nd_new _cont ext (nane) ;

nane = root_cxt.to _nane("Loan");
| oan_cxt = root _cxt. bi nd_new cont ext (nane) ;

Initial naming context

Checking Loans

Savings

(©)

Figure 25: Savings and Loans naming contexts bound to initial naming
context

The naming service can contain naming contexts that are unbound to any
other context. Because these naming contexts have no parent context, they
are regarded as orphaned. Any naming context that you create with

Erroneous usage of orphaned
naming contexts

Building a Naming Graph

new_cont ext () is orphaned until you bind it to another context. Although it
has no parent context, the initial naming context is not orphaned inasmuch
as it is always accessible through resol ve_i ni tial _references(), while
orphan naming contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for example, you
are in the process of constructing a new branch of naming contexts but wish
to test it before binding it into the naming graph. Other naming contexts
might appear to be orphaned within the context of the current naming
service; however, they might actually be bound to a federated naming graph
in another naming service (see “Federating Naming Graphs” on page 452).

Orphaned contexts can also occur inadvertently, often as a result of
carelessly written code. For example, you can create orphaned contexts as a
result of calling rebi nd() or rebi nd_cont ext () to replace one name binding
with another (see “Rebinding” on page 440). The following code shows how
you might orphan the Savings naming context:

Example 44: Orphaned naming contexts

//get initial nam ng context
or g. ong. CosNani ng. Nam ngCont ext Ext root_cxt = ...;

or g. ong. CosNam ng. Nam ngCont ext savi ngs_cxt ;

// initialize nanme
or g. ong. CosNani ng. NameConponent [] name = new NanmeConponent [1] ;
nane[0] = new NaneConponent (" Savi ngs", "");

/| create and bi nd checki ng_cxt
savi ngs_cxt = root _cxt. bi nd_new _cont ext (nane) ;

// make anot her cont ext
or g. ong. CosNani ng. Nam ngCont ext savi ngs_cxt 2;
savi ngs_cxt2 = root _cxt.new_context();

/1 bind savings_cxt2 to root context, savings_cxt now orphaned!
root _cxt.rebi nd_cont ext (nane, savings_cxt 2);

An application can also create an orphan context by calling unbi nd() on a
context without calling destroy() on the same context object (see
“Maintaining the Naming Service” on page 450).

437

CHAPTER 17 | Naming Service

In both cases, if the application exits without destroying the context objects,
they remain in the naming service but are inaccessible and cannot be
deleted.

438

Building a Naming Graph

Binding Object References

After you construct the desired hierarchy of naming contexts, you can bind
object references to them with the bi nd() operation. The following example
builds on earlier code to bind a Basic checking account object to the
Checking naming context:

Example 45: Binding an object reference

/1 object reference "basic_check" obtained earlier

nane[0] = new NaneConponent ("Basic", "");
checki ng_cxt . bi nd(nane, basi c_check);

Initial naming context

Checking Loans
Savings

Basic

Figure 26: Binding an object reference to a naming context

The previous code assumes the existence of a Nani ngCont ext variable for
the Checki ng naming context on which you can invoke bi nd() .
Alternatively, you can invoke bi nd() on the initial naming context in order to
bind Basi ¢ into the naming graph:

nane = root_cxt.to_nane(" Checki ng/ Basi c");
root _cxt. bi nd(narme, basi c_check);

Note: Because the initial naming context is always available, it is the
most reliable way to access all other contexts within a naming graph.

439

CHAPTER 17 | Naming Service

Rebinding

440

If you call bi nd() or bi nd_cont ext () on a naming context that already
contains the specified binding, the naming service throws an exception of
Al readyBound. To ensure the success of a binding operation whether or not
the desired binding already exists, call one of the following naming context
operations:

® rebind() rebinds an application object.
® rebind_context () rebinds a naming context.
Either operation replaces an existing binding of the same name with the new

binding. Calls to rebi nd() in particular can be useful on server startup, to
ensure that the naming service has the latest object references.

Note: Calls to rebi nd_cont ext () or rebi nd() can have the undesired
effect of creating orphaned naming contexts (see page 436). In general,
exercise caution when calling either function.

Using Names to Access Objects

Using Names to Access Objects

Setting object names

A client application can use the naming service to obtain object references
in three steps:

1. Obtain a reference to the initial naming context (see page 433).

2. Set a CosNaming::Name structure with the full path of the name
associated with the desired object.

3. Resolve the name to the desired object reference.

You specify the path to the desired object reference in a CosNanmi ng: : Nane.
You can set this name in one of two ways:

Explicitly set the i d and ki nd members of each Nane element. For
example, the following code sets the name of a Basic checking account
object:

Example 46: Setting object name components

or g. ong. CosNani ng. NanmeConponent [] nanme =
new NaneConponent [2] ;

nane[0] new NaneConponent (“ Checki ng", "");

narne[1] new NaneConponent ("Basic", "");

Call t o_nane() on the initial naming context. This option is available if the
client code narrows the initial naming context to the Nam ngCont ext Ext
interface. t o_nane() takes a CosNami ng: : CosNami ngExt : : Stri ngNane
argument and returns a CosNani ng: : Nane as follows:

Example 47: Setting an object name with to_name()

or g. ong. CosNani ng. NaneConponent [] name =
root _cxt.to_nane(" Checki ng/ Basi c");

For more about using a Stri nghane with t o_name(), see “Converting a
stringname to a name” on page 430.

441

CHAPTER 17 | Naming Service

Resolving names

Resolving names with corbaname

442

Clients call resol ve() on the initial naming context to obtain the object
associated with the supplied name:

Example 48: Calling resolve()
or g. ong. CORBA. (hj ect obj ;
obj = root_cxt.resol ve(hane);

Alternatively, the client can call resol ve_str () on the initial naming context
to resolve the same name using its St ri ngNanme equivalent:

Example 49: Calling resolve_str()
or g. ong. CORBA. (hj ect obj ;
obj = root_cxt.resol ve_str (" Checking/ Basic");

In both cases, the object returned in obj is an application object that
implements the IDL interface Basi cChecki ng, so the client narrows the
returned object accordingly:

Basi cChecki ng checki ng;
try {
checki ng = Basi cChecki ngHel per. narrow(obj) ;

/1 performsone operation on basic checking obj ect

} // end of try clause, catch clauses not shown

You can resolve names with a cor baname URL, which is similar to a

cor bal oc URL (see “Using corbaloc URL strings” on page 246). However, a
cor baname URL also contains a stringified name that identifies a binding in a
naming context. For example, the following code uses a corbaname URL to
obtain a reference to a BasicChecking object:

Example 50: Resolving a name with corbaname

org. ong. CORBA. (hj ect obj ;
obj = orb.string_to_object(
"cor banare: ri r: / NaneSer vi ce#Checki ng/ Basi c"

)

Using Names to Access Objects

A corbaname URL has the following syntax:

corbanane: rir: [/ NaneServi ce] #stri ng- name

string-nane is a string that conforms to the format allowed by a

CosNam ng: : CosNam ngExt : : Stri ngNane (see “Representing Names as
Strings” on page 429). A corbaname can omit the NameSer vi ce specifier.
For example, the following call to string_t o_obj ect () is equivalent to the
call shown earlier:

obj = orb.string_to_object("corbanane:rir:#Checki ng/ Basi c");

443

CHAPTER 17 | Naming Service

Exceptions Returned to Clients

444

Invocations on the naming service can result in the following exceptions:

NotFound The specified name does not resolve to an existing binding. This
exception contains two data members:

why Explains why a lookup failed with one of the following values:

® nissing_node: one of the name components specifies a
non-existent binding.

® not_context: one of the intermediate name components
specifies a binding to an application object instead of a
naming context.

® not_obj ect: one of the name components points to a
non-existent object.

rest _of _nanmeContains the trailing part of the name that could not be
resolved.

InvalidName The specified name is empty or contains invalid characters.

CannotProceed The operation fails for reasons not described by other
exceptions. For example, the naming service’s internal repository might be
in an inconsistent state.

AlreadyBound Attempts to create a binding in a context throw this exception
if the context already contains a binding of the same name.

Not Empty Attempts to delete a context that contains bindings throw this
exception. Contexts must be empty before you delete them.

Listing Naming Context Bindings

Listing Naming Context Bindings

Iterating over binding list
elements

In order to find an object reference, a client might need to iterate over the
bindings in one or more naming contexts. You can invoke the l'i st ()
operation on a naming context to obtain a list of its name bindings. This
operation has the following signature:

void list(
i n unsi gned | ong how _nany,
out Bindi ngList bl,
out Bindinglterator it);

l'ist() returns with a Bi ndi ngLi st, which is a sequence of Bi ndi ng
structures:

enum Bi ndi ngType{ nobj ect, ncontext };

struct Bi ndi ng{
Nanme bi ndi ng_nane
Bi ndi ngType bi ndi ng_t ype;
}
t ypedef sequence<Bi ndi ng> Bi ndi ngLi st

Given a binding list, the client can iterate over its elements to obtain their
binding name and type. Given a Bi ndi ng element’s name, the client
application can call resol ve() to obtain an object reference; it can use the
binding type information to determine whether the object is a naming
context or an application object.

For example, given the naming graph in Figure 23, a client application can
invoke I'i st () on the initial naming context and return a binding list with
three Bi ndi ng elements:

Figure 0.4:
Index Name BindingType
0 Checking ncontext
1 Savings ncontext

445

CHAPTER 17 | Naming Service

Figure 0.4:

Index Name BindingType

2 Loan ncontext

446

Listing Naming Context Bindings

Using a Binding lterator

Limiting number of bindings
returned by list()

Obtaining remainder of bindings

In the previous example, li st () returns a small binding list. However, an
enterprise application is likely to require naming contexts with a large
number of bindings. |i st () therefore provides two parameters that let a
client obtain all bindings from a naming context without overrunning
available memory:

how_many sets the maximum number of elements to return in the binding
list. If the number of bindings in a naming context is greater than how nany,
I'ist() returns with its Bi ndi ngl t er at or parameter set.

it is a Bi ndi ngl ter at or object that can be used to retrieve the remaining
bindings in a naming context. If I'i st () returns with all bindings in its
Bi ndi ngLi st , this parameter is set to nil.

A Bi ndi ngl terat or object has the following IDL interface definition:

interface Bindinglterator{
bool ean next _one(out Bi nding b);
bool ean next _n(in unsigned | ong how nany, out Bindi ngLi st
bl);
voi d destroy();

If Ii st () returns with a Bi ndi ngl t erat or object, the client can invoke on it
either next _n() to retrieve the next specified number of remaining bindings,
or next _one() to retrieve one remaining binding at a time. Both functions
return true if the naming context contains more bindings to fetch. Together,
these Bi ndi ngl t er at or operations and li st () let a client safely obtain all
bindings in a context.

Note: The client is responsible for destroying an iterator. It also must be
able to handle exceptions that might return when it calls an iterator
operation, inasmuch as the naming service can destroy an iterator at any
time before the client retrieves all naming context bindings.

447

CHAPTER 17 | Naming Service

448

The following client code gets a binding list from a naming context and
prints each element’s binding name and type:

Example 51: Obtaining a binding list

// printing function
voi d
print_binding_li st (org. omg. CosNam ng. Bi ndi ngLi st Hol der bl)
{
/l extract the list of bindings
org. onmg. CosNami ng. Bi ndi ng[] |ist = bl.val ue;
/] iterate through Iist
for(int i =0; i <list.length; i++){
Systemout.print(list[i].binding_nane[0].id;
if(list[i].binding_name[0].kind != null)
System out . pri nt (
"(" + bl[i].binding_nane[0].kind + ")");
if(bl[i].binding_type ==
or g. ong. CosNani ng. Bi ndi ngType. ncont ext)
Systemout.println(“: namng context");
el se

Systemout.println("“: object reference");
}

voi d
get _cont ext _bi ndi ngs(onmg. or g. CosNam ng. Nam ngCont ext cxt)
{
or g. onmg. CosNami ng. Bi ndi ngLi st Hol der b_li st;
or g. onmg. CosNam ng. Bi ndi ngl terator Hol der b_iter =
new or g. ong. CosNam ng. Bi ndi ngl t er at or Hol der () ;
| ong MAX Bl NDI NGS = 50;

// set up array to store binding list, put it in hol der
or g. omg. CosNam ng. Bi ndi ng[] binding |ist =

new or g. ong. CosNani ng. Bi ndi ng[MAX_Bl NDI NGS] ;
b list =

new or g. ong. CosNam ng. Bi ndi ngLi st Hol der (bi ndi ng_l i st);

/1l get first set of bindings from cxt
cxt.list(MX BINDINGS, b list, b iter);

Listing Naming Context Bindings

Example 51: Obtaining a binding list

}

[lprint first set of bindings
print_binding list(b_list);

/1 1 ook for remaining bindings
if(b_iter.value !'=null) {
org. ong. CosNam ng. Bi ndi nglterator it = b_iter.val ue;
do {
bool ean nore = it.next_n(MAX BINDINGS, b_list);
/1 print next set of bindings
print_binding_list(b_list);
} while (nore);

/1 get rid of iterator
it.destroy();

}

When you run this code on the initial naming context shown earlier, it yields
the following output:

Checki ng: nanmi ng cont ext
Savi ngs: nam ng cont ext
Loan: nam ng cont ext

449

CHAPTER 17 | Naming Service

Maintaining the Naming Service

Destruction of a context and its bindings is a two-step procedure:

® Remove bindings to the target context from its parent contexts by
calling unbi nd() on them.

® Destroy the context by calling the destroy() operation on it. If the
context contains bindings, these must be destroyed first; otherwise,
destroy() returns with a Not Enpt y exception.

These operations can be called in any order; but it is important to call both.
If you remove the bindings to a context without destroying it, you leave an
orphaned context within the naming graph that might be impossible to
access and destroy later (see “Orphaned naming contexts” on page 436). If
you destroy a context but do not remove its bindings to other contexts, you
leave behind bindings that point nowhere, or dangling bindings.

For example, given the partial naming graph in Figure 27, you can destroy
the Loans context and its bindings to the loan account objects as follows:

Example 52: Destroying a naming context

or g. ong. CosNani ng. NaneConponent [] nane;

/1 get initial nam ng context
or g. ong. CosNani ng. Nam ngCont ext Ext root_cxt = ...;

/] assume availability of Loans nam ng context variable
or g. ong. CosNani ng. Nam ngCont ext | oans_cxt = ... ;

/1 remove bindings to Loans context

nane = root_cxt.to_nane("Loans/ Mrtgage");
r oot _cxt. unbi nd(nane) ;

name = root_cxt.to_name("Loans/ Auto");

r oot _cxt. unbi nd(nane) ;

nane = root_cxt.to_nane("Loans/ Personal ");
root _cxt. unbi nd(nane) ;

/1l renove binding fromLoans context to initial nam ng context

name = root_cxt.to_nanme("Loans");
r oot _cxt. unbi nd(nane) ;

450

Maintaining the Naming Service

Example 52: Destroying a naming context

/] destroy orphaned Loans cont ext
| oans_cxt . destroy();

Before i After
Initial naming | Initial naming
context | QO context
|
Loans |
|
Mortgage |
Personal |
° | °
Auto
° | °
° | °
I

Figure 27: Destroying a naming context and removing related bindings

Note: Orbix provides administrative tools to destroy contexts and remove
bindings. These are described in the Application Server Platform
Administrator’s Guide.

451

CHAPTER 17 | Naming Service

Federating Naming Graphs

A naming graph can span multiple naming services, which can themselves
reside on different hosts. Given the initial naming context of an external
naming service, a naming context can transparently bind itself to that
naming service’'s naming graph. A naming graph that spans multiple naming
services is said to be federated.

Benefits A federated naming graph offers the following benefits:

® Reliability: By spanning a naming graph across multiple servers, you
can minimize the impact of a single server’s failure.

® Load balancing: You can distribute processing according to logical
groups. Multiple servers can share the work load of resolving bindings
for different clients.

® Scalability: Persistent storage for a naming graph is spread across
multiple servers.

® Decentralized administration: Logical groups within a naming graph
can be maintained separately through different administrative
domains, while they are collectively visible to all clients across the
network.

Federation models Each naming graph in a federation must obtain the initial naming context of
other members in order to bind itself to them. The binding possibilities are
virtually infinite; however, two federation models are widely used:
® Hierarchal federation — All naming graphs are bound to a root server’s
naming graph. Clients access objects via the initial naming context of
the root server.

® Fully-connected federation — Each naming graph directly binds itself
to all other naming graphs. Typically, each naming graph binds the
initial naming contexts of all other naming graphs into its own initial
naming context. Clients can access all objects via the initial naming
context of their local naming service.

452

Hierarchal federation

Deposits server

Federating Naming Graphs

Figure 28 shows a hierarchal naming service federation that comprises
three servers. The Deposits server maintains naming contexts for checking
and savings accounts, while the Loans server maintains naming contexts for
loan accounts. A single root server serves as the logical starting point for all
naming contexts.

Root server

Initial naming context

N

Deposits Loa}\ Loans server

NOwW

Basic

Initial naming context / \ Initial naming context

Checking

Premium

Regular

Mortgage
Personal

Savings

(
Auto

Pension

Figure 28: A naming graph that spans multiple servers

In this hierarchical structure, the naming graphs in the Deposits and Loans
servers are federated through an intermediary root server. The initial naming
contexts of the Deposits and Loans servers are bound to the root server's
initial naming context. Thus, clients gain access to either naming graph
through the root server’s initial naming context.

453

CHAPTER 17 | Naming Service

454

The following code binds the initial naming contexts of the Deposits and
Loans servers to the root server's initial naming context:

Example 53: Federating naming graphs to a root server’s initial naming

/] Root server

public static void main (String[] args) {
or g. omg. CosNam ng. Nam ngCont ext Ext

root _inc, deposits_inc, |oans, _inc;

or g. omg. CosNam ng. NaneConponent [] name = new
NaneConponent [1] ;

or g. ong. CCRBA. (bj ect obj ;

or g. onmg. CORBA. CRB gl obal _orb;

String loans_inc_ior, deposits_inc_ior

try {

gl obal _orb = org.ong. CCRBA gl obal _orb.init(args, null);

// code to obtain stringified |CRs of initial nam ng
/1l contexts for Loans and Deposits servers (not shown)

obj = global _orb.string_to_object(loans_inc_ior);
| oans_inc =

or g. omg. CosNam ng. Nam ngCont ext Ext Hel per . narr ow(obj) ;
obj = global _orb.string_to_object(deposits_inc_ior);
deposits_inc =

or g. omg. CosNam ng. Nam ngCont ext Ext Hel per . narr ow(obj) ;

// get initial nam ng context for Root server
root_inc = ... ;

// bind Deposits initial namng context to root server’s
// initial nam ng context

name[0] = new NaneConponent (" Deposits", "");

root _i nc. bi nd_cont ext (name, deposits_inc);

// bind Loans initial namng context to root server’'s
// initial nam ng context

name[0] = new NameConponent (" Loans", "");

root _i nc. bi nd_cont ext (name, deposits_inc);

Fully-connected federation

Federating Naming Graphs

This yields the following bindings between the three naming graphs:

Root server

Initial naming context

N

Deposits server Loans server

Deposits Loans

Initial naming context ’ \ Initial naming context

\

Figure 29: Multiple naming graphs are linked by binding initial naming
contexts of several servers to a root server.

In a purely hierarchical model like the naming graph just shown, clients
obtain their initial naming context from the root server, and the root server
acts as the sole gateway into all federated naming services. To avoid
bottlenecks, it is possible to modify this model so that clients can gain
access to a federated naming graph via the initial naming context of any
member naming service.

The next code example shows how the Deposits and Loans servers can bind
the root server’s initial naming context into their respective initial naming
contexts. Clients can use this binding to locate the root server’s initial
naming context, and then use root-relative names to locate objects.

455

CHAPTER 17 | Naming Service

Figure 30 shows how this federates the three naming graphs:

Root server

Initial naming context

parent /Q\‘\ parent

Deposits server Deposits Loans Loans server

Initial naming context f ’ \ \ Initial naming context

\

Figure 30: The root server’s initial naming context is bound to the initial
naming contexts of other servers, allowing clients to locate the root naming
context.

The code for both Deposits and Loans server processes is virtually identical:

Example 54: Federating naming graphs through the initial naming contexts
of multiple servers

public static void main (String[] args) {

or g. omg. CosNam ng. Nam ngCont ext Ext root _i nc, this_inc;

or g. omg. CosNam ng. NaneConponent [] nanme =
new NaneConponent [1] ;

or g. omg. CORBA. (hj ect obj ;

or g. onmg. CORBA. CRB gl obal _orb;

String root _inc_ior;

try {
gl obal _orb = org. ong. CORBA gl obal _orb.init(args, null);
// code to obtain stringified |CRs of root server’'s
// initial nam ng context (not shown)

obj = global _orb.string_to_object(root_inc_ior);
root_inc =
or g. omg. CosNam ng. Nam ngCont ext Ext Hel per . narrow(obj) ;

456

Federating Naming Graphs

Example 54: Federating naming graphs through the initial naming contexts
of multiple servers

/l get initial namng context for this server
this_inc = ... ;

nane[0] = new NaneConponent ("parent”, "");
/!l bind root server’s initial nam ng context to

/1 this server’s initial nam ng context
thi s_i nc. bi nd_cont ext (nane, root_inc);

457

CHAPTER 17 | Naming Service

Sample Code

The following sections show the server and client code that is discussed in
previous sections of this chapter.

Server code
Example 55: Server naming service code

public static void main (String[] args) {
or g. omg. CosNam ng. Nam ngCont ext Ext root _cxt;
or g. ong. CosNam ng. Nam ngCont ext
checki ng_cxt, savings _cxt, |oan_cxt;
or g. omg. CosNam ng. NaneConponent [] nane;
or g. omg. CORBA. CRB or b;
or g. ong. CCRBA. (bj ect obj ;
Checki ng basi c_check, now check, prem um check;

/1 Checking objects initialized from persistent data
/1 (not shown)

try {
/] Initialize the CRB
orb = org. omg. CORBA. gl obal _orb.init(args, null);

/] Get reference to initial nam ng context
obj =

gl obal _orb.resol ve_initial _references("NameService");
root_cxt =

or g. omg. CosNam ng. Nam ngCont ext Ext Hel per . narrow(obj) ;
if(root_cxt !'=null) {

/1 build nam ng graph

[/l initialize name

name = root_cxt.to_nane(" Checki ng");

/1 bind new nam ng context to root

checki ng_cxt = root _cxt. bi nd_new cont ext (nane) ;

458

Sample Code

Example 55: Server naming service code

/1 bind checking objects to Checki ng cont ext
name = root_cxt.to_name(" Checki ng/ Basi c");
checki ng_cxt . bi nd(nanme, basi c_check) ;

nane = root_cxt.to_nane(" Checki ng/ Prem un!);
checki ng_cxt . bi nd(nane, prem um check) ;

name = root_cxt.to_name(" Checki ng/ NON) ;
checki ng_cxt . bi nd(narme, now_check);

name = root_cxt.to_name(" Savi ngs");
savi ngs_cxt = root _cxt. bi nd_new _cont ext (nane) ;

// bind savings objects to savings context
name = root_cxt.to_name("Loan");
| oan_cxt = root _cxt.bi nd_new cont ext (nane) ;

// bind | oan objects to | oan cont ext

else {...} // deal with failure to narrow()

} // end of try clause, catch clauses not shown

Client code
Example 56: Client naming service code

public static void main (String[] args) {
or g. omg. CosNam ng. Nam ngCont ext Ext root _cxt;
or g. omg. CosNam ng. NaneConponent [] nane;
Basi cChecki ng_var checki ng;
or g. omg. CORBA (hj ect obj ;
or g. omg. CORBA. CRB gl obal _or b;

try {
gl obal _orb = org. ong. CORBA gl obal _orb.init (args, null);

459

CHAPTER 17 | Naming Service

Example 56: Client naming service code

/] Find the initial nam ng context

obj =
gl obal _orb. resol ve_initial _references("NameService");
root_cxt =
or g. ong. CosNani ng. Nam ngCont ext Ext Hel per. nar r ow(obj) ;
if(root_cxt !'=null) {

obj = root_cxt.resol ve_str (" Checki ng/ Basic");
checki ng_var == Basi cChecki ngHel per. narrow(obj) ;
if(checking_var !'=null) {
/] performsome operation on basic checking obj ect

}
else{ ... } // Deal with failure to narrow()
} else{ ... } // Deal with failure to resol ve obj ect

} /1 end of try clause, catch clauses not shown

460

Object Groups and Load Balancing

Object Groups and Load Balancing

Selection algorithms

The naming service defines a repository of names that map to objects. A
name maps to one object only. Orbix extends the naming service model to
allow a name to map to a group of objects. An object group is a collection of
objects that can increase or decrease in size dynamically.

Each object group has a selection algorithm that is set when the object
group is created (see page 465). This algorithm is applied when a client
resolves the name associated with the object group; and the naming service
directs client requests to objects accordingly.

Three selection algorithms are supported:

Round-robin: The locator uses a round-robin algorithm to select from the
list of active servers—that is, the first client is sent to the first server, the
second client to the second server, and so on.

Random: The locator randomly selects an active server to handle the client.
Active load balancing: Each object group member is assigned a load value.

The naming service satisfies client resolve() invocations by returning
references to members with the lowest load values.

461

CHAPTER 17 | Naming Service

Figure 31 shows how a name can bind to multiple objects through an object

group.
bi nd() Pure CORBA
Name B Object naming service
bi nd_obj ect _group() -~ T~
L - ~
Name ' Object 1 N
| : \
F— — — L — Object 2 ‘
| \ Object 3
Lo — _\V _____
Optional AN .
Orbix ~ Object Group P /
extension >~ -

—_

Figure 31: Associating a name with an object group

Orbix supports object groups through its own IDL interfaces. These
interfaces let you create object groups and manipulate them: add objects to
and remove objects from groups, and find out which objects are members of
a particular group. Object groups are transparent to clients.

Load balancing interfaces

IDL modules I T_LoadBal anci ng and | T_Nam ng, defined in

or bi x/ | oad_bal anci ng. i dl and or bi x/ nani ng. i dl , respectively, provide
operations that allow access to Orbix load balancing:

modul e | T_LoadBal anci ng

{

462

exception NoSuchMenber{};
exception DuplicateMenber{};
exception Duplicate@oup{};
exception NoSuchG oup{};

Object Groups and Load Balancing

typedef string Menberld;
t ypedef sequence<Menber | d> Menber| dLi st ;

enum Sel ecti onMet hod
{ ROUND ROBIN_METHOD, RANDOM METHCD, ACTI VE _METHOD };

struct Menber
{
(bj ect obj ;
Menber I d i d;
%

typedef string @ oupld;
t ypedef sequence<@ oupl d> G ouplLi st ;

interface (bject@ oup
{

readonly attribute string id,;

attribute Sel ecti onMet hod sel ecti on_met hod;

bj ect pick();

voi d add_nenber (in Menber nem
rai ses (Dupli cat eMenber);

voi d renmove_nenber (in Menberld id)
rai ses (NoSuchMenber);

(bj ect get _nmenber (in Menberld id)
rai ses (NoSuchMenber);

Menber | dLi st menber s() ;

voi d destroy();

voi d updat e_menber _| oad(
in Menber|dList ids,
in double curr_| oad

) raises (NoSuchMenber);

doubl e get _nenber | oad(
in Menberld id

) raises (NoSuchMenber);

voi d set_nenber _ti meout (
in Menber|dList ids,
inlong timout_sec

) raises (NoSuchMenber);

| ong get _nenber_ti meout (
in Menberld id

) raises (NoSuchMenber);

463

CHAPTER 17 | Naming Service

i nterface (bj ect @ oupFactory
{
Chj ect Goup create_round_robin (in Goupld id)
rai ses (Duplicate@ oup);
Chj ect G oup create_random (in Goupld id)
rai ses (DuplicateGoup);
Cbj ect G oup create_active (in QGoupld id)
rai ses (DuplicateGoup);
Cbj ect Goup find_group (in Goupld id)
rai ses (NoSuchG oup);
G oupLi st rr_groups();
G oupLi st random groups() ;
QG ouplLi st active_groups();
IE
IE

For detailed information about these interfaces, see the CORBA
Programmer’s Reference.

464

Object Groups and Load Balancing

Using Object Groups in Orbix

Create an object group

The | T_LoadBal anci ng module lets servers perform the following tasks:

Create an object group and add objects to it.

Add objects to an existing object group.

Remove objects from an object group.

Remove an object group.

Set member load values and direct client requests accordingly.

You create an object group and add objects to it in the following steps:

1.

Get a reference to a naming context such as the initial naming context
and narrow to I T_Nam ngCont ext Ext .

Create an object group factory by calling og_f act ory() on the naming
context object. This returns a reference to an
| T_LoadBal anci ng: : Cbj ect @ oupFact ory object.

Create an object group by calling creat e_randon(),
create_round_robin(), or create_active() on the object group
factory. These operations return a reference to an object group of
interface | T_LoadBal anci ng: : Qbj ect @ oup that uses the desired
selection algorithm.

Add application objects to the newly created object group by calling
add_nenber () on it.

Bind a name to the object group by calling bi nd_obj ect _group() on
the naming context object created in step 1.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is uniqgue among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. This
identifier is a string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. Orbix does not
interpret these identifiers.

465

CHAPTER 17 | Naming Service

Add objects to an existing object
group

Remove objects from an object
group

466

Before you add objects to an existing object group, you must get a reference
to the corresponding | T_LoadBal anci ng: : Qbj ect G oup object. You can do
this by using either the group identifier or the name that is bound to the
object group. This section uses the group identifier.

To add objects to an existing object group:

1.
2.
3.

Get a reference to a naming context such as the initial naming context.
Narrow the reference to | T_Nam ngCont ext Ext .

Call og_factory() on the naming context object. This returns a
reference to an Qvj ect @ oupFact ory object.

Call fi nd_group() on the object group factory, passing the identifier for
the group as a parameter. This returns a reference to the object group.
Add application objects to the object group by calling add_nenber () on
it.

Removing an object from a group is straightforward if you know the object
group identifier and the member identifier for the object:

1.

Get a reference to a naming context such as the initial naming context
and narrow to | T_Nam ngCont ext Ext .

Call og_factory() on the naming context object. This returns a
reference to an Qvj ect @ oupFact ory object.

On the object group factory, call fi nd_group(), passing the identifier
for the target object group as a parameter. This operation returns a
reference to the object group.

Call r enove_nenber () on the object group to remove the required
object from the group. You must specify the member identifier for the
object as a parameter to this operation.

If you already have a reference to the object group, the first three steps are
unnecessary.

Remove an object group

Set member load values

Object Groups and Load Balancing

To remove an object group for which you have no reference:

1. Call unbi nd() on the initial naming context to unbind the name
associated with the object group.

2. Call og_factory() on the initial naming context object. This returns a
reference to an (bj ect @ oupFact ory object.

3. Callfind_group() on the object group factory, passing the identifier for
the target object group as a parameter. This operation returns a
reference to the object group.

4. Call destroy() on the object group to remove it from the naming
service.

If you already have a reference to the target object group, steps 2 and 3 are
unnecessary.

In an object group that uses active load balancing, each object group
member is assigned a load value. The naming service satisfies client

resol ve() invocations by returning references to members with the lowest
load values.

A member's default load value can be set administratively through the
configuration variable pl ugi ns: naming: I b_defaul t _i nitial _| oad.
Thereafter, load counts should be updated with periodic calls to

oj ect @ oup: : updat e_menber _| oad() . i tadni n provides an equivalent
command, nsog updat e_nenber _| oad, in cases where manual intervention
is required, or scripting is feasible.

You should also set or modify member timeouts with

oj ect @ oup: : set _nenber _timeout () or with i t adm n nsog

set _menber _ti meout . You can configure default timeout values with the
configuration variable pl ugi ns: nam ng: | b_def aul t _| oad_ti meout . If an
object’s load value is not updated within its timeout interval, its object
reference becomes unavailable to client resol ve() invocations. This
typically happens because the object itself or an associated process is no
longer running, and therefore cannot update the object’s load value.

A member reference can be made available again to client resol ve()
invocations by resetting its load value with

(bj ect G oup: : updat e_nenber _| oad() oritadm n nsog

updat e_menber _| oad. In general, an object’s timeout should be set to an
interval greater than the frequency of load count updates.

467

CHAPTER 17 | Naming Service

Load Balancing Example

Naming Service

()

Object Group

(1) Create group

@ Bind name to group

468

This section uses a simple stock market system to show how to use object
groups in CORBA applications. In this example, a CORBA object has access
to all current stock prices. Clients request stock prices from this CORBA
object and display those prices to the end user.

A realistic stock market application needs to make available many stock
prices, and provide many clients with price updates immediately. Given
such a high processing load, one CORBA object might be unable to satisfy
client requirements. You can solve this problem by replicating the CORBA
object, invisibly to the client, through object groups.

Figure 32 shows the architecture for the stock market system, where a
single server creates two CORBA objects from the same interface. These
objects process client requests for stock price information.

Servers

Add objects to group

®

StockMarketFeed object 1

StockMarketFeed object 3

(5) Resolve group name

Client {

Get stock price

StockMarketFeed object 4

Figure 32: Architecture of the stock market example

Load Balancing Example

Defining the IDL for the The IDL for the load balancing example consists of a single interface
application St ockMar ket Feed, which is defined in module Qvj ect G oupDeno:

/1 1D

nodul e Cbj ect G oupDeno

{

exception StockSynmbol Not Found{};
i nterface StockMarket Feed

doubl e read_stock (in string stock_synbol)
rai ses(St ockSynbol Not f ound) ;
h
ik

St ockMar ket Feed has one operation, read_st ock() . This operation returns
the current price of the stock associated with string identifier st ock_nane,
which identifies the desired stock.

469

CHAPTER 17 | Naming Service

Creating an Object Group and Adding Objects

After you define the IDL, you can implement the interfaces. Using object
groups has no effect on how you do this, so this section assumes that you
define class St ockMar ket FeedSer vant , which implements interface

St ockMar ket Feed.

After you implement the IDL interfaces, you develop a server program that
contains and manages implementation objects. The application can have
one or more servers that perform these tasks:

® Creates two St ockMar ket Feed implementation objects.

® Creates an object group in the naming service.

® Adds the implementation objects to this group.

