IDOL
Confluence REST

Connector

Software Version 12.12

Administration Guide

Document Release Date: June 2022
Software Release Date: June 2022

Administration Guide

Legal notices

© Copyright 2022 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
o Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support

Visit the MySupport portal to access contact information and details about the products, services, and support
that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

View information about all services that Support offers
Submit and track service requests

Contact customer support

Search for knowledge documents of interest

View software vulnerability alerts

Enter into discussions with other software customers
Download software patches

Manage software licenses, downloads, and support contracts

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
signin.

About this PDF version of online Help
This document is a PDF version of the online help, and is provided so you can easily print multiple topics or read
the online help. Because this content was originally created to be viewed as online help in a web browser, some

topics may not be formatted properly. Some interactive topics may not be present in this PDF version. Those
topics can be successfully printed from within the online help.

IDOL Confluence REST Connector (12.12) Page 2 of 96

https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/

Administration Guide

Contents

Chapter 1: Introduction ... 7
Confluence REST Connector 7
Features and Capabilities 7
SUPPOtEd ACHONS .. 7
Mapped SeCUNtY 8
Display Online Help ... 9
Connector Framework SErVEr 9
The IDOL Platform ... 11
System Architecture 12
Related Documentation 13
Chapter 2: Install Confluence REST Connector ... 15
System Requirements . . 15
PerMiSSIONS .. 15
Install Confluence REST Connectoron Windows 15
Install Confluence REST Connector on LinUX ... 18
Install the Confluence Connector PIUgin 18
Configure OAuth Authentication 19
Chapter 3: Configure Confluence REST Connector ... 20
Confluence REST Connector Configuration File ... 20
Modify Configuration ParameterValues 23
Include an External Configuration File ... 23
Include the Whole External Configuration File 24
Include Sections of an External Configuration File .. 24
Include Parameters from an External Configuration File ... 25
Merge a Section from an External ConfigurationFile 26
ENCrypt PasswWords 26
Create aKey File 27
Encrypt a PasswWord 27
Decrypt@a Password ... 29
Configure Client Authorization 29
Register with a Distributed Connector 31
Set Up Secure Communication 32
Configure Outgoing SSL Connections 32

IDOL Confluence REST Connector (12.12) Page 3 of 96

Administration Guide

Configure Incoming SSL Connections ... 33
Backup and Restore the Connector's State 34
Backupa Connector's State 34
Restore a Connector's State 35
Validate the Configuration File 35
Chapter 4: Start and Stop the Connector ... 36
Startthe ConNeCtor 36
Verify that Confluence REST Connectoris Running ... 37
Gt atUS .. 37
Getlicenselnfo 37

Stop the Connector .. . 38
Chapter 5: Send Actions to Confluence REST Connector ... 39
Send Actions to Confluence REST Connector ... 39
ASYNChroNOUS ACtiONS .. . 39
Check the Status of an Asynchronous Action ... 40
Cancel an Asynchronous Action thatis Queued 40

Stop an Asynchronous Action thatis Running ... 40

Store Action Queuesinan ExternalDatabase ... 41
PrerequUISItes .. . 41
Configure Confluence REST Connector ... 42

Store Action Queues iIN Memory 44
Use XSL Templates to Transform Action ReSponses ... 45
Example XSL Templates 46
Chapter 6: Usethe Connector ... 47
Retrieve Information from Confluence 47
Synchronize from Identifiers 49
Schedule Fetch Tasks ... 49
Use Document Metadata to Navigate Betweenltems .. 51
Chapter 7: Mapped Security ... 52
INtrOdUCHION .. 52
Setup Mapped SeCuUrity 54
Retrieve and Index Access Control Lists ... 54
Retrieve Security GroUPS 55
Chapter 8: Manipulate Documents ... 57

IDOL Confluence REST Connector (12.12) Page 4 of 96

Administration Guide

INtrOdUCHION . . 57
Add a Field to Documents using an Ingest Action ... 57
Customize Document Processing 58
Standardize Field Names 59
Configure Field Standardization 59
Customize Field Standardization ... 60
RUN LU SO S .o 64
Write @ Lua SCript ... 65
Run a Lua Scriptusing an Ingest Action ... 66
Example Lua SCripts ... 67
AddaFieldtoaDocument ... 67
Merge Document Fields 67
Chapter O: Ingestion ... 69
INtrOdUCHION . 69
Send Data to Connector Framework Server 70
Send Data to Another Repository 71
Index Documents Directly into IDOL Server ... 72
Index Documentsinto Vertica ... 73
Prepare the Vertica Database 74
Send Datato Vertica 75
Send DatatoaMetaStore ... 76
Run a Lua Script after Ingestion 77
Chapter 10: Monitorthe Connector ... 79
IDOL AAMIN L. 79
PrereqUISIteS ... 79
Install IDOL AAMIN ... o 79
Access IDOL AAMIN ... 80
View Connector Statistics ... 81
Use the CoNNECIOr LOGS ... o 82
Customize Logging 83
Monitor the Progress of a Task ... 84
Monitor Asynchronous Actions using EventHandlers 86
Configure an EventHandler 87
Write a Lua Scriptto Handle Events 88
Set Up Performance Monitoring ... 88
Configure the Connectorto Pausecco 89
Determine ifan Actionis Paused ... 90
SetUp Document TraCKing 90

IDOL Confluence REST Connector (12.12) Page 5 of 96

Administration Guide

GlOSSaANY ..o 93

Send documentation feedback 96

IDOL Confluence REST Connector (12.12) Page 6 of 96

Chapter 1: Introduction

This section provides an overview of the Micro Focus Confluence REST Connector.

® Confluence REST CONNECION 7
® Connector Framework Server 9
® The IDOL Platform ... 11
® System Architecture . . 12
® Related Documentation ... 13

Confluence REST Connector

Confluence REST Connector is an IDOL connector that automatically retrieves information from a
Confluence Enterprise Wiki, through the Confluence REST API.

Features and Capabilities
The Confluence REST Connector retrieves information from a Confluence Enterprise Wiki.
Repository Confluence Enterprise Wiki, version 5.5.x t0 6.15.x.
Confluence (hosted)

Data the connector can retrieve Spaces.
Pages.
Blog Posts.
Attachments to Pages and Blog Posts.

Comments on Pages, Blog Posts, and Attachments.

Supported Actions

The Confluence REST Connector supports the following actions:

Action Supported Further Information
Synchronize \/ Retrieve Information from Confluence, on page 47
Synchronize (identifiers) \/ Synchronize from Identifiers, on page 49

IDOL Confluence REST Connector (12.12) Page 7 of 96

Administration Guide
Chapter 1: Introduction

Synchronize Groups

Mapped Security, on page 52

Collect

Identifiers

Insert

Delete/Remove

Hold/ReleaseHold

Update

Stub

GetURI

View

N X X X X N X NN A

Mapped Security

The Confluence REST Connector supports mapped security.

NOTE: To enable mapped security, you must install a Micro Focus plug-in on your Confluence
server. The plug-in (and therefore mapped security) is not supported for Confluence instances
that are hosted in the cloud.

The connector can extract security information for items in Confluence, and add an Access Control
List (ACL) to each document that it produces.

The connector also supports the SynchronizeGroups action, to retrieve information about groups
that are created and stored in Confluence. The connector sends the group information to
OmniGroupServer.

ACL Format <Everyone>:U:<Users>:NU:<Negative
Users>:G:<Groups>:NG:<Negative Groups>

SECURITYTYPE Field Value Confluence

An IDOL index might contain documents that originated from
different connectors. Confluence REST Connector adds the
SECURITYTYPE field to each document, so that you can configure
your IDOL Content component to recognize documents that
originated from this connector, and process each document using
the appropriate security type.

IDOL Confluence REST Connector (12.12) Page 8 of 96

Administration Guide
Chapter 1: Introduction

For more information about configuring Mapped Security with this connector, see Mapped Security,
on page 52.

Display Online Help

You can display the Confluence REST Connector Reference by sending an action from your web
browser. The Confluence REST Connector Reference describes the actions and configuration
parameters that you can use with Confluence REST Connector.

For Confluence REST Connector to display help, the help data file (help.dat) must be available in
the installation folder.

To display help for Confluence REST Connector
1. Start Confluence REST Connector.
2. Send the following action from your web browser:
http://host:port/action=Help
where:

host is the IP address or name of the machine on which Confluence REST Connector is
installed.

port isthe ACI port by which you send actions to Confluence REST Connector (set by the
Port parameter in the [Server] section of the configuration file).

For example:

http://12.3.4.56:9000/action=help

Connector Framework Server

Connector Framework Server (CFS) processes the information that is retrieved by connectors, and
then indexes the information into IDOL.

A single CFS can process information from any number of connectors. For example, a CFS might
process files retrieved by a File System Connector, web pages retrieved by a Web Connector, and e-
mail messages retrieved by an Exchange Connector.

To use the Confluence REST Connector to index documents into IDOL Server, you must have a
CFS. When you install the Confluence REST Connector, you can choose to install a CFS or point the
connector to an existing CFS.

For information about how to configure and use Connector Framework Server, refer to the Connector
Framework Server Administration Guide.

IDOL Confluence REST Connector (12.12) Page 9 of 96

Administration Guide
Chapter 1: Introduction

Filter Documents and Extract Subfiles

The documents that are sent by connectors to CFS contain only metadata extracted from the
repository, such as the location of a file or record that the connector has retrieved. CFS uses
KeyView to extract the file content and file specific metadata from over 1000 different file types, and
adds this information to the documents. This allows IDOL to extract meaning from the information
contained in the repository, without needing to process the information in its native format.

CFS also uses KeyView to extract and process sub-files. Sub-files are files that are contained within
other files. For example, an e-mail message might contain attachments that you want to index, or a
Microsoft Word document might contain embedded objects.

Manipulate and Enrich Documents

CFS provides features to manipulate and enrich documents before they are indexed into IDOL. For
example, you can:

¢ add additional fields to a document.
« divide long documents into multiple sections.

¢ run tasks including Eduction, Optical Character Recognition, or Face Recognition, and add the
information that is obtained to the document.

¢ run a custom Lua script to modify a document.

Index Documents

After CFS finishes processing documents, it automatically indexes them into one or more indexes.
CFS can index documents into:

* IDOL Server (or send them to a Distributed Index Handler, so that they can be distributed
across multiple IDOL servers).

