Box Connector

Software Version 12.0

Administration Guide

Document Release Date: June 2018

Software Release Date: June 2018

Administration Guide

Legal notices

Copyright notice

© Copyright 2018 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.
Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

You will also receive new or updated editions of documentation if you subscribe to the appropriate product
support service. Contact your Micro Focus sales representative for details.

To check for new versions of software, go to https://www.hpe.com/software/entittements. To check for recent
software patches, go to https://softwaresupport.softwaregrp.com/patches.

The sites listed in this section require you to sign in with a Software Passport. You can register for a Passport
through a link on the site.

Support

Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

Search for knowledge documents of interest

Submit and track support cases and enhancement requests
Access the Software Licenses and Downloads portal
Download software patches

Access product documentation

Manage support contracts

Look up Micro Focus support contacts

Review information about available services

Enter into discussions with other software customers
Research and register for software training

Box Connector (12.0) Page 2 of 94

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://www.hpe.com/software/entitlements
https://softwaresupport.softwaregrp.com/patches
https://softwaresupport.softwaregrp.com/

Administration Guide

Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.

You can register for a Software Passport through a link on the Software Support Online site.
To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

About this PDF version of online Help

This documentis a PDF version of the online Help.
This PDF file is provided so you can easily print multiple topics or read the online Help.

Because this content was originally created to be viewed as online help in a web browser, some topics may
not be formatted properly. Some interactive topics may not be presentin this PDF version. Those topics can
be successfully printed from within the online Help.

Box Connector (12.0) Page 3 of 94

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Administration Guide

Contents

Chapter 1: IntroducCtion ... 9
BOX CONNEC O il 9
Supported ACHiONS . 9
Mapped SeCUNtY .l 10
Display Online Help ... e 10
Connector Framework Server . .. 11
The IDOL Platform .. 13
System ArchitectUre . .. 13
Chapter 2: Install Box Connector 15
System Requirements ... 15
PermiSSIONS . . il 15
Create a Box Application ...l 15
Install Box Connector on Windows 16
Install Box Connector on LinUX 19
Configure OAuth Authentication 19
Chapter 3: Configure Box Connector 21
Box Connector Configuration File 21
Modify Configuration Parameter Values 23
Include an External Configuration File 24
Include the Whole External Configuration File 25
Include Sections of an External ConfigurationFile 25
Include a Parameter from an External Configuration File 26
Merge a Section from an External ConfigurationFile 26
Encrypt PassWords .. 27
Create aKey File .. 27
Encrypt @ PassWordo 27
Decrypt a PasswWord ... il 29
Configure Client Authorization 29
Register with a Distributed Connector i 31
Set Up Secure Communication 32
Configure Outgoing SSL Connections 32
Configure Incoming SSL Connections 33

Box Connector (12.0) Page 4 of 94

Administration Guide

Backup and Restore the Connector's State 34
Backup a Connector's State 34
Restore a Connector's State 35

Validate the Configuration File 35

Chapter 4: Start and Stop the Connector 36

Start the ConNeCtOr . . 36

Verify that Box Connectoris RUNNING ... L 37
Gt S atUS .. 37
Getlicenselnfo .. 37

Stop the CoNNECtOr .. 37

Chapter 5: Send Actions to Box Connector 39

Send Actions to Box Connector il 39

Asynchronous ACtiONS il 39
Check the Status of an Asynchronous Action 40
Cancel an Asynchronous Action thatis Queued 40
Stop an Asynchronous Action thatis Running 40

Store Action Queues in an External Database 41
PrereqUISI S il 41
Configure Box ConNeCtOr _ 42