The server's mai n() routine can be written as follows:
Example 57: Load balancing server

org. ong. CCRBA. CRB gl obal _or b;
org. ony. Port abl eServer. PQA t he_poa;
String idl, id2;

public static void main (String[] args) {

comiona. | T_LoadBal anci ng. Cbj ect Goup rr_og_var;
comiona. | T_Nam ng. | T_Nam ngCont ext Ext it_ins_var;

[/l Initialize the ORB

try {
gl obal _orb = org. ong. CCRBA gl obal _orb.init(args, null);
}
catch (Exception ex) {
Systemout.println("Could not initialize the CRB');
Systemout. println("Exception info: "+ ex);
Systemexit(1);
}

/] Get server name
String server_name = (args[0]);

470

Load Balancing Example

Example 57: Load balancing server

/] Initialize the POA and PQA Manager
or g. ong. Port abl eSer ver . PQAManager poa_nanager ;
try {
org. ong. CCRBA. (bj ect poa_obj =
gl obal _orb.resol ve_initial _references("Root POA");
the_poa =
or g. ony. Port abl eSer ver . PQAHel per . nar r ow poa_obj) ;
poa_manager = the_poa. t he_PQAManager () ;
}
catch (Exception ex) {
Systemout. printl n("Cannot obtain root PQA or
PQAManager ") ;
Systemout . printl n("Exception info:
Systemexit(1);

+ ex);

}

/] Create 2 stock object servants call ed

/1 <server_nane>: RR Menber1 and <server_name>: RR_ Menber 2:
idl = server_nane + ":RR Menber1";

id2 = server_nane + ":RR Menber2";

St ockSer vant FeedServant stk_svntl =
new St ockSer vant FeedSer vant (i d1);

St ockSer vant FeedServant stk_svnt2 =
new St ockSer vant FeedSer vant (i d2) ;

// Cet initial nam ng context
comiona. | T_LoadBal anci ng. Chj ect G oupFact ory ogf var;
or g. onmg. CORBA (hj ect ins_obj;

try {
ins_obj =
gl obal _orb.resol ve_initial _references("NanmeService");
it_ins_var =
com iona. | T_Nam ng. | T_Nam ngCont ext Ext Hel per. nar r ow
(ins_obj);
ogf _var = it_ins_var.og_factory();
}

catch (Exception ex) {
Systemout. println("Coul d not narrow reference to
I T_Nam ngContext Ext interface. |Is the Nami ng Service
Runni ng?") ;
System out . println("Exception info:
Systemexit(1);

+ ex);

471

CHAPTER 17 | Naming Service

Example 57: Load balancing server

/Il Oreate a round robin object group and bind it in
/1 the nam ng service
String rr_id_str = "StockFeed@ oup";
try {
4 rr_og_var = ogf_var.create_round_robin(rr_id_str);
or g. ong. CosNam ng. NaneConponent [] nm =
it_ins_var.to_nane("stock_svc");
5 i t_ins_var.bind_object_group(nm rr_og_var);
}
catch (Exception ex) {
I/l OK assune other server created Chject@oup and
// bound it in NS
rr_og_var = ogf _var.find_group(rr_id str);

}

/1 Add St ockMarket Feed objects to the object group
6 try
{

comiona. | T_LoadBal anci ng. nenber menber i nf o;

menber _info.id = idi;
menber _i nfo.obj = stk_svntl. this();
rr_og_var. add_nenber (menber _i nf o) ;

menber _info.id = id2;
menber _i nfo.obj = stk_svnt2. _this();
rr_og_var. add_nenber (menber _i nf o) ;

}

catch (Exception ex) {

{
Systemout. println("Cannot add nenbers " + idl

+ ", " +id2);

Systemout . println("Exception info: " + ex);
Systemexit(1);

}

// Start accepting requests

try {
poa_manager . acti vat e() ;
Systemout.println ("Server ready...");

472

Load Balancing Example

Example 57: Load balancing server

}

gl obal _orb. run();
}
catch (Exception ex) {
Systemout.println("Uiable to activate the PQAVanager,
or orb.run() failed.");
Systemout. println("Exception info: " + ex);
Systemexit(1);

This server executes as follows:

1.

Instantiates two St ockSer vant FeedSer vant servants that implement
the st ockMar ket Feed interface.

Obtains a reference to the initial naming context and narrows it to

I T_Nami ng: : | T_Nam ngCont ext Ext .

Obtains an object group factory by calling og_f act ory() on the naming
context.

Calls create_round_robi n() on the object group factory to create a
new group with the specified identifier. creat e_round_robi n() returns
a new object group in which objects are selected on a round-robin
basis.

Calls bi nd_obj ect _group() on the naming context and binds a
specified naming service name to this group. When a client resolves
this name, it receives a reference to one of the group’s member
objects, selected by the naming service in accordance with the group
selection algorithm.

The enclosing try block should allow for the possibility that the group
already exists, where bi nd_obj ect _group() throws an exception of
CosNani ng: : Nanmi ngCont ext : : Al r eadyBound. In this case, the cat ch
clause calls find_group() in order to obtain the desired object group.
find_group() is also useful in a distributed system, where objects
must be added to an existing object group.

Activates two St ockMar ket Feed objects in the POA and adds them as
members to the object group:

473

CHAPTER 17 | Naming Service

+ The server creates an IDL struct of type
| T_LoadBal anci ng: : menber , and initializes its two members: a
string that identifies the object within the group; and a
St ockMar ket Feed object reference, created by invoking _t hi s()
on each servant.

. The server adds the new member to the object group by calling
add_nenber ().

7. Prepares to receive client requests by calling run() on the ORB.

474

Load Balancing Example

Accessing Objects from a Client

All objects in an object group provide the same service to clients. A client
that resolves a name in the naming service does not know whether the
name is bound to an object group or a single object. The client receives a
reference to one object only. A client program resolves an object group name
just as it resolves a name bound to one object, using standard
CORBA-compliant interfaces.

For example, the stock market client’s mai n() routine might look like this:
Example 58: Accessing objects from an object group
or g. ong. CORBA. CRB gl obal _or b;
public static void main (String[] args) {
or g. omg. CosNam ng. Nam ngCont ext Ext i ns;

try {
gl obal _orb = org. ong. CORBA gl obal _orb.init(args, null);

or g. ong. GORBA. (bj ect ins_obj =
gl obal _orb.resolve_initial _references("NaneService");
ins =
or g. ong. CosNanm ng. Nam ngCont ext Ext Hel per. narrow(i ns_obj) ;
}
catch (Exception ex) {
System out . print | n(
"Cannot resol ve/ narrow t he name service |(R);
Systemout. println("Exception info: " + ex);
Systemexit(1);

475

CHAPTER 17 | Naming Service

Example 58: Accessing objects from an object group

St ockMar ket Feed stk_ref;
try {
or g. ong. GORBA. (hj ect stk_obj =
ins.resol ve_str("stock_svc");
stk_ref = StockMarket FeedHel per. narrow(stk_obj);
}
catch (Exception ex) {
Systemout . println("Unabl e to resol ve/ narrow st ock_svc
I CR from naning service");
Systemout. println("Exception info: " + ex);
Systemexit(1);
}

doubl e curr_price;

try {
curr_price = stk _ref.read_stock(args[0]);
}

catch (Exception ex) {
Systemout. println("Stock synbol not found: " + args[0]);
Systemout . println("Try another stock synbol");
Systemexit(1);

}

Systemout. println(args[0] + " stock price is " +
curr_price);

476

In this chapter

CHAPTER 18

Event Service

The event service enables decoupled communication between
client consumers and suppliers by forwarding messages

through an event channel.

An event originates at a client supplier and is forwarded through an event
channel to any number of client consumers. Suppliers and consumers are
completely decoupled: a supplier has no knowledge of the number of

consumers or their identities, and consumers have no knowledge of which

supplier generated a given event.

This chapter discusses the following topics:

Overview page 478
Event Communication Models page 480
Developing an Application Using Untyped Events page 484
Developing an Application Using Typed Events page 501

477

CHAPTER 18 | Event Service

Overview

Service capabilities

Connections

How many clients?

478

Suppliers Q

An event channel provides the following capabilities for forwarding events:
® Enables consumers to subscribe to events of certain types.

® Accepts incoming events from client suppliers.

® Forwards supplier-generated events to all connected consumers.

® Forwarding messages using well defined IDL interfaces.

Suppliers and consumers connect to an event channel and not directly to
each other, as shown in Figure 33. From a supplier's perspective, the event
channel appears as a single consumer; from a consumer’s perspective, the
event channel appears as a single supplier. In this way, the event channel
decouples suppliers and consumers.

Event ti
O vent propagation > Q
Event Channel | Q
=0

Consumers

Figure 33: Suppliers and consumers communicating through an event
channel

Any number of suppliers can issue events to any number of consumers using
a single event channel. There is no correlation between the number of
suppliers and the number of consumers. New suppliers and consumers can
be easily added to or removed from the system. Furthermore, any supplier
or consumer can connect to more than one event channel.

Overview

For example, many documents might be linked to a spreadsheet cell, and
must be notified when the cell value changes. However, the spreadsheet
software does not need to know about the documents linked to its cell.
When the cell value changes, the spreadsheet software should be able to
issue an event that is automatically forwarded to each connected document.

Event delivery Figure 34 shows a sample implementation of event propagation in a CORBA
system. In this example, suppliers are implemented as CORBA clients; the
event channel and consumers are implemented as CORBA servers. An event
occurs when a supplier invokes a clearly defined IDL operation on an object
in the event channel application. The event channel then propagates the
event by invoking a similar operation on objects in each of the consumer
servers.

Supplier

: Consumers O

1. Supoli I i Event Channel <—>©
. Supplier calls operation
on event channel \\L O
2. Event channel calls O

operation on consumers

Figure 34: Event propagation in a CORBA system

479

CHAPTER 18 | Event Service

Event Communication Models

Overview CORBA specifies two approaches to initiating the transfer of events between

suppliers and consumers

® Push model: Suppliers initiate transfer of events by sending those
events to the channel. The channel then forwards them to any
consumers connected to it.

® Pull model: Consumers initiate the transfer of events by requesting
them from the channel. The channel requests events from the
suppliers connected to it.

®* Typed push model: Suppliers initiate the transfer of events by calling
operations on an interface that is mutually agreed upon by both the
consumer and the supplier. The channel forwards the events to all
connected consumers that support the interface.

Push model In the push model, suppliers generate events and actively pass them to an
event channel. In this model, consumers wait for events to arrive from the
channel.

Figure 35 illustrates a push model architecture in which push suppliers
communicate with push consumers through the event channel.

Event propagation
O e ()
push Event Channel <_—>©
u
suppliers Q \Q

consumers

Push

Figure 35: Push model of event transfer

480

Pull model

Mixing push and pull models

Event Communication Models

In this architecture, a supplier initiates event transfer by invoking an IDL
operation on an object in the event channel. The event channel then invokes
a similar operation on an object in each consumer that is connected to the
channel.

In the pull model, a consumer actively requests events from the channel.
The supplier waits for a pull request to arrive from the channel. When a pull
request arrives, event data is generated and returned to the channel.

Figure 36 illustrates a pull model architecture in which pull consumers
communicate with pull suppliers through the event channel.

Event propagation
Q propag - Q
_\ Event Channel Q

Suppliers 07 QO

O

consumers

Figure 36: Pull Model suppliers and consumers communicating through an
event channel

In this architecture, the event channel invokes an IDL operation on an object
in each supplier to collect events. When a consumer invokes a similar
operation on the event channel, the channel forwards the events to the
consumer that initiated the transfer.

Because suppliers and consumers are completely decoupled by the event
channel, push and pull models can be mixed in a single system.

481

CHAPTER 18 | Event Service

Typed push model

482

suppliers

Event Channel
Push Q

For example, suppliers can connect to an event channel using the push
model, while consumers connect using the pull model, as shown in
Figure 37.

Event propagation
O e ()

O QO

consumers

Figure 37: Push suppliers and pull consumers communicating through an
event channel

In this case, both suppliers and consumers participate in initiating event
transfer. A supplier invokes an operation on an object in the event channel
to transfer an event to the channel. A consumer then invokes another
operation on an event channel object to transfer the event data from the
channel.

In the case where push consumers and pull suppliers are mixed, the event
channel actively propagates events by invoking IDL operations in objects in
both suppliers and consumers. The pull supplier waits for the channel to
invoke an event transfer before sending events. Similarly, the push
consumer waits for the event channel to invoke event transfer before
receiving events.

In the typed push model suppliers connect to the channel using a consumer
proxy that supports a user defined interface. The supplier then pushes
strongly typed events to the channel by invoking the operations supported
by the interface.

Event Communication Models

Figure 38 shows how typed push suppliers forward events to typed push
consumers through a typed event channel. Push suppliers can only forward
event messages to typed push consumers that support the agreed upon
interface.

Event propagation

A}
\“\8"‘ ane

-__Interface kb,
Typed Event Channel] |

\ N
terface J O

Push Typed push
suppliers consumers

InterfaC el

Figure 38: Push consumers pushing typed events to typed push consumers

As shown in the diagram, the decoupled nature of the event communication
is preserved. Only one typed push consumer supports Interface I, but it
receives events from two push suppliers. Also, only a single supplier pushes
events using Interface J, but several typed push consumers support the
interface and therefore receive the events.

483

CHAPTER 18 | Event Service

Developing an Application Using Untyped
Events

Overview When using untyped events messages are packaged into Anys before they
are forwarded through the event channel.

In this section This section discusses the following topics:
Obtaining an Event Channel page 485
Implementing a Supplier page 488
Implementing a Consumer page 494

484

Developing an Application Using Untyped Events

Obtaining an Event Channel

Overview Consumers and suppliers obtain an event channel object reference either by
creating a channel, or by finding an existing one.

You obtain an event channel factory by calling
resol ve_ini tial _references("Event Channel Fact ory"). You narrow this
reference to a event channel factory with Orbix extensions.

Event channel factory Orbix provides the Event Channel Fact ory interface, which provides the
operations to create and discover event channels:

nmodul e | T_Event Channel Admi n
{
typedef |ong Channel | D,

struct Event Channel | nfo

{
string nane;
Channel | D id;
CosEvent Channel Admi n: : Event Channel ref erence;
IE

t ypedef sequence<Event Channel | nf o> Event Channel | nf oLi st ;

exception Channel Al readyExi sts {string nane;};
exception Channel Not Found {string nane;};

interface Event Channel Factory : | T_Messagi ngAdm n: : Manager
{
CosEvent Channel Adni n: : Event Channel creat e_channel (
in string nare,
out Channel | D id)
rai ses (Channel Al readyExi sts);

CosEvent Channel Adni n: : Event Channel fi nd_channel (
in string nane,
out Channel I D id)

rai ses (Channel Not Found) ;

485

CHAPTER 18 | Event Service

CosEvent Channel Adm n: : Event Channel find_channel _by i d(
in Channel ID id,
out string nane)

rai ses (Channel Not Found) ;

Event Channel | nfoLi st |ist_channel s();
IE
IE

Event channel factory operations You can call one of several operations on an event channel factory to create
or find an event channel. By providing both create and find operations, the
event service allows any client or supplier to create an event channel, which
other clients and suppliers can subsequently discover:

create_channel() creates an event channel and returns an object reference.
find_channel() returns an object reference to the named event channel.

find_channel_by_id() returns an object reference to an event channel based
on the channel’s ID.

list_channels() returns a list of event channels, which provides their names,
IDs, and object references.

Example The following code can be used by any supplier or consumer to obtain an
event channel.

Example 59: Obtaining an event channel

i nport org.ong. CCRBA. *;
i nport org.ong. CCRBA. CRBPackage. *;
i nport org. ong. CosEvent Channel Adm n. *;

//1ona specific classes
inport comiona. corba. | T_Event Channel Adm n. *;

Event Channel ec = nul | ;

Event Channel Factory mfactory = nul | ;
IntHol der id = new I ntHol der();

486

Developing an Application Using Untyped Events

Example 59: Obtaining an event channel

bj ect obj =
orb.resol ve_initial _references("Event Channel Fact ory");
m factory = Event Channel Fact or yHel per. narrow(obj) ;

try ec = mfactory. create_named_channel ("Event Channel ", id)
cat ch (Channel Al readyExi sts cae)
/] Channel already exists, so try to find it

try {
ec = mfactory.find_channel ("Event Channel ", id);

}
cat ch (Channel Not Found cnf) {
Systemerr. println(
"Coul d not create or find event channel");
Systemexit(1);
}
catch (SystenkException sys){
Systemerr. println("System exception occurred during
find_channel: " +
Syst enExcept i onDi spl ayHel per.toString(sys));
Systemexit(1);
}

This code executes as follows:
1. Obtains the event channel factory.

2. Tries to create an event channel by calling cr eat e_naned_channel ().

3. Catches exception | T_Event Channel Adni n: : Channel Al r eadyExi st s if
a channel of the specified name already exists.

4. Tries to obtain an existing channel of the same name by calling
find_channel ().

487

CHAPTER 18 | Event Service

Implementing a Supplier

Actions A client supplier program performs the following actions:

1. Instantiates suppliers using the appropriate interface in module
CosEvent Comm

2. Connects suppliers to the event channel.
3. Sends event messages to the event channel.

4. Disconnects from the event channel.

Instantiating the Supplier You instantiate a push supplier with the PushSuppl i er interface; and a pull
supplier with the Pul | Suppl i er interface. Both are defined in the IDL
module CosEvent Conm

Example 60: Supplier interfaces

nmodul e CosEvent Conm {
exception D sconnected {};

interface Pul | Supplier

any pull () raises (D sconnected);

any try pull (out bool ean has_event)
rai ses (D sconnected);

voi d di sconnect _pul | _supplier();

IH
interface PushSupplier
{
voi d di sconnect _push_supplier();
IH
b
Connecting to a Channel In order to pass messages to the event channel, a supplier must connect to

it through a proxy consumer that receives events from the supplier. Each
supplier must have its own proxy consumer. The proxy consumer passes the
events down the channel.

488

Developing an Application Using Untyped Events

A client supplier connects to the event channel in three steps:
1. Obtain a SupplierAdmin object from the event channel.

2. Obtain a proxy consumer in the event channel, to receive the events
that the supplier generates.

3. Connect a supplier to a proxy consumer.

Obtain a SupplierAdmin

On creation, an event channel instantiates a default Suppl i er Adni n object,
which you obtain by calling f or _suppl i ers() on the event channel. For
example:

or g. ong. CosEvent Channel Adm n. Suppl i erAdm n sa =
channel . for_sppliers();

Obtain a proxy consumer

A proxy consumer is responsible for receiving event messages from its client
supplier and inserting them into the event channel, where they are
forwarded to all interested consumers. You obtain one proxy consumer for
each client supplier.

The type of proxy consumer that you obtain depends on whether the client
supplier uses the push or pull model. The type of proxy consumer must
match the type of its client supplier: a push supplier must use a push proxy
consumer; and a pull supplier must use a pull proxy supplier.

The CosEvent Channel Admi n module supports the two proxy consumer object
types with the following interfaces:

nmodul e CosEvent Channel Adni n

{
exception A readyConnected {};
exception TypeError {};

i nterface ProxyPushConsurer : CosEvent Comm : PushConsuner
{
voi d
connect _push_suppl i er (
i n CosEvent Comm : PushSuppl i er push_suppli er
) raises (Al readyConnected);

489

CHAPTER 18 | Event Service

i nterface ProxyPul | Consuner : CosEvent Comm : Pul | Consuner

{
voi d
connect _pul | _suppl i er (
in CosEvent Comm : Pul | Supplier pull _supplier
) raises (A readyConnected, TypeError);
IE
/1l

IE

You obtain a proxy consumer by invoking one of the following operations on
a supplier admin:

obtain_push_consumer() returns a push-model proxy consumer.

obtain_pull_consumer() returns a pull-model proxy consumer.

Example

The following code obtains a ProxyPushConsurer for a PushSuppl i er by
calling obt ai n_push_consurer () .

Example 61: Obtaining a proxy consumer
i nport org.ong. CosEvent Channel Adni n. *;

try
{
ProxyConsuner ppc =
sa. obt ai n_push_consuner () ;

}

Connect a supplier to a proxy consumer

After creating a proxy consumer, you can connect it to a compatible client
supplier. This establishes the client supplier's connection to the event
channel so it can send messages.

490

Developing an Application Using Untyped Events

Each proxy consumer interface supports a connect operation; the operation
requires that the supplier and its proxy support the same delivery model. For
example, the ProxyPushConsurrer interface defines

connect _push_suppl i er (), which only accepts an object reference to a
PushSuppl i er as input.:

interface ProxyPushConsuner : CosEvent Conm : PushConsuner

{
voi d
connect _push_suppl i er (
in CosEvent Comm : PushSuppl i er push_suppli er
) raises (A readyConnected);
IH
Example

The following code shows one way to implement a PushSuppl i er client that
connects itself to a proxy consumer.

Example 62: Connecting a PushSupplier

/1 proxy ppc and PushSupplier supplier obtained previously
try{
ppc. connect _push_suppl i er (suppli er);
}
catch (Al readyConnect ed. val ue ac) {
// Handl e the exception
}
cat ch (SystenException sys){
Systemerr. println("Encount ered system exception
during connect: " +
Syst enExcept i onD spl ayHel per.toString(sys));
Systemexit(1);

Sending Event Messages A client supplier sends event messages in one of two ways:

® A push supplier invokes the push operation on its proxy consumer and

supplies the event as an input argument.

A pull supplier implements try_pul | (). When the proxy consumer
invokes a pull operation, the supplier returns an event message if one
is available.

491

CHAPTER 18 | Event Service

492

Push supplier

A push supplier invokes the push() operation on its proxy consumer. For
example:

Example 63: Pushing an event message

/1 proxy consuner and event nessage al ready obtai ned

try{
proxy. push(event _nsg);

}

cat ch (SystenException sys){
Systemerr. println("Unexpected system exception during push:"

+Syst enExcept i onD spl ayHel per.toString(sys));

Systemexit(1);

}

catch (org.ong. CosEvent Comm D sconnect ed dc){
Systemerr. println("Channel is disconnected.");
Systemexit(1);

}
catch (Exception e){

Systemerr. println("Unknown exception occurred during push");
Systemexit(1);
}

Pull supplier

A pull supplier sends event messages only on request. Whether a client
consumer invokes pul | () ortry_pul I (), the pull supplier's proxy consumer
always invokes try_pul I () on its supplier.

Pull suppliers are responsible for implementingtry_pul I (), which returns a
QCRBA : Any. This operation is non-blocking; it returns immediately with an
output parameter of type boolean to indicate whether the return value
actually contains an event.

Disconnecting From the Event
Channel

Developing an Application Using Untyped Events

For example, the following code implements try_pul I () by attempting to
populate an event message with the latest baseball scores.

Example 64: Pulling events

class Pul | Supplier extends Pull Supplier POA
{
...
public Any try pull(
Bool eanHol der has_event)

{
has_event . val ue = fal se;

/] get scores

String scores;

bool ean has_scores = get_scores(scores);

// |f there are scores, send event nessage

if (has_scores == true)

{
OORBA. Any event _nsg = ORB.create_any();
event _nsg.insert_string(scores);
has_event. val ue = true;

}

return event_nsg;

}

A client supplier can disconnect from the event channel at any time by
invoking the disconnect operation on its proxy consumer. This operation
terminates the connection between a supplier and its target proxy consumer.
The channel then releases all resources allocated to support its connection
to the supplier, including destruction of the target proxy consumer.

Each proxy consumer interface supports a disconnect operation. For
example, interface Pr oxyPushConsurer defines
di sconnect _push_consuner ().

493

CHAPTER 18 | Event Service

Implementing a Consumer

Actions A client consumer program performs the following actions:
1. Instantiates consumers with the appropriate CosEvent Comminterface.
2. Connects consumers to the event channel.
3. Obtains event messages.
4

Disconnects from the event channel.

Instantiating a Consumer You instantiate a push consumer with the PushConsurer interface; and a
pull consumer with the Pul | Consuner interface. Both are defined in the IDL
module CosEventComm:

Example 65: Consumer interfaces

nmodul e CosEvent Conm
{

exception Disconnected { };

i nterface PushConsuner {
void push(in any data) rai ses (D sconnected);

voi d di sconnect _push_consuner ();

}s

interface Pul | Consuner {
voi d di sconnect _pul | _consuner ();

Connecting to the Channel Consumers receive messages from the event channel through a proxy
supplier. Each consumer on the channel has its own proxy supplier. Proxy
suppliers use the same delivery method as their consumers and send the
appropriate message type.

494

Developing an Application Using Untyped Events

Consumers connect to the event channel in three steps:
1. Obtain a ConsumerAdmin object from the event channel.

2. Obtain a proxy supplier in the event channel, to receive
supplier-generated event messages.

3. Connect the consumer to a proxy supplier.

Obtain a ConsumerAdmin

On creation, an event channel instantiates a default Consunmer Adni n object,
which you obtain by calling f or _consumers() on the event channel. For
example:

or g. ong. CosEvent Channel Adm n. Consurer Adm n ca =
channel . f or _consuners();

Obtain a proxy supplier

A proxy supplier is responsible for distributing event messages that have
been sent by the event channel to its consumer. You create one proxy
supplier for each client consumer.

The type of proxy supplier that you obtain depends on whether the client
consumer uses the push or pull model. The type of proxy supplier must
match the type of its client consumer: a push consumer must use a push
proxy supplier; and a pull consumer must use a pull proxy supplier.

The CosEvent Channel Adm n module supports the two proxy supplier object
types with the following interfaces:

Example 66: Proxy supplier interfaces

nmodul e CosEvent Channel Adni n

{
exception Al readyConnected {};
exception TypeError {};

i nterface ProxyPul | Supplier : CosEvent Comm : Pul | Suppli er
{
voi d
connect _pul | _consuner (
in CosEvent Conm : Pul | Consuner pul | _consuner
) raises (A readyConnected);

1

495

CHAPTER 18 | Event Service

Example 66: Proxy supplier interfaces

i nterface ProxyPushSupplier : CosEvent Comm : PushSuppl i er

{
voi d
connect _push_consuner (
i n CosEvent Comm : PushConsuner push_consuner
) raises (A readyConnected, TypeError);
I8

Ik

You obtain a proxy supplier by invoking one of the following operations on a
consumer admin:

obtain_push_supplier() returns a push-model proxy supplier.

obtain_pull_supplier() returns a pull-model proxy supplier.

Example

The following code obtains a proxy supplier for a PushConsuner by calling
obt ai n_push_supplier().

Example 67: Obtaining a proxy supplier

i nport org.ong. CosEvent Channel Adni n. *;
try
{
ProxySuppl i er pps =
ca. obt ai n_push_supplier();

}

Connect the consumer to a proxy supplier

After creating a proxy supplier, you can connect it to a compatible client
consumer. This establishes the client’s connection to the event channel, so
it can obtain messages from suppliers.

496

Developing an Application Using Untyped Events

Each proxy supplier interface supports a connect operation; the operation
requires that the client supplier and its proxy support the same push or pull
model and event-message type. For example, the ProxyPushSuppl i er
interface defines connect _push_consuner (), which only accepts an object
reference to a PushConsuner as input:

interface ProxyPushSupplier :
ProxySuppl i er,
CosEvent Conm : PushSuppl i er
{

voi d connect _push_consuner
(in CosBEvent Comm : PushConsuner push_consuner)
rai ses(CosEvent Channel Adm n: : Al r eadyConnect ed,
CosEvent Channel Admi n: : TypeError);

Ik

Example
The following example shows how you might implement a PushConsumer
client that connects itself to a proxy supplier.

Example 68: Connecting to a proxy supplier
i nport org. ong. CosEvent Channel Adni n. *;
cl ass PushConsuner extends PushConsumer POA
{
/...

public static void main (String args[])

{
/...
//Proxy pps and PushConsuner consurer obt ai ned previously
try{
pps. connect _push_consurrer (consuner) ;
}

catch (Al readyConnect ed. val ue ac){
Systemerr.println("A ready connecting to channel .");

Systemexit (1);

497

CHAPTER 18 | Event Service

Obtaining Event Messages

498

Example 68: Connecting to a proxy supplier

catch (SystenkException sys){
Systemerr. println(
"Encount ered system exception during connect:
+ Syst enExcepti onD spl ayHel per.toString(sys));
Systemexit(1);

A client consumer obtains event messages in one of two ways:

® A push consumer implements the push() operation. As events become
available, the proxy supplier pushes them to its client consumer.

® A pull consumer invokes pul I () ortry_pul | () on its proxy supplier;
the proxy supplier returns with the next available event.

Push consumer
A push consumer implements the push() operation. For example:

Example 69: Receiving events using push()

cl ass PushConsurer extends PushConsuner POA

{
/...
public void push(Any event)
{
String scores = event.extract_string();
Systemout.println("Qurrent " + sports_type + "scores:
" + scores);
}
/...
}

Pull consumer

A pull client consumer invokes the pul | () or try_pul | () operation on its
proxy supplier to solicit event messages; the proxy supplier returns with the
next available event.

Developing an Application Using Untyped Events

The proxy supplier interface supports operations pul I () and try_pul I (). A
pull consumer invokes one of these operations on its ProxyPul | Suppl i er.
Both operations return a CORBA: : Any argument; they differ only in their
blocking mode:

pull() blocks until an event is available.

try_pull() is non-blocking—it returns immediately with a boolean output
parameter to indicate whether the return value actually contains an event.
The event channel continues to invoke the pull operation on suppliers until
one of them supplies an event. When an event becomes available,

try_pul | () sets its boolean has_event parameter to true and returns with
the event data to the pull consumer.

The following example shows how a pull consumer might invoke
try_pull () to receive data from its ProxyPul | Suppl i er.

Example 70: Pulling events

Any scores = nul | ;
Bool eanHol der has_dat a = new Bool eanHbl der () ;

try{
event = proxy.try_pull (has_data);
}
cat ch (org. ong. CosEvent Comm D sconnect ed dsc) {
Systemerr. println("D sconnected exception occured during

pull™);
Systemexit (1);

catch (SystenException sys){

Systemerr. println("System exception occured during pull");
Systemexit (1);

}
i f (has_data. val ue)
{
scores = event.extract_string();
Systemout. println("Recei ved event nunber " + scores
+ " using try pull");
}

499

CHAPTER 18 | Event Service

Disconnecting From the Event
Channel

500

A client consumer can disconnect from the event channel at any time by
invoking the disconnect operation on its proxy supplier. This operation
terminates the connection between the consumer and its target proxy
supplier. The event channel then releases all resources allocated to support
its connection to the consumer, including destruction of the target proxy
supplier.

Each proxy supplier interface supports a disconnect operation. For example,
interface ProoxyPushSuppl i er defines di sconnect _push_supplier().

Developing an Application Using Typed Events

Developing an Application Using Typed Events

Overview

In this section

Typed events allow event service clients to use a strongly typed interface to
pass events back and forth. Using typed events can increase the
performance of event service clients by eliminating the time used for
marshalling, encoding, unmarshalling, and decoding of events packaged
into Anys. Typed event clients can also use non-typed event communication
to send and receive messages.

This section discusses the following topics:

Creating the Interface page 502
Obtaining a Typed Event Channel page 503
Implementing the Supplier page 507
Implementing the Consumer page 511

501

CHAPTER 18 | Event Service

Creating the Interface

Overview

Interface restrictions

Example

502

When using typed push event communication, suppliers and consumers use
a mutually agreed upon interface to facilitate event forwarding. This
interface is defined in IDL and stored in the interface repository.

Because typed event communication is strictly from the supplier to the
consumer, there are two restrictions on the operations of an interface used
for typed event communication:

® They can only have i n parameters.

® They cannot have a return type other than voi d.
Messages cannot be passed through the event channel from consumer to

supplier and these restrictions help reinforce the unidirectional nature of
event forwarding.

The interface, Scor ePusher, in Example 71 shows a simple interface to
push a sports score.

Example 71: Typed event interface ScorePusher

\\ 1 DL
interface ScorePusher

{
voi d push_score(in string teama, in |long score_a,
instring teamb, in long score_b);

Ik

Once you have written the interface, you must place it into the interface
repository using the following command:

id -R filename

Developing an Application Using Typed Events

Obtaining a Typed Event Channel

Overview

Event channel factory

A typed event channel forwards messages between typed event clients. It
provides the same operations as the untyped event channel.

Consumers and suppliers obtain a typed event channel object reference
either by creating a channel, or by finding an existing one.

You obtain a typed event channel factory by calling
resol ve_initial _references("Event Channel Fact ory"). You narrow the
returned reference to a typed event channel factory with Orbix extensions.

Orbix provides the TypedEvent Channel Fact ory interface, which define the
operations to create and discover typed event channels:

nmodul e | T_TypedEvent Channel Adm n

{
struct TypedEvent Channel | nfo
{
string nare;
| T_Event Channel Admi n: : Channel | D id;
CosTypedEvent Channel Admi n: : TypedEvent Channel ref er ence;
h

typedef sequence<TypedEvent Channel | nf 0>
TypedEvent Channel | nf oLi st ;

interface TypedEvent Channel Factory :
| T_Messagi ngAdni n: : Manager
{
CosTypedEvent Channel Adm n: : TypedEvent Channel
create_typed_channel (in string nane,
out | T_Event Channel Adm n: : Channel | D i d)
rai ses(| T_Event Channel Adm n: : Channel Al r eadyExi st s) ;

CosTypedEvent Channel Adm n: : TypedEvent Channel
find_typed_channel (in string nane,

out | T_Event Channel Admi n: : Channel | D i d)
rai ses(| T_Event Channel Adm n: : Channel Not Found) ;

503

CHAPTER 18 | Event Service

Typed event channel factory
operations

Example

504

CosTypedEvent Channel Adm n: : TypedEvent Channel
find_typed channel by id(

in |T_Event Channel Adni n:: Channel I D i d,

out string name)
rai ses(| T_Event Channel Adni n: : Channel Not Found) ;

TypedEvent Channel I nf oLi st |ist_typed_channel s();

You can call one of several operations on an event channel factory to create
or find an event channel. By providing both create and find operations, the
event service allows any client or supplier to create an event channel, which
other clients and suppliers can subsequently discover:

create_typed_channel() creates a typed event channel and returns an object
reference.

find_typed_channel() returns an object reference to the named typed event
channel.

find_typed_channel_by_id() returns an object reference to a typed event
channel based on the channel’s ID.

list_typed_channels() returns a list of typed event channels, which provides
their names, IDs, and object references.

The following code can be used by any supplier or consumer to obtain a
typed event channel.

Example 72: Obtaining a typed event channel
i nport org.ong. CCRBA. *;

i nport org. ong. CORBA. CRBPackage. *;
i nport org.ong. CosTypedEvent Channel Adni n. *;

4

Developing an Application Using Typed Events

Example 72: Obtaining a typed event channel

//1ona specific classes

i nport org. ong. CosEvent Channel Admi n. *;

i nport comiona. corba. | T_Event Channel Adm n. *;
import com i ona. corba. | T_TypedEvent Channel . *;

TypedEvent Channel tec = null;
TypedEvent Channel Factory mfactory = nul | ;
IntHol der id = new | ntHol der();

try
{

Cbj ect obj = orb.resolve_initial_references("Event Service");

}
catch (Inval i d\ane)

{
// Handl e the exception

}
mfactory = TypedEvent Channel Fact or yHel per . narrow(obj) ;
try
{

tec = mfactory.create_typed channel (" TypedChannel ", id);
}
cat ch (Channel Al readyExi sts cae)
{
// Channel already exists, so try to find it

try

{

tec = mfactory.find_typed_channel ("TypedChannel ", id);

catch (Channel Not Found cnf)
{

Systemerr.println("Could not create or find event channel");
Systemexit(1);

}
cat ch (SystenkException sys)
{
Systemerr. println("System exception occurred during

find_channel : " +
Syst enExcept i onDi spl ayHel per.toString(sys));
Systemexit(1);
}
}

505

CHAPTER 18 | Event Service

This code executes as follows:
1. Obtains the typed event channel factory.

2. Tries to create a typed event channel by calling
create_typed_channel ().

3. Catches exception | T_Event Channel Adni n: : Channel Al r eadyExi st s if
a channel of the specified name already exists.

4. Tries to obtain an existing channel of the same name by calling
fi nd_typed_channel ().

506

Developing an Application Using Typed Events

Implementing the Supplier

Actions

Instantiate the supplier

Connecting to a typed event
channel

The actions performed by a push supplier for typed event communications
are similar to the actions performed by a push supplier for untyped event
communication. These actions are:

1. Instantiate an instance of the CosEvent Conm : PushSuppl i er interface.
2. Connect to a typed event channel.

3. Push typed event messages by obtaining the appropriate interfaces and
invoking its operations.

4. Disconnect from the typed event channel.

Typed push style event communication uses a generic push supplier to
supply events to typed push consumers. An application that is intended to
push typed events to typed event consumers can instantiate an instance of
the CosEvent Corm : PushSuppl i er interface.