* Vertica.

Import Process

This section describes the import process for new files that are added to IDOL through CFS.

IDOL Confluence REST Connector (12.12) Page 10 of 96

Administration Guide
Chapter 1: Introduction

Format
Detection

Pre-import
processing

Key\iew
filtering

Index into
IDOL server

1. Connectors aggregate documents from repositories and send the files to CFS. A single CFS
can process documents from multiple connectors. For example, CFS might receive HTML files
from HTTP Connectors, e-mail messages from Exchange Connector, and database records
from ODBC Connector.

2. CFSruns pre-import tasks. Pre-Import tasks occur before document content and file-specific
metadata is extracted by KeyView.

3. KeyView filters the document content, and extracts sub-files.

4. CFS runs post-import tasks. Post-Import tasks occur after KeyView has extracted document
content and file-specific metadata.

5. The datais indexed into IDOL.

The IDOL Platform

At the core of Confluence REST Connector is the Intelligent Data Operating Layer (IDOL).

IDOL gathers and processes unstructured, semi-structured, and structured information in any format
from multiple repositories using IDOL connectors and a global relational index. It can automatically
form a contextual understanding of the information in real time, linking disparate data sources
together based on the concepts contained within them. For example, IDOL can automatically link
concepts contained in an email message to a recorded phone conversation, that can be associated
with a stock trade. This information is then imported into a format that is easily searchable, adding

IDOL Confluence REST Connector (12.12) Page 11 of 96

Administration Guide
Chapter 1: Introduction

advanced retrieval, collaboration, and personalization to an application that integrates the
technology.

For more information on IDOL, see the IDOL Getting Started Guide.

System Architecture

An IDOL infrastructure can include the following components:
¢ Connectors. Connectors aggregate data from repositories and send the data to CFS.

¢ Connector Framework Server (CFS). Connector Framework Server (CFS) processes and
enriches the information that is retrieved by connectors.

* IDOL Server. IDOL stores and processes the information that is indexed into it by CFS.

¢ Distributed Index Handler (DIH). The Distributed Index Handler distributes data across
multiple IDOL servers. Using multiple IDOL servers can increase the availability and scalability
of the system.

¢ License Server. The License server licenses multiple products.

These components can be installed in many different configurations. The simplest installation

consists of a single connector, a single CFS, and a single IDOL Server.

CFS

Repository Connector

IDOL

IDOL Confluence REST Connector (12.12) Page 12 of 96

Administration Guide
Chapter 1: Introduction

A more complex configuration might include more than one connector, or use a Distributed Index
Handler (DIH) to index content across multiple IDOL Servers.

Repository Repository Repository

l l
s s

Connector Connector Connector

/44—

Connector Framework Server

l

DIH
IDOL IDOL IDOL

Related Documentation

The following documents provide further information related to Confluence REST Connector.

¢ IDOL NiFilIngest Help

The IDOL NiFi Ingest Help describes how to ingest data using IDOL NiFi Ingest, a set of IDOL
components for data retrieval and enrichment, that run within an open-source framework called
Apache NiFi. NiFi Ingest provides a new way to ingest data into IDOL, and can be used instead

of a Connector Framework Server.

IDOL Confluence REST Connector (12.12) Page 13 of 96

Administration Guide
Chapter 1: Introduction

e Connector Framework Server Administration Guide

Connector Framework Server (CFS) processes documents that are retrieved by connectors.
CFS then indexes the documents into an IDOL index. The Connector Framework Server
Administration Guide describes how to configure and use CFS.

e |IDOL Getting Started Guide

The IDOL Getting Started Guide provides an introduction to IDOL. It describes the system
architecture, how to install IDOL components, and introduces indexing and security.

¢ |IDOL Server Administration Guide

The IDOL Server Administration Guide describes the operations that IDOL server can perform
with detailed descriptions of how to set them up.

¢ IDOL Document Security Administration Guide

The IDOL Document Security Administration Guide describes how to protect the information
that you index into IDOL Server.

* [icense Server Administration Guide

This guide describes how to use a License Server to license multiple services.

IDOL Confluence REST Connector (12.12) Page 14 of 96

Chapter 2: Install Confluence REST
Connector

This section describes how to install the Confluence REST Connector.

® System RequUIremMeNnts .. . 15
® PeIMISSIONS . . 15
® Install Confluence REST Connectoron Windows 15
® Install Confluence REST Connectoron Linux 18
® Install the Confluence Connector PIUugin 18
® Configure OAuth Authentication 19

System Requirements

Confluence REST Connector can be installed as part of a larger system that includes an IDOL Server
and an interface for the information stored in IDOL Server. To maximize performance, Micro Focus
recommends that you install IDOL Server and the connector on different machines.

To use mapped security for documents retrieved from Confluence, you must also install
OmniGroupServer.

Permissions

The user account that you use to retrieve information from Confluence must be granted the following
permissions:

¢ View access to all of the files in the Confluence Spaces that you want to index.

* Space Administrator permission on the Spaces that you want to index, if you want to use
Mapped Security.

To retrieve information from a cloud-hosted instance of Confluence, the REST API must be enabled.

Install Confluence REST Connector on
Windows

To install the Confluence REST Connector on Windows, use the following procedure.

IDOL Confluence REST Connector (12.12) Page 15 of 96

Administration Guide
Chapter 2: Install Confluence REST Connector

To install the Confluence REST Connector
1. Runthe Confluence REST Connector installation program.
The installation wizard opens.
2. Read the installation instructions and click Next.
The License Agreement dialog box opens.

3. Read the license agreement. If you agree to its terms, click | accept the agreement and click
Next.

The Installation Directory dialog box opens.
4. Choose an installation folder for Confluence REST Connector and click Next.
The Service Name dialog box opens.

5. Inthe Service name box, type a name to use for the connector’'s Windows service and click
Next.

The Service Port and ACI Port dialog box opens.

6. Type the following information, and click Next.

Service port The port used by the connector to listen for service actions.

ACI port The port used by the connector to listen for actions.

The License Server Configuration dialog box opens.

7. Type the following information, and click Next.

License server host The host name or IP address of your License server.

License server port The ACI port of your License server.

The IDOL database dialog box opens.

8. Inthe IDOL Database box, type the name of the IDOL database into which you want to index
documents, and click Next.

The Proxy Server dialog box opens.

9. Ifthe connector must use a proxy server to access Confluence, type the following information
and click Next.

Proxy host The host name or IP address of the proxy server to use to access
the repository.

Proxy port The port of the proxy server to use to access the repository.
Proxy username The user name to use to authenticate with the proxy server.
Proxy password The password to use to authenticate with the proxy server.

IDOL Confluence REST Connector (12.12) Page 16 of 96

Administration Guide
Chapter 2: Install Confluence REST Connector

The Confluence server connection dialog box opens.

10. Enter the following information, and click Next.

Confluence server The host name or IP address of the machine that hosts the
hostname Confluence instance.

Confluence server port The port to use to connect to Confluence.

Use secure connection To connectto Confluence over HTTPS, click Yes.

To connect to Confluence over HTTP, click No.

The Confluence server user details dialog box opens.

11. Enter the following information, and click Next.

Username The user name to use to retrieve data from Confluence.

Password The password to use to retrieve data from Confluence.

The Mapped security dialog box opens.

12. Choose whether to retrieve security information (ACLs) for documents retrieved from
Confluence. If you want to use Mapped Security, click Yes. Then, click Next.

Connector Framework Server dialog box opens.
13. Choose whether you want to install a new CFS or use an existing CFS.
* Toinstall a new CFS, select the Install a new CFS check box and click Next.
The Installation Directory dialog box opens. Go to the next step.
e Touse an existing CFS, clear the Install a new CFS check box and click Next.

Type the host name and port of your existing CFS installation. Then, click Next and go to
step 18.

14. Choose an installation folder for the Connector Framework Server and then click Next.
The Installation name dialog box opens.

15. Inthe Service name box, type a unique name for the Connector Framework service and click
Next. The name must not contain any spaces.

The CFS dialog box opens.

16. Type the following information, and click Next.

Service port The port used by CFS to listen for service actions.

ACI port The port used by CFS to listen for actions.

17. Type the following information and click Next.

IDOL Confluence REST Connector (12.12) Page 17 of 96

Administration Guide
Chapter 2: Install Confluence REST Connector

IDOL Server The host name or IP address of the IDOL server that you want to index
hosthame documents into.
ACI port The ACI port of the IDOL server.

The Pre-Installation Summary dialog box opens.

18. Review the installation settings. If necessary, click Back to go back and change any settings. If
you are satisfied with the settings, click Next.

The connector is installed.
19. Click Finish.

You can now edit the connector's configuration file and start the connector.

Install Confluence REST Connector on Linux

To install the Confluence REST Connector, use the following procedure.

To install Confluence REST Connector on Linux

1. Open aterminal in the directory in which you have placed the installer, and run the following
command:

./ConnectorName_VersionNumber_Platform.exe --mode text

2. Follow the on-screen instructions. For information about the options that are specified during
installation, see Install Confluence REST Connector on Windows. For more information about
installing IDOL components, refer to the IDOL Getting Started Guide.

Install the Confluence Connector Plugin

To enable Mapped Security for items retrieved from Confluence, you must install a Micro Focus plug-
in on your Confluence server. The plug-in is used by the connector to retrieve Access Control Lists
(ACLs) for items in Confluence, and to expand Confluence groups.

NOTE: The plug-in (and therefore mapped security) is not supported for Confluence instances
that are hosted in the cloud.

After you install the connector, the plug-in can be found in the connector's installation folder.

For information about installing plug-ins, refer to the Confluence documentation.

IDOL Confluence REST Connector (12.12) Page 18 of 96

Administration Guide
Chapter 2: Install Confluence REST Connector

Configure OAuth Authentication

This section describes how to configure OAuth authentication, so that the connector can retrieve
information from Confluence.

To configure OAuth authentication

1.
2.
3.

Open the folder where you installed the connector.
Open the file oauth_tool.cfgin a text editor.

In the [Default] section, specify any SSL or proxy settings required to access the repository:

SSLMethod The version of SSL/TLS to use.
ProxyHost The host name or IP address of the proxy server to use.
ProxyPort The port of the proxy server to use.

For example:

SSLMethod=NEGOTIATE
ProxyHost=10.0.0.1
ProxyPort=8080

In the [OAuthTool] section, set the following parameters:

AppKey The application key you obtained from Confluence.

AppSecret The application secret you obtained from Confluence.

Save and close the file.
Open a command-line window and run oauth_tool.exe.
Your default web browser opens to the Confluence web site.

Authorize the application to access the repository. You must use the username and password
of an account that has permission to view everything that you want to ingest (such as an
administrator account).

The OAuth configuration tool creates a file named oauth. cfg. This contains the parameters
that the connector requires to authenticate. You can import these parameters into the connector
configuration file, for example:

[MyTask] < "oauth.cfg" [OAUTH]

For more information about including parameters from another file, see Include an External
Configuration File, on page 23. The OAuth tool also prints the parameters it has set to the
command-line window so that you can set these directly in the connector's configuration file if
you prefer.

IDOL Confluence REST Connector (12.12) Page 19 of 96

Chapter 3: Configure Confluence REST
Connector

This section describes how to configure the Confluence REST Connector.

® Confluence REST Connector Configuration File 20
* Modify Configuration Parameter Values 23
® Include an External Configuration File 23
® ENCrypt PassWoOrds 26
¢ Configure Client Authorization 29
*® Register with a Distributed Connector 31
® Set Up Secure CommuniCation 32
® Backup and Restore the Connector's State 34
® Validate the Configuration File 35

Confluence REST Connector Configuration
File

You can configure the Confluence REST Connector by editing the configuration file. The
configuration file is located in the connector’s installation folder. You can modify the file with a text
editor.

The parameters in the configuration file are divided into sections that represent connector
functionality.

Some parameters can be set in more than one section of the configuration file. If a parameter is set in
more than one section, the value of the parameter located in the most specific section overrides the
value of the parameter defined in the other sections. For example, if a parameter can be setin
"TaskName or FetchTasks or Default", the value in the TaskName section overrides the value in the
FetchTasks section, which in turn overrides the value in the Default section. This means that you
can set a default value for a parameter, and then override that value for specific tasks.

For information about the parameters that you can use to configure the Confluence REST Connector,
refer to the Confluence REST Connector Reference.

Server Section

The [Server] section specifies the ACI port of the connector. It can also contain parameters that
control the way the connector handles ACI requests.

IDOL Confluence REST Connector (12.12) Page 20 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

Service Section

The [Service] section specifies the service port of the connector.

Actions Section

The [Actions] section contains configuration parameters that specify how the connector processes
actions that are sent to the ACI port. For example, you can configure event handlers that run when an
action starts, finishes, or encounters an error.

Logging Section

The [Logging] section contains configuration parameters that determine how messages are logged.
You can use log streams to send different types of message to separate log files. The configuration
file also contains a section to configure each of the log streams.

Connector Section

The [Connector] section contains parameters that control general connector behavior. For example,
you can specify a schedule for the fetch tasks that you configure.

Default Section

The [Default] section is used to define default settings for configuration parameters. For example,
you can specify default settings for the tasks in the [FetchTasks] section.

FetchTasks Section

The [FetchTasks] section lists the fetch tasks that you want to run. A fetch task is a task that
retrieves data from a repository. Fetch tasks are usually run automatically by the connector, but you
can also run a fetch task by sending an action to the connector’s ACI port.

In this section, enter the total number of fetch tasks in the Number parameter and then list the tasks in
consecutive order starting from 0 (zero). For example:

[FetchTasks]
Number=2
0=MyTaskeo
1=MyTask1l

IDOL Confluence REST Connector (12.12) Page 21 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

[TaskName] Section

The [TaskName] section contains configuration parameters that apply to a specific task. There must
be a [TaskName] section for every task listed in the [FetchTasks] section.

Ingestion Section

The [Ingestion] section specifies where to send the data that is extracted by the connector.

You can send data to a Connector Framework Server, IDOL NiFi Ingest, or another connector. For
more information about ingestion, see Ingestion, on page 69.

DistributedConnector Section

The [DistributedConnector] section configures the connector to operate with the Distributed
Connector. The Distributed Connector is an ACI server that distributes actions (synchronize,
collect and so on) between multiple connectors.

For more information about the Distributed Connector, refer to the Distributed Connector
Administration Guide.

ViewServer Section

The [ViewServer] section contains parameters that allow the connector’s view action to use a View
Server. If necessary, the View Server converts files to HTML so that they can be viewed in a web
browser.

License Section

The [License] section contains details about the License server (the server on which your license
file is located).

Document Tracking Section

The [DocumentTracking] section contains parameters that enable the tracking of documents
through import and indexing processes.

Related Topics
¢ Modify Configuration Parameter Values, on the next page

e Customize Logging, on page 83

IDOL Confluence REST Connector (12.12) Page 22 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

Modify Configuration Parameter Values

You modify Confluence REST Connector configuration parameters by directly editing the parameters
in the configuration file. When you set configuration parameter values, you must use UTF-8.

CAUTION: You must stop and restart Confluence REST Connector for new configuration settings
to take effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:
TRUE = true =ON =on =Y =y =1
N

FALSE = false = OFF = off =n-=20

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can
indicate the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird, "wing,beak", turtle
Alternatively, you can escape the comma with a backslash:
ParameterName=cat,dog,bird,wing\,beak, turtle

If any string in a comma-separated list contains quotation marks, you must put this string into
quotation marks and escape each quotation mark in the string by inserting a backslash before it. For
example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Include an External Configuration File

You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

IDOL Confluence REST Connector (12.12) Page 23 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

When you include content from an external configuration file, the GetConfig and validateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

../sharedconfig.cfg
K:\sharedconfig\sharedsettings.cfg
\\example.com\shared\idol.cfg
file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

NOTE: You can use nested inclusions, for example, you can refer to a shared configuration file
that references a third file. However, the external configuration files must not refer back to your
original configuration file. These circular references result in an error, and Confluence REST
Connector does not start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Include the Whole External Configuration File

This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file
1. Open your configuration file in a text editor.
2. Find the place in the configuration file where you want to add the external configuration file.

3. Onanew line, type a left angle bracket (<), followed by the path to and name of the external
configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

4. Save and close the configuration file.

Include Sections of an External Configuration File

This method allows you to import one or more configuration sections (including the section headings)
from an external configuration file at a specified point in your configuration file. You can include a
whole configuration section in this way, but the configuration section name in the external file must
exactly match what you want to use in your file. If you want to use a configuration section from the
external file with a different name, see Merge a Section from an External Configuration File, on

page 26.

IDOL Confluence REST Connector (12.12) Page 24 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

To include sections of an external configuration file
1. Open your configuration file in a text editor.

2. Find the place in the configuration file where you want to add the external configuration file
section.

3. Onanew line, type a left angle bracket (<), followed by the path of the external configuration
file, in quotation marks (""). You can use relative paths and network locations. After the
configuration file path, add the configuration section name that you want to include. For
example:

< "K:\sharedconfig\extrasettings.cfg" [License]
NOTE: You cannot include a section that already exists in your configuration file.

4. Save and close the configuration file.

Include Parameters from an External Configuration File

This method allows you to import one or more parameters from an external configuration file at a
specified point in your configuration file. You can import a single parameter or use wildcards to
specify multiple parameters. The parameter values in the external file must match what you want to
use in your file. This method does not import the section heading, such as [License] in the following
examples.

To include parameters from an external configuration file
1. Open your configuration file in a text editor.

2. Find the place in the configuration file where you want to add the parameters from the external
configuration file.

3. Onanew line, type a left angle bracket (<), followed by the path of the external configuration
file, in quotation marks (""). You can use relative paths and network locations. After the
configuration file path, add the name of the section that contains the parameter, followed by the
parameter name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external
configuration file, specify the configuration section, parameter name, and then an equals sign
(=) followed by the default value. For example:

< "license.cfg" [License] LicenseServerHost=1localhost

You can use wildcards to import multiple parameters, but this method does not support default
values. The * wildcard matches zero or more characters. The ? wildcard matches any single
character. Use the pipe character | as a separator between wildcard strings. For example:

< "license.cfg" [License] LicenseServer*

4. Save and close the configuration file.

IDOL Confluence REST Connector (12.12) Page 25 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

Merge a Section from an External Configuration File

This method allows you to include a configuration section from an external configuration file as part of
your Confluence REST Connector configuration file. For example, you might want to specify a
standard SSL configuration section in an external file and share it between several servers. You can
use this method if the configuration section that you want to import has a different name to the one
you want to use.

To merge a configuration section from an external configuration file
1. Open your configuration file in a text editor.

2. Find or create the configuration section that you want to include from an external file. For
example:

[SSLOptions1]

3. After the configuration section name, type a left angle bracket (<), followed by the path to and
name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptionsl] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

[SSLOptionsl] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, Confluence REST Connector uses the values in the [SharedSSLOptions]
section of the external configuration file as the values in the [SSLOptions1] section of the
Confluence REST Connector configuration file.

NOTE: You can include additional configuration parameters in the section in your file. If
these parameters also exist in the imported external configuration file, Confluence REST
Connector uses the values in the local configuration file. For example:

[SSLOptionsl] < "ssloptions.cfg" [SharedSSLOptions]
SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

4. Save and close the configuration file.

Encrypt Passwords

Micro Focus recommends that you encrypt all passwords that you enter into a configuration file.

NOTE: The AES encryption method has been hardened in version 12.9.0 and later. Micro Focus
strongly recommends that you reencrypt all passwords in configuration files by using the updated

IDOL Confluence REST Connector (12.12) Page 26 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

tool.

The older AES encryption format and basic encryption methods are now deprecated. Passwords
that you have encrypted with older versions continue to work, but Confluence REST Connector
logs a warning. Support for these older encryption methods will be removed in future.

Create a Key File

A key file is required to use AES encryption.
To create a new key file

1. Open a command-line window and change directory to the Confluence REST Connector
installation folder.

2. Atthe command line, type:
autpassword -x -tAES -oKeyFile=./MyKeyFile.Ry
A new key file is created with the name MyKeyFile.ky
CAUTION: To keep your passwords secure, you must protect the key file. Set the permissions on

the key file so that only authorized users and processes can read it. Confluence REST Connector
must be able to read the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password

The following procedure describes how to encrypt a password.
To encrypt a password

1. Open a command-line window and change directory to the Confluence REST Connector
installation folder.

2. Atthe command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]

PasswordString

where:
Option Description
- The type of encryption to use:
tEncryptionType

* AES - AES256

e Basic

DEPRECATED: The basic encryption type is deprecated in
version 12.9.0 and later. Use the more secure AES encryption

IDOL Confluence REST Connector (12.12) Page 27 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

Option Description

instead.