If the supplier does not need to be informed if its proxy disconnects from the
channel, the supplier can connect a nul I to the typed proxy consumer.

In order to pass messages to the typed event channel, a supplier must
connect to it through a typed proxy consumer that receives events from the
supplier. The proxy consumer passes the events down the channel.

A supplier connects to the typed event channel in three steps:
1. Obtain a TypedSupplierAdmin from the typed event channel.

2. Obtain a typed proxy consumer in the typed event channel, to receive
the events generated by the supplier.
3. Connect a supplier to a typed proxy consumer.

Obtain a TypedSupplierAdmin

On creation, a typed event channel instantiates a default
TypedSuppl i er Adni n, which you obtain by calling f or _suppl i ers() on the
typed event channel. For example:

or g. ong. CosTypedEvent Channel Adm n. TypedSuppl i er Adm n tsa =
tec.for_suppliers();

507

CHAPTER 18 | Event Service

508

Obtain a typed proxy consumer

A typed proxy consumer is responsible for receiving typed event messages
from its supplier and inserting them into the event channel, where they are
forwarded to all interested typed consumers. You obtain one typed proxy
consumer for each client supplier.

The CosTypedEvent Channel Adni n module supports the typed proxy push
consumer object type with the following interfaces:

nmodul e CosTypedEvent Channel Adm n

{
exception | nterfaceNot Supported {};

excepti on NoSuchl npl enentation {};

i nterface TypedProxyPushConsuner :
CosTypedEvent Comm : TypedPushConsurrer ,
CosEvent Channel Admi n: : Pr oxyPushConsuner

}

You obtain a typed proxy consumer by invoking

obt ai n_t yped_push_consurer () on a typed supplier admin and supplying
the interface repository ID of the interface the supplier intends to use to
push events. If there are no consumers on the typed event channel which
support the specified interface a I nt er f aceNot Suppor t ed exception is
raised.

Example

The following code obtains a TypedPr oxyPushConsuner for a PushSuppl i er
by calling obt ai n_t yped_push_consuner ().

Example 73: Obtaining a proxy consumer
i nport org.ong. CosTypedEvent Channel Adni n. *;
try

{
TypedPr oxyConsurmer tpc =

t sa. obt ai n_t yped_push_consuner ("1 DL: Scor ePusher: 1. 0");

}
catch (I nterfaceNot Support ed)
{
/1 handl e the exception
}

Pushing typed events

Developing an Application Using Typed Events

Connect a supplier to a typed proxy consumer

After creating a typed proxy consumer, you can connect it to a compatible
supplier. This establishes the supplier's connection to the typed event
channel so it can send messages.

Typed proxy consumers support the connect _push_suppl i er () operation.

The operation requires that the supplier and its proxy support the same
interface.

Example 74 shows one way to implement a PushSuppl i er client that
connects itself to a typed proxy consumer.

Example 74: Connecting a PushSupplier

/1 proxy tpc and PushSupplier supplier obtained previously
try{
t pc. connect _push_suppl i er (supplier);
}
catch (Al readyConnected ac) {
// Handl e the exception
}
cat ch (SystenException sys){
Systemerr. println("Encountered system exception
during connect: " +
Syst enExcept i onDi spl ayHel per.toString(sys));
Systemexit(1);

In typed push event communication the supplier pushes events to the
consumers by invoking operations on an interface that has been mutually
agreed upon by both the developer responsible for implementing the
supplier and the developer responsible for implementing the consumer.

The supplier obtains a reference to the appropriate interface by invoking its
associated typed proxy consumer’s get _t yped_consurer () operation. This
operation returns a reference to the interface specified when

obt ai n_t yped_push_consumer () was invoked to obtain the typed proxy
consumer. The returned reference is of type Coj ect and must be narrowed
to the appropriate interface.

Note: If the supplier and the client do not support the identical interface
the narrow() operation will fail.

509

CHAPTER 18 | Event Service

Disconnecting From the Event
Channel

510

N =

Example 75 shows how a push supplier would pass typed messages to
typed consumers that supported the Scor ePusher interface defined
earlier.The above code performs the following actions:

Example 75: Pushing typed events using the ScorePusher interface

/1l Java

inport org.ong. CORBA. *;

i nport org.ong. CosTypedEvent Comm *;

i nport org. ong. CosTypedEvent Channel Adni n. *;

bj ect obj = tpc.get_typed_consuner();

Scor ePusher pusher = ScorePusher Hel per. narrow(obj);
pusher . push_score("Hool i gans", 9, "Ruffians", 12);

Obtains a reference to an appropriate typed consumer interface.
Narrows the reference.

Invokes the push_score() operation to forward the event to any typed
push consumers that implement the Scor ePusher interface.

A supplier can disconnect from a typed event channel at any time by
invoking the di sconnect _push_consurer () operation. This operation
terminates the connection between a supplier and its target typed proxy
consumer. The channel then releases all resources allocated to support its
connection to the supplier and destroys the target typed proxy consumer.

Developing an Application Using Typed Events

Implementing the Consumer

Overview

Development tasks

Implement the interface

In typed push style event communication the consumer is responsible for
implementing the interface that is used to forward events. Also, the
consumer is instantiated using a typed event interface,

CosTypedEvent Comm : TypedPushConsurrer , instead of the generic push
consumer interface.

The developer of a typed push consumer must complete the following tasks:
® |mplement the mutually agreed upon interface.
® |nstantiate the consumer using the
CosTypedEvent Corm : TypedPushConsuner interface.
® Connect the consumer to a typed event channel.
® Receive event messages from the channel and process them.
® Disconnect the consumer from the typed event channel.

The first step in developing a typed push consumer is to implement the
interface that will be used to support the typed events. To do this complete
the following steps:
1. Create a new IDL interface that inherits from the interface that will be
used for event communication and from
CosEvent Comm : PushConsuner . For the Scor ePusher interface the
combined interface for the consumer might look like:

\\ I DL
#i ncl ude <ScorePusher.idl >
#i ncl ude <ong/ CosEvent Comm i dl >

interface ScoreConsuner : ScorePusher,
CosEvent Comm : PushConsurer
{
¥
Compile the IDL interface into the desired programming language.

2.
3. Implement the operation to be used for forwarding typed events.

511

CHAPTER 18 | Event Service

Instantiate the consumer

512

4. Implement push() . If the consumer participate exclusively in typed
event communication, push() can do nothing.

For example, the code shown in Example 76 shows one way to implement a
typed push consumer that uses the Scor ePusher interface to forward events.

Example 76: /mplementing a typed push consumer

/1l Java

inport org.ong. CORBA. O b. *;

i nport org. ong. CosTypedEvent Channel Adni n. *;
inport comiona. | T_TypedEvent Channel Adm n. *;
class ScoreConsuner extends Scor eConsnuer POA
{

/] constructor and destructor
/1l

voi d push_score(String teama, int score_a,
String teamb, int score_b)

{ Systemout. println("Score:");
Systemout.println(teama + "\t" + score_a);
Systemout. println(teamb + "\t" + score_b);

}

voi d push(org. ong. CORBA Any a)

{

}

voi d di sconnect _push_consuner ()

{

}

/1 inplenent the main()

/1

Typed push event communication uses the

CosTypedEvent Corm : TypedPushConsurrer interface to receive events.
Clients wishing to act as consumers in typed push style events must
instantiate an instance of this interface or, as above, an interface that
inherits from it. Using the example above, the application would instantiate
an instance of Scor eConsuner which implements both the interface used to
forward events and CosTypedEvent Corm : TypedPushConsuner .

Developing an Application Using Typed Events

Connecting to the channel Typed push consumers connect to a typed event channel through a proxy
push supplier which receives the events from the channel and forwards
them to the consumer.

The steps to connect a typed push consumer to a typed event channel are
the same as the steps to connect a generic consumer to an event channel,
They are:

1. Obtain a typed consumer admin object from the typed event channel.
2. Obtain a proxy push supplier from the consumer admin.
3. Connect the consumer to the proxy supplier.

Obtain a typed consumer admin

On creation, a typed event channel instantiates a default
TypedConsurer Adni n object, which you obtain by calling f or _consuners()
on the event channel. For example:

or g. ong. CosTypedEvent Channel Adm n. TypedConsurer Adm n tca =
tec.for_consuners();

Obtain a proxy supplier

A proxy push supplier is responsible for distributing event messages that
have been sent by the typed event channel to its typed consumer. You
create one proxy supplier for each client consumer.

You obtain a proxy push supplier by invoking

obt ai n_t yped_push_suppl i er () on the typed consumer admin and
supplying the interface’s interface repository id. For example, to obtain a
proxy push supplier for use with the Scor ePusher interface, you would use
the following operation:

try
{
CosEvent Channel Adm n: : ProxyPushSuppl i er pps =
tca- >obt ai n_t yped_push_suppl i er ("I DL: Scor ePusher: 1. 0");
}
catch (CosTypedEvent Channel Adm n: : NoSuchl npl enent at i on)
{
/1 no push supplier inplenments the appropriate interface
// handl e the exception

}

513

CHAPTER 18 | Event Service

try
{
or g. onmg. CosEvent Channel Adm n. ProxyPushSuppl i er pps =
t ca. obt ai n_t yped_push_suppl i er ("1 DL: Scor ePusher: 1. 0");

}
cat ch (CosTypedEvent Channel Adm n. NoSuchl npl enent at i on)

{

/1 no supplier inplements the interface
// handl e the exception

}

Connect the consumer to a proxy supplier

After creating a proxy push supplier, you can connect it to a client
consumer. This establishes the client’s connection to the typed event
channel, so it can obtain messages from suppliers.

The proxy push supplier interface supports the connect operation
connect _push_consuner (), which accepts an object reference to a
TypedPushConsuner as input.

Example 77 shows how you might implement a TypedPushConsuner client
that connects itself to a proxy supplier.

Example 77: Connecting to a proxy supplier

i nport org.ong. CosEvent Channel Adni n. *;

cl ass PushConsurer extends PushConsuner POA

{
1o

public static void main (String args[])
{
/...
//Proxy pps and PushConsuner consurrer obtai ned previously

try{
pps. connect _push_consuner (consuner) ;

catch (Al readyConnect ed. val ue ac){

Systemerr.println("Al ready connecting to channel.");
Systemexit (1);

514

Developing an Application Using Typed Events

Example 77: Connecting to a proxy supplier

catch (org.ong. CosEvent Channel Admi n. TypeError)

{
Systemerr. println(
"Encount ered system exception during connect:
+ Syst enkExcepti onDi spl ayHel per.toString(sys));
Systemexit(1);
}
/1.
}
}
Receiving event messages Typed push consumers passively receive messages from the channel. As

events become available the proxy supplier forwards them to the consumer
using one of the operations in the mutually agreed upon interface. The
operation, which was implemented previously, is responsible for processing

the event.
Disconnecting from the event A client consumer can disconnect from the event channel at any time by
channel invoking di sconnect _push_consuner (). This operation terminates the

connection between the consumer and its target proxy supplier. The typed
event channel then releases all resources allocated to support its connection
to the consumer and destroys the target proxy supplier.

515

CHAPTER 18 | Event Service

516

Sample application

CHAPTER 19

Portable
Interceptors

Portable interceptors provide hooks, or interception points,
which define stages within the request and reply sequence.
Services can use these interception points to query
request/reply data, and to transfer service contexts between
clients and servers.

This chapter shows an application that uses interceptors to secure a server

with a password authorization service as follows:

® A password policy is created and set on the server's POA.

® An IOR interceptor adds a tagged component to all object references
exported from that POA. This tagged component encodes data that
indicates whether a password is required.

® Aclient interceptor checks the profile of each object reference that the
client invokes on. It ascertains whether the object is
password-protected; if so, it adds to the outgoing request a service
context that contains the password data.

517

CHAPTER 19 | Portable Interceptors

® Aserver interceptor checks the service contexts of incoming requests
for password data, and compares it with the server password. The
interceptor allows requests to continue only if the client and server
passwords match.

Note: The password authorization service that is shown here is
deliberately simplistic, and intended for illustrative purposes only.

In this chapter This chapter contains the following sections:
Interceptor Components page 519
Writing IOR Interceptors page 530
Using Requestinfo Objects page 534
Writing Client Interceptors page 537
Writing Server Interceptors page 551
Registering Portable Interceptors page 564
Setting Up Orbix to Use Portable Interceptors page 572

518

Interceptor Components

Interceptor Components

Portable interceptors require the following components:

Interceptor implementations that are derived from interface
Portabl el nterceptor::Interceptor.

I0P::ServiceContext supplies the service context data that a client or server
needs to identify and access an ORB service.

Portablelnterceptor::Current (hereafter referred to as P/Current) is a table
of slots that are available to application threads and interceptors, to store
and access service context data.

10P::TaggedComponent contains information about optional features and
ORB services that an IOR interceptor can add to an outgoing object
reference. This information is added by server-side IOR interceptors, and is
accessible to client interceptors.

I0P::Codec can convert data into an octet sequence, so it can be encoded
as a service context or tagged component.

Portablelnterceptor::PolicyFactory enables creation of policy objects that
are required by ORB services.

Portablelnterceptor::ORBInitializer is called on ORB initialization. An ORB
initializer obtains the ORB's PICurrent, and registers portable interceptors
with the ORB. It can also register policy factories.

519

CHAPTER 19 | Portable Interceptors

Interceptor Types

Interception points

520

All portable interceptors are based on the I nter cept or interface:

nmodul e Port abl el nt er cept or {
local interface Interceptor{
readonly attribute string nane;

b
I
An interceptor can be named or unnamed. Among an ORB's interceptors of
the same type, all names must be unique. Any number of unnamed, or
anonymous interceptors can be registered with an ORB.

Note: At present, Orbix provides no mechanism for administering
portable interceptors by name.

All interceptors implement one of the interceptor types that inherit from the
I nt ercept or interface:

ClientRequestinterceptor defines the interception points that client-side
interceptors can implement.

ServerRequestinterceptor defines the interception points that server-side
interceptors can implement.

I0ORInterceptor defines a single interception point, est abl i sh_conponent s.
It is called immediately after a POA is created, and pre-assembles the list of
tagged components to add to that POA’s object references.

Each interceptor type defines a set of interception points, which represent
stages in the request/reply sequence. Interception points are specific to each
interceptor type, and are discussed fully in later sections that describe these
types. Generally, in a successful request-reply sequence, the ORB calls
interception points on each interceptor.

For example, Figure 39 shows client-side interceptors A and B. Each
interceptor implements interception points send_r equest and

recei ve_r epl y. As each outgoing request passes through interceptors A and
B, their send_r equest implementations add service context data a and b to

Interception point data

Client

Interceptor Components

the request before it is transported to the server. The same interceptors’
recei ve_repl y implementations evaluate the reply’s service context data
before the reply returns to the client.

B

A

send_r equest
add a

receive_repll,

send_r equest
add b

receive_reply

Server

client

interceptors

Figure 39: Client interceptors allow services to access outgoing requests

and incoming replies.

For each interception point, the ORB supplies an object that enables the
interceptor to evaluate the request or reply data at its current stage of flow:

® A Portabl elnterceptor::|CR nfo object is supplied to an IOR
interceptor’s single interception point est abl i sh_conponent s (see

page 530).

® APortabl elnterceptor::dientRequest | nfo object is supplied to all
d i ent Request I nt ercept or interception points (see page 544).

® A Portabl el nterceptor:: Server Request | nf o object is supplied to all
Server Request | nt er cept or interception points (see page 553).

Much of the information that client and server interceptors require is similar;
so d i ent Request | nf o and Ser ver Request | nf o both inherit from interface
Port abl el nt er cept or : : Request | nf 0. For more information on

Request | nf o, see page 534.

521

CHAPTER 19 | Portable Interceptors

Service Contexts

Service contexts supply the information a client or server needs to identify
and access an ORB service. The IOP module defines the Servi ceCont ext
structure as follows:

Example 78: ServiceContext structure

modul e | CP

{
...

typedef unsigned | ong Servi cel d;

struct ServiceContext {
Servi celd context _id;
sequence <oct et> cont ext _dat a;

I

A service context has two member components:

® Service-context IDs are user-defined unsigned long types. The
high-order 20 bits of a service-context ID contain a 20-bit vendor
service context codeset ID, or VSCID; the low-order 12 bits contain the
rest of the service context ID. To define a set of service context IDs:
i. Obtain a unique VSCID from the OMG

ii. Define the service context IDs, using the VSCID for the high-order
bits.

® Service context data is encoded and decoded by an | OP: : Codec (see
“Codec” on page 526).

522

Interceptor Components

PICurrent

Interface definition

client(“vermilion”)

PICurrent is a table of slots that different services can use to transfer their
data to request or reply service contexts. For example, in order to send a
request to a password-protected server, a client application can set the
required password in PICurrent. On each client invocation, a client
interceptor’'s send_r equest interception point obtains the password from
PICurrent and attaches it as service context data to the request.

; request
Client client interceptor 4

send_r equest

get password slot data

add service context "vermilion"
with password L

C

PICurrent

Server

Figure 40: P/Current facilitates transfer of thread context data to a request
or reply.

The Port abl el nt er cept or module defines the interface for PICurrent as
follows:

Example 79: Portableinterceptor:Current (PICurrent) interface

nodul e Port abl el nt er cept or

{
...

typedef unsigned | ong Slotld;
exception InvalidS ot {};

523

CHAPTER 19 | Portable Interceptors

Example 79: Portableinterceptor:Current (PICurrent) interface

local interface Qurrent : OORBA : Qurrent {
any
get_slot(in Slotld id
) raises (InvalidSot);

voi d

set_slot(in Slotld id, in any dat a
) raises (lnvalidSot);

524

Interceptor Components

Tagged Components

Object references that support an interoperability protocol such as IIOP or
SIOP can include one or more tagged components, which supply
information about optional 1I0OP features and ORB services. A tagged
component contains an identifier, or tag, and component data, defined as
follows:

Example 80: TaggedComponent structure

t ypedef unsigned | ong Conponent | d;
struct TaggedConponent {

Conponent | D t ag;

sequence<oct et > conponent _dat a;

Ik

An IOR interceptor can define tagged components and add these to an
object reference’s profile by calling add_i or _conponent () (see “Writing IOR
Interceptors” on page 530). A client interceptor can evaluate tagged
components in a request’s object reference by calling

get _effective _conponent () or get _effective conponents() (see
“Evaluating tagged components” on page 547).

Note: The OMG is responsible for allocating and registering the tag IDs of
tagged components. Requests to allocate tag IDs can be sent to
tag_request@omg.org.

525

CHAPTER 19 | Portable Interceptors

Codec

Interface definition

Codec operations

526

The data of service contexts and tagged components must be encoded as a
CDR encapsulation. Therefore, the IOP module defines the Codec interface,
so interceptors can encode and decode octet sequences:

Example 81: Codec interface

local interface Codec {

exception | nvalidTypeFor Encoding {};
exception Format M smat ch {};
exception TypeM snatch {};

QCRBA: : (et et Seq
encode(in any data
) raises (InvalidTypeForEncoding);

any
decode(in CORBA : Cct et Seq data
) raises (FornatM snatch);

COORBA: : Cct et Seq
encode_val ue(in any data
) raises (InvalidTypeForEncodi ng);

any
decode_val ue(
in CCRBA: : Cct et Seq dat a,
in OORBA: : TypeCode tc
) raises (FornatM snatch, TypeM snat ch);

The Codec interface defines the following operations:

encode converts the supplied any into an octet sequence, based on the
encoding format effective for this Codec. The returned octet sequence
contains both the TypeCode and the data of the type.

decode decodes the given octet sequence into an any, based on the
encoding format effective for this Codec.

Creating a codec

Interceptor Components

encode_value converts the given any into an octet sequence, based on the
encoding format effective for this Codec. Only the data from the any is
encoded.

decode_value decodes the given octet sequence into an any based on the
given TypeCode and the encoding format effective for this Codec.

The CRBI ni t I nf o: : codec_f act ory attribute returns a Codec factory, so you
can provide Codec objects to interceptors. This operation must be called
during ORB initialization, through the ORB initializer.

527

CHAPTER 19 | Portable Interceptors

Policy Factory

528

An ORB service can be associated with a user-defined policy. The
Por t abl el nt er cept or module provides the Pol i cyFact ory interface, which
applications can use to implement their own policy factories:
local interface PolicyFactory {
QORBA: : Poli cy
create_policy(
in OORBA: : Pol i cyType type,
in any val ue
) raises (CCRBA :PolicyError);
b
Policy factories are created during ORB initialization, and registered through
the ORB initializer (see “Create and register policy factories” on page 568).

Interceptor Components

ORB Initializer

ORB initializers implement interface
Portabl el nterceptor::Crblnitializer:

Example 82: ORBInitializer interface

local interface CRBInitializer {
voi d
pre_init(in GRBInitlnfo info);

voi d
post _init(in CRBInitlnfo info);
Il

As it initializes, the ORB calls the ORB initializer's pre_init() and

post _init () operations. pre_init() and post _init() both receive an
CRBI ni t | nf o argument, which enables implementations to perform these
tasks:

® Instantiate a PICurrent and allocates its slots for service data.

Register policy factories for specified policy types.

Create Codec objects, which enable interceptors to encode service
context data as octet sequences, and vice versa.

® Register interceptors with the ORB.

529

CHAPTER 19 | Portable Interceptors

Writing IOR Interceptors

IOR interceptors give an application the opportunity to evaluate a server's
effective policies, and modify an object reference’s profiles before the server
exports it. For example, if a server is secured by a password policy, the
object references that it exports should contain information that signals to
potential clients that they must supply a password along with requests on
those objects.

The IDL interface for IOR interceptors is defined as follows:

local interface ICR nterceptor : Interceptor {
voi d
est abl i sh_conponents(in | CR nfo info);

Ik

Interception point An IOR interceptor has a single interception point,
est abl i sh_conponent s() . The server-side ORB calls
est abl i sh_conponent s() once for each POA on all registered I0R
interceptors. A typical implementation of est abl i sh_conponent s()
assembles the list of components to include in the profile of all object
references that a POA exports.

An implementation of est abl i sh_conponent s() must not throw exceptions.
If it does, the ORB ignores the exception.

IORInfo est abl i sh_conponent s() gets an | CRI nf o object, which has the following
interface:

Example 83:/ORInfo interface

local interface IR nfo {

QOORBA: : Pol i cy
get _effective_policy(in CORBA:: PolicyType type);

voi d
add_i or _conponent (i n | CP: : TaggedConponent conponent) ;

530

Writing IOR Interceptors

Example 83:/0ORInfo interface

add_i or _conponent _to _profile (
in | CP: : TaggedConmponent conponent ,
in QP :Profileld profile_id
JE

Note: add_ior_conponent to _profile() is currently unimplemented.

The sample application’s IOR interceptor implements
establ i sh_conponent s() to perform the following tasks on an object
reference’s profile:

® QGet its password policy.
® Set a TAG REQU RES_PASSWRD component accordingly.

Example 84:/mplementing establish_components()
package denos. portabl e_i nterceptor.access_control . acl _servi ce;

import org.ong. CORBA *;

i nport org. ong. Portabl el nterceptor. *;

inport org.ong.|CP.*;

i mport org.ong. | CP. CodecPackage. | nval i dTypeFor Encodi ng;

i nport denos. portabl e_interceptor.access_control . acl _service. *

class ACLI OR nt ercept or | npl
ext ends Local oj ect
i npl ement s | CRI nt er cept or

{
ACLI CRI nt er cept or | npl (Codec codec)

{

m codec = codec;

}

public String name()
{

return NAME
}

531

CHAPTER 19 | Portable Interceptors

Example 84:/mplementing establish_components()

public void establish_conponents(l ORI nfo ior_info)

{
AccessControl . PasswordPol i cy pwd_policy = null;
try {
2 Policy policy =
ior_info.get_effective policy(
AccessControl . PASSWORD PCLI CY_I D. val ue) ;
pwd_policy =
AccessCont r ol . Passwor dPol i cyHel per. narrow(pol i cy);
}

catch (INV_PQLICY iv) {
/'l PasswordPolicy wasn't set - return imredi ately
return;
}
catch (BAD PARAM ex) {
ex. print StackTrace();
Systemexit(1);
}

Any cnpnt_data_any = CRB.init().create_any();

3
cnpnt _dat a_any. i nsert _bool ean(pwd_pol i cy. requi res_passwor d())
byte[] cnpnt_data = nul|;
try {
4 cnpnt _data = m codec. encode_val ue(cnpnt _dat a_any) ;
}
catch (InvalidTypeFor Encodi ng ex) {
ex. print StackTrace();
Systemexit(1);
}
/1 add TAG REQU RES PASSWIRD conponent to all profiles
5 TaggedConponent conponent = new TaggedConponent (
AccessCont rol Servi ce. TAG REQU RES PASSWIRD. val ue,
cnpnt _dat a);
6 i or_info.add_ i or_conponent (conponent) ;

532

Writing IOR Interceptors

The sample application’s implementation of est abl i sh_conponent s()
executes as follows:

1.

Extends or g. ong. CORBA Local Obj ect because the IOR interceptor is a
local object.

Gets the effective password policy object for the POA by calling
get _effective_policy() onthel R nfo.

Gets the password policy value by calling r equi r es_passwor d() on the
policy object.
Encodes the password policy value as an octet.

Instantiates a tagged component (I GP: : TaggedConponent) and
initializes it with the TAG REQU RES_PASSWCRD tag and encoded
password policy value.

Adds the tagged component to the object reference'’s profile by calling
add_i or _corponent () .

533

CHAPTER 19 | Portable Interceptors

Using Requestinfo Objects

Interception points for client and server interceptors receive

di ent Request | nf o and Server Request I nf o objects, respectively. These
derive from Port abl el nt er cept or : : Request | nf o, which defines operations
and attributes common to both.

Interface definition The Request I nf o interface is defined as follows:
Example 85: Requestinfo interface

l ocal interface RequestInfo {
readonly attribute unsigned | ong request_id;
readonly attribute string operation;
readonly attribute Dynam c:: ParaneterList argunents;
readonly attribute Dynanic:: ExceptionLi st exceptions;
readonly attribute Dynam c:: ContextLi st contexts;
readonly attri bute Dynam c: : Request Cont ext oper ati on_cont ext;
readonly attribute any result;
readonly attribute bool ean response_expect ed;
readonly attribute Messagi ng:: SyncScope sync_scope;
readonly attribute Repl yStatus reply_status;
readonly attribute Cbject forward_reference;
any get_slot (in Sotld id) raises (InvalidSot);
| OP: : Servi ceCont ext get_request_servi ce_context (
in QP :Serviceld id);
| OP: : Servi ceCont ext get_reply_service_context (
in QP :Serviceld id);
ik

A Request | nf o object provides access to much of the information that an
interceptor requires to evaluate a request and its service context data. For a
full description of all attributes and operations, see the CORBA
Programmer’s Reference.

The validity of any given Request | nf o operation and attribute varies among
client and server interception points. For example, the resul t attribute is
valid only for interception points recei ve_repl y on a client interceptor; and
send_r epl y on a server interceptor. It is invalid for all other interception

534

Timeout attributes

Using Requestinfo Objects

points. Table 19 on page 545 and Table 20 on page 558 show which
Request | nf o operations and attributes are valid for a given interception
point.

Note: The Java implementation throws a NO RESQURCES exception for the
following attributes: ar gument s, excepti ons, cont exts,
operation_context, and resul t.

A client might specify one or more timout policies on request or reply
delivery. If portable interceptors are present in the bindings, these
interceptors must be aware of the relevant timeouts so that they can bound
any potentially blocking activities that they undertake.

The current OMG specification for portable interceptors does not account for
timeout policy constraints; consequently, Orbix provides its own derivation
of the Request I nf o interface, | T_Port abl el nt er cept or : : Request | nf o,
which adds two attributes:

Example 86:/T_Portableinterceptor::Requestinfo interface attributes

nmodul e | T_Port abl el nt er cept or

{

local interface Requestinfo : Portabl el nterceptor::Request!nfo

{

readonly attribute TimeBase:: W cT request_end_ti ne;

readonly attribute TimeBase:: WU cT reply_end_tine;
H
ik

To access timeout constraints, interception point implementations can
narrow their Qi ent Request | nf o or Ser ver Request | nf o objects to this
interface. The two attributes apply to different interception points, as
follows:

Table 18: Portable Interceptor Timeout Attributes

Timeout attribute Relevant interception points
request _end_tine send_r equest
send_pol |

recei ve_request _servi ce_contexts
recei ve_r equest

535

CHAPTER 19 | Portable Interceptors

536

Table 18: Portable Interceptor Timeout Attributes

Timeout attribute

Relevant interception points

reply_end_tinme

send_reply
send_excepti on
send_ot her
receive_reply
recei ve_exception
recei ve_ot her

Writing Client Interceptors

Writing Client Interceptors

Interception point definitions

Client interceptor constructor

Client interceptors implement the A i ent Request | nt er cept or interface,
which defines five interception points:

Example 87: ClientRequestinterceptor interface

local interface AientRequestinterceptor : Interceptor {
voi d send_request (in dientRequestinfo ri)
rai ses (ForwardRequest);
void send_pol|l (in dientRequestinfo ri);
void receive reply (in dientRequestinfo ri);
voi d recei ve_exception (in QientRequestinfo ri)
rai ses (ForwardRequest);
voi d receive_other (in dientRequestinfo ri)
rai ses (ForwardRequest);

IE

A client interceptor implements one or more of these operations.

In the password service example, the client interceptor provides an
implementation for send_r equest , which encodes the required password in
a service context and adds the service context to the object reference. For
implementation details, see “Client Interceptor Tasks” on page 547.

As noted earlier, the ORB initializer instantiates and registers the client
interceptor. This interceptor's constructor is implemented as follows:

Example 88: Client interceptor constructor
class ACLd i ent Request | nt er cept or | npl

ext ends Local (oj ect
inpl ements dient Request | nt er cept or

{

ACLA i ent Request I nterceptor | npl (i nt password_sl ot, Codec
codec)

{
m passwor d_sl ot = password_sl ot ;
m codec = codec;

}

/...

537

CHAPTER 19 | Portable Interceptors

Client interceptor arguments The client interceptor takes two arguments:

® The PICurrent slot allocated by the ORB initializer to store password
data.

® AnICP:: Codec, which is used to encode password data for service
context data.

538

Writing Client Interceptors

Interception Points

Starting interception points

Ending interception points

A client interceptor implements one or more interception points. During a
successful request-reply sequence, each client-side interceptor executes one
starting interception point and one ending interception point.

Depending on the nature of the request, the ORB calls one of the following
starting interception points:

send_request lets an interceptor query a synchronously invoked request,
and modify its service context data before the request is sent to the server.

send_poll lets an interceptor query an asynchronously invoked request,
where the client polls for a reply. This interception point currently applies
only to deferred synchronous operation calls (see “Invoking Deferred
Synchronous Requests” on page 384)

Before the client receives a reply to a given request, the ORB executes one
of the following ending interception points on that reply:

receive_reply lets an interceptor query information on a reply after it is
returned from the server and before control returns to the client.

receive_exception is called when an exception occurs. It lets an interceptor
query exception data before it is thrown to the client.

receive_other lets an interceptor query information that is available when a
request results in something other than a normal reply or an exception. For
example: a request can result in a retry, as when a GIOP reply with a
LOCATI ON_FORWARD status is received; recei ve_ot her is also called on
asynchronous calls, where the client resumes control before it receives a
reply on a given request and an ending interception point is called.

539

CHAPTER 19 | Portable Interceptors

Interception Point Flow

Scenario 1: Request-reply
sequence is successful

Client

For each request-reply sequence, only one starting interception point and
one ending point is called on a client interceptor. Each completed starting
point is paired to an ending point. For example, if send_r equest executes to
completion without throwing an exception, the ORB calls one of its ending
interception points—r ecei ve_repl y, recei ve_excepti on, or

recei ve_ot her.

If multiple interceptors are registered on a client, the interceptors are
traversed in order for outgoing requests, and in reverse order for incoming
replies.

Interception points A and B are registered with the server ORB. The
interception point flow shown in Figure 41 depicts a successful
reply-request sequence, where the server returns a normal reply:

A

send_r equest

B Server

receive_reply

540

send_r equest

L receive_reply C

send_r equest

N receive_reply

Figure 41: Client interceptors process a normal reply.

Writing Client Interceptors

Scenario 2: Client receives If the server throws an exception or returns some other reply, such as
LQCATI ON_FCRWARD LOCATI ON_FCRWARD, the ORB directs the reply flow to the appropriate
interception points, as shown in Figure 42:

Client
A

— send_r equest
Server

B

replies with

> recei ve_ot her
LOCATI ON_FORWARD

send_r equest

& recei ve_ot her C

send_r equest

N\ recei ve_ot her -y

Figure 42: Client interceptors process a LOCATION_FORWARD reply.

541

CHAPTER 19 | Portable Interceptors

Scenario 3: Exception aborts

interception flow

Client

Any number of events can abort or shorten the interception flow. Figure 43
shows the following interception flow:

1.
2.

Interceptor B’s send_r equest throws an exception.

Because interceptor B's start point does not complete, no end point is
called on it, and interceptor C is never called. Instead, the request flow
returns to interceptor A’s recei ve_excepti on end point.

A

send_r equest

recei ve_exception B ;

Scenario 4: Interceptor changes

reply

542

send_r equest
; throws exception I

Figure 43: send request throws an exception in a client-side interceptor

An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a
different system exception. Figure 44 shows the following interception flow:

1.
2.
3.

The server returns a normal reply.

The ORB calls recei ve_repl y on interceptor C.

Interceptor C’s recei ve_repl y raises exception f oo_x, which the ORB
delivers to interceptor B’s recei ve_excepti on.

Interceptor B’'s recei ve_except i on changes exception f oo_x to
exception foo_y.

Interceptor A’s recei ve_except i on receives exception f oo_y and
returns it to the client.

Client
A

send_r equest

- recei ve_exception
- B

foo_y

send_r equest

recei ve_exception
throws exception

foo_y

C

foo_x

send_r equest

receive_reply
throws exception
foo_x

Writing Client Interceptors

Server

servant returns
normal reply

Figure 44: Client interceptors can change the nature of the reply.

Note: Interceptors must never change the CompletionStatus of the
received exception.

543

CHAPTER 19 | Portable Interceptors

ClientRequestinfo

544

Each client interception point gets a single d i ent Request | nf o argument,
which provides the necessary hooks to access and modify client request
data:

Example 89: ClientRequestinfo interface

local interface AientRequestinfo : Requestlnfo {

readonly attribute Cbject target;

readonly attribute Cbject effective_target;
readonly attribute | QP : TaggedProfile effective profile;
readonly attribute any recei ved_excepti on;

readonly attribute OORBA: : Repositoryld recei ved_exception_id;

| OP: : TaggedConponent
get _effective_conmponent (in | CP:: Conponent|d id);

| OP: : TaggedConponent Seq
get _effective_conmponents(in | CP:: Conponent |1 d id);

QOORBA: : Pol i cy
get _request _policy(in CORBA : PolicyType type);

voi d

add_r equest _servi ce_cont ext (
in | CP:: ServiceContext service_context,
i n bool ean repl ace

Writing Client Interceptors

Table 19 shows which Qi ent Request I nf o operations and attributes are
accessible to each client interception point. In general, attempts to access
an attribute or operation that is invalid for a given interception point throw
an exception of BAD | N\v_CRDER with a standard minor code of 10.