Passwords that you have encrypted with older versions
continue to work, but Confluence REST Connector logs a
warning. Support for this older encryption method will be
removed in future.

For example: -tAES

-oKeyFile AES encryption requires a key file. This option specifies the path and
file name of a key file. The key file must contain 64 hexadecimal
characters.

For example: -oKeyFile=. /key.ky

NOTE: The full (absolute) path of the key file is included in the
encrypted value, because Confluence REST Connector requires
the key to decrypt the password. If you move or rename the key
file, this path becomes invalid and you must update the encrypted

value.
-cFILE - (Optional) You can use these options to write the password directly
SSECTION - into a configuration file. You must specify all three options.

pPARAMETER . . o . .
¢ -c. The configuration file in which to write the encrypted

password.

¢ -s. The name of the section in the configuration file in which to
write the password.

¢ -p. The name of the parameter in which to write the encrypted
password.

For example:

-c./Config.cfg -sMyTask -pPassword

PasswordString The password to encrypt.

For example:
autpassword -e -tBASIC MyPassword
autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword
MyPassword

The password is returned, or written to the configuration file.

IDOL Confluence REST Connector (12.12) Page 28 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

Decrypt a Password

The following procedure describes how to decrypt a password.
To decrypt a password

1. Open a command-line window and change directory to the Confluence REST Connector
installation folder.

2. Atthe command line, type:

autpassword -d -tEncryptionType PasswordString

where:
Option Description
-tEncryptionType The type of encryption:
e Basic
e AES - AES256
For example: -tAES
PasswordString The password to decrypt.
For example:

autpassword -d -tBASIC 9t3M3t7awt/J8A
autpassword -d -tAES PasswordString

The password is returned in plain text.

Configure Client Authorization

You can configure Confluence REST Connector to authorize different operations for different
connections.

Authorization roles define a set of operations for a set of users. You define the operations by using
the StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

For more information about the available parameters, see the Confluence REST Connector
Reference.

IMPORTANT: To ensure that Confluence REST Connector allows only the options that you
configure in [AuthorizationRoles], make sure that you delete any deprecated RoleClients
parameters from your configuration (where Role corresponds to a standard role name, for

IDOL Confluence REST Connector (12.12) Page 29 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

example AdminClients).

To configure authorization roles
1. Open your configuration file in a text editor.
2. Findthe [AuthorizationRoles] section, or create one if it does not exist.

3. Inthe [AuthorizationRoles] section, list the user authorization roles that you want to create.
For example:

[AuthorizationRoles]
@=AdminRole
1=UserRole

4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

[AdminRole]

5. Inthe section for each role, define the operations that you want the role to be able to perform.
You can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed
actions by using Actions, and ServiceActions. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus

[UserRole]
Actions=GetVersion
ServiceActions=GetStatus

NOTE: The standard roles do not overlap. If you want a particular role to be able to perform
all actions, you must include all the standard roles, or ensure that the clients, SSL identities,
and so on, are assigned to all relevant roles.

6. Inthe section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the
operations allowed by the role. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus
Clients=localhost
SSLIdentities=admin.example.com

7. Save and close the configuration file.

8. Restart Confluence REST Connector for your changes to take effect.

IMPORTANT: If you do not provide any authorization roles for a standard role, Confluence REST
Connector uses the default client authorization for the role (localhost for Admin and

ServiceControl, all clients for Query and ServiceStatus). If you define authorization only by
actions, Micro Focus recommends that you configure an authorization role that disallows all users

IDOL Confluence REST Connector (12.12) Page 30 of 96

Administration Guide

Chapter 3: Configure Confluence REST Connector

for all roles by default. For example:

[ForbidAllRoles]
StandardRoles=*
Clients=""

This configuration ensures that Confluence REST Connector uses only your action-based

authorizations.

Register with a Distributed Connector

To receive actions from a Distributed Connector, a connector must register with the Distributed
Connector and join a connector group. A connector group is a group of similar connectors. The
connectors in a group must be of the same type (for example, all HTTP Connectors), and must be
able to access the same repository.

To configure a connector to register with a Distributed Connector, follow these steps. For more
information about the Distributed Connector, refer to the Distributed Connector Administration Guide.

To register with a Distributed Connector

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. Inthe [DistributedConnector] section, set the following parameters:

RegisterConnector

HostN

PortN
DataPortN

ConnectorGroup

ConnectorPriority

SharedPath

(Required) To register with a Distributed Connector, set this
parameter to true.

(Required) The host name or IP address of the Distributed
Connector.

(Required) The ACI port of the Distributed Connector.
(Optional) The data port of the Distributed Connector.

(Required) The name of the connector group to join. The value of this
parameter is passed to the Distributed Connector.

(Optional) The Distributed Connector can distribute actions to
connectors based on a priority value. The lower the value assigned
to ConnectorPriority, the higher the probability that an action is
assigned to this connector, rather than other connectors in the same
connector group.

(Optional) The location of a shared folder that is accessible to all of
the connectors in the ConnectorGroup. This folder is used to store
the connectors’ datastore files, so that whichever connector in the

IDOL Confluence REST Connector (12.12) Page 31 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

group receives an action, it can access the information required to
complete it. If you set the DataPortN parameter, the datastore file is
streamed directly to the Distributed Connector, and this parameter is
ignored.

4. Save and close the configuration file.
5. Start the connector.

The connector registers with the Distributed Connector. When actions are sent to the
Distributed Connector for the connector group that you configured, they are forwarded to this
connector or to another connector in the group.

Set Up Secure Communication

You can configure Secure Socket Layer (SSL) connections between the connector and other ACI
servers.

Configure Outgoing SSL Connections

To configure the connector to send data to other components (for example Connector Framework
Server) over SSL, follow these steps.

To configure outgoing SSL connections
1. Open the Confluence REST Connector configuration file in a text editor.
2. Specify the name of a section in the configuration file where the SSL settings are provided:

¢ To send data to an ingestion server over SSL, set the IngestSSLConfig parameter in the
[Ingestion] section. To send data from a single fetch task to an ingestion server over SSL,
set IngestSSLConfigin a [TaskName] section.

» To send data to a Distributed Connector over SSL, set the SSLConfig parameter in the
[DistributedConnector] section.

¢ Tosend data to a View Server over SSL, set the SSLConfig parameter in the [ViewServer]
section.

You can use the same settings for each connection. For example:
[Ingestion]
IngestSSLConfig=SSLOptions

[DistributedConnector]
SSLConfig=SSLOptions

IDOL Confluence REST Connector (12.12) Page 32 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

3. Create a new section in the configuration file. The name of the section must match the name

you specified in the IngestSSLConfig or SSLConfig parameter. Then specify the SSL settings
to use.

SSLMethod The SSL protocol to use.
SSLCertificate (Optional) The SSL certificate to use (in PEM format).

SSLPrivateKey (Optional) The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
SSLMethod=TLSV1.3
SSLCertificate=hostl.crt
SSLPrivateKey=hostl.key

4. Save and close the configuration file.

5. Restart the connector.

Related Topics

« Start and Stop the Connector, on page 36

Configure Incoming SSL Connections

To configure a connector to accept data sent to its ACI port over SSL, follow these steps.

To configure an incoming SSL Connection

1.
2.
3.

Stop the connector.
Open the configuration file in a text editor.

In the [Server] section set the SSLConfig parameter to specify the name of a section in the
configuration file for the SSL settings. For example:

[Server]
SSLConfig=SSLOptions

Create a new section in the configuration file (the name must match the name you used in the
SSLConfig parameter). Then, use the SSL configuration parameters to specify the details for
the connection. You must set the following parameters:

SSLMethod The SSL protocol to use.
SSLCertificate The SSL certificate to use (in PEM format).

SSLPrivateKey The private key for the SSL certificate (in PEM format).

For example:

IDOL Confluence REST Connector (12.12) Page 33 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

[SSLOptions]
SSLMethod=TLSV1.3
SSLCertificate=hostl.crt
SSLPrivateKey=hostl.key

5. Save and close the configuration file.
6. Restart the connector.

Related Topics
« Start and Stop the Connector, on page 36

Backup and Restore the Connector’s State

After configuring a connector, and while the connector is running, you can create a backup of the
connector’s state. In the event of a failure, you can restore the connector’s state from the backup.

To create a backup, use the backupServer action. The backupServer action saves a ZIP file to a
path that you specify. The backup includes:

¢ acopy of the actions folder, which stores information about actions that have been queued,
are running, and have finished.

« acopy of the configuration file.

¢ a copy of the connector’s datastore files, which contain information about the files, records, or
other data that the connector has retrieved from a repository.

Backup a Connector’s State

To create a backup of the connectors state
¢ Inthe address bar of your Web browser, type the following action and press ENTER:
http://host:port/action=backupServer&path=path
where,
host The host name or IP address of the machine where the connector is running.
port The connector's ACI port.

path The folder where you want to save the backup.

For example:

http://localhost:1234/action=backupServer&path=./backups

IDOL Confluence REST Connector (12.12) Page 34 of 96

Administration Guide
Chapter 3: Configure Confluence REST Connector

Restore a Connector’s State

To restore a connector’s state
¢ Inthe address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=restoreServer&filename=filename

where,
host The host name or IP address of the machine where the connector is running.
port The connector’s ACI port.

filename The path of the backup that you created.

For example:

http://localhost:1234/action=restoreServer&filename=. /backups/filename.zip

Validate the Configuration File

You can use the ValidateConfig service action to check for errors in the configuration file.

NOTE: For the validateConfig action to validate a configuration section, Confluence REST
Connector must have previously read that configuration. In some cases, the configuration might
be read when a task is run, rather than when the component starts up. In these cases,
ValidateConfig reports any unread sections of the configuration file as unused.

To validate the configuration file
¢ Send the following action to Confluence REST Connector:
http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where Confluence REST
Connector is installed.

ServicePort isthe service port, as specified in the [Service] section of the configuration
file.

IDOL Confluence REST Connector (12.12) Page 35 of 96

Chapter 4: Start and Stop the
Connector

This section describes how to start and stop the Confluence REST Connector.

® Startthe CoNNeCtOr ... 36
* Verify that Confluence REST Connectoris Running 37
O StOP the CONNEC O 38

NOTE: You must start and stop the Connector Framework Server separately from the Confluence
REST Connector.

Start the Connector

After you have installed and configured a connector, you are ready to run it. Start the connector using
one of the following methods.

Start the Connector on Windows

To start the connector using Windows Services
1. Open the Windows Services dialog box.
2. Select the connector service, and click Start.

3. Close the Windows Services dialog box.

To start the connector by running the executable

¢ In the connector installation directory, double-click the connector executable file.

Start the Connector on UNIX

To start the connector on a UNIX operating system, follow these steps.

To start the connector using the UNIX start script
1. Change to the installation directory.
2. Enter the following command:

./startconnector.sh

IDOL Confluence REST Connector (12.12) Page 36 of 96

Administration Guide
Chapter 4: Start and Stop the Connector

3. Ifyou want to check the Confluence REST Connector service is running, enter the following
command:

ps -aef | grep ConnectorInstallName

This command returns the Confluence REST Connector service process ID number if the
service is running.

Verify that Confluence REST Connector is
Running

After starting Confluence REST Connector, you can run the following actions to verify that
Confluence REST Connector is running.

¢ GetStatus

¢ GetLicenselnfo

GetStatus

You can use the GetStatus service action to verify the Confluence REST Connector is running. For
example:

http://Host:ServicePort/action=GetStatus

NOTE: You can send the GetStatus action to the ACI port instead of the service port. The
GetStatus ACI action returns information about the Confluence REST Connector setup.

GetLicenselnfo

You can send a GetLicenseInfo action to Confluence REST Connector to return information about
your license. This action checks whether your license is valid and returns the operations that your
license includes.

Send the GetLicenseInfo action to the Confluence REST Connector ACI port. For example:
http://Host:ACIport/action=GetLicenseInfo
The following result indicates that your license is valid.

<autn:license>
<autn:validlicense>true</autn:validlicense>
</autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

IDOL Confluence REST Connector (12.12) Page 37 of 96

Administration Guide
Chapter 4: Start and Stop the Connector

Stop the Connector

You must stop the connector before making any changes to the configuration file.

To stop the connector using Windows Services
1. Open the Windows Services dialog box.
2. Select the ConnectorInstal LName service, and click Stop.

3. Close the Windows Services dialog box.

To stop the connector by sending an action to the service port
¢ Type the following command in the address bar of your Web browser, and press ENTER:

http://host:ServicePort/action=stop

host The IP address or host name of the machine where the connector is
running.

ServicePort The connector’s service port (specified in the [Service] section of the
connector’s configuration file).

IDOL Confluence REST Connector (12.12) Page 38 of 96

Chapter 5: Send Actions to Confluence
REST Connector

This section describes how to send actions to Confluence REST Connector.

¢ Send Actions to Confluence REST Connector 39
® ASYNCNIroNOUS ACHIONS . . 39
® Store Action Queues inan External Database 41
® Store Action QUEUES IN MEMOIY . . 44
® Use XSL Templates to Transform Action Responses .. 45

Send Actions to Confluence REST Connector

Confluence REST Connector actions are HTTP requests, which you can send, for example, from
your web browser. The general syntax of these actions is:

http://host:port/action=action¶meters

where:

host is the IP address or name of the machine where Confluence REST Connector is
installed.

port is the Confluence REST Connector ACI port. The ACI port is specified by the Port
parameter in the [Server] section of the Confluence REST Connector
configuration file. For more information about the Port parameter, see the
Confluence REST Connector Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

NOTE: Separate individual parameters with an ampersand (&). Separate parameter names from
values with an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the Confluence REST Connector Reference.

Asynchronous Actions

When you send an asynchronous action to Confluence REST Connector, the connector adds the
task to a queue and returns a token. Confluence REST Connector performs the task when a thread

IDOL Confluence REST Connector (12.12) Page 39 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

becomes available. You can use the token with the QueueInfo action to check the status of the action
and retrieve the results of the action.

Most of the features provided by the connector are available through action=fetch, so when you
use the QueueInfo action, query the fetch action queue, for example:

/action=QueueInfo&QueueName=Fetch&QueueAction=GetStatus

Check the Status of an Asynchronous Action

To check the status of an asynchronous action, use the token that was returned by Confluence REST
Connector with the QueueInfo action. For more information about the QueueInfo action, refer to the
Confluence REST Connector Reference.

To check the status of an asynchronous action

¢ Send the QueueInfo action to Confluence REST Connector with the following parameters.

QueueName The name of the action queue that you want to check.
QueueAction The action to perform. Set this parameter to GetStatus.
Token (Optional) The token that the asynchronous action returned. If you do

not specify a token, Confluence REST Connector returns the status
of every action in the queue.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued

To cancel an asynchronous action that is waiting in a queue, use the following procedure.

To cancel an asynchronous action that is queued

¢ Send the QueueInfo action to Confluence REST Connector with the following parameters.

QueueName The name of the action queue that contains the action to cancel.
QueueAction The action to perform . Set this parameter to Cancel.
Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Cancel&Token=...

Stop an Asynchronous Action that is Running

You can stop an asynchronous action at any point.

IDOL Confluence REST Connector (12.12) Page 40 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

To stop an asynchronous action that is running

¢ Send the QueueInfo action to Confluence REST Connector with the following parameters.

QueueName The name of the action queue that contains the action to stop.
QueueAction The action to perform. Set this parameter to Stop.
Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Stop&Token=...

Store Action Queues in an External Database

Confluence REST Connector provides asynchronous actions. Each asynchronous action has a
queue to store requests until threads become available to process them. You can configure
Confluence REST Connector to store these queues either in an internal database file, orin an
external database hosted on a database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to
the shared queue. Whenever a server is ready to start processing a new request, it takes the next
request from the shared queue, runs the action, and adds the results of the action back to the shared
database so that they can be retrieved by any of the servers. You can therefore distribute requests
between components without configuring a Distributed Action Handler (DAH).

NOTE: You cannot use multiple servers to process a single request. Each request is processed
by one server.

NOTE: Although you can configure several connectors to share the same action queues, the
connectors do not share fetch task data. If you share action queues between several connectors
and distribute synchronize actions, the connector that processes a synchronize action cannot
determine which items the other connectors have retrieved. This might result in some documents
being ingested several times.

Prerequisites

¢ Supported databases:
° PostgreSQL 9.0 or later.
° MySQL 5.0 or later.

IDOL Confluence REST Connector (12.12) Page 41 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

¢ On each machine that hosts Confluence REST Connector, you must install an ODBC driver for
your chosen database. On Linux you must also install the unixODBC driver manager and
configure the name and path of the ODBC driver in the unixODBC odbcinst.ini configuration
file.

* If you use PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxVvarcChar to @
(zero). If you use a DSN, you can configure this parameter when you create the DSN.
Otherwise, you can set the MaxVarcharSize parameter in the connection string.

Configure Confluence REST Connector

To configure Confluence REST Connector to use a shared action queue, follow these steps.

To store action queues in an external database
1. Stop Confluence REST Connector, if it is running.
2. Open the Confluence REST Connector configuration file.
3. Find the relevant section in the configuration file:

» To store queues for all asynchronous actions in the external database, find the [Actions]
section.

¢ To store the queue for a single asynchronous action in the external database, find the
section that configures that action.

4. Setthe following configuration parameters.
AsyncStoreLibraryDirectory The path of the directory that contains the library to use to

connect to the database. Specify either an absolute path,
or a path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database.
You can omit the file extension. The following libraries are
available:

* postgresAsyncStoreLibrary - for connecting to a
PostgreSQL database.

* mysqlAsyncStoreLibrary - for connecting to a
MySQL database.

ConnectionString The connection string to use to connect to the database.
The user that you specify must have permission to create
tables in the database. For example:

ConnectionString=DSN=ActionStore
or

ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;

IDOL Confluence REST Connector (12.12) Page 42 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

Database=SharedActions; Uid=user; Pwd=password;
MaxVarcharSize=0;

If your connection string includes a password, Micro
Focus recommends encrypting the value of the parameter
before entering it into the configuration file. Encrypt the
entire connection string. For information about how to
encrypt parameter values, see Encrypt Passwords, on
page 26.

For example:

[Actions]

AsyncStorelLibraryDirectory=acidlls
AsyncStorelLibraryName=postgresAsyncStorelLibrary
ConnectionString=DSN=ActionStore

5. You can use the same database to store action queues for more than one type of IDOL
component (for example, a group of File System Connectors and a group of Media Servers). To
use a database for more than one type of component, set the following parameter in the
[Actions] section of the configuration file.

DatastoreSharingGroupName The group of components to share actions with. You can
set this parameter to any string, but the value must be the
same for each server in the group. For example, to
configure several Confluence REST Connectors to share
their action queues, set this parameter to the same value in
every Confluence REST Connector configuration. Micro
Focus recommends setting this parameter to the name of
the component.

CAUTION: Do not configure different components (for
example, two different types of connector) to share the
same action queues. This will result in unexpected
behavior.

For example:

[Actions]

DatastoreSharingGroupName=MediaServer
6. Save and close the configuration file.

When you start Confluence REST Connector it connects to the shared database.

IDOL Confluence REST Connector (12.12) Page 43 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

Store Action Queues in Memory

Confluence REST Connector provides asynchronous actions. Each asynchronous action has a
queue to store requests until threads become available to process them. These queues are usually
stored in a datastore file or in a database hosted on a database server, but in some cases you can
increase performance by storing these queues in memory.

NOTE: Storing action queues in memory improves performance only when the server receives
large numbers of actions that complete quickly. Before storing queues in memory, you should
also consider the following:

e The queues (including queued actions and the results of finished actions) are lost if
Confluence REST Connector stops unexpectedly, for example due to a power failure or the
component being forcibly stopped. This could result in some requests being lost, and if the
queues are restored to a previous state some actions could run more than once.

 Storing action queues in memory prevents multiple instances of a component being able to
share the same queues.

« Storing action queues in memory increases memory use, so please ensure that the server
has sufficient memory to complete actions and store the action queues.