Table 19: Client Interception Point Access to ClientRequestinfo

ClientRequestinfo: s_req s_poll r_reply r_exep r_other
request_id y y y y
operation y y y y
arguments y@ y
exceptions y y y y
contexts y y y y
operation_context y y y y
result y
response_expected y y y y
sync_scope y y y y
reply_status y y y
forward_reference y°
get_slot y y y y
get_request_service_context y y y y
get_reply_service_context y y y
target y y y y
effective_target y y y y
effective_profile y y y y
received_exception y
received_exception_id y
get_effective_component y y y y

545

CHAPTER 19 | Portable Interceptors

546

Table 19: Client Interception Point Access to ClientRequestinfo

ClientRequestInfo: s_req s_poll r_reply r_exep r_other
get_effective_components y y
get request_policy y y
add_request_service_context y

a. When Qi ent Request I nfo is passed to send_request, the arguments list contains an entry for all

arguments, but only in and inout arguments are available.

b.Access to forward_reference is valid only if reply_status is set to LOCATI ON FCRMRD or

LOCATI ON_FORWARD PERVANENT.

Writing Client Interceptors

Client Interceptor Tasks

Evaluating tagged components

A client interceptor typically uses a A i ent Request I nf o to perform the

following tasks:

® Evaluate an object reference’s tagged components to determine an
outgoing request’s service requirements.

® Obtain service data from PICurrent.

® Encode service data as a service context.

® Add service contexts to a request.

These tasks are usually implemented in send_r equest . Interceptors have a

much wider range of potential actions available to them—for example, client

interceptors can call get _request _servi ce_cont ext (), to evaluate the

service contexts that preceding interceptors added to a request. Other

operations are specific to reply data or exceptions, and therefore can be

invoked only by the appropriate r ecei ve_ interception points.

This discussion confines itself to send_request and the tasks that it typically
performs. For a full description of other A i ent Request I nf o operations and
attributes, see the CORBA Programmer’s Reference.

In the sample application, the client interceptor provides an implementation

for send_r equest , which performs these tasks:

® Evaluates each outgoing request for this tagged component to
determine whether the request requires a password.

® Obtains service data from PICurrent

® Encodes the required password in a service context

® Adds the service context to the object reference:

The sample application’s implementation of send_r equest checks each
outgoing request for tagged component TAG REQU RES PASSWCRD by calling
get _ef fecti ve_conponent () on the interceptor’'s d i ent Request I nf o:

Example 90: Using get_effective_component()

public void send_request (A ient Request | nf o request _i nf o)

{

547

CHAPTER 19 | Portable Interceptors

548

Example 90: Using get_effective_component()

if (requires_password(request _info))
{1/ ...
}

1.

private bool ean requires_password(d i ent Request | nfo
request _i nf 0)
{
/1 check if a TAG REQU RES PASSWIRD conponent i s present in the
/] effective profile

/1l
TaggedConponent password_conponent = nul | ;
try {
passwor d_conponent = request _i nfo. get _effecti ve_conponent (
TAG REQU RES_PASSWIRD. val ue) ;
}

catch (BAD PARAM bp) {
/1 TAG REQU RES PASSWIRD conponent not present; treat as not
/1 requiring a password
return fal se;

}

/| decode conponent data
Any password_required_any = null;
try {
passwor d_r equi red_any = m codec. decode_val ue(
passwor d_conponent . conponent _dat a,
CRB.init().get_primtive_tc(TAK nd. tk_bool ean));
}
catch (Fornat M snmat ch ex) {
ex. print StackTrace();
Systemexit(1);
}
catch (TypeM smatch ex) {
ex. print StackTrace();
Systemexit(1);
}

return password_required_any. extract _bool ean();

Writing Client Interceptors

The interception point executes as follows:

1. Calls the private method requi re_password() to determine whether a
password is required.

2. get_effective_conponent () returns tagged component
TAG REQU RES_PASSWIRD from the request’s object reference.

3. decode_val ue() is called on the interceptor’'s Codec to decode the octet
sequence into a QORBA: : Any. The call extracts the Boolean data that is
embedded in the octet sequence.

4. The Any’'s Boolean value is extracted and returned to send_request ().

Obtaining service data Atfter the client interceptor verifies that the request requires a password, it
calls Request I nf o: : get _sl ot () to obtain the client password from the
appropriate slot:

Example 91: Calling Requestinfo::get_slot()

org. ong. OCRBA. Any password_any = nul | ;
try {
password_any = request_info.get_slot(mpassword_slot);
}
catch (InvalidS ot ex) {
ex. print StackTrace();
Systemexit(1);
}

549

CHAPTER 19 | Portable Interceptors

Encoding service context data After the client interceptor gets the password string, it must convert the

string and related data into a CDR encapsulation, so it can be embedded in
a service context that is added to the request. To perform the data
conversion, it calls encode_val ue on an | CP: : Codec:

Example 92: Calling I0OP::Codec::encode_value()

byte[] password_context_data = null;
try {

passwor d_cont ext _data = m codec. encode_val ue(passwor d_any) ;
}

catch (InvalidTypeFor Encodi ng ex) {
ex. print StackTrace();
Systemexit(1);

}

Adding service contexts to a

After initializing the service context, the client interceptor adds it to the
request

outgoing request by calling add_r equest _ser vi ce_cont ext () :
Example 93: Calling add_request_service_context()

Servi ceCont ext password_servi ce_context = new Servi ceCont ext (
PASSWIRD SERVI CE | D. val ue, password_cont ext dat a);

// add service context to the request

request _i nfo. add_r equest _servi ce_cont ext (
passwor d_servi ce_cont ext, true);

550

Writing Server Interceptors

Writing Server Interceptors

Server interceptors implement the Ser ver Request | nt er cept or interface:

Example 94: ServerRequestinterceptor interface

local interface ServerRequestinterceptor : Interceptor {

voi d
recei ve_request_servi ce_contexts(in ServerRequestInfo ri
) raises (ForwardRequest);

voi d
recei ve_request (i n ServerRequestInfo ri
) raises (ForwardRequest);

voi d
send_repl y(in ServerRequestinfo ri);

voi d
send_exception(in ServerRequestlnfo ri
) raises (ForwardRequest);

voi d

send_ot her (i n Server Request I nfo ri
) raises (ForwardRequest);

551

CHAPTER 19 | Portable Interceptors

Interception Points

Starting interception point

Intermediate interception point

Ending interception points

552

During a successful request-reply sequence, each server interceptor
executes one starting interception point and one intermediate interception
point for incoming requests. For outgoing replies, a server interceptor
executes an ending interception point.

A server interceptor has a single starting interception point:

receive_request_service_contexts lets interceptors get service context
information from an incoming request and transfer it to PICurrent slots. This
interception point is called before the servant manager is called. Operation
parameters are not yet available at this point.

A server interceptor has a single intermediate interception point:

receive_request lets an interceptor query request information after all
information, including operation parameters, is available.

An ending interception point is called after the target operation is invoked,
and before the reply returns to the client. The ORB executes one of the
following ending interception points, depending on the nature of the reply:

send_reply lets an interceptor query reply information and modify the reply
service context after the target operation is invoked and before the reply
returns to the client.

send_exception is called when an exception occurs. An interceptor can
query exception information and modify the reply service context before the
exception is thrown to the client.

send_other lets an interceptor query the information available when a
request results in something other than a normal reply or an exception. For
example, a request can result in a retry, as when a GIOP reply with a
LOCATI ON_FCRWARD status is received.

Writing Server Interceptors

Interception Point Flow

For a given server interceptor, the flow of execution follows one of these
paths:

Scenario 1: Target object throws
exception

recei ve_r equest _servi ce_cont ext s completes execution without
throwing an exception. The ORB calls that interceptor’s intermediate
and ending interception points. If the intermediate point throws an
exception, the ending point for that interceptor is called with the
exception.

recei ve_r equest _servi ce_cont ext s throws an exception. The
interceptor’s intermediate and ending points are not called.

If multiple interceptors are registered on a server, the interceptors are
traversed in order for incoming requests, and in reverse order for outgoing
replies. If one interceptor in the chain throws an exception in either its
starting or intermediate points, no other interceptors in the chain are called;
and the appropriate ending points for that interceptor and all preceding
interceptors are called.

Interceptors A and B are registered with the server ORB. Figure 45 shows
the following interception flow:

1.

The interception point recei ve_request _server_cont ext s processes
an incoming request on interceptor A, then B. Neither interception
point throws an exception.

Intermediate interception point r ecei ve_r equest processes the request
first on interceptor A, then B. Neither interception point throws an
exception.

The ORB delivers the request to the target object. The object throws an
exception.

The ORB calls interception point send_excepti on, first on interceptor
B., then A, to handle the exception.

553

CHAPTER 19 | Portable Interceptors

5. The ORB returns the exception to the client.

r_req_serv_cxts r_req_serv_cxts
) - .
L» recei ve_r equest recei ve_request
send_exception ~§—| send_exception

object throws
exception O

Server

Figure 45: Server interceptors receive request and send exception thrown

by target object.
Scenario 2: Exception aborts Any number of events can abort interception flow. Figure 46 shows the
interception flow following interception flow.

1. A request starts server-side interceptor processing, starting with
interceptor A’s recei ve_r equest _servi ce_cont ext s. The request is
passed on to interceptor B.

2. Interceptor B's recei ve_request _servi ce_cont ext s throws an
exception. The ORB aborts interceptor flow and returns the exception
to interceptor A’s end interception point send_except i on.

3. The exception is returned to the client.

554

Scenario 3: Interceptors change

reply type

Writing Server Interceptors

Because interceptor B's start point does not complete execution, its
intermediate and end points are not called. Interceptor A’s intermediate
point recei ve_r equest also is not called.

A B

r_req_serv_cxts r_req_serv_cxts

) throws exception
recei ve_r equest

send_exception

O

Server

Figure 46: receive_request_service_contexts throws an exception and
interception flow is aborted.

An interceptor can change a normal reply to a system exception; it can also

change the exception it receives, whether user or system exception to a
different system exception. Figure 47 shows the following interception flow:

1.
2.
3.

The target object returns a normal reply.
The ORB calls send_repl y on server interceptor C.

Interceptor C's send_repl y interception point throws exception f oo_x,
which the ORB delivers to interceptor B's send_except i on.

Interceptor B's send_except i on changes exception f oo_x to exception
foo_y, which the ORB delivers to interceptor A’'s send_excepti on.

Interceptor A's send_except i on returns exception f oo_y to the client.

555

CHAPTER 19 | Portable Interceptors

A B c

r_req_serv_cxts

; recei ve_request

send_exception

r_req_serv_cxts r_req_serv_cxts

recei ve_request recei ve_r equest

send_excepti on
throws exception
foo_y

send_reply
throws exception
foo_x

object returns
normal reply Q

Server

Figure 47: Server interceptors can change the reply type.

Note: Interceptors must never change the CompletionStatus of the
received exception.

556

Writing Server Interceptors

ServerRequestinfo

Each server interception point gets a single Server Request | nf o argument,
which provides the necessary hooks to access and modify server request
data:

Example 95: ServerRequestinfo interface

local interface ServerRequestinfo : Requestinfo {
readonly attribute any sendi ng_excepti on;
readonly attribute OORBA : Cct et Seq obj ect _i d;
readonly attribute OORBA : Cctet Seq adapter i d;
readonly attribute OORBA: : Repositoryld
target _nost_derived_interface;

OCRBA: : Pol i cy
get _server_pol icy(in OORBA: : PolicyType type);

voi d
set _sl ot (
in Slotld id,
in any dat a
) raises (InvalidSlot);

bool ean
target _is_a(in OORBA : Repositoryld id);

voi d

add_repl y_servi ce_cont ext (
in | QP : Servi ceCont ext service_context,
in bool ean repl ease

JE

557

CHAPTER 19 | Portable Interceptors

558

Table 20 shows which Ser ver Request I nf o operations and attributes are
accessible to server interception points. In general, attempts to access an
attribute or operation that is invalid for a given interception point raise an

exception of BAD | N\v_CRDER with a standard minor code of 10.

Table 20: Server Interception Point Access to ServerRequestinfo

ServerRequestinfo: r_req_
serv_cxts r_req s_reply s_excep s_other

request_id y y y y
operation y y y y
arguments® y y
exceptions y y y
contexts y y y
operation_context y
result y
response_expected y y y y
sync_scope y y y y
reply_status y y y
forward_reference y
get slot y y y y
get request_service context y y y y
get_reply_service_context y y y
sending_exception y
object_id
adapter_id
target_most_derived_interface
get server_policy y y y y

Writing Server Interceptors

Table 20: Server Interception Point Access to ServerRequestinfo
ServerRequestinfo: r_req_
serv_cxts r_req s_reply s_excep s_other
set_slot y y y y y
target is a y
add_reply_service _context y y y y y

a. When a ServerRequestinfo is passed to receive_request(), the arguments list contains an entry for all
arguments, but only in and inout arguments are available.

559

CHAPTER 19 | Portable Interceptors

Server Interceptor Tasks

Get server policies

560

A server interceptor typically uses a Server Request | nf o to perform the
following tasks:

® QGet server policies.

® Get service contexts from an incoming request and extract their data.

The sample application implements r ecei ve_r equest _server _cont ext s
only. The requisite service context data is available at this interception
point, so it is capable of executing authorizing or disqualifying incoming
requests. Also, unnecessary overhead is avoided for unauthorized requests:
by throwing an exception in recei ve_r equest _server _cont ext s, the
starting interception point fails to complete and all other server interception
points are bypassed.

This discussion confines itself to recei ve_request _server _contexts and
the tasks that it typically performs. For a description of other

Ser ver Request | nf o operations and attributes, see the CORBA
Programmer’s Reference.

The sample application’s r ecei ve_r equest _ser ver _cont ext s
implementation obtains the server's password policy in order to compare it
to the password that accompanies each request. In order to do so, it calls
get _server_pol i cy() on the interception point’s Server Request | nf o:

Example 96: Calling get_server_policy()

/...
inport denos. portabl e_interceptor.access_control . acl _service. *;

public void receive_request _service_cont exts(
Server Request | nf o request _i nfo)
{
/| deternine whether password protection is required by
/] the effective policies
AccessCont rol . Passwor dPol i cy password policy = null;
try {
passwor d_pol i cy = Passwor dPol i cyHel per. nar r ow(
request _i nfo. get _server_pol i cy(
AccessCont rol . PASSWORD PCLI CY_I D. val ue)) ;

Writing Server Interceptors

Example 96: Calling get _server policy()

catch (I NV_PCLICY ex) {
/] password policy not set
return;

}

cat ch (BAD PARAM ex) {
ex. pri nt StackTrace();
Systemexit(1);

}

/...

Get service contexts After recei ve_r equest _server_cont ext s gets the server’s password policy,
it needs to compare it to the client password that accompanies the request.

The password is encoded as a service context, which is accessed through its
identifier PASSWRD SERVI CE | D:

Example 97:

/1
if (password_policy !'= null
&% password_pol i cy. requires_password())
{
Il check that the correct password was sent wth request
i f (!check_passwor d(
request i nfo, password_policy. password()))
{
t hr ow new NO_PERM SSI O\
OxDEADBEEF, Conpl eti onSt at us. COMPLETED NO) ;
}

}
11

private bool ean check_password(Server Request | nf o request _i nf o,
String expect ed_passwor d)
{
org. ong. | CP. Servi ceCont ext password_servi ce_context = null;
try {
/] get the password service context ...

561

CHAPTER 19 | Portable Interceptors

Example 97:

passwor d_servi ce_context =
request _i nf 0. get _r equest _servi ce_cont ext (
AccessCont rol Servi ce. PASSWRD SERVI CE_| D. val ue) ;
}
catch (BAD _PARAM bp) {
/1 PASSWIRD SERMI CE | D service context not present in request
return fal se;

}

/] decode context data
Any password_any = null;
try {
passwor d_any = m codec. decode_val ue(
passwor d_servi ce_cont ext . cont ext _dat a,
CRB.init().get_primtive tc(TQKi nd.tk_string));
}
catch (Fornat M smat ch ex) {
ex. print StackTrace();
Systemexit(1);
}
catch (TypeM smatch ex) {
ex. print StackTrace();
Systemexit(1);
}

/' conpare the passwords
String recei ved_password = password_any.extract_string();
return expect ed_password. equal s(recei ved_password) ;

The interception point executes as follows:

1.

562

Calls get _request _servi ce_cont ext () with an argument of
AccessCont r ol Servi ce: : PASSWORD SERVI CE | D. If successful, the call
returns with a service context that contains the client password.

Calls decode_val ue() on the interceptor's Codec to decode the service

context data into a GORBA: : Any. The call specifies to extract the string
data that is embedded in the octet sequence.

Writing Server Interceptors

Extracts the Any’s string value and compares it to the server password.
If the two strings match, the request passes authorization and is
allowed to proceed; otherwise, an exception is thrown back to the

client.

563

CHAPTER 19 | Portable Interceptors

Registering Portable Interceptors

Portable interceptors and their components are instantiated and registered
during ORB initialization, through an ORB initializer. An ORB initializer
implements its pre_i nit () or post _init () operation, or both. The client
and server applications must register the ORB initializer before calling
ORB init().

564

Registering Portable Interceptors

Implementing an ORB Initializer

Obtain PICurrent

The sample application’s ORB initializer implements pre_i nit () to perform

these tasks:

® Obtain PICurrent and allocate a slot for password data.

® Encapsulate PICurrent and the password slot identifier in an
AccessControl :: Qurrent object, and register this object with the ORB
as an initial reference.

® Register a password policy factory.

® Create Codec objects for the application’s interceptors, so they can
encode and decode service context data and tagged components.

® Register interceptors with the ORB.

In the sample application, the client application and client interceptor use
PICurrent to exchange password data:

® The client thread places the password in the specified PICurrent slot.
® The client interceptor accesses the slot to obtain the client password
and add it to outgoing requests.

In the sample application, pre_init () calls the following operations on
CRBI nitlnfo:

1. allocate_slot_id() allocates a slot and returns the slot's identifer.

2. resolve_initial _references("PlQurrent") returns PICurrent.
Example 98: Obtaining PICurrent

public void pre_init(CORBInitlnfo init_info)
{

/] reserve a slot for AccessControl:: Qurrent
int password slot = init_info.allocate slot_id();

I/l get a reference to PlCQurrent

org.ony. Portabl el nterceptor. Qurrent pi_current = null;
try {

565

CHAPTER 19 | Portable Interceptors

Register an initial reference

566

Example 98: Obtaining PICurrent

or g. onmg. CCRBA. (bj ect obj
init_info.resolve_ initial_references("PlQurrent");
pi _current =
org. ony. Port abl el nt er cept or . Current Hel per. narrow obj) ;
}
catch (InvalidNarme ex) {
ex. print StackTrace();
Systemexit(1);
}
catch (BAD PARAM ex) {
ex. print StackTrace();
Systemexit(1);
}
/1

After the ORB initializer obtains PICurrent and a password slot, it must
make this information available to the client thread. To do so, it instantiates
an AccessControl :: Qurrent object. This object encapsulates:

® PICurrent and its password slot
® Operations that access slot data

The AccessControl : : Qurrent object has the following IDL definition:
Example 99: AccessControl::Current interface

nmodul e AccessControl {
/...
local interface Qurrent : QORBA: : Qurrent {
attribute string password,;
I8
b

The application implements AccessControl :: Qurrent as follows:
Example 100:/mplementing an AccessControl::Current object

class ACLQurrent| npl
extends Local (bj ect
i npl ement s
denos. portabl e_i nt ercept or. access_control . acl _service.
AccessControl . Current

Registering Portable Interceptors

Example 100:/mplementing an AccessControl::Current object

{
ACLCQurrent | npl (org. ong. Portabl el nterceptor. Qurrent pi_current,
i nt password_sl ot)
{
mpi_current = pi _current;
m password_sl ot = password_sl ot ;

}

public String password()
{
/1l get password from Pl Current slot
Any password_any = nul | ;
try {
password_any = mpi_current.get_sl ot (m password_slot);
}

catch (InvalidS ot ex) {
ex. print StackTrace();
Systemexit(1);

}

return password_any. extract_string();

}

public void password(String passwor d)
{
/l set password in PlQurrent sl ot
try {
Systemout.println("setting password from Pl Qurrrent
slot");
Any password_any = CRB.init().create_any();
password_any. i nsert_stri ng(password);
mpi _current.set_sl ot (m password_sl ot, password_any);
}
catch (InvalidSlot ex) {
ex. print StackTrace();
Systemexit(1);

567

CHAPTER 19 | Portable Interceptors

Create and register policy
factories

568

With AccessControl :: Qurrent thus defined, the ORB initializer performs
these tasks:

1. Instantiates the AccessControl :: Current object.

2. Registers it as an initial reference.
Example 101:Registering AccessControl::Current as an initial reference

try {
denos. portabl e_i nt ercept or. access_control . acl _servi ce.
AccessControl . Qurrent acl _current =
new ACLQurrent | npl (pi _current, password_slot);
init_info.register_initial_reference(
"AccessControl Qurrent", acl_current);
}
catch (InvalidName ex) {
ex. print StackTrace();
Systemexit(1);
}

The sample application’s IDL defines the following password policy to
provide password protection for the server's POAs.

Example 102:Defining a password policy

nmodul e AccessControl {
const OCRBA: : Pol i cyType PASSWRD PCLI CY_|I D = OxBEEF;

struct Passwor dPol i cyVal ue {
bool ean requi res_passwor d;
string password;

}s

local interface PasswordPolicy : OORBA : Policy {
readonly attribute bool ean requires_passwor d;
readonly attribute string password;

}

local interface Qurrent : OCRBA : Qurrent {
attribute string password;

}s

Create Codec objects

Register interceptors

Registering Portable Interceptors

During ORB initialization, the ORB initializer instantiates and registers a
factory for password policy creation:

Pol i cyFactory password_policy factory =
new Passwor dPol i cyFact oryl npl () ;
init_info.register_policy_factory(

AccessCont rol . PASSWORD PCLI CY_I D. val ue,
passwor d_pol i cy_factory);

For example, a server-side ORB initializer can register a factory to create a
password policy, to provide password protection for the server's POAs.

Each portable interceptor in the sample application requires a

Por t abl el nt er cept or : : Codec in order to encode and decode octet data for
service contexts or tagged components. The ORB initializer obtains a Codec
factory by calling GRBI ni t I nf o: : codec_f act ory, then creates a Codec:

Example 103:Creating a Codec object

org. ong. | CP. Codec cdr_codec = null;
try {
Encodi ng cdr_encodi ng = new Encodi ng(
org. ong. | OP. ENCCDI NG (DR _ENCAPS. val ue, (byte)1, (byte)2);
cdr_codec =
init_info.codec factory().create codec(cdr_encodi ng);

cat ch (UnknownEncodi ng ex) {
ex. print StackTrace();
Systemexit(1);

}

When the ORB initializer instantiates portable interceptors, it supplies this
Codec to the interceptor constructors.

The sample application relies on three interceptors:

® An IOR interceptor that adds a TAG PASSWIRD REQU RED component to
IOR’s that are generated by the server application.

® Aclient interceptor that attaches a password as a service context to
outgoing requests.

569

CHAPTER 19 | Portable Interceptors

570

® Aserver interceptor that checks a request’s password before allowing it

to continue.

Note: The order in which the ORB initializer registers interceptors has no
effect on their runtime ordering. The order in which portable initializers are
called is determined by their order in the client and server binding lists
(see “Setting Up Orbix to Use Portable Interceptors” on page 572)

The ORB initializer instantiates and registers these interceptors as follows:
Example 104:Registering interceptors

/1 Register |CR interceptor
try {
ICRnterceptor ior_interceptor =
new ACLI CRI nt ercept or | npl (cdr _codec) ;
init_info.add ior_interceptor(ior_interceptor);
}
catch (DuplicateNane ex) {
ex. print StackTrace();
Systemexit(1);
}

I/ Register client interceptor
try {
A ientRequestinterceptor client _interceptor =
new ACLA i ent Request | nt er cept or | npl (passwor d_sl ot ,
cdr_codec);
init_info.add client_request _interceptor(client_interceptor);

catch (DuplicateNane ex) {
ex. print StackTrace();
Systemexit(1);

}

I/ Register server interceptor
try {
Server Request | nt ercept or server_interceptor =
new ACLSer ver Request | nt er cept or | npl (cdr _codec) ;

init_info.add server_request _interceptor(server_interceptor);
}
catch (DuplicateNane ex) {
ex. print StackTrace();
Systemexit(1);
}

Registering Portable Interceptors

Registering an ORBInitializer

An application registers an ORB initializer via JAVA ORB properties as
follows:

org.ong. Portabl el nterceptor. CRBInitializerd ass. Service

Servi ce is the string name of a class that implements

org. ony. Portabl el ntercept or. CRBI ni ti al i zer. During initialization of a
new ORB (an ORB with a unique identifier), ORB initializers are registered
in the following steps:

1. All org. ong. Portabl el ntercept or. CRBI ni ti al i zerd ass ORB
properties are collected and the Servi ce string is extracted.

2. An object is instantiated with Servi ce as its class name.

3. The ORB initializer's pre_init and post _i nit methods are called.

571

CHAPTER 19 | Portable Interceptors

Setting Up Orbix to Use Portable Interceptors

The following setup requirements apply to registering portable interceptors
with the Orbix configuration. At the appropriate scope, add:

® portabl e_interceptor plugin to orb_pl ugi ns.

® Client interceptor names to cli ent _bi nding_l i st.

® Server interceptor names to server_bi ndi ng_| i st.

You can only register portable interceptors for ORBs created in programs
that are linked with the shared library i t _portabl e_i ntercept or. If an
application has unnamed (anonymous) portable interceptors, add

AnonymousPor t abl el nt er cept or to the client and server binding lists. All
unnamed portable interceptors insert themselves at that location in the list.

Note: The binding lists determine the order in which interceptors are
called during request processing.

For more information about Orbix configuration, see the Application Server
Platform Administrator’s Guide.

572

In this chapter

CHAPTER 20

Bidirectional GIOP

The usual GIOP connection semantics allow request messages
to be sent in only one direction over a connection-oriented
transport protocol. Recent changes to the GIOP standard allow
this restriction to be relaxed in certain circumstances, making
it possible to use connections in a bidirectional mode.

This chapter contains the following sections:

Introduction to Bidirectional GIOP page 574
Bidirectional GIOP Policies page 576
Configuration Prerequisites page 582
Basic BiDir Scenario page 583
Advanced BiDir Scenario page 594
Interoperability with Orbix Generation 3 page 597

573

CHAPTER 20 | Bidirectional GIOP

Introduction to Bidirectional GIOP

Overview The original OMG General Inter-ORB Protocol (GIOP) standard specified that
client/server connections are unidirectional, in the sense that GIOP request
messages can be sent in one direction only (from client to server).

There are certain scenarios, however, where it is important to lift the
unidirectional constraint on connections. For example, when a client
connects to a server through a firewall, it is usually impossible for the server
to open a new TCP/IP connection back to the client. In this scenario, the
only feasible option is to re-use the existing incoming connection by making
it bidirectional.

Bidirectional GIOP draft At the time of writing, a draft specification for bidirectional GIOP is
specification described in the OMG firewall submission:

htt p: / / www. ong. or g/ docs/ or bos/ 01- 08- 03. pdf

Features IONA’s implementation of bidirectional GIOP has the following features:

1. Compliant with the modified bidirectional GIOP approach described in
the firewall submission.

2. Compatible with GIOP 1.2 (that is, not dependent on GIOP 1.4
Negot i at eSessi on messages).

3. Decoupled from IIOP, so that it can be used over arbitrary
connection-oriented transports (for example, SHMIOP).

Supports weak Bi Di r | ds initially.

5. Supports bidirectional invocations on legacy Orbix 3.x callback object
references in order to facilitate phased migration to Orbix 6.1.

Configuration versus There are essentially two alternative approaches you can take to enabling
programming approach bidirectional GIOP in your Orbix applications, as follows:

® Configuration approach.
® Programming approach.

574

Configuration approach

Programming approach

Introduction to Bidirectional GIOP

The configuration approach to enabling bidirectional GIOP has the
advantage of being relatively easy to do, because it does not require an
application re-build.

On the other hand, this approach has the disadvantage that it is coarse
grained: that is, the relevant bidirectional policies are applied to a/l of the
CORBA objects, object references and POA instances.

For details of this approach, see the Orbix Administrator’s Guide.

The programming approach to enabling bidirectional GIOP has the
advantage that you can apply it at any level of granularity: ORB, POA,
thread or object. In general, it is better to apply a fine-grained approach—
that is, enabling bidirectional GIOP only for those objects that really need it.

Bidirectional GIOP incurs a small performance penalty, due to the following
overheads: extra component added to IORs, extra service context added to
request messages, checking for bidirectional policy compatibility. By
enabling bidirectional GIOP only where it is needed, you can minimize this
performance penalty.

575

CHAPTER 20 | Bidirectional GIOP

Bidirectional GIOP Policies

Overview Bidirectional GIOP is enabled and controlled by setting a variety of CORBA
policies. The bidirectional policies are defined by two different IDL modules,
as follows:

® |IDL for standard policies—defined by the OMG.
® |DL for proprietary policies—defined by IONA.

IDL for standard policies The OMG draft specification for bidirectional GIOP defines three
bidirectional policies. These policies are defined in the Bi D r Pol i cy IDL
module as shown in Example 105.

Example 105:The BiDirPolicy Module

/1 1DL
nodul e BiDrPolicy
{

typedef unsigned short Bidirectional PolicyVal ue;

const Bidirectional PolicyVal ue ALLON = 0;
const Bidirectional PolicyVal ue DENY = 1;

/] to be assigned by OM5 (using tenporary |Ds

/] allocated from|ONA nanespace)

Il

const OORBA: : Pol i cyType Bl _D R EXPCRT_PCLI CY_TYPE =
0x49545F7C,

const QCRBA: : Pol i cyType Bl _D R GFFER PCLI CY_TYPE =
0x49545F7D;

const QCRBA: : Pol i cyType Bl _D R ACCEPT_PQLI CY_TYPE =
0x49545F7E;

| ocal interface Bidirectional ExportPolicy : CORBA : Policy

{
readonly attribute Bidirectional PolicyVal ue val ue;
b
local interface Bidirectional GferPolicy : OORBA : Policy
{
readonly attribute Bidirectional PolicyVal ue val ue;
b

576

BidirectionalExportPolicy

BidirectionalOfferPolicy

Bidirectional GIOP Policies

Example 105:The BiDirPolicy Module

I ocal interface Bidirectional AcceptPolicy : OCRBA : Policy
{

}s

readonly attribute Bidirectional PolicyVal ue val ue;

The Bi D rPol i cy: : Bi di rectional Export Pol i cy is a policy that is applied
to POA instances on the client side (in this context, the term client here
designates the process that opens the bidirectional connection). There are
two alternative values for this policy:

® BiDrPolicy:: ALlLOM—indicates that the CORBA objects activated by
this POA are able to receive callbacks through a bidirectional GIOP
connection.

® BiDrPolicy::DENY (the default)—the bidirectional export policy is
disabled.

In practice, when the Bi di recti onal Export Pol i cy is enabled on a POA
instance, an ID, G P : Bi Dirl d, is generated for the POA. The BiDirld is
used to identify the POA in the context of managing bidirectional
connections. In particular, the Bi Di r1 d is embedded in IORs generated by
this POA (encoded in a TAG Bl _D R G P IOR component).

The BiD rPolicy::Bidirectional OferPolicy is a policy that can be

applied to object references on the client side (that is, object references

whose operations are invoked by the client, not callback object references

created by the client). There are two alternative values for this policy:

® BiDrPolicy:: ALOV—indicates that the outgoing connection used by
this object reference will be offered as a bidirectional GIOP connection.

® BiDrPolicy::DENY (the default)—the bidirectional offer policy is
disabled.

The mechanism for making a bidirectional offer is based on sending a list of
BiDrld'sinadCP.:B _D R AP _CFFERservice context. Hence, the
bidirectional offer is not made until you invoke an operation on the
offer-enabled object reference.

577

CHAPTER 20 | Bidirectional GIOP

BidirectionalAcceptPolicy

IDL for proprietary policies

578

The Bi DirPol i cy: : Bi di recti onal Accept Pol i cy is a policy that can be
applied to callback object references on the server side. Normally, the
bidirectional accept policy should be overridden only on callback object
references whose IOR could reasonably be expected to containaBiD rld
component—otherwise the bidirectional accept policy has no effect. There
are two alternative values for this policy:

® BiDrPolicy:: ALLOM—indicates that the callback object reference
should attempt to re-use one of the incoming connections to send
invocation requests back to the client.

Bi Di r Pol i cy: : DENY (the default)—the bidirectional accept policy is
disabled.

When the server first invokes an operation on the callback object reference,
Orbix extracts the Bi Di r 1 d from the associated IOR and attempts to match
this Bi Di r1d with one of the offered incoming connections. Successful

re-use of an incoming connection requires a Bi D r | d match and compatible
policies.

Orbix defines some proprietary bidirectional GIOP policies, in addition to the
policies defined by the OMG draft specification. These policies are defined in
the IT_Bi DirPolicy IDL module as shown in Example 106.

Example 106:The IT_BiDirPolicy Module
/1l 1D

nmodul e | T_Bi D rPolicy
{
const OCRBA: : Pol i cyType Bl _DI R | D GENERATI ON POLICY_ID =
I T _PolicyBase:: | ONA POLICY_ID + 62;

const QOCRBA: : Pol i cyType Bl _DIR GEN3_ACCEPT_PCLICY_ ID =
I T_PolicyBase:: | ONA PCLI CY_ID + 65;

typedef unsi gned short Bi D rldGenerationPolicyVal ue;
const Bi DirldCenerationPolicyVal ue RANDOM = 0;
const Bi D rldCenerationPol i cyVal ue REPEATABLE = 1;

local interface BiDrldGnerationPolicy : CORBA :Policy
{

readonly attribute Bi D rldGenerationPolicyVal ue val ue;

BiDirldGenerationPolicy

Bidirectional GIOP Policies

Example 106:The I/T_BiDirPolicy Module

}s

local interface Bidirectional Gen3Accept Policy : OCRBA: : Pol i cy
{
readonly attribute Bi D rPolicy::Bidirectional Pol i cyVal ue

val ue;

}s

The I T_BiDirPolicy::BiDrldGenerationPolicy isa proprietary policy that
affects the way G OP:: Bi Di rl d's are generated. It is applied to POA
instances on the client side and must be used in combination with the

Bi DirPol i cy: : Bidirectional ExportPol i cy. There are two alternative
values for this policy:

I T_Bi Di rPol i cy: : RANDOM (the default)—the Bi dDi rI d combines a
32-bit endpoint creation timestamp and 128 bit hash/digest of the
endpoint ID. The use of the timestamp makes accidental clashes
extremely unlikely.

I T_BiDrPolicy:: REPEATABLE—the Bi Dirl d is composed entirely of a
160 bit hash/digest of the endpoint ID. Accidental clashes are possible
if similar lengthy fully qualified POA names are extensively used in the
same location domain, but the probability of a clash is still very low.

Note: If callback object references are intended to be persistent, the
REPEATABLE policy value must be chosen to ensure that the same

Bi Dirld is generated over subsequent re-activations of the client
process. In the usual callback scenario, however, the callback object
references are transient and the RANDOMpolicy value is applicable.

579

CHAPTER 20 | Bidirectional GIOP

BidirectionalGen3AcceptPolicy

Policy granularity

The I T_BiDirPolicy: : Bidirectional Gen3Accept Pol i cy is a policy that can

be applied to Orbix 3 callback object references on the server side. This

policy is provided to facilitate interoperability between Orbix 6.x servers and

Orbix 3 legacy clients. The effect of this policy is analogous to the

Bi di recti onal Accept Pol i cy, except that it applies to Orbix 3 callbacks.