If you stop Confluence REST Connector cleanly, Confluence REST Connector writes the action
queues from memory to disk so that it can resume processing when it is next started.

To configure Confluence REST Connector to store asynchronous action queues in memory, follow
these steps.

To store action queues in memory

1.
2.
3.

Stop Confluence REST Connector, if it is running.
Open the Confluence REST Connector configuration file and find the [Actions] section.
If you have set any of the following parameters, remove them:

e AsyncStoreLibraryDirectory

e AsyncStorelLibraryName

e ConnectionString

e UseStringentDatastore

Set the following configuration parameters.

UseInMemoryDatastore A Boolean value that specifies whether to keep
the queues for asynchronous actions in
memory. Set this parameter to TRUE.

IDOL Confluence REST Connector (12.12) Page 44 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at
which the action queues are written to disk.
Writing the queues to disk can reduce the
number of queued actions that would be lost if
Confluence REST Connector stops
unexpectedly, but configuring a frequent
backup will increase the load on the datastore
and might reduce performance.

For example:

[Actions]
UseInMemoryDatastore=TRUE
InMemoryDatastoreBackupIntervalMins=30

5. Save and close the configuration file.

When you start Confluence REST Connector, it stores action queues in memory.

Use XSL Templates to Transform Action
Responses

You can transform the action responses returned by Confluence REST Connector using XSL
templates. You must write your own XSL templates and save them with either an .xs1 or . tmp1 file
extension.

After creating the templates, you must configure Confluence REST Connector to use them, and then
apply them to the relevant actions.

To enable XSL transformations

1. Ensure that the autnxslt library is located in the same directory as your configuration file. If the
library is not included in your installation, you can obtain it from Micro Focus Support.

2. Open the Confluence REST Connector configuration file in a text editor.

3. Inthe [Server] section, ensure that the XSLTemplates parameter is set to true.

CAUTION: If XSLTemplates is set to true and the autnxs1t library is not present in the
same directory as the configuration file, the server will not start.

4. (Optional) Inthe [Paths] section, set the TemplateDirectory parameter to the path to the
directory that contains your XSL templates. The default directory is acitemplates.

5. Save and close the configuration file.

6. Restart Confluence REST Connector for your changes to take effect.

IDOL Confluence REST Connector (12.12) Page 45 of 96

Administration Guide
Chapter 5: Send Actions to Confluence REST Connector

To apply a template to action output

¢ Add the following parameters to the action:

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started,
set this parameter to true to force the AClI server to reload the
template from disk rather than from the cache.

For example:

action=QueueInfo&QueueName=Fetch
&QueueAction=GetStatus
&Token=...
&Template=myTemplate

In this example, Confluence REST Connector applies the XSL template myTemplate to the
response from a QueueInfo action.

NOTE: If the action returns an error response, Confluence REST Connector does not apply
the XSL template.

Example XSL Templates

Confluence REST Connector includes the following sample XSL templates, in the acitemplates
folder:

XSL Template Description

FetchIdentifiers Transforms the output from the Identifiers fetch action, to
show what is in the repository.

FetchIdentifiersTreeview Transforms the output from the Identifiers fetch action, to
show what is in the repository. This template produces a tree or
hierarchical view, instead of the flat view produced by the
FetchIdentifiers template.

LuaDebug Transforms the output from the LuaDebug action, to assist with
debugging Lua scripts.

IDOL Confluence REST Connector (12.12) Page 46 of 96

Chapter 6: Use the Connector

This section describes how to use the connector.

® Retrieve Information from Confluence 47
® Synchronize from ldentifiers 49
® Schedule Fetch Tasks 49
* Use Document Metadata to Navigate Between ltems 51

Retrieve Information from Confluence

To automatically retrieve content from Confluence, create a new fetch task by following these steps.
The connector runs each fetch task automatically, based on the schedule that is configured in the
configuration file.

To create a new Fetch Task
1. Stop the connector.
2. Open the configuration file in a text editor.

3. Inthe [FetchTasks] section of the configuration file, specify the number of fetch tasks using the
Number parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch
tasks have already been configured, increase the value of the Number parameter by one (1).
Below the Number parameter, specify the names of the fetch tasks, starting from zero (0). For
example:

[FetchTasks]
Number=1
0=MyTask

4. Below the [FetchTasks] section, create a new TaskName section. The name of the section
must match the name of the new fetch task. For example:

[FetchTasks]
Number=1
0=MyTask

[MyTask]

IDOL Confluence REST Connector (12.12) Page 47 of 96

Administration Guide
Chapter 6: Use the Connector

5. Inthe new section, set the following parameters:

ConfluenceHost The host name or IP address of the machine that hosts the
Confluence instance.

ConfluencePort The port to use to connect to Confluence.

UseSecureConnection Specifies whether to connect to Confluence using HTTPS. To use
HTTPS, rather than HTTP, set this parameter to TRUE.

MappedSecurity Specifies whether to enable mapped security. To extract security
information from the repository and add an Access Control List
(ACL) to each document, set this parameter to TRUE.

6. Specify the information required by the connector to authenticate with Confluence.

* Touse HTTP basic authentication, set the following parameters:

BasicUsername The user name to use to retrieve data from Confluence.

BasicPassword The password to use to retrieve data from Confluence.

¢ To use OAuth authentication, follow the instructions in Configure OAuth Authentication, on

page 19. After using the OAuth configuration tool to generate the file oauth. cfg, import the
parameters into the connector configuration file:

[MyTask] < "oauth.cfg" [OAUTH]

For more information about including parameters from another file, see Include an External
Configuration File, on page 23.

7. (Optional) You can set additional parameters to choose which information to ingest. For
example:

SpaceMustHaveRegex A regular expression to restrict the spaces that are ingested. Unless
the title of a space matches the regular expression, the space and
all of its child pages and blog posts are ignored.

SpaceCantHaveRegex A regular expression to restrict the spaces that are ingested. If the
title of a space matches the regular expression, the space and all of
its child pages and blog posts are ignored.

For a complete list of configuration parameters that you can use, refer to the Confluence REST
Connector Reference.

8. Save and close the configuration file.

IDOL Confluence REST Connector (12.12) Page 48 of 96

Administration Guide
Chapter 6: Use the Connector

Synchronize from Identifiers

The connector’s synchronize action searches a repository for document updates and sends these
updates for ingestion (for example, to CFS, for indexing into IDOL Server).

You can use the identifiers parameter to synchronize a specific set of documents, whether they
have been updated or not, and ignore other files. For example:

/action=fetch&fetchaction=synchronize&identifiers=<identifiers>

(where <identifiers> is a comma-separated list of identifiers that specifies the documents to
synchronize).

For example, if some documents fail the ingestion process, and are indexed into an IDOL Error
Server, you can use the identifiers parameter with the synchronize action to retrieve those
documents again. You can retrieve a list of identifiers for the failed documents by sending a query to
the IDOL Error Server. For more information about IDOL Error Server, refer to the IDOL Error Server
Technical Note. For more information about the synchronize action, refer to the Confluence REST
Connector Reference.

Schedule Fetch Tasks

The connector automatically runs the fetch tasks that you have configured, based on the schedule in
the configuration file. To modify the schedule, follow these steps.

To schedule fetch tasks

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.
3. Findthe [Connector] section
4

. The EnableScheduleTasks parameter specifies whether the connector should automatically
run the fetch tasks that have been configured in the [FetchTasks] section. To run the tasks, set
this parameter to true. For example:

[Connector]
EnableScheduledTasks=True

5. Inthe [Connector] section, set the following parameters:

ScheduleStartTime The start time for the fetch task, the first time it runs after you start
the connector. The connector runs subsequent synchronize cycles
after the interval specified by ScheduleRepeatSecs.

Specify the start time in the format H[H][:MM][:SS]. To start running

IDOL Confluence REST Connector (12.12) Page 49 of 96

Administration Guide
Chapter 6: Use the Connector

ScheduleRepeatSecs

ScheduleCycles

For example:

[Connector]

tasks as soon as the connector starts, do not set this parameter or
use the value now.

Tasks scheduled to start at the same time run in the order that they
are enumerated by the N parameter (in the [FetchTasks] section of
the configuration file).

The interval (in seconds) from the start of one scheduled
synchronize cycle to the start of the next. If a previous synchronize
cycle is still running when the interval elapses, the connector
queues a maximum of one action.

The number of times that each fetch task is run. To run the tasks
continuously until the connector is stopped, set this parameter to -
1. To run each task only one time, set this parameter to 1.

EnableScheduledTasks=True
ScheduleStartTime=15:00:00
ScheduleRepeatSecs=3600

ScheduleCycles=-1

6. (Optional) To run a specific fetch task on a different schedule, you can override these
parameters in a TaskName section of the configuration file. For example:

[Connector]

EnableScheduledTasks=TRUE
ScheduleStartTime=15:00:00
ScheduleRepeatSecs=3600

ScheduleCycles=-1

[FetchTasks]
Number=2
0=MyTaskeo
1=MyTaskl

[MyTask1]

ScheduleStartTime=16:00:00

ScheduleRepeatSecs=60
ScheduleCycles=-1

In this example, MyTask®e follows the schedule defined in the [Connector] section, and MyTask1
follows the scheduled defined in the [MyTask1] TaskName section.

7. Save and close the configuration file. You can now start the connector.

IDOL Confluence REST Connector (12.12) Page 50 of 96

Administration Guide
Chapter 6: Use the Connector

Related Topics
» Start and Stop the Connector, on page 36

Use Document Metadata to Navigate
Between Items

The connector adds metadata to each document describing the path and ID of its parent item. This
means that if you query IDOL Content and your search returns a page from Confluence, you can use
the metadata to retrieve the parent space or page, and search for any child pages, attachments, and
comments.

The connector adds the following metadata fields to each document:

id An identifier for the item.
PARENT_ID An identifier for the item's parent.

PARENT_HIERARCHY The position of the parent item in the Confluence hierarchy. This field
contains a colon-separated list of IDs. For example, an attachment might
have a PARENT_HIERARCHY that includes a space and a page:

#DREFIELD PARENT_HIERARCHY="SPACE:262146"

After your documents have been ingested you might search your IDOL index and find a document
that represents a page in Confluence. The document might have the following metadata fields:

#DREFIELD id="262146"
#DREFIELD PARENT_HIERARCHY="SPACE"
#DREFIELD PARENT_ID="SPACE"

You might want to see the documents that this page is associated with. You can retrieve the parent
item using the value from the PARENT_ID field:

action=Query&FieldText=MATCH{SPACE}:id

To find child items, you can take the item's own ID and perform a search against the PARENT_ID field
of other documents, for example:

action=Query&FieldText=MATCH{262146}:PARENT_ID

IDOL Confluence REST Connector (12.12) Page 51 of 96

Chapter 7: Mapped Security

This section describes how to set up mapped security for information that is extracted from
Confluence.

®INtrOdUCHION . 52
® Setup Mapped SeCUNY ... 54
*® Retrieve and Index Access Control Lists ... 54
® Retrieve SECUNLY GrOUPS ... o 55

Introduction

The mapped security architecture includes the following components:
¢ Confluence.
¢ Confluence REST Connector
¢ Micro Focus OmniGroupServer
¢ Micro Focus IDOL server
¢ Micro Focus IDOL Mapped Security plug-in

¢ Afront-end application

IDOL Confluence REST Connector (12.12) Page 52 of 96

Administration Guide
Chapter 7: Mapped Security

Mapped
Security plug-in

Confluence REST Front-end

CFs IDOL

Confluence Connector application

Group information

OmniGroupServer

Items (such as spaces or pages) in Confluence have an Access Control List (ACL) that lists the users
and groups who are permitted, and are not permitted, to view the item.

The Confluence REST Connector retrieves items from Confluence and sends documents to CFS to
be indexed into IDOL. The connector extracts the ACL for each item, and writes it to a document field.
Each time the connector synchronizes with the repository, it extracts updated ACLs.

IDOL needs the ACL to determine whether a user can view a document that is returned as a result to
a query. However, IDOL must also consider the groups that the user belongs to. A user might not be
permitted to view a document, but they could be a member of a group that has permission. This
means that IDOL requires group information from Confluence.

OmniGroupServer uses the connector to retrieve group information from Confluence, and then
stores the group information so that it can be used by IDOL Server.

When a user logs on to a front-end application, the application requests the user’s security
information and group memberships from IDOL server. IDOL returns a token containing the
information. The front-end application includes this token in all queries the user sends to IDOL.

After a user submits a query, IDOL sends the result documents and the user’s security token to the
Mapped Security plug-in. The Mapped Security plug-in compares the user’s security information and
group memberships to each document’s ACL. The plug-in determines which documents the user is
permitted to view and returns the results. IDOL server then sends only the documents that the user is
permitted to view to the front-end application.

IDOL Confluence REST Connector (12.12) Page 53 of 96

Administration Guide
Chapter 7: Mapped Security

Set up Mapped Security

To use mapped security to protect information that was extracted from Confluence by the Confluence
REST Connector, set up the following components:

¢ |IDOL server. You must set up IDOL server to process the security information contained in
each document. You must also configure user security, so that IDOL sends user and group
information to the front-end application when a user logs on. For information about how to set
up IDOL server, refer to the Intellectual Asset Protection System Administration Guide.

¢ Confluence REST Connector. You must set up the Confluence REST Connector to include
security information (Access Control Lists) in the documents that are indexed into IDOL server.
The connector encrypts the ACL and adds it to a document field named AUTONOMYMETADATA.
You must also add a field to each document that identifies the security type. For information
about how to do this, see Retrieve and Index Access Control Lists, below.

¢ OmniGroupServer. You must set up OmniGroupServer to retrieve group information. For
information about how to configure OmniGroupServer, see Retrieve Security Groups, on the
next page.

¢ Afront-end application for querying IDOL server.

Retrieve and Index Access Control Lists

To configure the Confluence REST Connector to retrieve and index Access Control Lists (ACLs),
follow these steps.

To retrieve and index Access Control Lists
1. Ifthe connector is running, stop the connector.
2. Open the connector’s configuration file.
3. Setthe MappedSecurity parameter to true.
¢ Toindex ACLs for all fetch tasks, set this parameter in the [FetchTasks] section.

« Toindex ACLs for a single fetch task, set this parameter in the TaskName section for the
task.

For example:

[FetchTasks]
MappedSecurity=True

4. Add afield to each document to specify the security type. To do this, create an ingest action or
run a Lua script. For example:

IDOL Confluence REST Connector (12.12) Page 54 of 96

Administration Guide
Chapter 7: Mapped Security

[Ingestion]
IngestActions=META:SecurityType=Confluence

NOTE: The field name and value that you specify must match the name and value you used
to identify the security type in your IDOL Server configuration file.

5. Save and close the configuration file.

Retrieve Security Groups

This section describes how to configure OmniGroupServer to retrieve security groups from
Confluence.

NOTE: If your Confluence instance is connected to a directory server, such as Microsoft Active
Directory, you might also need to retrieve groups from the directory and combine them with the
groups retrieved from Confluence.

To retrieve security groups from Confluence
1. Open the OmniGroupServer configuration file.
2. Inthe [Repositories] section, create a new repository. For example:

[Repositories]
Number=1
0=Confluence

3. Inthe section that you created to retrieve the Confluence groups, create a task to extract the
information from Confluence. You can use the following configuration parameters (for a
complete list of configuration parameters, refer to the OmniGroupServer Reference):

GroupServerJobType The type of task that OmniGroupServer must run. To retrieve
Confluence groups, set this parameter to Connector. This instructs
OmniGroupServer to send the SynchronizeGroups fetch action to
the connector.

ConnectorHost The host name or IP address of the machine that hosts the
Confluence connector.

ConnectorPort The ACI port of the connector.

ConnectorTask The name of a fetch task in the connector’s configuration file that
contains the information and credentials required to connect to the
Confluence repository.

For example:

[Confluence]
GroupServerJobType=Connector

IDOL Confluence REST Connector (12.12) Page 55 of 96

Administration Guide
Chapter 7: Mapped Security

ConnectorHost=localhost
ConnectorPort=7128
ConnectorTask=MyTask1l

4. Save and close the OmniGroupServer configuration file.

IDOL Confluence REST Connector (12.12) Page 56 of 96

Chapter 8: Manipulate Documents

This section describes how to manipulate documents that are created by the connector and sent for

ingestion.

O INtrOdUCH ON . 57
® Add a Field to Documents using an Ingest Action ... 57
® Customize DocUMENt ProCeSSINGo o 58
® Standardize Field Names ... 59
O RUN LU S P S o 64
® Example Lua SCripts .. 67
Intfroduction

IDOL Connectors retrieve data from repositories and create documents that are sent to Connector
Framework Server or another connector. You might want to manipulate the documents that are
created. For example, you can:

¢ Add or modify document fields, to change the information that is indexed into IDOL Server.
¢ Add fields to a document to customize the way the document is processed by CFS.

¢ Convertinformation into another format so that it can be inserted into another repository by a
connector that supports the Insert action.

When a connector sends documents to CFS, the documents only contain metadata extracted from
the repository by the connector (for example, the location of the original files). To modify data
extracted by KeyView, you must modify the documents using CFS. For information about how to
manipulate documents with CFS, refer to the Connector Framework Server Administration Guide.

Add a Field to Documents using an Ingest
Action

To add a field to all documents retrieved by a fetch task, or all documents sent for ingestion, you can
use an Ingest Action.

NOTE: To add a field only to selected documents, use a Lua script (see Run Lua Scripts, on

page 64). For an example Lua script that demonstrates how to add a field to a document, see Add
a Field to a Document, on page 67.

IDOL Confluence REST Connector (12.12) Page 57 of 96

Administration Guide
Chapter 8: Manipulate Documents

To add a field to documents using an Ingest Action
1. Open the connector’s configuration file.
2. Find one of the following sections in the configuration file:

« To add the field to all documents retrieved by a specific fetch task, find the [TaskName]
section.

e Toadd afield to all documents that are sent for ingestion, find the [Ingestion] section.
NOTE: If you set the IngestActions parameter in a [TaskName] section, the connector

does not run any IngestActions setin the [Ingestion] section for documents retrieved by
that task.

3. Use the IngestActions parameter to specify the name of the field to add, and the field value.
For example, to add a field named AUTN_NO_EXTRACT, with the value SET, type:
IngestActions@=META:AUTN_NO_EXTRACT=SET

4. Save and close the configuration file.

Customize Document Processing

You can add the following fields to a document to control how the document is processed by CFS.
Unless stated otherwise, you can add the fields with any value.

AUTN_FILTER_META_ONLY

Prevents KeyView extracting file content from a file. KeyView only extracts metadata and adds this
information to the document.

AUTN_NO_FILTER

Prevents KeyView extracting file content and metadata from a file. You can use this field if you do not
want to extract text from certain file types.

AUTN_NO_EXTRACT

Prevents KeyView extracting subfiles. You can use this field to prevent KeyView extracting the
contents of ZIP archives and other container files.

AUTN_NEEDS_MEDIA_SERVER_ANALYSIS

Identifies media files (images, video, and documents such as PDF files that contain embedded
images) that you want to send to Media Server for analysis, using a MediaServerAnalysis import
task. You do not need to add this field if you are using a Lua script to run media analysis. For more
information about running analysis on media, refer to the Connector Framework Server
Administration Guide.

IDOL Confluence REST Connector (12.12) Page 58 of 96

Administration Guide
Chapter 8: Manipulate Documents

Standardize Field Names

Field standardization modifies documents so that they have a consistent structure and consistent
field names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information.

For example, documents created by the File System Connector can have a field named FILEOWNER.
Documents created by the Documentum Connector can have a field named owner_name. Both of
these fields store the name of the person who owns a file. Field standardization renames the fields so
that they have the same name.

Field standardization only modifies fields that are specified in a dictionary, which is defined in XML
format. A standard dictionary, named dictionary.xml, is supplied in the installation folder of every
connector. If a connector does not have any entries in the dictionary, field standardization has no
effect.

Configure Field Standardization

IDOL Connectors have several configuration parameters that control field standardization. All of
these are set in the [Connector] section of the configuration file:

e EnableFieldNameStandardization specifies whether to run field standardization.
¢ FieldNameDictionaryPath specifies the path of the dictionary file to use.

¢ FieldNameDictionaryNode specifies the rules to use. The default value for this parameter
matches the name of the connector, and Micro Focus recommends that you do not change it.
This prevents one connector running field standardization rules that are intended for another.

To configure field standardization, use the following procedure.