There are two alternative values for this policy:

® BiDrPolicy:: ALONM—indicates that the Orbix 3 callback object
reference should attempt to re-use one of the incoming connections to
send invocation requests back to the Orbix 3 client.

® BiDrPolicy:: DENY (the default)—the bidirectional Orbix 3 accept
policy is disabled.

For more details on interoperability with Orbix 3, see “Interoperability with
Orbix Generation 3" on page 597.

As usual for CORBA policies, these bidirectional policies can be defined at
different levels of granularity. The different levels of granularity for which you
can define each policy are summarized in Table 21.

Table 21: Levels of Granularity for Bidirectional Policies

Bidirectional GIOP Policy

Levels of Granularity

Bi DirPol icy::Bidirecti onal Export Policy ORB
POA

BiDirPolicy::Bidirectional GferPolicy ORB
Thread

Object reference

Bi DirPol i cy: : Bidirectional Accept Pol i cy ORB

Thread

Object reference

IT BiDrPolicy::BiDrldGenerationPolicy ORB

POA

580

Bidirectional GIOP Policies

Table 21: Levels of Granularity for Bidirectional Policies

Bidirectional GIOP Policy Levels of Granularity

I T_BiDirPolicy::Bidirectional Gen3Accept Pol i cy ORB
Thread

Object reference

581

CHAPTER 20 | Bidirectional GIOP

Configuration Prerequisites

Overview

Client configuration

Server configuration

582

This subsection describes the basic configuration prerequisites for using
bidirectional GIOP in an Orbix 6.x domain.

Note: You would normally not have to configure these configuration
settings manually. In a generated configuration domain, by default, your
client and server binding lists are set to include BiD r_Q CP.

On the client-side, the pl ugi ns: gi op: message_ser ver _bi ndi ng_l i st
should include an entry for Bi Dir_Q CP, for example:

pl ugi ns: gi op: message_ser ver _bi nding_l i st=
["BIDr_@orP,"do™ |;

This enables the existing outgoing message interceptor chain to be re-used
for an incoming server binding.

On the server-side, the bi ndi ng: cl i ent _bi ndi ng_l i st should include an
entry for Bi D r_d CP, for example:

binding:client_binding_list =["OIS+tBiDr_ACP', "B Dr_QQ~,
"OIS+td CP+H L CP', "d CP+HIITOP', ...];

This enables the existing incoming message interceptor chain to be re-used,
so that the outgoing client binding dispatches the callback invocation.

Note: If your server needs to interoperate with Orbix 3 legacy clients, the
bi ndi ng: cl i ent _bi ndi ng_l i st should also include a " Bi Di r_Gen3" entry.
See “Interoperability with Orbix Generation 3" on page 597.

Basic BiDir Scenario

Basic BiDir Scenario

Overview This section describes the stock feed demonstration, which is a sample
bidirectional GIOP scenario. Some code examples extracted from the stock
feed demonstration show you how to set the bidirectional GIOP policies on
the client side and on the server side.

In this section This section contains the following subsections:
The Stock Feed Demonstration page 584
Setting the Export Policy page 587
Setting the Offer Policy page 589
Setting the Accept Policy page 591

583

CHAPTER 20 | Bidirectional GIOP

The Stock Feed Demonstration

Overview

Demonstration code

IDL for stock feed scenario

584

This section describes the stock feed demonstration, a basic bidirectional
GIOP scenario. The stock feed system consists of one central server, which
gathers information about stock price changes, and many clients, which can
register an interest in receiving stock data.

The central server stores a list of callback object references for all the clients
that are registered with it. As soon as a stock price changes occurs, the
server iterates over the list of callback object references, calling

Not i fyPri ceChange() on each one. It is these callback invocations which
can potentially be configured to use bidirectional GIOP.

The stock feed demonstration code is located in the following directory:
OrbixInstallDirl asp/ Version/ demos/ cor ba/ or b/ bi di r _gi op

Example 107 shows the IDL for the stock feed demonstration, which
consists of two IDL interfaces: St ockl nf oCB and RegSt ockl nf o. These IDL
interfaces are identical to the ones used by the corresponding demonstration
in the Orbix Generation 3 product.

Example 107:/DL for the Stock Feed Demonstration

/1l 1D
interface StocklnfoCB
{
oneway void NotifyPriceChange(
in string stock_nane,
in float new price

)i

IH

interface RegSt ockl nfo

{
voi d Regi ster(in StocklnfoCB call back);
voi d Deregi ster(in Stockl nfoCB cal | back);
void Notify(in float new price);

b

Stock feed scenario

Bidirectiona

export poli
enabled

Steps to establish a callback

Basic BiDir Scenario

Figure 48 gives you an overview of the stock feed demonstration, where a
number of clients register their interest in receiving callbacks from the stock

feed server.

Client X
ORB

St ockl nf oCB

cy

@ RegSt ockl nfo

\ Bidirectional
offer policy
enabled

Client Y

St ockl nf oCB

ORB

BiDrlidY

RegSt ockl nfo O—

<«
@ Not i f yPri ceChange

—>
@Register()

RegSt ockl nfo

POA

BiDirldXx

Bidirectional __+
accept policy —|
enabled

BiDiridY

Server
ORB

@

T~

-{BiDiridy

Figure 48: Basic Bidirectional GIOP Scenario—Stock Feed

follows:

Figure 48 shows the steps that occur to establish a stock feed callback, as

585

CHAPTER 20 | Bidirectional GIOP

586

Stage

Description

The client creates a POA instance, which has the

Bi di recti onal Export Pol i cy enabled, and activates a

St ockl nf oCB CORBA object, which is responsible for receiving
callbacks.

For the purposes of bidirectional GIOP, the POA is identified by
the ID, BiDirld_Xx.

The client instantiates a RegSt ockl nf o object reference, with
the Bi di recti onal O fer Pol i cy enabled (the RegSt ockl nf o

object reference might have been retrieved from the naming
service or from a stringified I0OR).

The client invokes the Regi st er () operation on the

RegSt ockl nf o object. A couple of things happen at this point:

® The request message for the Regi st er operation includes
the BiDir1d_XID in a service context. This signals that
the connection is offering to receive callbacks to the POA
identified by BiDi rld_X.

® The Regi ster () operation’s argument is a reference to the
St ockl nf oCB object, which will be used to accept
callbacks from the server. The St ockl nf oCB object
reference also has the Bi Dir1d_X ID embedded in it.

If the Bi di recti onal Accept Pol i cy policy is not already
enabled at the level of the current ORB or the current thread,
the server can enable this policy at the object level after
receiving the St ockl nf oCB object reference (creating a new
accept-enabled copy of the object reference).

Some time later, the server makes a callback on the client,
calling the Not i f yPri ceChange() operation on the St ockl nf oCB
object reference. Because the bidirectional accept policy is
enabled on the object reference, Orbix checks to see whether it
can re-use an existing incoming connection for the callback. By
matching the GIOP Bi D r1 d in the object reference to the GIOP
Bi O r | d offered by a connection, Orbix finds a connection that
it can re-use in bidirectional mode.

Basic BiDir Scenario

Setting the Export Policy

Overview

Policy granularity

Java example

This subsection shows you how to set the

Bi DirPol i cy:: Bi directional Export Pol i cy policy on a POA instance. This
POA instance can then be used to activate CORBA objects that are intended
to receive callbacks through a bidirectional GIOP connection.

In this example, the Bi Di r Pol i cy: : Bi di rect i onal Export Pol i cy policy is
set at POA granularity, which is the finest level of granularity for this policy.

Example 108 is a Java example that shows how to create a POA instance
with the Bi di recti onal Export Pol i cy policy enabled. This POA instance is
used on the client side to activate client callback objects.

Call the org. ong. CCRBA. CRB. creat e_pol i cy() method to create a

Bi di rect i onal Export Pol i cy object and then include this policy in the list of
policies passed to the or g. ong. Por t abl eSer ver . POA creat e_POA()
method.

Example 108:J/ava Setting the BidirectionalExportPolicy Policy

/1l Java
I/ create cal |l back POA with the effective
// Bidirectional ExportPolicy set to ALLONin order to allow an

/| appropriate BiDrld be published in the call back reference
/1

PQA cal | back_poa = nul | ;
try {

Systemout. println("creating the cal |l back PQA");
Any export_val ue = orb. create_any();
Bi di rectional Pol i cyVal ueHel per.insert (
export _val ue,
ALLON val ue
)
Policy [] poa policies = {
orb. create_policy(Bl _D R EXPORT_PCLI CY_TYPE. val ue,
export _val ue)

cal | back_poa = root _poa. creat e_PQOA("cal | back",
root _poa. t he_POAManager (),

587

CHAPTER 20 | Bidirectional GIOP

Example 108:Java Setting the BidirectionalExportPolicy Policy
poa_pol i ci es);
iatch (/* ... %)
/1 Error handling ...

/1 (Not shown)
}

588

Basic BiDir Scenario

Setting the Offer Policy

Overview

Policy granularity

Java example

This subsection shows you how to set the

Bi DirPolicy::Bidirectional CfferPolicy policy on an object reference.
After invoking an operation for the first time, the connection used by the
object reference becomes available for bidirectional GIOP use. It does not
matter whether the object reference opens a new connection or re-uses an
existing connection.

For example, if an offer-enabled object reference re-uses an existing
outgoing uni-directional connection, that connection becomes available for
bidirectional use after the first invocation on the offer-enabled object
reference.

Note: It might not be necessary to invoke an operation explicitly to make
a connection available for bidirectional use. Sometimes operations are
invoked implicitly—as, for example, when the narrow() function implicitly
forces a remote _i s_a() invocation.

In this example, the Bi Di rPol i cy: : Bi di rect i onal O f er Pol i cy policy is set
at object granularity, which is the finest level of granularity for this policy.

Example 109 is a Java example that shows how to create a RegSt ockl nf o
object reference with the Bi di recti onal O f er Pol i cy policy enabled. This
RegSt ockl nf o object reference is used on the client side to connect to a
RegSt ockl nf o CORBA object on the server side.

Call the org. ong. CCRBA. CRB. creat e_pol i cy() method to create a

Bi di rectional O f er Pol i cy object and then include this policy in the list of
policies passed to the

com i ona. corba. uti | . Cbj ect Hel per. set _pol i cy _overrides() method.
Example 109:J/ava Setting the BidirectionalOfferPolicy Policy

/1l Java

/1 destringify RegStocklnfo IR and override the effective

// policies with the Bidirectional OdferPolicy set to ALLONin
// order to allow a birectional offer be nade with invocations on

589

CHAPTER 20 | Bidirectional GIOP

590

Example 109:/ava Setting the BidirectionalOfferPolicy Policy

I/l this reference - note the policy is overridden on the
ref erence

// to be invoked by the client, not on the call back reference
/1

RegSt ockl nfo stock_registry = null;
try
{
RandonmAccessFi |l e Fil eStream = new
RandomAccessFi |l e(Server. | R FILE, "r");
String ior = FileStreamreadLi ne();
Fil eStream cl ose();
org. ong. CORBA. (hj ect obj = orb.string_to_object(ior);

Any all ow val ue = orb. create_any();

Bi di recti onal Pol i cyVal ueHel per.insert(all ow val ue,
ALLOWval ue);

Policy [] policies = {
orb.create_policy(Bl _D R OFFER PCLI CY_TYPE. val ue,
al | ow val ue)

h
stock_registry =
RegSt ockl nf oHel per . nar r ow(
com i ona. corba. util . Chj ect Hel per. set_policy_overri des(

obj ,
polici es,
Set Overri deType. ADD OVERR DE
)
)i
catch(/* ... */)

// Error handling ...
/1 (Not shown)

Basic BiDir Scenario

Setting the Accept Policy

Overview

Policy granularity

Java example

This subsection shows you how to set the

Bi D rPol i cy:: Bi directional Accept Pol i cy policy on an object reference.
In order to use an object reference on the server side as a bidirectional
callback, the following prerequisites must be satisfied:

® The object reference is a proper callback object reference. For
example, in Orbix 6.x a callback object reference has aBiDirl d
embedded in its IOR.

® TheBiDrPolicy::Bidirectional Accept Pol i cy policy must be
enabled for the object reference.

When both of these prerequisites are satisfied, an operation invocation
made on the callback object reference causes Orbix to attempt re-use an
incoming connection in a bidirectional mode. An incoming connection is
only considered for bidirectional use, if it offers the same Bi Di r1d that
appears in the callback object reference’s IOR and the connection is
compatible with the policies effective for the callback invocation.

In this example, the Bi Di r Pol i cy: : Bi di rect i onal Accept Pol i cy policy is
set at object granularity, which is the finest level of granularity for this
policy.

Example 110 is a Java example that shows how to create a St ockl nf oCB
callback object reference with the Bi di r ect i onal Accept Pol i cy policy
enabled. This St ockl nf oCB callback object reference is used on the server
side to connect to a St ockl nf oCB callback object on the client side.

Example 110:J/ava Setting the BidirectionalAcceptPolicy Policy

Il Java
publ i c voi d Regi st er(Stockl nfoCB cal | back)
{

System out . print| n(
"registration of interest in stock price changes"

)

// To accept the client's bidirectional offer, override

591

CHAPTER 20 | Bidirectional GIOP

Example 110:J/ava Setting the BidirectionalAcceptPolicy Policy

/1 the effective policies on the callback reference with the
/1 Bidirectional AcceptPolicy set to ALLON- simlarly the
// Bidirectional Gen3AcceptPolicy is overridden to all ow
/1 bidirectional invocations on callback references registered
/1 by gen3 clients
/1
St ockl nf oCB accept _cal | back = nul | ;
try
{

Any al |l ow value = morb. create_any();

Bi di recti onal Pol i cyVal ueHel per.insert (

al | ow val ue,

ALLON val ue
)i
Policy [] policies = {
1 m orb. create_policy(
Bl _Di R_ ACCEPT_PQLI CY_TYPE. val ue, all ow val ue
)
2 morb. create_pol i cy(
Bl _DI R_ GEN3_AGCCEPT_PQLI CY_I D. val ue, allow val ue
)
I8
or g. onmg. CORBA (hj ect 0 =
3 com i ona. corba. util . Chj ect Hel per. set_policy_overri des(
cal | back,
poli ci es,
Set Overri deType. ADD_OVERR DE
)5

accept _cal | back = St ockl nf oCBHel per. narrow 0) ;

/!l add call back to |ist

/1l
4 m cal | backs. add(accept _cal | back) ;
}
catch(/* ... */)
{

// Error handling ...
/1 (Not shown)

}

592

Basic BiDir Scenario

The preceding Java code extract can be explained as follows:

1.

This line calls the or g. ong. CORBA. CRB. creat e_pol i cy() method to
create a comiona. Bi Dir Pol i cy. Bi di recti onal Accept Pol i cy object.
This line calls the or g. ong. CORBA. CRB. creat e_pol i cy() method to
create a comiona. | T_Bi Di rPol i cy. Bi di recti onal Gen3Accept Pol i cy
object. This proprietary policy allows you to accept bidirectional
connections from Orbix 3 legacy clients. See “Interoperability with
Orbix Generation 3" on page 597.

This line calls the

comiona. corba. util.hject Hel per. set_policy_overrides()
method to create a new object reference with the

Bi di rect i onal Accept Pol i cy and Bi di r ect i onal Gen3Accept Pol i cy
policies enabled.

The stock feed demonstration adds the callback object reference (with
accept policies enabled) to its list of St ockl nf oCB object references.

593

CHAPTER 20 | Bidirectional GIOP

Advanced BiDir Scenario

Overview Figure 49 gives an overview of an advanced bidirectional scenario, where a
client application establishes two separate connections to a server
application. In this scenario, the server has to figure out which connection to
use for the callback.

Client S — —— Server
ORB POA_A N s - POA_J ORB
! Insecure 1 » J1
1 1
| |
! Bi Dirld_Bl !
1
POA_B | ' (PoA_K
Bidirectional ! [7a) '
idirectional N 1 Secure n | o K1
export policy i
enabled - ; :
:
- 1
!
POA_C !
!
! Bidirectional
— ! accept policy
__Bl Dirld_C |
S E / enabled
1
I
Bidirectional .
offer policy __
enabled _\: :
7

Figure 49: Advanced Bidirectional GIOP Scenario

594

Multiple endpoints

Multiple connections

Bidirectional offer phase

Advanced BiDir Scenario

The main difference between this advanced bidirectional scenario,
Figure 49, and the basic bidirectional scenario, Figure 48 on page 585, is
that the advanced scenario features multiple endpoints, as follows:

Server-side endpoints—PQA J and POA K. The PQA J endpoint has its
policies set so that it accepts insecure connections from clients. The
POA K endpoint has its policies set so that it requires secure
connections from clients.

Client-side endpoints—PQA_A, PQA B and PQA _C, of which only POA B
and PQA_Ccan accept callbacks (their Bi di rect i onal Export Pol i cy is
set to ALLOWN. PQOA B is configured to accept only insecure callbacks.
PQA Cis configured to accept only secure callbacks.

Because of the different security policies required by POA J and PQA Kin
Figure 49, it is possible for one client application to establish multiple
connections to the same server. For example, the client might establish an
insecure connection to object J1 in PQA J, and a secure connection to object
K1 in PQOA K.

The offer phase occurs whenever the client opens a connection to the server.
In Figure 49, two offers are made:

Connection to the object, J1—an insecure connection is made to the
PQA J endpoint, which activates object J1. In the first request message
over this connection, the client includes a G CP:: BI_DIR G CP_CFFER
service context containing a list of the client endpoints that support
insecure callbacks: that is, BiDir1d_B.

Connection to the object, K1—a secure connection is made to the
PQA K endpoint, which activates object K1. Similarly to the first
connection, the client includes a G CP: : Bl _DI R @ CP_CFFER service
context containing a list of the client endpoints that support secure
callbacks: that is, BiDirld_C.

595

CHAPTER 20 | Bidirectional GIOP

Exporting a callback object

Bidirectional accept phase

596

In Example 49 on page 594, the client exports a callback reference, B1, to
the server. Because PQA B has its Bi Di r Export Pol i cy set to ALLON the IOR
for B1 includes a @ OP: : TAG Bl _DI R @ CP IOR component, which embeds
the B Di r1d_B bidirectional ID.

The presence of the TAG Bl _D R @ P IOR component indicates to the
server that the object, B1, supports bidirectional GIOP and the ID,
Bi Di rl d_B, identifies the associated endpoint on the client side.

The accept phase occurs when the first operation invocation is made on the
object reference, B1, on the server side. When the first operation is invoked
on B1, the ORB recognizes that B1 can use bidirectional GIOP, because the
following conditions hold:

® The Bi D rAccept Pol i cy is set to ALLOWNon the Bl object reference, and
® The IOR for BL includes a TAG Bl _DIR @ CP |IOR component.

The ORB then extracts the Bi Di r1 d_B ID from B1's IOR and compares this
bidirectional ID with the offers from existing client connections. Because the
insecure connection offers bidirectional GIOP for the Bi D r| d_B endpoint,
the B1 object reference attempts to re-use this connection for the callback.
At this point, Orbix automatically compares the callback invocation policies
with the attributes of the offered connection. Only if the policies are
compatible will Orbix re-use the existing insecure connection for
bidirectional GIOP.

Interoperability with Orbix Generation 3

Interoperability with Orbix Generation 3

Overview

Orbix 6.1 is designed to interoperate with Orbix 3 (Generation 3) clients.
Figure 50 shows an example of the stock feed demonstration where one of
the clients receiving callbacks is an Orbix 3 client.

Orbix 3.x
Client

RegSt

St ockl nf oCB RegStocklinfo Orbix 6.1
Server

1
1
1
Ll
1
1
1
1
:
1
ocklnfo@—)C)Stocklnfoce‘
Bidirectional __+

Configuring an Orbix 6.1 server for

Gen 3 interoperability

Setting the BiDir Gen 3 accept

policy

Gen 3 accept
policy enabled

Figure 50: Orbix 3 Client Receiving a Callback from an Orbix 6.1 Server

To configure an Orbix 6.1 server to interoperate bidirectionally with Orbix
Generation 3 clients, you must include the appropriate Bi D r _Gen3 entry in
the server's configured bi ndi ng: cl i ent _bi ndi ng_l i st. For example,

bi nding: client_binding list = ["OIS+BiDir_A CP', "BiDir_Qd O,
"BiDr_Gen3", "OTS+t@ CP+ ICP", "A CP+HI I CP', ...];

To enable an Orbix 3 callback object reference to re-use an existing
incoming connection on the server side, you must set the

I T_BiDirPolicy::Bidirectional Gen3Accept Pol i cy on the callback object
reference.

For Java example code, see Example 110 on page 591.

597

CHAPTER 20 | Bidirectional GIOP

Asymmetry of Gen 3 bidirectional
support

Limitations of Gen 3 bidirectional
GIOP

598

Orbix 6.1 support for Orbix 3 bidirectional GIOP is asymmetric. An Orbix
6.1 server can invoke on a Orbix 3 callback reference using bidirectional
GIOP. However, an Orbix 6.1 client can not produce a callback reference
that an Orbix 3 server could invoke on using bidirectional GIOP.

Orbix 3 bidirectional GIOP is also subject to the following limitations:

® An Orbix 3 callback reference must be passed as a request parameter
over the actual connection to be used for bidirectional invocations;
whereas an Orbix 6.x bidirectional-enabled callback reference can be
passed in any way to the server (for example, through the naming
service or by stringifying to a shared file).

® The bidirectional offer implicit in an Orbix 3 callback reference is
limited to the lifetime of the connection over which the callback
reference is received by the server. Hence, further bidirectional
invocations could not be made if, for example, the connection is
reaped by the Orbix automatic connection management (ACM) and
then re-established.

CHAPTER 21

Locating Objects
with corbaloc

Corbaloc URLs enable you to specify the location of a CORBA
service in a relatively simple format. Before using a corbaloc
URL on the client side, you would normally register a simplified
key for the CORBA object. Key registration can be done either
using the itadmin named_key command or by programming.

In this chapter This chapter discusses the following topics:
corbaloc URL Format page 600
Indirect Persistence Case page 604
Direct Persistence Case page 612
Named Keys and Plain Text Keys Used by Orbix Services page 617

599

CHAPTER 21 | Locating Objects with corbaloc

corbaloc URL Format

Overview

Converting a corbaloc URL to an
object reference

corbaloc URL formats

600

The purpose of a corbaloc URL is to specify the location of a CORBA object
in a human-readable format with the minimum amount of information
necessary. For example, here is a typical example of a corbaloc URL:

corbal oc:iiop:1. 2@ocat or Host : 3075/ NarreSer vi ce
Contrast this with a typical example of a stringified IOR:

| CR 010000003200000049444c3a696f 6e612e636f 6d2f 49545f 4f 54535f 53657
27669636541646d696e2f 5365727669636541646d696€3a312e30000000010
00000000000008a000000010102000800000066626f 6¢74616e00030c00003
f 0000003a3e0232310f 73696d706c652e6¢6f 636174696f 6e11694f 5453006
f 7473746d0061646d696e00175472616e73616374696f 66536572766963654
1646d696e00020000000100000018000000010000000100010000000000000
1010001000000090101000600000006000000010000002600

There is an important difference between these two representations of an

object reference: whereas the stringified IOR contains essentially the

complete state of an object reference (including IOR components), the
corbaloc URL contains only the object’s address. Hence, object references
constructed with a corbaloc URL are initialized in a provisional state. When
an operation is first invoked on the object reference, Orbix exploits the GIOP
location forward mechanism to retrieve the missing object reference details.

In Java, you can convert a corbal oc URL into an object reference using the
org. ony. CCRBA CRB. st ri ng_t o_obj ect () method, which has the following
signature:

/1 Java
org. ong. CORBA. (hj ect string_to_object(java.lang.String str);

For code examples, see “Using the corbaloc URL in a Client” on page 611.

The following corbaloc URL formats are described here:
® Basic corbaloc URL.

® Multiple-address corbaloc URL.

® Secure corbaloc URL.

Basic corbaloc URL

corbaloc URL Format

A basic corbal oc URL has the following format:

cor bal oc: [i i opJ: [Version@Host[: Port[I ObjectKey]

The components of the basic corbal oc URL can be described as follows:

iiop

Version

Host

Port

ObjectKey

(Optional) Specifies the transport protocol to be IIOP. If
omitted, the protocol defaults to IIOP. Hence,
corbal oc:iiop: and corbal oc:: are equivalent.

(Optional) Specifies the GIOP version supported by the
server. The allowed values are 1.0, 1. 1 and 1. 2; if
omitted, the default is 1. 0.

Orbix supports GIOP 1.2.

Specifies the server's hostname or IP address in dotted
decimal format.

(Optional) Specifies the IP port used to connect to the
server. If omitted, the default is 2809.

(Optional) A key that identifies the CORBA object on the
remote server.

According to the OMG specification, this key is the same
as the object key that would be embedded in an
equivalent IOR. To facilitate ease-of-use, however, Orbix
provides mechanisms to substitute a human-readable key
for the original object key.

601

CHAPTER 21 | Locating Objects with corbaloc

Multiple-address corbaloc URL

Secure corbaloc URL

602

The multiple-address cor bal oc URL has the following format:
cor bal oc: [CommaSeparatedAddressList][! ObjectKey]

With this form of cor bal oc URL, you can locate a service that runs on more
than one host and port (or is available through multiple protocols).

Each address in the list has the same format as the middle part of the basic
corbaloc URL. For example, given that the FooSer vi ce object is available
both on Host X and Host Y, you could specify a multiple-address cor bal oc
URL for the service as follows:

corbal oc: iiop: 1. 2@bst X: 3075, i i op: 1. 2@ost Y: 3075/ FooSer vi ce

This form of URL is useful for specifying backup services; Orbix tries each of
the addresses in the order in which they appear until it makes a successful
connection.

A secure cor bal oc URL has the following format:
corbal oc: i t_iiops: [Version@Host[: Porti[i ObjectKey]

This differs from the basic cor bal oc URL only in that the transport protocol
isit_iiops, which selects the IIOP/TLS protocol instead of [IOP. The
i t_iiops protocol specifier is Orbix-specific.

Note: Some earlier versions of Orbix (C++ only) used i i ops to specify
the IIOP/TLS protocol. If you need to support interoperability with older
versions of Orbix, you could use a multiple-address corbaloc URL to
support both types of protocol specifier, it _iiops and ii ops.

For example, to connect securely to the FooSer vi ce object:

corbal oc:it_iiops: 1 2@ooHost: 3075, ii ops: 1. 2@ooHost : 3075/ FooSer
vi ce

Object keys

corbaloc URL Format

The object key appearing in a corbaloc URL can have one of the following

values:

® Object key from an IOR—the CORBA specification defines a cor bal oc
object key to be the same as the object key embedded in an IOR,
except that non-printable characters are substituted by URL escape
sequences. Unfortunately, this form of object key is unwieldy, because
object keys from IORs are usually defined in a binary format.

® Named key—a named key is a human-readable key that is registered
with the locator service. The named key enables you to construct a
human-readable cor bal oc URL for indirect persistent servers.

® Plain text key—a plain text key is a human-readable key that is
registered with the pl ai n_t ext _key plug-in. The plain text key enables
you to construct a human-readable cor bal oc URL for direct persistent
servers.

The named key and the plain text key are conceptually similar; they are both
mechanisms for substituting a human-readable key in a cor bal oc URL.

603

CHAPTER 21 | Locating Objects with corbaloc

Indirect Persistence Case

Overview

In this section

604

The mechanism used to substitute human-readable keys in a corbaloc URL
must be tailored to the characteristics of the server, which could be either
indirect persistent or direct persistent.

In the case of an indirect persistent server, the task of substituting
human-readable keys is performed by the locator service, which maintains a
named key registry in the IMR for this purpose.

This section contains the following subsections:

Overview of the Indirect Persistence Case page 605
Registering a Named Key at the Command Line page 607
Registering a Named Key by Programming page 609
Using the corbaloc URL in a Client page 611

Indirect Persistence Case

Overview of the Indirect Persistence Case

Overview An indirect persistent server is a server that has a POA initialized with the

following POA policy values:

® Portabl eServer:: LifespanPol i cy value is PERSI STENT, and

® | T_Portabl eServer:: Persi st enceMdePol i cy value is
| NDI RECT_PERSI STENCE (the default).

The CORBA objects activated by this POA have the following qualities:

® Persistence—implies that the object reference for this object remains
valid even after the server is stopped and restarted.

® Indirect persistence—implies that clients establish contact with the
server through the locator. In practice, the POA embeds the locator's
address in the object references it generates. This forces clients to
contact the locator before connecting to the server.

Figure 51 shows an overview of how Orbix resolves a cor bal oc URL with
the help of the locator service in the indirect persistent case.

FooService

Named Key Registry
A

®

Locator lli
Locator IP Port T

\BZf’mommand line

@ @ By programming
Client ®
°

Figure 51: Using corbaloc with the Locator-Based Named Key Registry

605

CHAPTER 21 | Locating Objects with corbaloc

Stages in registering and finding a
named key

606

The stages involved in registering a named key and resolving a cor bal oc
URL constructed with that named key, as shown in Figure 51 on page 605,
can be described as follows:

Stage Description

1 | There are two alternative ways to register a named key:

® At the command line—use the i t adm n naned_key
creat e command to associate a named key (for example,
FooSer vi ce) with a stringified IOR.

® By programming—as the Foo service starts up, it contacts
the locator to register the FooSer vi ce named key against
the Foo object reference.

2 | The locator stores the FooSer vi ce named key and object
reference data in the named key registry, which is part of the
implementation repository (IMR).

3 | Aclient attempts to contact the server using the following URL:
corbal oc: i iop: 1. 2@ocat or Host : 3075/ FooSer vi ce

Because the cor bal oc URL contains the address of the locator,
Locat or Host : 3075, the client initially opens a connection to the
locator service, sending either a GIOP LocateRequest message
or a GIOP Request message.

4 | The locator looks up the named key registry to find the object
reference corresponding to the FooSer vi ce key. The Foo object
reference is then sent back to the client in a reply message
(either a GIOP LocateReply message or a GIOP Reply message
with LOCATION_FORWARD reply type).

5 | Using the object reference data received from the locator, the
client can now open a connection directly to the Foo server.

Indirect Persistence Case

Registering a Named Key at the Command Line

Overview To make a named key available for use in corbaloc URLs, the server must
register the named key and its corresponding object reference in the named
key registry. This subsection describes how to register a named key at the
command line.

The itadmin named_key The i tadm n naned_key command supports a variety of subcommands for
command managing named keys in the implementation repository, as follows:
nanmed_key create Creates an association between a specified
well-known object key and a specified object
reference.
naned_key |i st Lists all well known object keys that are registered
with the locator daemon.
nanmed_key renove Removes the specified object key from the location
domain.
named_key show Displays the object reference associated with the
given key.

For full details of these commands, see the Orbix Administrator’s Guide.

607

CHAPTER 21 | Locating Objects with corbaloc

Creating a named key using
itadmin named_key create

608

To create a named key using the i t adm n named_key creat e command,
perform the following steps:

Step

Action

1

Obtain a stringified I0R for the CORBA object that you want to
register. You could obtain the IOR in one of the following ways:
® [f the server dumps the stringified IOR to a file or to the
console window, you can copy it from there (the
or g. ong. GORBA. CRB. obj ect _to_string() method
generates stringified IORs).
® [f the object is already registered in the CORBA naming
service, you can obtain the stringified IOR using the
itadm n ns resol ve Name command.

Register the stringified IOR from the preceding step,
String-IOR, associating it with a named key, NamedKey, by
entering the following command:

i tadm n naned_key create -key NamedKey String-IOR

Indirect Persistence Case

Registering a Named Key by Programming

Overview

Server example in Java

This subsection describes the alternative approach to registering corbaloc
URLs in the named key registry, which is by programming. A code example
shows how a server contacts the locator service to register a named key.

Example 111 shows how a server can register a named key, FooSer vi ce,
that identifies a given object reference, Foo(j ect Ref (the object reference
must have been generated from a CORBA object belonging to an indirect
persistent POA).

Example 111:Registering a Named Key with the Locator
/1l Java

// CGet the Locat or
org. ong. OCRBA. (hj ect objref =

orb.resolve initial _references("IT Locator");
comiona.corba.| T Location. Locator |ocator =

com i ona. corba. | T_Locat i on. Locat or Hel per . narrow obj ref);

// Get the Named Key registry
objref = locator.resol ve_service(
comi ona. corba. | T_NanedKey. NAMED KEY_ REQ STRY
)
com i ona. corba. | T_NanedKey. NanedKeyRegi stry regi stry =
com i ona. corba. | T_NamedKey. NamedKeyRegi st r yHel per . nar r ow(

obj r ef
DE
/1 Add a key to the registry
try
{
regi stry. add_t ext key("FooServi ce", Foo(hject Ref);
}
catch
(comiona. corba. | T_NanedKey. NanedKeyRegi st r yPackage. EntryAl re
adyExi sts ex)
{
/]l Error:
}

609

CHAPTER 21 | Locating Objects with corbaloc

610

The preceding Java code example can be explained as follows:

1.

The I T_Locat or initial reference ID is used to obtain a reference to the
I T Location:: Locator IDL interface. The Locat or interface enables a
server to communicate directly with the Orbix locator service (the

I T_Location IDL module is defined in the

OrbixInstallDiri asp/ Version/ i dl / or bi x/ | ocation.idl file).

The resol ve_servi ce() operation is called to return a reference to the
named key registry. The

comi ona. cor ba. | T_NanedKey. NAVED KEY_REQ STRY is a string
constant, which has the value | T_NanedKey: : NamedKeyRegi stry.

The I T_NanedKey: : NanedKeyRegi st ry IDL interface defines operations
to register named keys and manage the named key registry. See the
Java Programmer’s Reference for more details.

The

comiona. corba. | T_NanedKey. NanedKeyRegi st ry. add_t ext _key()
method registers a new named key with the locator.

Indirect Persistence Case

Using the corbaloc URL in a Client

Overview

Client example in Java

The usual format for a cor bal oc URL that references an indirect persistent
server is as follows:

corbal oc:iiop: 1. 2@ocatorHost: LocatorPort/ NamedKey

Because the server is indirect persistent, the URL embeds the locator's
address, LocatorHost: LocatorPort, not the server's own address.

For example, given that the Orbix locator is running on host, Locat or Host ,
and port, 3075, and the server registers a Foo object under the named key,
FooSer vi ce, you could access the Foo object with the following URL:

corbal oc: iiop: 1. 2@uocat or Host : 3075/ FooSer vi ce

Example 112 shows how to resolve a cor bal oc URL for an object of Foo
type, using the or g. ong. GORBA CRB. stri ng_t o_obj ect () method.

Example 112:Resolving a corbaloc URL

/1 Java
try {
java.lang. String corbal ocURL =
"corbal oc:iiop: 1. 2@ocat or Host : 3075/ FooSer vi ce";

org. ong. CCRBA (bj ect objref =
orb. string_to_object(corbal ocUR);

Foo fooChj = FooHel per. narrow(obj ref);
if (CORBA :is_nil(foo(hj)) {
/1 Error: _narrow failed!
}
}
catch (org. ong. CORBA BAD PARAM ex) {
/] Error: narrow failed!
}
catch (org. ong. CCRBA Syst enExcepti on sysex) {
// Error: general error

}

611

CHAPTER 21 | Locating Objects with corbaloc

Direct Persistence Case

Overview

In this section

612

The mechanism used to substitute human-readable keys in a corbaloc URL
must be tailored to the characteristics of the server, which could be either
indirect persistent or direct persistent.