NOTE: You can also configure CFS to run field standardization. To standardize all field names,
you must run field standardization from both the connector and CFS.

To enable field standardization
1. Stop the connector.
2. Open the connector’s configuration file.

3. Inthe [Connector] section, set the following parameters:

EnableFieldNameStandardization A Boolean value that specifies whether to enable
field standardization. Set this parameter to true.

FieldNameDictionaryPath The path to the dictionary file that contains the rules
to use to standardize documents. A standard

IDOL Confluence REST Connector (12.12) Page 59 of 96

Administration Guide
Chapter 8: Manipulate Documents

dictionary is included with the connector and is
named dictionary.xml.

For example:

[Connector]
EnableFieldNameStandardization=true
FieldNameDictionaryPath=dictionary.xml

4. Save the configuration file and restart the connector.

Customize Field Standardization

Field standardization modifies documents so that they have a consistent structure and consistent
field names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information. Field standardization only
modifies fields that are specified in a dictionary, which is defined in XML format. A standard
dictionary, named dictionary.xml, is supplied in the installation folder of every connector.

In most cases you should not need to modify the standard dictionary, but you can modify it to suit
your requirements or create dictionaries for different purposes. By modifying the dictionary, you can
configure the connector to apply rules that modify documents before they are ingested. For example,
you can move fields, delete fields, or change the format of field values.

The following examples demonstrate how to perform some operations with field standardization.

The following rule renames the field Author to DOCUMENT_METADATA_AUTHOR_STRING. This rule
applies to all components that run field standardization and applies to all documents.

<FieldStandardization>
<Field name="Author">
<Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
</Field>
</FieldStandardization>

The following rule demonstrates how to use the Delete operation. This rule instructs CFS to remove
the field Keyviewversion from all documents (the Product element with the attribute
key="ConnectorFrameWork" ensures that this rule is run only by CFS).

<FieldStandardization>
<Product key="ConnectorFrameWork">
<Field name="KeyviewVersion">
<Delete/>
</Field>
</Product>
</FieldStandardization>

There are several ways to select fields to process using the Field element.

Field element Description Example
attribute

IDOL Confluence REST Connector (12.12) Page 60 of 96

Administration Guide

Chapter 8: Manipulate Documents

name

path

nameRegex

pathRegex

Select a field where the field name
matches a fixed value.

Select a field where its path matches
a fixed value.

Select all fields at the current depth
where the field name matches a
regular expression.

Select all fields where the path of the
field matches a regular expression.

This operation can be inefficient
because every metadata field must
be checked. If possible, select the
fields to process another way.

Select the field MyField:

<Field name="MyField">
</Field>

Select the field Subfield, whichis a
subfield of MyField:

<Field name="MyField">
<Field name="Subfield">

</Field>
</Field>

Select the field Ssubfield, whichis a
subfield of MyField.

<Field path="MyField/Subfield">
</Field>

In this case the field name must begin
with the word File:

<Field nameRegex="File.*">
</Field>

This example selects all subfields of
MyField.

<Field pathRegex="MyField/["/]*">
</Field>

This approach would be more efficient:

<Field name="MyField">

<Field nameRegex=".*">

</Field>
</Field>

You can also limit the fields that are processed based on their value, by using one of the following:

Field element

attribute

matches

Description Example

Process afield if its
value matches a abc.
fixed value.

Process a field named MyField, if its value matches

<Field name="MyField" matches="abc">

IDOL Confluence REST Connector (12.12)

Page 61 of 96

Administration Guide
Chapter 8: Manipulate Documents

</Field>
matchesRegex Process a field if its Process a field named MyField, if its value matches

entire value matches one or more digits.

a regular expression.
g P <Field name="MyField" matchesRegex="\d+">

</Field>
containsRegex Process a field if its Process a field named MyField if its value contains
value contains a three consecutive digits.

match to a regular

. <Field name="MyField" containsRegex="\d{3}">
expression.

</Field>

The following rule deletes every field or subfield where the name of the field or subfield begins with
temp.

<FieldStandardization»>
<Field pathRegex="(.*/)?temp[~/]*">
<Delete/>
</Field>
</FieldStandardization>

The following rule instructs CFS to rename the field Author to DOCUMENT_METADATA_AUTHOR_STRING,
but only when the document contains a field named DocumentType with the value 230 (the KeyView
format code for a PDF file).

<FieldStandardization>
<Product key="ConnectorFrameWork">
<IfField name="DocumentType" matches="230"> <!-- PDF -->
<Field name="Author">
<Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
</Field>
</IfField>
</Product>
</FieldStandardization>

TIP: In this example, the IfField element is used to check the value of the DocumentType field.
The IfField element does not change the current position in the document. If you used the Field
element, field standardization would attempt to find an Author field that is a subfield of
DocumentType, instead of finding the Author field at the root of the document.

The following rules demonstrate how to use the ValueFormat operation to change the format of
dates. The first rule transforms the value of a field named CreatedDate. The second rule transforms
the value of an attribute named Created, on a field named Date.

<FieldStandardization>
<Field name="CreatedDate">
<ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>

IDOL Confluence REST Connector (12.12) Page 62 of 96

Administration Guide
Chapter 8: Manipulate Documents

</Field>
<Field name="Date">
<Attribute name="Created">
<ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
</Attribute>
</Field>
</FieldStandardization>

The vValueFormat element has the following attributes:

type To convert the date into the IDOL AUTNDATE format, specify autndate. To
convert the date into a custom format, specify customdate and then set the
attribute targetformat.

format The format to convert the date from. Specify the format using standard
IDOL date formats.

targetformat The format to convert the date into, when you set the type attribute to
customdate. Specify the format using standard IDOL date formats.

As demonstrated by the previous example, you can select field attributes to process in a similar way
to selecting fields.

You must select attributes using either a fixed name or a regular expression:

Select a field attribute by name <Attribute name="MyAttribute">

Select attributes that match a regular expression <Attribute nameRegex=".*">

You can then add a restriction to limit the attributes that are processed:

Process an attribute only if its <Attribute name="MyAttribute" matches="abc">
value matches a fixed value

Process an attribute only if its <Attribute name="MyAttribute" matchesRegex=".*">
value matches a regular

expression

Process an attribute only if its <Attribute name="MyAttribute" containsRegex="\w+">

value contains amatch to a
regular expression

The following rule moves all of the attributes of a field to sub fields, if the parent field has no value.
The id attribute on the first Field element provides a name to a matching field so that it can be
referred to by later operations. The GetName and GetValue operations save the name and value of a
selected field or attribute (in this case an attribute) into variables (in this case $ 'name' and $ 'value')
which can be used by later operations. The AddField operation uses the variables to add a new field
at the selected location (the field identified by id="parent").

<FieldStandardization>
<Field pathRegex=".*" matches=
<Attribute nameRegex=".*">

id="parent">

IDOL Confluence REST Connector (12.12) Page 63 of 96

Administration Guide
Chapter 8: Manipulate Documents

<GetName var="name"/>
<GetValue var="value"/>
<Field fieldId="parent">
<AddField name="$'name'

</Field>
<Delete/>

</Attribute>

</Field>
</FieldStandardization>

value="$'value'"/>

The following rule demonstrates how to move all of the subfields of UnwantedParentField to the root
of the document, and then delete the field UnwantedParentField.

<FieldStandardization id="root">
<Product key="MyConnector">
<Field name="UnwantedParentField">
<Field nameRegex=".*">
<Move destId="root"/>
</Field>
<Delete/>
</Field>
</Product>
</FieldStandardization>

Run Lua Scripts

IDOL Connectors can run custom scripts written in Lua, an embedded scripting language. You can
use Lua scripts to process documents that are created by a connector, before they are sentto CFS
and indexed into IDOL Server. For example, you can:

¢ Add or modify document fields.
¢ Manipulate the information that is indexed into IDOL.

¢ Call out to an external service, for example to alert a user.

There might be occasions when you do not want to send documents to a CFS. For example, you
might use the Collect action to retrieve documents from one repository and then insert them into
another. You can use a Lua script to transform the documents from the source repository so that they
can be accepted by the destination repository.

To run a Lua script from a connector, use one of the following methods:

¢ Setthe IngestActions configuration parameterin the connector’s configuration file. For
information about how to do this, see Run a Lua Script using an Ingest Action, on page 66. The
connector runs ingest actions on documents before they are sent for ingestion.

¢ Setthe IngestActions action parameter when using the Synchronize action.

e Setthe CollectActions action parameter when using the Collect action.

IDOL Confluence REST Connector (12.12) Page 64 of 96

Administration Guide
Chapter 8: Manipulate Documents

Write a Lua Script

A Lua script that is run from a connector must have the following structure:

function handler(config, document, params)

end

The handler function is called for each document and is passed the following arguments:
Argument Description

config A LuaConfig object that you can use to retrieve the values of configuration
parameters from the connector’s configuration file.

document A LuaDocument object. The document object is an internal representation of the
document being processed. Modifying this object changes the document.

params The params argument is a table that contains additional information provided by the
connector:

* TYPE. The type of task being performed. The possible values are ADD,
UPDATE, DELETE, or COLLECT.

e SECTION. The name of the section in the configuration file that contains
configuration parameters for the task.

¢ FILENAME. The document filename. The Lua script can modify this file, but
must not delete it.

* OWNFILE. Indicates whether the connector (and CFS) has ownership of the
file. A value of true means that CFS deletes the file after it has been
processed.

The following script demonstrates how you can use the config and params arguments:

function handler(config, document, params)
-- Write all of the additional information to a log file
for k,v in pairs(params) do
log("logfile.txt", k..": "..tostring(v))
end

-- The following lines set variables from the params argument
type = params["TYPE"]

section = params["SECTION"]

filename = params["FILENAME"]

-- Read a configuration parameter from the configuration file
-- If the parameter is not set, "DefaultValue" is returned

val = config:getValue(section, "Parameter", "DefaultValue")

-- If the document is not being deleted, set the field FieldName

IDOL Confluence REST Connector (12.12) Page 65 of 96

Administration Guide
Chapter 8: Manipulate Documents

end

-- to the value of the configuration parameter
if type ~= "DELETE" then

document:setFieldValue("FieldName", val)
end

-- If the document has a file (that is, not just metadata),
-- copy the file to a new location and write a stub idx file
-- containing the metadata.
if filename ~= "" then