In the case of a direct persistent server, the task of substituting
human-readable keys is performed by the pl ai n_t ext _key plug-in, which
holds a transient list of plain text keys for this purpose.

This section contains the following subsections:

Overview of the Direct Persistence Case page 613
Registering a Plain Text Key page 615
Using the corbaloc URL in a Client page 616

Direct Persistence Case

Overview of the Direct Persistence Case

Overview

A direct persistent server is a server that has a POA initialized with the

following POA policy values:

® Portabl eServer::LifespanPol i cy value is PERSI STENT, and

® | T_Portabl eServer:: Persi st enceMdePol i cy value is
D RECT_PERS| STENCE.

The CORBA objects activated by this POA have the following qualities:

® Persistence—implies that the object reference for this object remains
valid even after the server is stopped and restarted.

® Direct persistence—implies that clients establish contact with the
server directly, bypassing the locator. Hence, the POA embeds the
server's own address in the object references it generates.

Figure 52 shows an overview of how Orbix resolves a cor bal oc URL using
the pl ai n_t ext _key plug-in in the direct persistent case.

Client 9 4321 Server

FooService 1 OR 00. ..

plain_text_key _—>
plug-in

Figure 52: Using corbaloc with the plain_text _key Plug-In

613

CHAPTER 21 | Locating Objects with corbaloc

Stages in registering and finding a
plain text key

614

The stages involved in registering a plain text key and resolving a cor bal oc
URL constructed with that plain text key, as shown in Figure 52 on
page 613, can be described as follows:

Stage

Description

1

As the Foo service starts up, it registers the FooSer vi ce plain
text key with the pl ai n_text _key plug-in.

A client attempts to contact the server using the following URL:
corbal oc: i i op: 1. 2@ooHost : 4321/ FooSer vi ce

Because the cor bal oc URL contains the address of the Foo
server, FooHost : 4321, the client opens a connection directly to
the server (sending either a GIOP LocateRequest message or a
GIOP Request message).

The pl ai n_t ext _key plug-in finds the object reference
corresponding to the FooSer vi ce key. The Foo object reference
is then sent back to the client in a reply message (either a GIOP
LocateReply message or a GIOP Reply message with
LOCATION_FORWARD reply type).

Using the object reference data received in the previous step,
the client now resends the GIOP Request message to the
server.

Direct Persistence Case

Registering a Plain Text Key

Overview

Server example in Java

To make a plain text key available for use in corbaloc URLs, the server must
register the plain text key and its corresponding object reference with the
pl ai n_t ext _key plug-in.

Example 113 shows how a server registers a plain text key, FooSer vi ce,
that identifies a given object reference, Foo(j ect Ref (the object reference
must have been generated from a CORBA object belonging to a direct
persistent POA).

Example 113:Registering a Plain Text Key

/1l Java
/1 Tryl/ Catch bl ock not shown ...
org. ong. CORBA. (bj ect objref =
the_orb.resol ve_initial _references(
"1 T_Pl ai nText KeyFor war der "

)

com i ona. corba. | T_Pl ai nText Key. Forwarder forwarder =

com i ona. corba. | T_Pl ai nText Key. For war der Hel per . nar r ow obj r ef)

forwarder. add_pl ai n_t ext _key(
"FooSer vi ce",
Foo(hj ect Ref
)

The preceding Java code can be explained as follows:

1. The I T_P ai nText KeyFor war der initial reference ID is used to obtain a
reference to a comi ona. corba. | T_Pl ai nText Key. For war der object
(the I T_PI ai nText Key IDL module is defined in the

OrbixInstallDirl asp/ Version/ i dl / or bi x_pdk/ pl ai n_t ext _key. i dI
file).

2. The add_pl ai n_t ext _key() method adds a new plain text key to the

list held by the pl ai n_t ext _key plug-in.

615

CHAPTER 21 | Locating Objects with corbaloc

Using the corbaloc URL in a Client

Overview

Client example in Java

616

The usual format for a cor bal oc URL that references a direct persistent
server is as follows:

corbal oc: i i op: 1. 2@erverHost: ServerPort/ PlainTextKey

Because the server is direct persistent, the URL embeds the server's own
address, ServerHost: ServerPort.

For example, given that the server is running on host, FooHost , and port,
4321, and the server registers a Foo object under the plain text key,
FooSer vi ce, you could access the Foo object with the following URL:

corbal oc: iiop: 1. 2@ooHost : 4321/ FooSer vi ce

Example 114 shows how to resolve a cor bal oc URL for an object of Foo
type, using the org. ong. GCORBA CRB. st ri ng_t o_obj ect () method.

Example 114:Resolving a corbaloc URL

/1 Java
try {
java.lang. String corbal ocURL =
"corbal oc:iiop: 1. 2@o00Host : 4321/ FooSer vi ce";

org. ong. CORBA. (hj ect objref =
orb. string_to_object(corbal ocUR);

Foo f ooChj = FooHel per. narrowobjref);
if (CCRBA :is_nil(foo(hj)) {
/1 Error: _narrow failed!
}
}
catch (org.ong. CORBA. BAD PARAM ex) {
[/l Error: narrow failed!
}
catch (org.ong. CCRBA Syst enExcepti on sysex) {
/I Error: general error

}

Named Keys and Plain Text Keys Used by Orbix Services

Named Keys and Plain Text Keys Used by

Orbix Services

Overview Most of the standard Orbix services register a named key and a plain text
key by default. Table 22 lists all of the named keys and plain text keys
currently supported by the Orbix services. Using the information from
Table 22, you can easily construct a cor bal oc URL to contact one of these
services.

Table 22: Named Keys and Plain Text Keys for Orbix Services
Service Plain Text Key Named Key
Security I T SecurityService N/A
I T _Login N/A
CFR Confi gReposi tory N/A
I T_Confi gReposit oryRepl i ca N/A
FPS I T_FPS Registry N/A
| T_FPS Manager N/A
Management | T_Managenent Ser vi ce. User N/A
| T_Managenent Ser vi ce. Regi stration N/A
| T_Managenent Ser vi ce. Security N/A
locator I T_Locat or N/A
I T Locat or Replica N/A
node_daemon | T_NodeDaenon N/A
otstm Transact i onSer vi ceAdm n Transact i onServi ceAdm n
Transact i onFact ory Transact i onFact ory
ifr I nterfaceRepository I nterfaceRepository

617

CHAPTER 21 | Locating Objects with corbaloc

Table 22: Named Keys and Plain Text Keys for Orbix Services

Service Plain Text Key Named Key
naming NaneSer vi ce NareSer vi ce
| T_NaneSer vi ceRepl i ca N/A
trader Tr adi ngSer vi ce Tradi ngSer vi ce
Tr adi ngSer vi ceNR N/A
Repl i cat or N/A
basic_log Def aul t Basi cLogFact ory Basi cLoggi ngSer vi ce
event_log Def aul t Event LogFact ory Event Loggi ngSer vi ce
notify_log Def aul t Not i f yLogFact ory Not i fyLoggi ngSer vi ce
notify Def aul t Event Channel Fact ory Not i fi cati onServi ce
Def aul t Endpoi nt Admi n N/A
event Def aul t Event Channel Fact ory Event Servi ce
Def aul t TypesEvent Channel Fact ory N/A
jms MessageBr oker | T_JMBMessageBr oker
Ser ver Cont ext N/A
Messagi ngBri dge N/A
Endpoi nt Adm n N/A

618

In this chapter

CHAPTER 22

Configuring and
Logging

Orbix has built-in configuration and logging mechanisms,
which are used internally by the Orbix product. You have the
option of using these configuration and logging mechanisms
in your own applications.

This chapter discusses the following topics:

The Configuration Interface page 620
Configuring page 622
Logging page 626

619

CHAPTER 22 | Configuring and Logging

The Configuration Interface

The IT_Config::Configuration
interface

620

The Configurati on interface is defined as a local interface within the
I T_Confi g module, as follows:

Example 115:Definition of the IT_Config::Configuration IDL Interface

Obix Configuration File

#pragma prefix "iona.cont

nmodul e I T_Config

{

typedef sequence<string> Confi gLi st;

exception Target Not Found {};

local interface Configuration

{

exception TypeM smatch {};

bool ean get _string(in string name, out string val ue)
rai ses (TypeM snat ch);

bool ean get _list(in string name, out ConfigList val ue)
rai ses (TypeM snat ch);

bool ean get _bool ean(in string nane, out bool ean val ue)
rai ses (TypeM snat ch);

bool ean get _long(in string name, out |ong val ue)
rai ses (TypeM snat ch);

bool ean get _doubl e(in string name, out double val ue)
rai ses (TypeM snat ch);

The ConfiglList type

Operations

Reference

The Configuration Interface

The I T_Confi g: : Confi gLi st type, which is defined as a sequence of
strings, is used to hold the data returned from the
Configuration::get_list() operation. The following configuration
variable, ny_list_item is an example of a configuration entry that needs to
be retrieved as a list, using get _Iist().

O bix Configuration
ny_list_item=["first", "second", "third"];

The following operations of the Confi gur ati on interface are listed in
Example 115 on page 620:

® get_string()—get the value of the nane variable as a string type.

® get_list()—get the value of the nare list variable as a list of strings,
I T_Config::ConfigList.

® get_bool ean() —get the value of the nane variable as a CORBA
boolean type.

® get_long()—get the value of the nare variable as a CORBA long type.

® get_doubl e() —get the value of the nane variable as a CORBA double
type.

For more details of the Confi gur ati on interface and the | T_Confi g module,
see the | T_Conf i g sections of the CORBA Programmer’s Reference.

621

CHAPTER 22 | Configuring and Logging

Configuring

Overview

Generating configuration domains

Configuration sources

622

Orbix has a flexible configuration system which enables an application to
retrieve configuration data without needing to know anything about the
actual source of the data. This section briefly describes Orbix configuration,
covering the following topics:

® Generating configuration domains.

® Configuration sources.

® Sample configuration.

® Java accessing configuration settings.

® References.

Configuration domains are generated by running the i t conf i gur e tool.

Orbix configuration data can come from one of the following sources:

® Configuration file—this is a file, DomainName. cf g, that stores
configuration settings in a format that is easily readable and editable.

® Configuration repository (CFR) service—this is a service that stores
configuration settings in a central database and is remotely accessible
to CORBA applications. Note, that a minimal configuration handler file,
DomainName. cf g, is also needed on hosts that use the CFR service in
order to contact the CFR initially.

Sample configuration

Java accessing configuration
settings

Configuring

Example 116 shows some sample configuration settings, of various types,
that might be used to configure a hel I o_wor | d plug-in.

Example 116:Sample Configuration Settings

Obix configuration file
pl ugi n_exanpl e {

pl ugi n: hel | o_wor | d: bool ean_item = "true";

plugin: hello_world:string_item = "Hello Wrld!'";

pl ugi n: hel | o_wor | d: 1 ong_i tem = "4096";

pl ugi n: hel | o_worl d: doubl e_item = "3.14";

plugin: hello_world:list_item =["first", "second",

"third'];

Example 117 shows how to access configuration settings in Java. There are
two main steps in this code extract:

1. The application obtains an initial reference to an
com i ona. corba. | T_Confi g. Confi gurati on object

2. The application reads configuration data using the methods defined on
the I T_Confi g. Confi gurati on interface.

Example 117:Java Accessing Configuration Settings
/1l Java
inport comiona.corba. | T_Config.*;

inport comiona. corba. | T_Config. ConfigurationPackage. *;

private void | oad_config()

{
org. omg. CORBA (hj ect initial_reference = null;
Configuration config nul | ;

// 1. otain an initial reference to the configuration.
/1l

try {
initial _reference = morb.resolve_initial_references(
"1 T_Configuration"
)i

config = ConfigurationHel per.narrow(initial _reference);

623

CHAPTER 22 | Configuring and Logging

Example 117:Java Accessing Configuration Settings

}
cat ch(or g. ong. CORBA. CRBPackage. | nval i dNane in) {

// Handl e InvalidNane error...
}
cat ch(j ava. | ang. Exception e) {
// Handl e generic error. ..

}

/1l 2. Read sone configuration vari abl es.
Il
try {
or g. ong. CORBA. Bool eantHbl der t np_bool =
new or g. ong. CORBA. Bool eanHol der () ;
confi g. get _bool ean(
"pl ugi n: hel | o_wor | d: bool ean_i t en', tnp_bool
)i

m bool ean_i tem = t np_bool . val ue;

org. ong. OCORBA StringHol der tnp_string =

new or g. ong. CORBA. Stri ngHol der () ;
config.get_string(

"plugin:hello world:string_itenm', tnp_string
)

mstring_item= tnp_string. val ue;

org. ong. CCRBA | nt Hol der tnp_l ong =

new or g. ong. CORBA. | nt Hol der () ;
config.get_long("plugin:hello world:long_ itent, tnp_|long);
m|ong_item= tnp_| ong. val ue;

or g. ong. CORBA. Doubl eHol der tnp_doubl e =

new or g. ong. CORBA. Doubl eHol der () ;
config. get _doubl e(

"pl ugi n: hel | o_wor | d: doubl e_i tenY, tnp_doubl e
)

m doubl e_i tem = t np_doubl e. val ue;

comiona. corba. | T_Config. ConfigListHolder tnp_list =
new com i ona. corba. | T_Confi g. Confi gLi st Hol der () ;
config.get_list(
"plugin:hello_world:list_itent, tnp_list
)

mlist item= tnp_list.val ue;

624

References

Configuring

The last item read is a configuration list. The m li st _i t emvariable is an
array of strings, which is of java. | ang. String[] type.

The following references can provide you with more information about Orbix
configuration:

® The documentation of the I T_Confi g: : Confi gurati on interface in the
CORBA Programmer’s Reference.

625

CHAPTER 22 | Configuring and Logging

Logging

Overview

Logging event

Logging subsystem

Event ID

626

Logging provides administrators and system operators with information
about a production system, reporting information such as significant system
events, warnings of anomalous conditions, and detailed information about
error conditions. Its primary goal is to provide administrators with the
information needed to detect diagnose and resolve problems in a production
system.

An Orbix logging event has the following structure:
® Logging subsystem.

¢ EventID.

® Event priority.

® Message.

A logging subsystem, identified by a subsystem ID, provides a convenient
way of grouping together related logging events and messages. The
subsystem ID is useful when it comes to filtering log events, because you
can use it to specify logging options on a per-subsystem basis.

Typically, a unique logging subsystem is defined for each plug-in. For
example, the lease plug-in defines its own logging subsystem, | T_LEASE, as
shown in Example 118 on page 628.

See Table 12 on page 306 for a complete list of built-in logging subsystems.

An event ID is a constant, of I T_Loggi ng: : Event | d type, that identifies a
particular type of event.

Before you can use logging in your own plug-in code, you must define a
collection of custom event IDs in IDL. See Example 118 on page 628 for an
example of how this is done for the leasing plug-in.

Event priority

Message

Local log stream

System log stream

Logging

Every event that is generated must have a priority assigned to it.

In Java, you can use one of the following constants (of short Java type) to
assign priority to an event:

com i ona. corba. | T_Loggi ng. LOG | NFQ val ue

com i ona. corba. | T_Loggi ng. LOG WARN NG val ue
com i ona. corba. | T_Loggi ng. LOG ERRCR val ue

comi ona. corba. | T_Loggi ng. LOG FATAL_ERRCR val ue

A log message is a string, which might include some embedded parameters.

The local log stream reports events either to a local file or to standard error.
You can enable the local log stream by including | ocal _I og_st r eamin your
list of orb_pl ugi ns, as follows:

Obix configuration file

pl ugi n_exanpl e {
orb_plugins = ["local |og streant, "iiop_profile", "giop",
"iiop", "hello world"];

Ik

For more details about how to configure a local log stream, see the CORBA
Administrator’s Guide.

The system log stream reports events to the host’s system log. You can
enable the system log stream by including syst em | og_st r eamin your list of
orb_pl ugi ns, as follows:

Obix configuration file

pl ugi n_exanpl e {
orb_plugins = ["system|og_streanY, "iiop_profile", "giop",
"iiop", "hello_world"];

Ik

For more details about how to configure a system log stream, see the
CORBA Administrator’s Guide.

627

CHAPTER 22 | Configuring and Logging

Defining a subsystem ID and Before you can use logging with your plug-in, you must define a logging
event IDs subsystem ID and a set of event IDs in IDL.

For example, the IDL in Example 118 shows the subsystem ID and event
IDs defined for the lease plug-in.

Example 118:Example Subsystem ID and Event ID Definitions
#i ncl ude <orbi x/ | oggi ng. i dl >

nmodul e | T_Lease_Loggi ng

{
const | T_Loggi ng: : Subsystem d SUBSYSTEM = "| T_LEASE";
/] Errors (1+)
/1l
const | T_Loggi ng: : Event 1| d NAM NG_SERVI CE_ UNREACHABLE =1;
const | T_Logging: : Event | d REAPER THREAD FAl LURE = 2;
const | T_Loggi ng: : Event | d RENEWAL_THREAD FAI LURE 3;
const | T_Logging: : Eventl d CALLBACK FAl LURE 4;
const | T_Loggi ng: : Eventld | NVALI D LEASE AGENT_REFERENCE = 5;
const | T_Logging: : Event | d LEASE AGENT_NOT_FOUND = 6;
const | T_Logging:: Eventld LEASE ACQU Sl TI ON_FAl LURE =17;
/1 \Mérnings (100+)
/1l
const | T _Logging::Eventld CLI ENT_LEASE RELEASE FAI LURE = 100;
const | T_Logging:: Eventld SERVER LEASE W THDRAW FAl LURE= 101;
const |T_Loggi ng: : Event | d DEFAULT_REAP_TI ME_USED = 102;
const |T_Loggi ng: : Event | d DEFAULT_PI NG TI ME_USED = 103;
const | T_Loggi ng:: Eventld Pl NG TI ME ALTERED = 104,
const |T_Loggi ng: : Event | d LEASE EXPl RED PREMATURELY = 105;
/1 Informational nmessages (200+)
/1l
const | T_Logging:: Eventld CLI ENT_LEASES UPDATED = 200;
const |T_Logging:: Eventld SERVER LEASES UPDATED = 201;
const | T_Loggi ng: : Event 1 d CONFI GURATI ON_DUWP = 202;
const |T_Loggi ng: : Event | d SERVER LEASE REAPER CHECK = 203;
const | T_Loggi ng: : Event|d LEASE EXPI RATI ON = 204,
const | T_Logging: : Eventld LEASE ADVERTI SED K = 205;
const |T_Loggi ng: : Event | d RENEWAL_NOT_NEEDED YET = 206;
const | T_Loggi ng:: Event | d RENEW NG LEASE = 207,
ik

628

Logging

Java logging messages Example 119 shows an extract from the lease plug-in code, which shows
how to obtain a reference to an event log and send messages to the event
log.

Example 119:/ava Example of Logging Messages
/1l Java

inmport comiona.corba.l T _Loggi ng. *;
inport comiona.corba. | T_Lease_Loggi ng. *;

LeasePer CRBSt at e(CRB or b)
t hrows | NTERNAL

{
org. omyg. CCRBA (hj ect initial _reference = null;
morb = orb;

/] Get the Event Log
try {
1 initial _reference = morb.resolve_initial_references(
"1 T_Event Log"
JE
}
cat ch(org. ong. CCRBA. CRBPackage. | nval i dNane in) {
throw new | NTERNAL() ;
}

2 m event | og = Event LogHel per. narrow(initial _reference);

/] Exanpl e | og nmessage:
// The leasing plug-in logs this nessage if it fails to
/1 connect to the OCORBA Nam ng Servi ce.
/1
3 m event _| og. report_nessage(
SUBSYSTEM val ue,
NAM NG_SERVI CE_UNREACHABLE. val ue,
LOG ERRCR val ue,
LeaseEvent Messages. | T_LEASE NAM NG_SERVI CE_ UNREACHABLE MBG
new or g. ong. CCRBA. Any|[0]
JE

629

CHAPTER 22 | Configuring and Logging

The preceding Java logging example can be explained as follows:
1. This line obtains an initial reference to the

comi ona. cor ba. | T_Loggi ng. Event Log object, by calling

resol ve_ini tial _references() with the | T_Event Log initial object ID

string.

2. Narrow the initial reference to m event _| og, which has been declared
elsewhere to be of comi ona. corba. | T_Loggi ng. Event Log type.

3. Thereport_message() method sends events/messages to the event
log. The method takes the following parameters:

¢+ Asubsystem ID, of j ava. | ang. Stri ng type.

¢+ AneventID, ofint Java type.

+ An event priority, of short Java type.

. A message string, of j ava. | ang. Stri ng type.

+ An array of message parameters, of or g. onmg. CORBA. Any[] type.
These are parameters that can optionally be embedded in the
message string. The message string references the parameters
using the symbols %8, %, %2, and so on.

References The following resources are available on the subject of Orbix logging:

® The documentation of the I T_Loggi ng module in the CORBA
Programmer’s Reference.

630

In this chapter

CHAPTER 23

Orbix Compression
Plug-in

This chapter explains how to program the Orbix ZIOP
compression plug-in. This can enable significant performance
improvements on low bandwidth networks.

This chapter includes the following topics

Introduction to the ZIOP Plug-In page 632
Configuration Prerequisites page 634
Compression Policies page 636
Programming Compression Policies page 638
Implementing Custom Compression page 641

631

CHAPTER 23 | Orbix Compression Plug-in

Introduction to the ZIOP Plug-In

Overview

632

The Orbix ZIOP compression plug-in provides optional
compression/decompression of GIOP messages on the wire. Compressed
and uncompressed transports can be mixed together. This can enable
significant performance improvements on low bandwidth networks.

These performance improvements depend on the network and the message
data. For example, if the requests contain . j peg images, there is virtually no
compression, however, with repetitive string data, there is good
compression.

Figure 53 shows a high-level overview of ZIOP compression in a
client-server environment.

Client Host Server Host

Client Object

ZIOP Compression

IIOP Message

Figure 53: Overview of ZIOP Compression

Implementation

Additional components

Introduction to the ZIOP Plug-In

Compression can be configured per-ORB and also per-binding (using Orbix
ORB policies). The compression is performed using a configurable

compression library. The compression plug-in (zi op) supports the following
compression algorithms:

* gzp
®* pkzip
® bzip2

Orbix ZIOP compression has been implemented in both C++ and Java and
is available on all platforms.

The following Orbix components have also been updated for ZIOP
compression:

The gi op_snoop plug-in has been updated to detect ZIOP compressed
messages.

o The i or dunp tool has been updated to parse the new IOR profiles for

ZIOP compression.

633

CHAPTER 23 | Orbix Compression Plug-in

Configuration Prerequisites

Overview

Configuring the ziop plug-in

634

Before you can program compression policies, the Orbix configuration must
satisfy prerequisites to ensure that the ZIOP plug-in is loaded and enabled.
Orbix uses symbolic names to configure plug-ins and then associates them
with a Java or a C++ implementation. The compression/decompression
plug-in is named zi op. This is implemented in Java by the

com i ona. cor ba. zi op. ZI CPPI ugl n class, and in C++ by theit_ziop
shared library.

The zi op plug-in requires the following basic configuration settings:

® Configuring the ziop plug-in.

Configuring the binding lists.

Note: Both the client and the server must be configured appropriately to
enable compression.

To configure the zi op plug-in, perform the following steps:

1. Ensure that the following entries are present in your Orbix configuration

file:

pl ugi ns: zi op: shl i b_nane = "it_ziop";
pl ugi ns: zi op: d assNane = "com i ona. cor ba. zi op. ZI OPPl ugl n";

2. Include the zi op plug-in the ORB plug-ins list:

orb_plugins =[.... "ziop" ...];
For example:
orb_plugins = ["local _| og_streant, "iiop_profile", "giop",
"ziop", "iiop']:

Configuration Prerequisites

Configuring the binding lists To enable compression/decompression for CORBA [IOP communication,
ensure that your binding lists contain the following entries.

For clients:

bi nding: client_binding_ list = ["Q OP+ZI CP+l | OP'] ;

For servers:

pl ugi ns: gi op: nessage_server _binding_list = ["ZI CP+A OP'];

The client or server binding lists can be much more complicated than these
simple examples, although these are adequate for compressed GIOP/IIOP
communication. Here is an example of more complex binding lists:

bi ndi ng: cl i ent_binding_|ist = ["OIS+@ CP+ZI CP+l | CP_TLS",
"CSl +d@ CP+ZI CP+l | CP_TLS', "G CP+ZI CP+l | CP_TLS",
"CSl +d@ CP+ZI CP+ZI CP+I I CP', "A CP+ZI CP+H I CP']

pl ugi ns: gi op: message_server_binding_list = ["BiDr_Qd O,
"ZICP+@ CoPt, '@ oP'];

635

CHAPTER 23 | Orbix Compression Plug-in

Compression Policies

Overview

IDL for the compression policies

636

This section describes those compression policies that are defined in IDL
and can be set programmatically. Not all compression policies can be set
programmatically—see the Administrator’s Guide for details of all the
policies that can be set by configuration.

® CompressionEnablingPolicy.

® CompressorldPolicy.

Example 120 shows the part of the | T_zI & module that defines two
compression policies, Conpr essi onEnabl i ngPol i cy and

Conpr essor | dPol i cy. This IDL is extracted from the or bi x_pdk/ zi op. i dl
file.

Example 120:Compression Policies in the IT_ZIOP Module

/1 1DL
/1l File: <CbixlnstallDr>/asp/<Version>/idl/orbix_pdk/ziop.idl

nodule 1 T_ZI CP {
typedef unsi gned | ong Conpressorld;

const QOCRBA: : Pol i cyType COMPRESSI ON ENABLI NG PQLI CY_I D =
I T_PolicyBase: : | ONA PCLICY_I D + 0x46;

const QOCRBA: : Pol i cyType COMPRESSCR I D PQLICY_ID =
I T _PolicyBase: : | ONA PCLICY_I D + 0x47;

| ocal interface Conpressi onEnablingPolicy : CORBA : Policy
{
readonly attribute bool ean conpressi on_enabl ed;

I8

| ocal interface ConpressorldPolicy : OCRBA : Policy
{

I8

readonly attribute Conpressorld conpressor_id;

CompressionEnablingPolicy

CompressorldPolicy

Compression Policies

The Conpr essi onEnabl i ngPol i cy policy type has one boolean attribute,
conpr essi on_enabl ed, which indicates whether compression is enabled
(true) or disabled (f al se). Default is t r ue (but the policy has no effect if the
zi op plug-in is not loaded and configured).

When the compression enabling policy is set on the server side, the server
embeds a ZIOP component in the IORs it generates. The presence of a ZIOP
component in the IOR indicates to clients that the server is capable of
receiving compressed messages. You can set server-side policies at any of
the following levels:

* ORB.

* POA.
When the compression enabling policy is set on the client side, the client
checks I0Rs for the presence of a ZIOP component. If a ZIOP component is

present, the client will attempt to send compressed messages to the server.
You can set client-side policies at any of the following levels:

* ORB.
® Thread.
® Object (client proxy).

The Conpr essor | dPol i cy policy type has one integer attribute,

conpr essor _i d, which identifies the type of compression algorithm to use
(internally, a compressor ID refers to a specific implementation of the

| T_ZI CP: : Conpressor interface—see “Implementing Custom Compression”
on page 641 for more details).

The compressor ID policy can only be set on the server side. The server
embeds the compressor ID in a ZIOP component in the IORs that it
generates. You can set server-side policies at any of the following levels:

* ORB.
* POA.

637

CHAPTER 23 | Orbix Compression Plug-in

Programming Compression Policies

Overview

Java enable/disable compression
on the server side

638

This section describes how to set compression policies by programming on
the client side and on the server side. The following cases are considered:

® Java enable/disable compression on the server side.

® Java enable/disable compression on the client side.

® Java select compression algorithm on the server side.

Example 121 shows how to enable compression at the POA level in a Java
server. This example creates a compression enabling policy with the value
true and uses this policy to initialize a POA object, chi | d_poa. The
programmed policy value overrides the

pol i ci es: zi op: conpessi on_enabl ed setting from the Orbix configuration.

Because this example does not program a value for the compressor ID
policy, the choice of compression algorithm is implicitly determined by the
pol i ci es: zi op: conpr essor _i d setting in the Orbix configuration.

Example 121:J/ava Enabling Compression at the POA Level

/1 Java
inport org.ong. CCRBA. *;
inport comiona.corba.lT_ZI CP. *;

/A

bool ean enabl e_conpression = true; // or false

Policy[] policies = new Policy[1];

Any any = orb.create_any();

any. i nsert_bool ean(enabl e_conpressi on) ;

policies[0] =

orb. create_pol i cy(COWRESSI ON ENABLI NG PCLI CY_I D. val ue, any);

PQA chi |l d_poa = root _poa. create_PQA("chil d_poa",
root _poa. t he_PQAManager (),
policies);

Programming Compression Policies

Java enable/disable compression Example 122 shows how to disable compression at the proxy object level in
on the client side a Java client. This example creates a compression enabling policy with the

value fal se and uses this policy to create a copy of a proxy object, obj ref 2.
The programmed policy value overrides the

pol i ci es: zi op: conpessi on_enabl ed setting from the Orbix configuration.

Example 122:/ava Disabling Compression at the Proxy Object Level

/1l Java
i nport org.ong. CCRBA *;
inmport comiona.corba. |l T ZI CP. *;

/...

org. ong. OORBA. (hj ect objref, objref2;
bool ean enabl e_conpression = false; // or true
Policy[] policies = new Policy[1];
Any any = orb.create_any();
any. i nsert _bool ean(enabl e_conpr essi on) ;
policies[0] =

orb.create policy(COWRESSI ON ENABLI NG PCLI CY_I D. val ue, any);
objref2 = objref._set_policy_override(policies,

Set OQverri deType. ADD OVERRI DE) ;

Javaselect compressionalgorithm Example 123 shows how to select the compression algorithm by setting the

on the server side compressor ID at the POA level in a Java server. This example creates a
compressor ID policy with the value 3 (for bzi p2) and uses this policy to
initialize a POA object, chi | d_poa. The programmed policy value overrides
the pol i ci es: zi op: conpr essor _i d setting from the Orbix configuration.

Example 123:/ava Setting the Compression Algorithm at the POA Level

Il Java
i nport org.ong. CCRBA *;
inport comiona.corba. | T_Zl CP. *;

/...

int conpressor_id = 3; // for bzip2 conpression
Policy[] policies = new Policy[1];

Any any = orb.create_any();

any. i nsert_| ong(conpressor_id);

639

CHAPTER 23 | Orbix Compression Plug-in

640

Example 123:J/ava Setting the Compression Algorithm at the POA Level

policies[0] = orb.create_policy(COWRESSCR | D PCLI CY_I D. val ue,
any);
PQA chi |l d_poa = root _poa. create_PQOA("chil d_poa",
r oot _poa. t he_PQAManager (),
policies);

Implementing Custom Compression

Implementing Custom Compression

Overview

In this section

The ZIOP plug-in is extensible, enabling you to implement your own

compression algorithm for GIOP messages.

1. Choose a unique compressor ID to identify the new compression
algorithm (this ID should not clash with the existing compressor IDs).

2. Implement an I T_zI CP: : Conpressor class, providing the logic to
compress/decompress messages.

3. Implement an | T_zI CP: : Conpr essor Fact ory class that creates
Conpr essor instances that perform the custom compression at a
specific compression level.

4. Register an | T_zI OP: : Conpr essor Fact ory instance with the
| T_ZI CP: : Conpr essi onManager object.

This section contains the following subsections:

The IT_Buffer Module page 642
Implementing a Compressor page 646
Implementing a Compressor Factory page 651
Registering a Compressor Factory page 655

641

CHAPTER 23 | Orbix Compression Plug-in

The IT_Buffer Module

Overview

Example

Buffer IDL interface

642

The | T_Buf f er module provides a proprietary implementation of a

segmented buffer, which the compression API uses to represent incoming

and outgoing messages.

Each I T_Buffer:: Buf fer object implicitly consists of a number of

segments, of | T_Buffer:: Segnent type. Given a buffer instance, buf f, you

can iterate over all of the bytes in the buffer as follows:

1. Call 1T Buffer::Buffer::rew nd() to reset the buffer to the first
segment.

2. Call I T Buffer::Buffer::next_segment () to get a reference to the
first segment in the buffer (of | T_Buf fer: : Segrent type).

3. lterate over each byte in the segment (bytes within a segment are
contiguous). The first byte of the segment is given by Segnent : : data +
Segnent : : of f set . The last byte of the segment is given by
Segnent::data + Segnent::offset + Segrment::length - 1.

4. Move on to the next segment by calling
I T _Buffer::Buffer::next_segnent().

5. When the last segment is reached, next _segnent () returns a nul |
pointer.

For a detailed example of how to use the | T_Buf f er programming interface,
see the ZIOP compression demonstration in the following directory:

OrbixiInstallDirl asp/ Version/ denos/ cor ba/ or b/ zi op_conpr essi on

Example 124 shows the Buf fer IDL interface, which is defined in the
| T_Buf fer module.

Example 124:The Buffer IDL Interface
// 1D
;‘rloaule I T Buffer {

local interface Buffer

{

Example 124:The Buffer IDL Interface

Implementing Custom Compression

readonly attribute unsigned |ong |ength;

readonly attribute unsigned | ong original _I engt h;
readonly attribute unsigned | ong storage_size;
readonly attribute unsi gned | ong segment count;

voi d rew nd();
Segnent next _segnent () ;
voi d grow(
in unsigned long increnent,
in TimeBase:: L cT expiry
E
voi d trin{
in unsigned | ong from
in unsigned long to
E
voi d eclipse(in long delta);
voi d recycl e();
voi d prepend(in Buffer head);
voi d append(in Buffer tail);
Buf fer extract (
in unsigned | ong from
in unsigned |ong to
E

voi d copy_oct et s(

in unsigned long buffer_offset,
i nout OCRBA: : (ot et Seq dest,

in unsi gned long dest_of fset,
in unsigned long |ength

Buffer attributes

The following attributes are defined in the | T_Buffer:: Buf fer interface:
| engt h—the number of bytes within the buffer currently available for

ori gi nal _| engt h—the number of bytes originally allocated to the
buffer.
st orage_si ze—the allocation unit size of the buffer's underlying
storage implementation.
segnent _count —the number of segments currently available for use.

CHAPTER 23 | Orbix Compression Plug-in

Buffer operations The following operations are defined in the | T_Buffer:: Buf fer interface:

644

rew nd() —ensures that a subsequent call to next _segnent () returns

the first segment of the buffer or NULL, if the length is zero.

next _segnent () —returns a reference to the next segment in the buffer

or NULL, if the buffer contains no additional segments.

gr ow() —attempt to grow the length of the buffer by at /east i ncr enent

bytes. The expi ry parameter specifies the maximum amount of time to

wait for this operation to complete.

tri m() —reduce the length of the buffer and rewind. The reduced

buffer is defined by the subrange [from to). That is, the parameters

are interpreted as follows:

+ from—the index of the first byte to be included in the trimmed
buffer.

¢+ to—the index after the last byte to be included in the trimmed
buffer.

ext ract () —extract the specified range of bytes from this buffer,

returning the result as a new Buf f er. The reduced buffer is defined by

the subrange [from to). That is, the parameters are interpreted as

follows:

+ from—the index of the first byte to be included in the trimmed
buffer.

. t o—the index after the last byte to be included in the trimmed
buffer.

recycl e() —release the buffer's memory, unreferencing any St or age

instances it contains.

pr epend() —add another buffer, head, to the front of this buffer.

append() —add another buffer, tai |, to the end of this buffer.

Segment IDL interface

Segment attributes

Implementing Custom Compression

Example 125 shows the Segrment IDL interface, which is defined in the
I T_Buf fer module.

Example 125:The Segment IDL Interface
I/ 1D

modul e | T_Buffer {
nati ve RawDat a;

| ocal interface Storage;

I ocal interface Segnent

{
readonly attribute RawData dat a;
readonly attribute unsigned | ong of fset;
readonly attribute unsigned |ong |ength;
readonly attribute Storage underlying_storage;

The following attributes are defined in the | T_Buffer: : Segnent interface:

® dat a—a reference to the block of raw memory where this segment is
stored. In Java, the native RawDat a type maps to byt e[] by default. If
you are using JDK1.4 and you have enabled Orbix to use Java's new
I/O (NIO), the RawDat a type maps to j ava. ni o. Byt eBuf f er instead.

® of fset—an offset into the dat a block that marks the start of the bytes
belonging to this segment. In other words, the first byte belonging to
the segment is given by Segnent::data + Segment:: of fset.

® | engt h—the number of bytes in data that belong to this segment. The
value of length is always greater than zero.

For example, the index after the last byte in the segment is given by
Segnent:: data + Segnent::offset + Segment::|ength.

under | yi ng_st or age—returns the underlying storage as an
I T_Buffer:: Storage object.

645

CHAPTER 23 | Orbix Compression Plug-in

Implementing a Compressor

Overview This section describes how to implement an | T_zI CP: : Conpressor object,
which is responsible for performing compression and decompression of
GIOP messages. By implementing this IDL interface, you can define new
compression algorithms for the ZIOP plug-in.

Two operations are defined in the Conpr essor interface: conpress() and
deconpr ess() . Each of these operations takes a source buffer as input and
returns a transformed target buffer as output. The buffers are passed in the
form of I T_Buffer: : Buf fer objects.

Compressor IDL interface Example 126 shows the Conpressor IDL interface, which is defined in the
I T_zI P module.

Example 126:The Compressor IDL Interface

/1 1DL
#i ncl ude <ong/orb.idl >
#i ncl ude <orbi x_pdk/ buffer.idl >

module I T _ZICP {
exception Conpressi onException { string reason; };

typedef unsi gned | ong Conpressorld;
| ocal interface ConpressorFactory;

| ocal interface Conpressor

{
readonly attribute ConpressorFactory conpressor_factory;
readonly attribute |1ong conpression_|evel ;

voi d conpress(
in | T _Buffer::Buffer source,
in | T Buffer::Buffer target
) raises (ConpressionException);

voi d deconpr ess(
in | T _Buffer::Buffer source,
in | T Buffer::Buffer target
) raises (Conpressi onException);

646

Java implementation of
Compressor

1

Implementing Custom Compression

Example 126:The Compressor IDL Interface
IE
ik

The Conpr essor interface defines two operation, as follows:

® conpress()—take the input buffer, sour ce, compress it, and insert it

into the output buffer, tar get .

deconpr ess() —take the input buffer, sour ce, decompress it, and
insert it into the output buffer, target .

Note: The Conpressor object simply performs
compression/decompression unconditionally. The logic that determines
whether or not it is appropriate to compress/decompress a particular
message (based on the effective compression policies) is already built-in to
the ZIOP plug-in.

Example 127 shows a sample implementation of the Conpr essor class.

Example 127:/ava Implementation of the Compressor Class

Il Java
package zi op_conpr essi on;

i mport org. ong. CORBA. Local (oj ect ;

inport comiona.corba. | T_Buffer.Buffer;

import comiona.corba.| T _Buffer.Segnent;

i mport com i ona. corba. | T_ZI CP. Conpr essor ;

inport comiona. corba. | T_ZI CP. Conpr essor Fact ory;

i mport com i ona. corba. | T_ZI OP. Conpr essi onExcept i on;
i mport com i ona. cor ba. zi op. Nul | Conpr essor ;

inport comiona.conmon.tinme. UTQility;

inmport java.io.*;

publ i c cl ass DenoConpr essor
ext ends Local (bj ect
i npl ement s Conpr essor
{
privat e Conpressor Fact ory m factory;
private int mlevel;

647

CHAPTER 23 | Orbix Compression Plug-in

648

Example 127:Java Implementation of the Compressor Class

2

}

publ i ¢ DenmoConpr essor (Conpr essor Factory factory, int |evel)
{

mfactory = factory;

mlevel = level;
}
public String toString()
{
return "DemoConpressor[level =" + mlevel + "]";
}

public void conpress(Buffer source, Buffer target) throws
Conpr essi onExcepti on

{

source. rew nd();
target.rew nd();

}

publ i c voi d deconpress(Buffer source, Buffer target) throws
Conpr essi onExcept i on

{

source. rew nd();
target.rew nd();

}

publ i ¢ Conpressor Fact ory conpressor_factory()

{

return mfactory;

}
public int conpression_|evel ()
{
return mlevel;
}

Implementing Custom Compression

The preceding implementation class can be explained as follows:

1.

Because Conpr essor is a local IDL interface, the DemoConpr essor class
does not inherit from a POA implementation class. It inherits from the
following base classes:
. com i ona. cor ba. | T_ZI OP. Conpr essor —this interface is used as
a base, instead of the Conpr essor PQA interface.
. or g. ong. CORBA. Local Cbj ect —this class marks the
DenoConpr essor class as a local object.
The compressor factory reference, f act ory, and the compression level,
| evel , are passed into the constructor by the compressor factory.
When the conpr ess() method is called, the sour ce buffer is initialized
with the data to compress. The conpress() method performs
compression on the contents of the sour ce buffer and writes the result
into the initially empty t ar get buffer object.
The comiona. corba. | T_Buffer. Buf fer.rew nd() method resets the
current position of the buffer back to the first byte. After rewinding, you
can proceed to compress the source buffer.

Note: The details of implementing a compression algorithm are not
shown here. In principle, it involves iterating over the bytes in the
segmented buffers.

For a detailed example, see the demonstration at:
OrbixInstallDiri asp/ Version/ denos/ cor ba/ or b/ zi op_conpr essi on

In the zi op_conpr essi on demonstration, the conpress() method
writes the compression level to the front of the target buffer. With
most real-life compression algorithms, however, this is unnecessary.

When the deconpress() method is called, the sour ce buffer is
initialized with the data to decompress. The deconpress() method
performs decompression on the contents of the sour ce buffer and
writes the result into the initially empty t ar get buffer object.

649

CHAPTER 23 | Orbix Compression Plug-in

6. Thecomiona.corba.| T Buffer.Buffer.rew nd() method resets the
current position of the buffer back to the first byte. After rewinding, you
can proceed to decompress the source buffer.

Note: The details of implementing a decompression algorithm are
not shown here. In principle, it involves iterating over the bytes in the
segmented buffers.

For a detailed example, see the demonstration at:
OrbixInstallDirl asp/ Version/ denos/ cor ba/ or b/ zi op_conpr essi on

In the zi op_conpr essi on demonstration, the deconpress() method
reads the compression level from the front of the target buffer. With
most real-life compression algorithms, however, this is unnecessary.

7. Return the cached reference to the compressor factory, mfactory.

8. Return the cached compression level, m | evel .

650

Implementing Custom Compression

Implementing a Compressor Factory

Overview

CompressorFactory IDL interface

This section describes how to implement an | T_zI P : Conpr essor Fact ory
object, which is responsible for creating new Conpr essor instances (or
returning existing instances).

The most important operation defined by Conpr essor Fact ory is
get _conpressor (), which is responsible for obtaining new (or pre-existing)
Conpr essor instances.

Example 128 shows the Conpr essor Fact ory IDL interface, which is defined
in the 1 T_z1 & module.

Example 128:The CompressorFactory IDL Interface
/1 1DL
modul e I T _ZICP {
t ypedef unsi gned | ong Conpressorld;
| ocal interface ConpressorFactory
{
readonly attribute Conpressorld conpressor_id;
readonly attribute unsigned |ong | ong conpressed_bytes;
readonly attribute unsigned | ong | ong unconpressed_byt es;
readonly attribute doubl e average_conpressi on;
Conpr essor get _conpressor (i n | ong conpressi on_| evel);
voi d add_sanpl e(
in unsigned | ong | ong conpressed_byt es,

in unsigned | ong | ong unconpr essed_byt es

)

651

CHAPTER 23 | Orbix Compression Plug-in

Java implementation of
CompressorFactory

652

The Conpr essor Fact ory interface defines two operation, as follows:

® get_conpressor()—create a new | T_ZI CP: : Conpr essor object (or get

a reference to an existing | T_zI OP: : Conpr essor object).

add_sanpl e() —this is used for statistical analysis. The operation is
called internally by Orbix interceptors after each call to conpress() or
deconpr ess() . The arguments to add_sanpl e() are calculated from the
lengths of the source and target buffers. By calling

aver age_conpr essi on() , you can determine the average compression
ratio for a particular compression algorithm.

Example 129 shows a sample implementation of the Conpr essor Fact ory
interface.

Example 129:J/ava Implementation of the CompressorFactory Class

Il Java
package zi op_conpr essi on;

inport java.util.lterator;

inport java.util.List;

inport java.util.LinkedList;

i nport org.onyg. CORBA. Local (oj ect ;

inport comiona. corba. | T_ZI CP. Conpr essor ;

inport comiona. corba. | T_ZI CP. Conpr essor Fact ory;
inport com i ona. corba. zi op. Nul | Conpr essor Fact ory;

public cl ass DenoConpr essor Fact ory
ext ends Local (bj ect
i npl ement s Conpr essor Fact ory

{
private DenoConpressor m conpressor;
private int m conpr essor _i d;
private |ong m conpr essed_byt es;
private |ong m unconpr essed_byt es;

publ i ¢ DenoConpr essor Fact ory(i nt conpr essor_i d)
{

m conpr essor _id = conpressor _i d;

m conpr essed_bytes = 0;

m unconpr essed_bytes = 0;

}

public String toString()

Implementing Custom Compression

Example 129:/ava Implementation of the CompressorFactory Class

{
return " DemoConpr essor Fact ory[conpressor_id =" +
m conpressor_id + "]"
}
public final int conpressor_id()
{
return mconpressor_id;
}
public final |ong conpressed_bytes()
{
return mconpressed_byt es;
}
public final |ong unconpressed_bytes()
{
return munconpressed_bytes;
}
public final double average conpression()
{
i f (m.unconpressed_bytes == 0)
{
return 1.0;
}

return (doubl e) m conpressed_bytes /
(doubl €) m unconpr essed_byt es;

}

public final Conpressor get_conpressor(int conpression_|evel)
{
if (mconpressor == null)
{
m conpr essor = new DenoConpr essor (thi s,
conpr essi on_| evel) ;
}
return mconpressor;

}

public final void add_sanpl e(l ong conpressed_bytes, |ong
unconpr essed_byt es)
{
m conpr essed_byt es += conpr essed_byt es;
m unconpr essed_byt es += unconpr essed_byt es;

653

CHAPTER 23 | Orbix Compression Plug-in

654

Example 129:J/ava Implementation of the CompressorFactory Class

}
}

The preceding implementation class can be explained as follows:

1. The compressor ID, conpressor _i d, is passed into the constructor
when the user code creates and installs the factory.

2. The aver age_conpressi on() method calculates the average
compression ratio for all of the data that has passed through the
compressor (or compressors) associated with this factory.

3. The get_conpressor () method either creates a new compressor
instance, if this is the first time the function is called, or else returns a
reference to a pre-existing compressor instance.

4. The add_sanpl e() method is called internally to record the volumes of
compressed data and uncompressed data passing through the
Conpr essor . Normally, you should implement it exactly as shown here.

Implementing Custom Compression

Registering a Compressor Factory

Overview To make a new compression algorithm available to the ZIOP plug-in, you
must register it with the I T_zI OP: : Conpr essi onManager object.

The new compression algorithm must be identified by a unique compressor
ID. Once it is registered, the compression algorithm can be configured using
the standard ZIOP configuration variables and policies.

The CompressionManager Example 130 shows the Conpressi onManager IDL interface, which is
interface defined in the | T_zI &P module.

Example 130:The CompressionManager Interface
/1l 1D
modul e ITZICP {

exception FactoryAl readyRegi stered { };
exception UnknownConpressorld { };

t ypedef sequence<Conpressor Fact ory> Conpr essor Fact or ySeq;

| ocal interface Conpressi onManager
{
voi d register_factory(
in Conpressor Fact ory conpressor_factory
) raises (FactoryA readyRegistered);

voi d unregi ster_factory(
in Conpressorld conpressor_id
) raises (UnknownGonpressorld);

Conpr essor Fact ory get _fact ory(
in Conpressorld conpressor_id
) raises (UnknownConpressorld);

Conpr essor get _conpr essor (
in Conpressorld conpressor_id,
in |ong conpression_| evel

) raises (UnknownGonpressorld);

Conpr essor Fact orySeq get_factories();

655

CHAPTER 23 | Orbix Compression Plug-in

Example 130:The CompressionManager Interface
/5
ik

The Conpr essi onManager interface defines the following operations:

® register_factory()—register the compressor factory,

conpr essor _f act ory, with the compressor manager in order to make a
new compression algorithm available.

unr egi st er _f act or y() —unregister the compressor factory which has
the specified compressor ID, conpr essor _i d.

® get_factory()—get a reference to the factory with the specified
compressor ID.

get_factories()—get a list of reference to all of the registered
factories.

get _conpr essor () —get a reference to a Conpr essor object with the
specified ID and compression level (implicitly calls the relevant
compressor factory).

Java registering a Example 131 shows how to register a custom Conpr essor Fact ory, which
CompressorFactory makes a custom compression algorithm available to the application. This
segment of code should be called when the application starts up.

Example 131:/ava Registering a CompressorFactory

/1l Java
package zi op_conpr essi on;

inport org.ong. CCRBA. Any;
i nport org. onyg. CORBA. CRB;

inport comi ona. corba. | T_ZI CP. Conpr essi onManager ;
inport comiona. corba. | T_ZI CP. Conpr essi onManager Hel per ;

inport java.io.*;

/1 Setup and Configure the Conpressi onManager
Conpr essi onManager conpr essi on_manager ;

656

Implementing Custom Compression

Example 131:J/ava Registering a CompressorfFactory

org. ong. CORBA. (hj ect ref =
orb.resolve_initial _references("|T_Conpressi onManager");
conpr essi on_manager = Conpr essi onManager Hel per. narrow(r ef);
i f (conpressi on_manager == nul |)
{
Exception ex = new Exception("Unable to retrieve
| T_Conpr essi onManager reference");
ex. print StackTrace();
t hrow ex;

}

Systemout. printl n("Regi steri ng DenoConpr essor Factory with
Conpr essi on Manager");

conpr essi on_manager . r egi st er _f act or y(new
DenoConpr essor Fact or y(100)) ;

The preceding registration code can be described as follows:
1. To access the compression manager object, resolve an initial reference,
passing the | T_Conpr essi onManager string to
resolve_initial _references().
2. The returned initial reference must be cast to the correct type,
com i ona. cor ba. | T_ZI CP. Conpr essi onManager , using the
Conpr essi onManager Hel per . narrow() method.

3. Callregister_factory() to register a new factory instance, of
DermoConpr essor Fact ory type. The argument passed to the
DenoConpr essor Fact ory constructor is the compression level.

657

CHAPTER 23 | Orbix Compression Plug-in

658

APPENDIX A

Orbix IDL
Compiler Options

This appendix describes the syntax of the IDL compiler
command, along with the relevant options and switches.

Overview This appendix includes the following topics:
Command Line Switches page 660
Plug-in Switch Modifiers page 662
IDL Configuration File page 667

659

APPENDIX A | Orbix IDL Compiler Options

Command Line Switches

Syntax

General switches

The IDL compiler compiles the contents of an IDL module into header and
source files for client and server processes, in the specified implementation
language. You invoke the i dI compiler with the following command syntax:

id -plugin[...] [-switch]... idlMdule

Note: You must specify at least one plug-in switch, such as - poa or

- base, unless you modify the IDL configuration file to set | sDef aul t for
one or more plug-ins to Yes. (see page 667). As distributed, the
configuration file sets I sDef aul t for all plug-ins to No.

You can qualify the i di command with one or more of the following
switches. Multiple switches are colon-delimited.

Switch

Description

- Dnarre[: val ue]

Defines the preprocessor's name.

-E

Runs preprocessor only, prints on st dout .

-ldir

Includes di r in search path for preprocessor.

-R-v]

Populates the interface repository (IFR). The -v modifier specifies
verbose mode.

- Uname

Undefines name for preprocessor.

Prints version information and exits.

Prints usage message and exits.

Suppresses warning messages.

660

Command Line Switches

Switch

Description

-pl ugin
[:-nodifier]...

Specifies to load the IDL plug-in specified by pl ug-i n to generate
code that is specific to a language or ART plug-in. You must specify
at least one plug-in to the idl compiler

Use one of these values for pl ug-i n:

Each pl ug-i n switch can be qualified with one or more
colon-delimited modifiers.

base: Generate C+ + header and stub code.

j base: Generate Java stub code

poa: Generate POA code for C++ servers.

poa: Generate POA code for Java servers.

psdl : Generate C+ + code that maps to abstract PSDL
constructs.

pss_r: Generate C+ + code that maps concrete PSDL

constructs to relational and relational-like database back-end
drivers.

661

APPENDIX A | Orbix IDL Compiler Options

Plug-in Switch Modifiers

Overview

Modifiers for all C++ plug-in
switches

The following tables describe the modifiers that you can supply to plug-in
switches such as - base or - poa.

® Modifiers for all C++ plug-in switches.

® Modifiers for -base, -psdl, and -pss_r switches.

® Modifiers for -jbase and -jpoa switches.

® Modifiers for -poa switch.

Table 23 describes modifiers that can be used with all C++ plug-in
switches.

Table 23: Modifiers for all C++ plug-in switches

Modifier

Description

- d[decl - spec]

Creates NT declspecs for di | export and di i nport . If you omit decl - spec,
i dl uses the stripped IDL module’s name.

For example, the following command:

idl -dl T_ART_APl foo.idl

yields this code:

f 1defined(1 T_ART_API)

f defined(| T_ART_API _EXPCRT)

#define | T_ART_APl | T_DECLSPEC EXPORT

#el se

#define | T_ART_APl | T_DECLSPEC | MPORT

#endi f

#endi f

If you compile and link a DLL with the i dI -generated code within it,

| T_ART_API _EXPCRT must be a defined preprocessor symbol so that

I T_ART_API is set to dl | export. All methods and variables in the generated
code can be exported from the DLL and used by other applications. If

| T_ART_API _EXPCRT is not defined as a preprocessor symbol, | T_ART_API is
set to dlI I'i nport ; methods and variables that are defined in the generated
code are imported from a DLL.

662

Plug-in Switch Modifiers

Table 23: Modifiers for all C++ plug-in switches

Modifier Description

-i pat h-prefix Prepends pat h- pref i x to generated i ncl ude statements. For example, if the
IDL file contains the following statement:

#include "foo.idl"
i dl generates this statement in the header file:
#i ncl ude pat h-prefi x/foo. hh

-h[suffix.]ext Sets header file extensions. The default setting is . hh.

For example, the following command:
idl -base:-hh foo.idl

yields a header file with this name:
foo. h

If the argument embeds a period (.), the string to the left of the period is
appended to the IDL file name; the string to the right of the period specifies
the file extension. For example, the following command:

idl -base:-h_client.h foo.idl
yields the following header file name:
foo_client.h

If you use the - h to modify the - base switch, also use - b to modify the - poa
switch (see Table 26).

- Chpat h Sets the output directory for header files.
-Ccpath Sets the output directory for client stub (. cxx) files.
-XAM Cal | backs Generates stub code that enables asynchronous method invocations (AMI).

663

APPENDIX A | Orbix IDL Compiler Options

Modifiers for -base, -psdl, and

-pss_r switches

Table 24 describes the modifiers for - base, - psdl , and - pss_r.

Table 24: Modifier for -base, -psdl, and -pss_r plug-in switches

Modifier

Description

-c[suffix.]ext

Specifies the format for stub file names. The default name is i dI - nane. cxx.
For example, the following command:

id -base:-cc foo.idl

yields a server skeleton file with this name:

foo.c

If the argument embeds a period (.), the string to the left of the period is
appended to the IDL file name; the string to the right of the period specifies
the file extension. For example, the following command:

idl -base:-c_client.c foo.idl
yields the following stub file name:

foo client.c

-xOBV

Generates object-by-value default val uet ype implementations in files.

Modifiers for -jbase and -jpoa

switches

Table 25 describes the modifiers for -j base and -j poa.

Table 25: Modifiers for -jbase and -jpoa switches

Modifier

Description

- Ppackage

Use package as the root scope to package all unspecified modules. By
default, all Java output is packaged in the IDL module names.

- Pmodul e=package

Use package as the root scope for the specified module.

-adir Output all java code to di r. The default is the current directory.

- si Output DSI or stream-based code. The default is st ream

-Gstream

-Mefl ect Specifies the POA dispatch model to use either reflection or cascading
-Mascade i f-then-el se statements. The default is refl ect .

664

Plug-in Switch Modifiers

Table 25: Modifiers for -jbase and -jpoa switches

Modifier Description

-J1.1 Specifies the JDK version. The default is 1.2.
-J1.2

VTRUE Generate native implementation for valuetypes. The default is FALSE.

VFALSE
-FTRUE Generate factory implementation for valuetypes. The default is FALSE.
- FFALSE
- ETRE Initialize the string fields of structures and exceptions to the empty string.
- EFALSE The default is FALSE, meaning that string fields are initialized to nul | .
-TTRUE Generate toString() overrides for the type stubs. Default is FALSE.
- TFALSE

Modifiers for -poa switch

Table 26 describes the modifiers for - poa.

Table 26: Modifiers for -poa switch

Modifier

Description

-s[suffix.]ext

Specifies the skeleton file name. The default name is i di - naneS. cxx for
skeleton files.

For example, the following command:

idl -poa:-sc foo.idl

yields a server skeleton file with this name:
fooS. c

If the argument embeds a period (.), the string to the left of the period is
appended to the IDL file name; the string to the right of the period specifies
the file extension. For example, the following command:

idl -poa:-s_server.h foo.idl
yields the following skeleton file name:

foo_server.c

665

APPENDIX A | Orbix IDL Compiler Options

666

Table 26: Modifiers for -poa switch

Modifier

Description

-b[suffix.]ext

Specifies the format of the header file names in generated #i ncl ude
statements. Use this modifier if you also use the -h modifier with the - base
plug-in switch.

For example, if you specify a . h extension for - base-generated header files,
specify the same extension in - poa-generated #i ncl ude statements, as in the
following commands:

idl -base:-hh foo.idl
idl -poa:-bh foo.idl

These commands generate header file f 0o. h, and include in skeleton file
f 00S. cxx a header file of the same name:

#i nclude "foo. h"

If the argument embeds a period (.), the string to the left of the period is
appended to the IDL file name; the string to the right of the period specifies
the file extension. For example, the following command:

idl -poa:-b_client.h foo.idl
yields in the generated skeleton file the following #i ncl ude statement:

#include "foo _client.h"

- m ncl - mask #i ncl ude statements with file names that match mask are ignored in the
generated skeleton header file. This lets the code generator ignore files that it
does not need. For example, the following switch:

- nmong/ orb
directs the i di compiler to ignore this #i ncl ude statement in the IDL/PSDL:
#i ncl ude <ong/orb.idl >

-prnul tiple Sets the dispatch table to be 2 to the power of mul ti pl e. The default value of
mul tipleis 1. Larger dispatch tables can facilitate operation dispatching, but
also increase code size and memory usage.

-XTIE Generates POA TIE classes.

IDL Configuration File

IDL Configuration File

Overview

The IDL configuration file defines valid i dI plug-in switches such as - base
and - poa and specifies how to execute them. For example, the default IDL
configuration file defines the base and poa switches, the path to their
respective libraries, and command line options to use for compiling C++
header and client stub code and POA code.

IDL configuration files have the following format:
Figure 54: Configuration file format
I DLP ugi ns = "plugi n-type[, plugin-type].."

pl ugi n-type
{
Swi tch = swi t ch- nare;
Shli bNarme = pat h;
Shl i bMaj or Ver si on = versi on
| SDefault = "{ YES| NO}";
Preset Qotions = "-plugin-nodifier[, -plugin-nodifier]..."

plugin-specific settings...
...
}

pl ugi n-t ype can be one of the following literals:
Java
PQAJava

Opl uspl us
POACKX

I FR

PSSDLCxx

PSSRCxx

The i dl command can supply additional switch modifiers; these are
appended to the switch modifiers that are defined in the configuration file.
You can comment out any line by beginning it with the # character.

667

APPENDIX A | Orbix IDL Compiler Options

The distributed IDL configuration file looks like this:
Figure 55: Distributed IDL configuration file
IDL Configuration File

| DL_CPP_LQOCATI ON configures the G Preprocessor for the IDL

Conpi | er

1t can be the fully qualified path with the executabl e nane or
just the executabl e nane

#| DL_CPP_LQOCATI ON = "%RCDUCT_BI N DI R PATHA i dl _cpp";

#| DL_CPP_ARGUMENTS = "";

#np_dir = "c:\tenp";

I DLPl ugi ns = "Java, PQAJava, ol usplus, PQOACxx, |FR PSSDLCxx,

PSSRCxx" ;
ol uspl us
{
Switch = "base";
Shli bNane = "it_cxx_i be";
Shli bMaj or Version = "1";
IsDefault = "NO';
Presetptions = "-t";
Header and St ubExtension set the generated files
extensi on
The Default is .cxx and . hh
#
St ubExt ensi on = "cxx";
Header Ext ensi on = "hh";
I

668

IDL Configuration File

Figure 55: Distributed IDL configuration file

POACKX
{
Switch = "poa";
Shli bNane = "it_poa_cxx_i be";
Shli bMaj or Version = "1";
IsDefault = "NO';
Preset ptions = "-t";
Header and St ubExtension set the generated files

ext ensi on
The Default is .cxx and . hh

St ubExt ensi on = "cxx";
Header Ext ensi on = "hh";

>3 d 3

I FR

Switch = "R';

ShlibName = "it_ifr_ibe";
Shli bMaj or Version = "1";
IsDefault = "NO';

Preset ptions = "";

PSSDLCxx

Switch = "psdl“;

Shli bName = "it_pss_cxx_i be";
Shli bMaj or Version = "1";
IsDefault = "NO';

Preset Options = "-t";
UsePSSDLG ammar = " YES';

HH*

Header and St ubExtension set the generated files
ext ensi on
The Default is .cxx and . hh

St ubExt ensi on = "cxx";
Header Ext ensi on = "hh";

S 3 3 3 ¥

669

APPENDIX A | Orbix IDL Compiler Options

Figure 55: Distributed IDL configuration file

PSSRCxx

{
Switch = "pss_r";
Shli bNane = "it_pss_r_cxx_i be";
Shli bMVaj or Version = "1";
IsDefault = "NO';
PresetQptions = "-t";
UsePSSDLGr ammar = " YES';

Header and St ubExtension set the generated fil es
ext ensi on

The Default is .cxx and . hh

#

St ubExt ensi on = "cxx";

Header Ext ensi on = "hh";

IE

Java Config Infornation

Java

{
Switch = "j base";

Shli bNane = "idl _java";
Shl i bMaj or Version = "1";
IsDefault = "NO';

IH
PQAJava
{
Switch = "jpoa";
Shl i bNane = "j poa";
Shl i bMaj orVersion = "1";
IsDefault = "NO';
IH

Given this configuration, you can issue the following idl commands on the

IDL file foo.idl:

id -base foo.idl Generates client stub and header code.

id -poa foo.idl Generates POA code.

id -base -poa foo.idl Generates code for both client stub and header

code and POA code.

670

In this appendix

APPENDIX B

IONA Policies

Orbix supports a number of proprietary policies in addition to
the OMG policies. To create a policy of the proper type you
must know the policy’s tag.

This appendix contains the following sections:

Client Side Policies page 672
POA Policies page 675
Security Policies page 677
Firewall Proxy Policies page 679

671

APPENDIX B | IONA Policies

Client Side Policies

BindingEstablishmentPolicy
Policy Tag
| T_CCRBA: : Bl NDI NG ESTABLI SHVENT_PCLI CY_I D

Data Values

A client’s Bi ndi ngEst abl i shnent Pol i cy is determined by the members of
its Bi ndi ngEst abl i shnent Pol i cyVal ue, which is defined as follows:

struct Bi ndi ngEst abl i shnent Pol i cyVal ue

{
Ti neBase: : Ti meT rel ati ve_expiry;
unsi gned short max_bi ndi ng_i terations;
unsi gned short max_f orwards;
TineBase: : TimeT initial _iteration_del ay;
f1 oat backof f _rati o;

ik

See Also

“BindingEstablishmentPolicy” on page 264

RelativeBindingExclusiveRoundtripTimeoutPolicy
Policy Tag
| T_OORBA : RELATI VE_BI NDI NG EXCLUSI VE_ ROUNDTRI P_TI MEQUT_PCLI CY_I D

Data Values
This policy’s value is set in 100-nanosecond units.

See Also
“RelativeBindingExclusiveRoundtripTimeoutPolicy” on page 267

672

Client Side Policies

RelativeBindingExclusiveRequestTimeoutPolicy

Policy Tag

| T_CORBA: : RELATI VE_BI NDI NG EXCLUSI VE_REQUEST Tl MEQUT_PCLI CY_I D
Data Values

This policy’s value is set in 100-nanosecond units.

See Also
“RelativeBindingExclusiveRequestTimeoutPolicy” on page 267

RelativeConnectionCreationTimeoutPolicy

InvocationRetryPolicy

Policy Tag

| T_OCRBA: : RELATI VE_CONNECTI ON_CREATI ON_TI MEQUT_PCLI CY_I D
Data Values

The policy’s value is set in 100-nanosecond units.

See Also
“RelativeConnectionCreationTimeoutPolicy” on page 267

Policy Tag
| T_CCRBA: : | NVOCATI ON_RETRY_PCLI CY_I D
Data Values

A client’s I nvocat i onRet ryPol i cy is determined by the members of its
I nvocat i onRet ryPol i cyVal ue, which is defined as follows:

struct |nvocationRetryPolicyVal ue

{
unsi gned short max_retries;
unsi gned short max_rebi nds;
unsi gned short max_f orwards;
TimeBase: : TineT initial _retry_del ay;
f | oat backof f _rati o;

b

673

APPENDIX B | IONA Policies

See Also
“InvocationRetryPolicy” on page 267

674

POA Policies

POA Policies

ObjectDeactivationPolicy

PersistentModePolicy

Policy Tag

| T_Port abl eSer ver: : CBJECT_DEACTI VATI ON_PCLICY_I D

Data Values

Three settings are valid for this policy:

DELI VER(def aul t) The object deactivates only after processing all pending

requests, including any requests that arrive while the
object is deactivating.

Dl SCARD The POA rejects incoming requests with an exception of
TRANSI ENT. Clients should be able to reissue discarded
requests.

HOLD Requests block until the object deactivates. A POA with a

HQOLD policy maintains all requests until the object
reactivates. However, this policy can cause deadlock if
the object calls back into itself.

See Also
“Setting deactivation policies” on page 281

Policy Tag
| T_Port abl eServer: : PERSI STENCE MODE PCLI CY_I D
Data Values

The only valid value for this policy is
| T_Port abl eSer ver: : Dl RECT_PERS|I STENCE.

See Also
“Direct persistence” on page 208

675

APPENDIX B | IONA Policies

WellKnownAddressingPolicy

WorkQueuePolicy

676

Policy Tag
| T_CCRBA : WELL_KNOMN_ADDRESSI NG PCLI CY_I D
Data Values

This policy takes a string that maps to the prefix of the configuration variable
listing the well known address.

See Also
“Direct persistence” on page 208

Policy Tag

I T_Wr kQueue: : WORK_QUEUE_PCLI CY I D
Data Values

This policy takes a Vor kQueue object.

See Also
“Creating the WorkQueue” on page 229

Security Policies

Security Policies

SessionCachingPolicy

MaxChainLengthPolicy

CertContraintsPolicy

For more detailed information on the following policies see the CORBA
SSL/TLS Guide.

Policy Tag

I T_TLS APl :: TLS SESSI ON CACH NG PQLI CY
Data Values

The following settings are valid for this policy:

CACHE _NONE(def aul t) The ORB does not cache session data.

CACHE _CLI ENT The ORB will cache session data for client side
of a connection.

CACHE_SERVER The ORB will cache session data for server

side of a connection.

CACHE_SERVER AND CLI ENT The ORB stores session information for both
the client and server side of a connection.

Policy Tag

I T_TLS APl :: TLS MAX_CHAI N LENGTH PCLI CY
Data Values

This policy takes an integer.

Policy Tag
I T_TLS APl :: TLS CERT_CONSTRAI NTS PCLI CY

Data Values
This policy takes an | T_TLS API:: Cert Constrai nts object.

677

APPENDIX B | IONA Policies

CertValidatorPolicy

Policy Tag
| T_TLS API:: TLS CERT_VALI DATCR PCLI CY

Data Values
This policy takes a I T_TLS: : Cert Val i dat or object.

678

Firewall Proxy Policies

Firewall Proxy Policies

For more information on the firewall proxy service see the Application
Server Platform Administrator’s Guide.

InterdictionPolicy

Policy Tag
I T_FPS: : | NTERDI CTI ON_PCLI CY_I D

Data Values

PROCEEDY def aul t) This is the default behavior of the firewall proxy service
plug-in. A POA with its | NTERDI CTI ON policy set to
PROCEED will be proxified.

PREVENT This setting tells the firewall proxy service plug-in to not
proxify the POA. POAs with their | NTERD CTI ON policy set
to PREVENT will not use the firewall proxy service and
requests made on objects under its control will come
directly from the requesting clients.

679

APPENDIX B | IONA Policies

680

Index

A
activate()
calling on POAManager 81, 220
activate_object() 78, 188, 213, 215
activate_object_with_id() 188, 213, 215
Active object map 196
disabling 205
enabling 205
using with servant activator 275
add_ior_component() 532
addMember() 465
add_sample() operation 652, 654
AliasDef 399
allocate_slot_id() 565
ant 51, 68
AnyHolder class 343
Any type 327-369
as a parameter 343
creating 330
extracting values from
basic types 335
bounded string 339
object reference 340
sequence 337
user-defined types 337
inserting values
basic types 331
bounded string 339
struct 333
user-defined types 333
append() operation 644
Application
running 37
arguments() 383
Arithmetic operators 128
ArrayDef 400
Attribute
client-side Java mapping for 249
in IDL 99
readonly 49, 55
average_compression attribute 652, 654

B
BAD_OPERATION exception 335
BiDir_Gen3 597
BiDir_GIOP 582
Binding
setting delay between tries 265
timing out on 265
timing out on forward tries 265
timing out on IP address resolution 267
timing out on retries 265
binding:client_binding_list 582
BindingEstablishmentPolicy 264
Binding iterator 447
Binding list 445
Boolean
constant in IDL 126
Buffer attributes 643
Buffer interface 642
Buffer operations 644
build.xml 37, 51, 68
building applications 37, 68
bzip2 compression algorithm 633

C
CannotProceed exception 444
CDR encapsulation 526
ChannelAlreadyExists exception 487, 506
Character
constant in IDL 126
Client
developing 62, 235
dummy implementation 52
exception handling 302
generating 35, 51
implementing 36, 62
initializing ORB runtime 158, 248
interceptors, see Client interceptors
invoking operations 249-250
quality of service policies 258
creating PolicyList 165
effective policy 163
getting policy overrides 168
object management 170, 172

681

INDEX

ORB PolicyManager 167, 172
setting policy overrides 168
thread management 167, 172
timeout policies 261
Client interceptors
aborting request 542
changing reply 542
evaluating tagged component 547
interception point flow 540
interception points 537, 539, 545
location forwarding 541
normal reply processing 540
registering 569
tasks 547
Client policies
RebindPolicy 259
SyncScopePolicy 260
timeout 261
Client proxy 65, 236
class definition 237
ClientRequestinfo 521
interface 544
ClientRequestinterceptor 520
interface 537
Client-side Java mapping
attributes 249
operations 249
Codec
creating 527, 569
decoding service context 526
encoding service context 526
interface 526
operations 526
Codec factory 527
obtaining 569
codec_factory() 527, 569
Code generation toolkit
See also Genie-generated application
idlgen utility 35
packaged genies 131
package name 51
Command-line arguments 72
Compiling
IDL 53
component_count() 358
compress() operation 647
implementation 649
compression
add_sample() operation 652, 654

682

append() operation 644

average_compression attribute 652, 654

Buffer attributes 643

Buffer interface 642

Buffer operations 644

compress() operation 647, 649
CompressionManager interface 655
Compressor class 647

CompressorFactory class, implementation 652

CompressorFactory interface 651
compressor ID 654

Compressor interface 646
custom 641

custom, demonstration 649

data attribute 642

decompress() operation 647, 649
enabling on the client side 639
enabling on the server side 638
extract() operation 644

get_compressor() operation 652, 654, 656

get factories() compression 656
get factory() operation 656
grow() operation 644

IT Buffer module 642

IT_CompressionManager initial reference ID 657

next_segment() operation 642, 644
offset attribute 642

prepend() operation 644

recycle() operation 644
register_factory() operation 656, 657
rewind() operation 642, 644
Segment attributes 645

Segment interface 645

selecting the compression algorithm 639

Storage interface 645
trim() operation 644
unregister_factory() operation 656

CompressionEnablingPolicy policy type 637, 638,

639
CompressionManager interface 655
compression plug-in
algorithms 633
binding list 635
compatibility with giop_snoop 633
compatibility with iordump tool 633
configuration prerequisites 634
IT_ZIOP module 636
overview 632
plugins:ziop:ClassName variable 634

plugins:ziop:shlib_name variable 634
policies 636
ziop
compession_enabled
variable 639

policies:ziop:compession_enabled variable 638
policies:ziop:compressor_id variable 639
compression policies
CompressionEnablingPolicy policy type 637
CompressorldPolicy policy type 637
programming 638
Compressor class
implementation 647
compressor factory
registering 655
CompressorFactory class
implementation 652
CompressorFactory interface 651
compressor ID 654
CompressorldPolicy policy type 637, 639
Compressor interface
definition of 646
ConfiglList type 621
Configuration 12
configuration
creating a new domain 622
reading configuration data 623
sources 622
Configuration interface 620
initial reference 623
operations 621
Constant definition
boolean 126
character 126
enumeration 127
fixed-point 127
floating point 125
in IDL 125
integer 125
octet 127
string 126
wide character 126
wide string 126
Constant expressions
in IDL 128
consumer
connecting to event channel 495
connecting to proxy supplier 496

INDEX

disconnecting from event channel 500, 515
implementing 494
instantiating 488
consumer admin
obtaining default 495
Contained interface 405
Description structure 409
Container interface 407
operations 412
contents() 414
corbaloc 246
corbaloc URL
basic format 601
converting to object reference 600
direct persistence case 612
direct persistent, resolving 616
indirect persistence case 604
indirect persistent, resolving 611
multiple-address format 602
overview 600
registering plain text keys 615
secure format 602
corbaname 442
CORBA object, see Object
CosNotifyChannelAdmin module 489
CosTypedEventChannelAdmin module 508
_create() 77
create_active() 465
create_channel() 486
create_id_assignment_policy() 211
create_id_uniqueness_policy() 212
create_lifespan_policy() 208
create_policy()
calling on client ORB 165
create_random() 465
create_reference() 292
create_reference_with_id() 292
_create_request 379
create_round_robin() 465, 473
create_typed channel() 504
ctx() function 378
Current, in portable interceptors
See PICurrent
current_component() 358
current_member_kind() 363, 368
current_member_name() 363, 368
custom compression
demonstration 649
overview 641

683

INDEX

registering a compressor factory 655

D
data attribute

compression APl 642
DCE UID repository ID format 418
deactivate()

calling on POAManager 221
decode() 526
decode value() 527
decompress() operation 647

implementation 649
_default_POA() 61, 218

overriding 219
Default servant 196, 288-291

registering with POA 207, 291
default_supplier_admin() 489
Deferred synchronous request 384
def kind 393
describe() 409
describe_contents() 414
destroy() 160, 393
DIl 373

See also Request object

creating request object 375

deferred synchronous request 384
direct persistence

corbaloc URLs 612
DIRECT_PERSISTENCE policy 208
discard_requests()

calling on POAManager 221
disconnect operation

consumer 500

supplier 493, 510
disconnect_structured_push_supplier() 500
discriminator_kind() 365
DSI 385

dynamic implementation routine 387
Dynamic Any, see DynAny
Dynamic implementation routine 387
Dynamic invocation interface, see DIl
Dynamic skeleton interface, see DSI
DynAny 344

assignment 345

comparing 345

conversion to Any 345

copying 345

creating 347

destroying 345

684

DynArray interface 365
DynEnum interface 360
DynFixed interface 367
DynSequence interface 365
DynStruct interface 362
DynUnion interface 364
DynValueBox interface 369
DynValue interface 368
extraction operations 355
factory operations 347
initializing from another 345
insertion operations 353
iterating over components 358
obtaining type code 346
DynAnyFactory interface 347

E
encode() 526
encode value() 527
enum data type 118
EnumDef 399
Enumeration
constant in IDL 127
equal() 318
equivalent() 318
establish_components() 530
etherealize() 281
event
obtaining 498
pull consumer 498
push consumer 498
sending 491
pull supplier 492
push supplier 492
event channel
connecting consumer 495
connecting supplier 489
creating 486
disconnecting consumer 500
disconnecting supplier 493, 510
finding by id 486
finding by name 486
listing all by names 486
obtaining 485
event channel factory
OMG operations 486
event communication
mixing push and pull models 481
pull model 481

Event handling
in server 192
event ID 630
defining 628
logging 626
EventLog interface 630
event priority 630
logging 627
Exceptions 295-312
handling in clients 302
in IDL 100
system 303
system codes 305
throwing in server 310
Explicit object activation 188, 215
policy 213
extract() 337, 340
extract() operation 644
extract_Object() 341

F
find_channel() 486
find_channel_by id() 486
find_group() 466, 473
find_typed_channel() 504
find_typed channel by id() 504
FixedDef 400
Fixed-point

constant in IDL 127
Floating point

constant in IDL 125
for_consumers() 495, 513
for_suppliers() 507
Forward declaration

in IDL 106

G

Genie-generated application 12, 131-155
See also java_poa_genie.tcl genie
compiling 154
completeness of code 147
component specification

all 135
included files 138
servant classes only 139
server only 142
constructor 60
_create() 60

INDEX

directing output 153
interface selection 137
object mapping policy
servant locator 144
use active object map only 143
use servant activator 143
overriding _default POA() 141
package name 35
POA thread policy 143
servant class inheritance 141
tie-based servants 140
verbosity settings 153
get_boxed value() 369
get boxed value as_dyn any() 369
get_client_policy() 174
get_compact_typecode() 319
get_compressor() operation 652, 654, 656
get_discriminator() 364
get_effective_component() 547
get_effective_policy() 532
get factories() compression 656
get_factory() operation 656
_get_interface() 412
get_length() 366
get_ members() 362, 369
get_ members_as_dyn_any() 363, 369
get policy() 174
get_policy overrides() 175
calling on ORB PolicyManager 168
calling on thread PolicyCurrent 168
get_response() 384
get_typed _consumer() 510
get value() 367
giop_snoop plug-in
compatibility with compression 633
GIOP version
in corbaloc URL 601
grow() operation 644
gzip compression algorithm 633

H

hash() 241
has_no_active_member() 365
Hello World! example 32
Helper class 54

Helper types 64

Holder class 54

Holder types 56, 61, 67
hold_requests()

685

INDEX

calling on POAManager 220

|
IDL 89
attribute in 49
attributes in 99
compiling 53
constant expressions in 128
empty interfaces 101
exceptions 295-312
exceptions in 100
interface definition 93
interface repository definitions 391
object types 395
module definition 91
name scoping 91
one-way operations in 97
operation in 49, 96
parameters in 96
pragma directives 420
precedence of operators 128
prefix pragma 421
user-defined types 124
version pragma 421
IDL compiler 53
generated files 53
options
-flags 53
-jbase 53
-jpoa 53
output 53
populating interface repository 392
IDLEntity interface 55
idlgen utility 51
id_to_reference() 79
iiops protocol specifier
corbaloc 602
Implementation
by inheritance 60
implementation repository
and named keys 606, 607
IMPLICIT_ACTIVATION policy 213, 216
Implicit object activation 187, 216
overriding default POA 219
policy 213
indirect persistence
and corbaloc URL 604
Inheritance
in interfaces 102

686

Initial naming context
obtaining 433
Initial reference
registering 566
initial reference 1Ds
IT_Configuration 623
IT EventLog 630
IT Locator 610
IT_PlainTextKeyForwarder 615
inout parameters 97
in parameters 97
insert() 333
Integer
constant in IDL 125
Interception points 520
client flow 540
client interceptors 537, 539, 545
client-side data 521, 544
IOR data 521
IOR interceptors 530
request data 521, 534
server flow 553
server interceptors 552, 558
server-side data 521, 557
timeout constraints 535
Interceptor interface 520
Interceptors, see Portable interceptors
Interface
client proxy for 236
components 95
defined in IDL 93
dynamic generation 371
empty 101
forward declaration of 106
inheritance 102
inheritance from Object interface 104
multiple inheritance 103
overriding inherited definitions 104
Interface, in IDL definition 49
InterfaceDef 399
Interface Definition Language, see IDL
InterfaceNotSupported exception 508
Interface repository 391-422
abstract base interfaces 394
browsing 412
Contained interface 405
Container interface 407
containment 402
destroying object 393

finding objects by ID 415
getting information from 412
object interface 412
getting object’s IDL type 400
object descriptions 409
getting 414
objects in 393
object types 393
named 399
unnamed 400
populating 392
repository IDs 418
setting prefixes 420
setting version number 421
Interoperable Object Reference, see IOR
IntHolder class 55, 61, 67
InvalidName exception 444
InvocationRetryPolicy 267
IOR 195
string format
usage 245
iordump tool
compatibility with compression 633
IORInfo 521
interface 530
IORInterceptor 520
See also IOR interceptors
interface 530
IOR interceptors 530
adding tagged components 525, 533
interception point 530
registering 569
IORs
object key in corbaloc URL 601
IRObject interface 393
_is_a() 240
_is_equivalent() 240
itadmin ns command 608
IT_Buffer module 642
IT_CompressionManager initial reference ID 657
IT Config module 620
item() 383
it_iiops protocol type
corbaloc 602
IT_Locator initial reference ID 610
IT_PlainTextKeyForwarder initial reference ID 615
IT _PlainTextkey module 615
IT_ZIOP module 636

INDEX

J

java.nio.ByteBuffer type 645
java_poa_genie.tcl 35, 51
java_poa_genie.tcl genie
-all option 135
-complete/-incomplete options 147
-default_poa option 141
-dir option 153
-include option 138
interface specification 137
-servant/-noservant options 141
-servant option 139
-server option 142
-strategy options 143, 144
syntax 133
-threads/-nothreads options 143
-tie option 140
-v/-s options 153
-jpoa flag 53

K
kind() 319

L
LifespanPolicy 605
list_channels() 486
list_ typed channels() 504
Load balancing 461

active selection 467

example of 468

selection algorithms 461
local_log_stream plug-in 627
Local repository ID format 419
LocateReply message 606, 614
LocateRequest message 606, 614
LOCATION_FORWARD 606
locator service

and resolving corbaloc URLs 605
Logging 12
logging

event 626

event ID 626, 630

event ID, defining 628

EventLog interface 630

event priority 627, 630

example code 629

IT_EventLog initial reference ID 630

local_log_stream plug-in 627

687

INDEX

overview 626
report_message() method 630
subsystem 626
subsystem ID 626, 630
subsystem ID, defining 628
system_log_stream plug-in 627

lookup() 412

lookup_id() 415

lookup_name() 412

M
member() 365
member_kind() 365
member_name() 365
minor() 305
Module

inIDL 91
MULTIPLE_ID policy 212

N

Name binding
creating for application object 439
creating for naming context 435
dangling 450
listing for naming context 445
removing 450
NameComponent
defined 427
named_key command 607
named key registry
and corbaloc 606
NamedKeyRegistry interface 610
named keys
registering 607
NamedValue pseudo object type 123
Name scoping
in IDL 91
Name sequence
converting to StringName 432
defined 427
initializing 430
resolving to object 427, 441
setting from StringName 430
setting name components 430
string format 429
Naming context
binding application object to 439
binding to another naming context 435

688

destroying 450
listing bindings 445
orphan 436
rebinding application object to 440
rebinding to naming context 440
Naming graph
binding application object to context 439
binding iterator 447
binding naming context to 435
building programmatically 434
defined 425
defining Name sequences 427
destroying naming context 450
federating with other naming graphs 452
iterating over naming context bindings 447
listing name bindings 445
obtaining initial naming context 433
obtaining object reference 441
rebinding application object to context 440
rebinding naming context 440
removing bindings 450
resolving name 427, 442
resolving name with corbaname 442
Naming service 423
AlreadyBound exception 440
binding iterator 447
CannotProceed exception 444
defining names 427
exceptions 444
initializing name sequence 430
InvalidName exception 444
name binding 425
naming context 425
NotEmpty exception 450
NotFound exception 444
representing names as strings 429
string conversion operations 429
naming service
itadmin ns command 608
Narrowing
narrow() 64
object reference 64
NativeDef 399
next() 359
next_segment() operation 642, 644
Nil reference 64
NIO
and IT_Buffer::Segment::RawData type 645
NO_IMPLICIT_ACTIVATION policy 213, 215

_non_existent() 240

NON_RETAIN policy 205
and servant locator 275

NotFound exception 444

o)
Object
activating 78, 187
activating on demand
with servant activator 278
with servant locator 283
binding to naming context 439
client proxy for 236
creating inactive 292
deactivating
with servant activator 281
defined in CORBA 4
explicit activation 188, 215
getting interface description 412
ID assignment 78, 211
implicit activation 187, 216
mapping to servant 195
options 196
rebinding to naming context 440
removing from object groups 466
request processing policies 206
test for equivalence 240
test for existence 240
test for interface 240
Object binding
transparent rebinding 259
ObjectDeactivationPolicy 202
Object group 461
accessing from clients 475
adding objects to 466, 470
creating 465, 470
factories 465
finding 473
group identifiers 465
member identifiers 465
member structure 474
removing 467
removing objects from 466
selection algorithms 461, 465
object key
in corbaloc URL 601
object keys
in corbaloc URL 603
Object pseudo-interface

INDEX

hash() 241
inheritance from 104
is_a_() 240
_is_equivalent() 240
_non_existent() 240
operations 239
Object reference 4
adding tagged components 525, 533
creating for inactive object 292
extracting from Any 341
IOR 195
lifespan 208
narrowing 64
obtaining with create_reference() 292
obtaining with id_to_reference() 79
obtaining with _this() 216
operations 239
passing as a string 33
persistent 208
string conversion 244
stringified 64
transient 208
object_to string() 80, 244
obtain_notification_pull_consumer() 490, 496
obtain_notification_push_consumer() 490, 496,
508, 513
obtain_push_consumer() 490
obtain_typed push_consumer() 509, 510
Octet
constant in IDL 127
offset attribute
compression APl 642
og_factory() 473
OMG IDL repository ID format 418
One-way requests
SyncScopePolicy 260
Operation
client-side Java mapping for 249
defined in IDL 96
interface repository description 409
one-way, defined in IDL 97
OperationDef interface 409
Operations interface 54
Operators
arithmetic 128
precedence of, in IDL 128
ORB
getting object reference to 158, 248
role of 6

689

INDEX

ORB.init() 64
ORBClass 30
ORB_CTRL_MODEL policy 214
-ORB flags 72
ORB_init()

calling in client 158, 248
ORB initializer 519

creating and registering PolicyFactory 568

creating Codec objects 527, 569
interface 529

obtaining Codec factory 527, 569
registering initial reference 566

registering portable interceptors 564, 569

tasks 529, 565
ORBInitInfo 529
ORB PolicyManager 170
ORB runtime
destroying 160
event handling 192
initializing in client 62, 158, 248
initializing in server 72
polling for incoming requests 192
shutting down 160
org.omg.CORBA.ORBClass 30
org.omg.CORBA.ORBSingletonClass 31
Orphaned naming context 436
out parameters 97

P

Package name 35, 51
Parameters

defined in IDL 49, 96

direction 96

Holder types 61

inout types 61, 97

in types 97

out types 61, 97

setting for request object 376
perform_work() 192
PersistenceModePolicy 202, 605, 613
PERSISTENT policy 208
PICurrent 519

allocating slot 565

defined 523

interface 523

obtaining 565
pkzip compression algorithm 633
plain text key

registering 615

690

plain_text_key plug-in 612
Plug-in 10
plug-ins

plain_text key 612

plugins:giop:message_server_binding_list 582

plugins:ziop:ClassName variable 634
plugins:ziop:shlib_name variable 634
POA 193-221
activating object in 78, 187
active object map 196, 205
attaching PolicyList 171, 200
creating 74, 75, 197
default servant 196, 288-291
genie-generated
active object map 143
servant activator 143
use servant locator 144
mapping object to servant through
inheritance 183-184
POAManager 74, 81, 220
registering default servant 207, 291
registering servant activator 282
registering servant locator 287
registering servant manager 207
root POA 74, 197
servant manager 196
skeleton class 181
POA manager 74, 220
states 81, 220
POA policies
attaching to new POA 171, 200
constants
DIRECT_PERSISTENCE 208
IMPLICIT_ACTIVATION 213
MULTIPLE_ID 212
NO_IMPLICIT_ACTIVATION 213
NON_RETAIN 205
ORB_CTRL MODEL 214
PERSISTENT 208
RETAIN 205
SINGLE_ THREAD_MODEL 214
SYSTEM_ID 211
TRANSIENT 208
UNIQUE_ID 212

USE_ACTIVE_OBJECT_MAP_ONLY 206

USE_DEFAULT_SERVANT 207

USER_ID 211

USE_SERVANT_MANAGER 207
factories for Policy objects 200

ID assignment 211
ID uniqueness 212
object activation 213
ObjectDeactivationPolicy 202
object lifespan 208
PersistenceModePolicy 202
proprietary 201
request processing 206
root POA 203
servant retention 205
setting 76, 199
threading 214
WellKnownAddressingPolicy 202
Policies
creating PolicyFactory 528
getting 177
policies
ziop
compession_enabled variable 639
policies:ziop:compession_enabled variable 638
policies:ziop:compressor_id variable 639
PolicyCurrent 172
interface operations 167
PolicyFactory 519
creating and registering 568
interface 528
PolicyList
attaching to POA 171, 200
creating for client 165
creating for POA 199
PolicyManager 172
interface operations 167
setting ORB policies 170
poll_response 384
Portable interceptors 13, 517
client interceptors, see Client interceptors
components 519
interception points, see Interception points
IOR interceptors, see IOR interceptors
ORB initializer, see ORB initializer
PICurrent, see PICurrent
policy factory, see PolicyFactory
registering 564, 569
registering with Orbix configuration 572
server interceptors, see Server interceptors
service context, see Service context
tagged component, see Tagged component
types 520
Portable Object Adapter, see POA

INDEX

post_init() 564
postinvoke() 285
Pragma directives, in IDL 420
Prefix pragma 421
pre_init() 564
preinvoke() 285
prepend() operation 644
PrimitiveDef 400
Proxy, see Client proxy
proxy consumer
connecting supplier 490
creating 489
interfaces 489
proxy supplier 491
connecting consumer 496
creating 495
pull operations 499
Pseudo object types
in IDL definition 123
pull() 499
pull consumer
obtaining messages 498
pull model 481
pull supplier
obtaining proxy consumer 490, 496
push() 492, 498
push and pull model mixed 480
push consumer
obtaining messages 498
push model 480
push supplier
obtaining a typed proxy consumer 508
obtaining proxy consumer 490, 496, 513

Q

Quality of service policies 258
creating PolicyList 165
effective policy 163, 258
getting overrides

for ORB 168

for thread 168
managing

object 174

ORB 167

thread 167
object management 170, 172
ORB PolicyManager 167, 172
setting overrides

for ORB 168

691

INDEX

for thread 168 run() 81
thread management 167, 172 Running an application 69
R S
RawData type 645 seek() 359
readonly attribute 55 Segment attributes 645
RebindPolicy 259 segmented buffer 642
receive_exception() 539 Segment interface 645
receive_other() 539 send_deferred 384
receive_reply() 539 send_exception() 552
receive_request() 552 send_other() 552
receive_request_service contexts() 552 send_poll() 539
recycle() operation 644 send_reply() 552
register_factory() operation 656, 657 send_request() 539
RelativeBindingExclusiveRequestTimeoutPolicy 267 sequence data type 121
RelativeBindingExclusiveRoundtripTimeoutPolicy 26 SequenceDef 400
7 Servant
RelativeConnectionCreationTimeoutPolicy 267 caching 284
RelativeRequestTimeoutPolicy 263 etherealized
RelativeRoundtripTimeoutPolicy 262 by servant activator 281
remove_member() 466 genie-generated
ReplyEndTimePolicy 263 overriding default POA 141
report_message() method 630 implementation class 57, 185
_request 376 incarnated
RequestEndTimePolicy 264 by servant locator 285
Requestinfo 521 incarnating multiple objects 212
interface 534 inheritance from POA skeleton class 181
Request object inheritance from ServantBase 183
creating 375 instantiating 187
context parameter 378 mapping to object 195
operation parameters 376 options 196
return type 376 tie-based 190
with _create_request 379 Servant activator 278-283
with _request 376 deactivating objects 281
obtaining results 383 etherealizing servants 281
resolve_initial_references() registering with POA 282
InterfaceRepository 412 required policies 207
NameService 433 ServantBase 183
PICurrent 565 Servant class
POA 74 creating 185-7?7
resolve_initial_references() operation 657 genie-generated 139
resolve_str() 429 inheritance 141
RETAIN policy 205 Servant locator 283-287
and servant activator 275 caching servants 284
return_value() 383 registering with POA 287
rewind() 359 required policies 207
rewind() operation 642, 644, 650 Servant manager 196, 273-292
Root POA registering with POA 207, 275
policies 203 set for POA 207

692

Server
defined in CORBA 8
dummy implementation 52
event handling 192
generating 35, 51
genie-generated 142
object mapping options 143
POA thread policy 143
implementing 35, 57
initialization 71
processing requests, see POA
shutting down 82
throwing exceptions 310
Server interceptors 551
aborting request 554
changing reply 555
getting server policy 560
getting service contexts 561
interception point flow 553
interception points 552, 558
registering 569
tasks 560
throwing exception 553
ServerRequestinfo 521
interface 557
ServerRequestinterceptor 520
interface 551
ServerRequest pseudo-object 387
Server-side Java mapping
POA skeleton class 181, 183-184
skeleton class
method signatures 184
Service context 519, 522
decoding data 526
encoding data 519, 526
IDs 522
Services 38, 39, 69
encapsulating ORB service data 522
set_boxed_value() 369
set_boxed value as_dyn_any() 369
set_discriminator() 364
set_length() 366
set_members() 362, 369
set_ members_as_dyn_any() 363, 369
set_member_timeout() 467
set_policy_overrides() 175
calling on ORB PolicyManager 168
calling on thread PolicyCurrent 168
set_return_type 376

INDEX

set_servant() 207
set_servant_manager() 207
set_to_default_member() 364
set to no_active_member() 364
set_value() 367
shutdown() 65, 160
SINGLE_THREAD MODEL policy 214
Skeleton class
dynamic generation 387
method signatures 184
Skeleton code 53
Storage interface 645
String
constant in IDL 126
StringDef 400
StringName
converting to Name 430
using to resolve Name sequence 442
string_to_object() 64, 244
string_to_object() method
and corbaloc 600
resolving corbaloc URL 611, 616
struct data type 119
StructDef 399
Stub code 53
subsystem ID 630
defining 628
logging 626
supplier
connecting to proxy consumer 491
connecting to typed proxy consumer 509
disconnecting from event channel 493, 510
implementing 488
supplier admin
obtaining 489, 507
obtaining default 489
SyncScopePolicy 260
System exceptions 303
codes 305
throwing 311
SYSTEM_ID policy 211
system_log_stream plug-in 627

T
Tagged component 519
adding to object reference 525, 533
defined 525
evaluated by client 547
TCKind enumerators 314

693

INDEX

_this() 187,213, 216-219
overriding default POA 219
Threading 12
POA policy 214
Tie-based servants 190
creating 190
genie-generated 140
removing from memory 191
Timeout policies 261
absolute times 261
binding retries 265
binding time limits 265
delay between binding tries 265
forwards during binding 265
invocation retries 267
delay between 268
maximum 268
maximum forwards 268
maximum rebinds 268
propagating to portable interceptors 535
reply deadline 263
request and reply time 267
excluding binding 262
request delivery 263
excluding binding 267
resolving IP addresses 267
request delivery deadline 264
to_name() 429
to_string() 429
TRANSIENT policy 208
trim() operation 644
try_pull() 492, 499
try_pull_structured_event() 493
Type code
getting from DynAny 346
TypeCode interface 400
TypeCode pseudo object type 123
Type codes 313-325
compacting 319
comparing 318
getting TCKind of 320
operations 317
TCKind enumerators 314
type-specific operations 320
user-defined 325
typed consumer
connecting to proxy supplier 514
typed consumer admin
obtaining default 513

694

typedef 124

TypedefDef 399

Type definition
inIDL 124

typed event channel
connecting supplier 507
creating 504
disconnecting consumer 515
finding by id 504
finding by name 504
listing all by names 504
obtaining 503

typed event channel factory
Orbix operations 504

typed proxy consumer
connecting supplier 509
creating 508
interfaces 508

typed proxy supplier
connecting consumer 514
creating 513

typed push model 482

typed supplier admin
obtaining default 507

U
Union

in IDL definition 119
UnionDef 399
UNIQUE_ID policy 212
unregister_factory() operation 656
update_member_load() 467
USE_ACTIVE_OBJECT_MAP_ONLY policy 206
USE_DEFAULT_SERVANT policy 207
USER_ID policy 211
USE_SERVANT MANAGER policy 207

\"

validate_connections() 175
value() 383

ValueBoxDef 399
ValueDef 399

Version pragma 421

w
WellKnownAddressingPolicy 202
Wide character

constant in IDL 126

INDEX

Wide string

constant in IDL 126
work_pending() 192
WorkQueuePolicy 222
WStringDef 400

Z

ziop_compression demonstration 649
ZI0P plug-in
See compression plug-in

695

INDEX

696

	CORBA Programmer's Guide, Java
	List of Figures
	List of Tables
	Preface
	1 Introduction to Orbix
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Servers and the Portable Object Adapter
	Orbix Plug-In Design
	Development Tools
	Orbix Application Deployment
	CORBA Features and Services

	2 Getting Started with Orbix
	Creating a Configuration Domain
	Setting the Orbix Environment
	Setting ORB Properties for the Orbix ORB
	Hello World Example
	Development from the Command Line

	3 First Application
	Development Using Code Generation
	Development Without Using Code Generation
	Locating CORBA Objects
	Development Steps
	Define IDL interfaces
	Generate starting point code
	Compile the IDL definitions
	Develop the server program
	Develop the client program
	Build the application
	Run the application

	Enhancing Server Functionality
	Initialize the ORB
	Create a POA for transient objects
	Create servant objects
	Activate CORBA objects
	Export object references
	Activate the POA manager
	Shut down the ORB

	Complete Source Code for server.java

	4 Defining Interfaces
	Modules and Name Scoping
	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces
	Local Interfaces

	Valuetypes
	Abstract Interfaces
	IDL Data Types
	Built-in Types
	Extended Built-in Types
	Complex Data Types
	Pseudo Object Types

	Defining Data Types
	Constants
	Constant Expressions

	5 Developing Applications with Genies
	Genie Syntax
	Specifying Application Components
	Selecting Interfaces
	Including Files
	Implementing Servants
	Implementing the Server Mainline
	Implementing a Client
	Generating Build Files
	Controlling Code Completeness
	Servant Code
	Client Code

	General Options
	Compiling the Application
	Configuration Settings

	6 ORB Initialization and Shutdown
	Initializing the ORB Runtime
	Shutting Down the ORB
	Shutting Down a Client
	Shutting down a server

	7 Using Policies
	Creating Policy and PolicyList Objects
	Setting Orb and Thread Policies
	Setting Server-Side Policies
	Setting Client Policies
	Setting Policies at Different Scopes
	Managing Object Reference Policies

	Getting Policies

	8 Developing a Server
	POAs, Skeletons, and Servants
	Mapping Interfaces to Skeleton Classes
	Creating a Servant Class
	Activating CORBA Objects
	Handling Output Parameters
	Delegating Servant Implementations
	Explicit Event Handling

	9 Managing Server Objects
	Mapping Objects to Servants
	Creating a POA
	Setting POA Policies
	Root POA Policies

	Using POA Policies
	Enabling the Active Object Map
	Processing Object Requests
	Setting Object Lifespan
	Assigning Object IDs
	Activating Objects with Dedicated Servants
	Activating Objects
	Setting Threading Support

	Explicit Object Activation
	Implicit Object Activation
	Calling _this() Inside an Operation
	Calling _this() Outside an Operation

	Managing Request Flow
	Work Queues
	ManualWorkQueue
	AutomaticWorkQueue
	Using a WorkQueue

	Controlling POA Proxification

	10 Developing a Client
	Mapping IDL Interfaces to Proxies
	Using Object References
	Object Reference Operations
	Narrowing Object References
	String Conversions

	Initializing and Shutting Down the ORB
	Invoking Operations and Attributes
	Passing Parameters in Client Invocations
	Holder Class Types
	Holder Class Members
	Invoking an Operation With Holder Classes

	Client Policies
	RebindPolicy
	SyncScopePolicy
	Timeout Policies

	Implementing Callback Objects

	11 Managing Servants
	Using Servant Managers
	Servant Activators
	Servant Locators

	Using a Default Servant
	Setting a Default Servant

	Creating Inactive Objects

	12 Exceptions
	Exception Code Mapping
	User-Defined Exceptions
	Handling Exceptions
	Handling User Exceptions
	Handling System Exceptions
	Evaluating System Exceptions

	Throwing Exceptions
	Throwing System Exceptions

	13 Using Type Codes
	Type Code Components
	Type Code Operations
	General Type Code Operations

	Type Codes for Basic Types
	Type Codes for User-Defined Types

	14 Using the Any Data Type
	Constructing an Any Object
	Inserting Basic Types
	Inserting User-Defined Types
	Extracting Basic Types
	Extracting User-Defined Types
	Inserting and Extracting Bounded String Aliases
	Extracting Object References
	Any as a Parameter or Return Value
	Using DynAny Objects
	Creating a DynAny
	create_dyn_any()
	create_dyn_any_from_type_code()

	Inserting and Extracting DynAny Values
	Insertion Operations
	Extraction Operations
	Iterating Over DynAny Components
	Accessing Constructed DynAny Values

	15 Generating Interfaces at Runtime
	Using the DII
	Constructing a Request Object
	_request()
	_create_request()
	Invoking a Request
	Retrieving Request Results
	Invoking Deferred Synchronous Requests

	Using the DSI
	DSI Applications
	Programming a Server to Use DSI

	16 Using the Interface Repository
	Interface Repository Data
	Abstract Base Interfaces
	Repository Object Types

	Containment in the Interface Repository
	Contained Interface
	Container Interface

	Repository Object Descriptions
	Retrieving Repository Information
	Sample Usage
	Repository IDs and Formats
	Controlling Repository IDs with Pragma Directives

	17 Naming Service
	Naming Service Design
	Defining Names
	Representing Names as Strings
	Initializing a Name
	Converting a Name to a StringName

	Obtaining the Initial Naming Context
	Building a Naming Graph
	Binding Naming Contexts
	Binding Object References
	Rebinding

	Using Names to Access Objects
	Exceptions Returned to Clients

	Listing Naming Context Bindings
	Using a Binding Iterator

	Maintaining the Naming Service
	Federating Naming Graphs
	Sample Code
	Object Groups and Load Balancing
	Using Object Groups in Orbix

	Load Balancing Example
	Creating an Object Group and Adding Objects
	Accessing Objects from a Client

	18 Event Service
	Overview
	Event Communication Models
	Developing an Application Using Untyped Events
	Obtaining an Event Channel
	Implementing a Supplier
	Implementing a Consumer

	Developing an Application Using Typed Events
	Creating the Interface
	Obtaining a Typed Event Channel
	Implementing the Supplier
	Implementing the Consumer

	19 Portable Interceptors
	Interceptor Components
	Interceptor Types
	Service Contexts
	PICurrent
	Tagged Components
	Codec
	Policy Factory
	ORB Initializer

	Writing IOR Interceptors
	Using RequestInfo Objects
	Writing Client Interceptors
	Interception Points
	Interception Point Flow
	ClientRequestInfo
	Client Interceptor Tasks

	Writing Server Interceptors
	Interception Points
	Interception Point Flow
	ServerRequestInfo
	Server Interceptor Tasks

	Registering Portable Interceptors
	Implementing an ORB Initializer
	Registering an ORBInitializer

	Setting Up Orbix to Use Portable Interceptors

	20 Bidirectional GIOP
	Introduction to Bidirectional GIOP
	Bidirectional GIOP Policies
	Configuration Prerequisites
	Basic BiDir Scenario
	The Stock Feed Demonstration
	Setting the Export Policy
	Setting the Offer Policy
	Setting the Accept Policy

	Advanced BiDir Scenario
	Interoperability with Orbix Generation 3

	21 Locating Objects with corbaloc
	corbaloc URL Format
	Indirect Persistence Case
	Overview of the Indirect Persistence Case
	Registering a Named Key at the Command Line
	Registering a Named Key by Programming
	Using the corbaloc URL in a Client

	Direct Persistence Case
	Overview of the Direct Persistence Case
	Registering a Plain Text Key
	Using the corbaloc URL in a Client

	Named Keys and Plain Text Keys Used by Orbix Services

	22 Configuring and Logging
	The Configuration Interface
	Configuring
	Logging

	23 Orbix Compression Plug-in
	Introduction to the ZIOP Plug-In
	Configuration Prerequisites
	Compression Policies
	Programming Compression Policies
	Implementing Custom Compression
	The IT_Buffer Module
	Implementing a Compressor
	Implementing a Compressor Factory
	Registering a Compressor Factory

	Appendix A Orbix IDL Compiler Options
	Command Line Switches
	Plug-in Switch Modifiers
	IDL Configuration File

	Appendix B IONA Policies
	Client Side Policies
	POA Policies
	Security Policies
	Firewall Proxy Policies

	Index