Store Action Queues iIN MeMOTY 43

Use XSL Templates to Transform Action Responses 44
Example XSL Templates 45

Chapter 6: Use the Connector 47

Retrieve Information from BoX 47

Retrieve Information from Box Enterprise L 48

Schedule Fetch Tasks 50

Synchronize from ldentifiers 51

INsert Files INtO BOX 52

Chapter 7: Manipulate Documentsl 53

INtrOdUCH ON L 53

Add a Field to Documents using an Ingest Action 53

Customize Document ProCessiNgo o . 54

Standardize Field Names 55
Configure Field Standardization 55

Box Connector (12.0) Page 5 of 94

Administration Guide

Customize Field Standardization 56
RuUN Lua SCriptS il 60
Write a Lua Script .. 61
Run a Lua Script using an Ingest Action ___ 62
Example Lua Scripts ... 63
AddaFieldtoaDocument 63
Merge Document Fields 64
Chapter 8: Ingestion 65
INtrOdUCH ON L 65
Send Data to Connector Framework Server 66
Send Data to Haven OnDemand 67
Prepare Haven OnDemand 67
Send Datato Haven OnDemand 68
Send Data to Another Repository ... L 69
Index Documents Directly into IDOL Server L 70
Index Documents into Vertica 71
Prepare the Vertica Database 72
Send Datato Vertica ...l 73
Send DatatoaMetaStore ...l 74
Run a Lua Script after Ingestion ... 75
Chapter 9: Monitor the Connector 77
D O AdMIN 77
PrereqUISItes il 77
Install IDOL AdMIN .. 77
Access IDOL AdMIN . 78
View Connector Statistics 79
Usethe Connector LOgSo . 80
Customize LogaiNg ... il 81
Monitor the Progress of a Task 82
Monitor Asynchronous Actions using Event Handlers 84
Configure an Event Handler 85
Write a Lua ScripttoHandle Events ... 86
Set Up Performance Monitoring 86
Configure the Connectorto Pause 86
Determineif an Actionis Paused 88
Set Up Document TracKing 88

Box Connector (12.0) Page 6 of 94

Administration Guide

GlOSSaNY 91

Send documentation feedback 94

Box Connector (12.0) Page 7 of 94

Administration Guide

Box Connector (12.0) Page 8 of 94

Chapter 1: Introduction

This section provides an overview of the Micro Focus Box Connector.

® BOX CONNECIOr . 9
® Connector Framework Server . . 11
® The IDOL PlatfOrm . 13
® System ArchiteCtUre . 13

Box Connector

Box Connector is an IDOL Connector for Box (box.com).
The Box Connector can:

« Keep IDOL up-to-date with the information in the repository. The connector retrieves files and associated
metadata (such as the file path, description, modified dates, and owner) from the Box repository and sends
them to Connector Framework Server so that they can be indexed into IDOL.

« Collect documents from the Box repository and either write them to disk or send them to IDOL.
« Insert files into the Box repository.

« Delete files from the Box repository.

Supported Actions

The Box Connector supports the following actions:

Action Supported Further Information
Synchronize /

Synchronize (identifiers)
Synchronize Groups Mapped security is supported only for Box Enterprise.

Collect

Identifiers

N %X N SN S

Insert

Box Connector (12.0) Page 9 of 94

http://www.box.com/

Administration Guide
Chapter 1: Introduction

Delete/Remove

Hold/ReleaseHold

Update

Stub

GetURI

N X X X X £

View

Mapped Security

The connector supports Mapped Security, but only when you retrieve information from Box Enterprise.

The connector can add an Access Control List to each document that is indexed into IDOL Server. The
connector can also retrieve user and group information through the SynchronizeGroups action.

To use Mapped Security you will also need to configure other IDOL components, including
OmniGroupServer.

Display Online Help

You can display the Box Connector Reference by sending an action from your web browser. The Box
Connector Reference describes the actions and configuration parameters that you can use with Box
Connector.

For Box Connector to display help, the help data file (help.dat) must be available in the installation
folder.

To display help for Box Connector

1. Start Box Connector.
2. Send the following action from your web browser:
http://host:port/action=Help

where:

host is the IP address or name of the machine on which Box Connector is installed.

port is the ACI port by which you send actions to Box Connector (set by the Port parameter
inthe [Server] section of the configuration file).

Box Connector (12.0) Page 10 of 94

Administration Guide
Chapter 1: Introduction

For example:

http://12.3.4.56:9000/action=help

Connector Framework Server

Connector Framework Server (CFS) processes the information that is retrieved by connectors, and
then indexes the information into IDOL.

A single CFS can process information from any number of connectors. For example, a CFS might
process files retrieved by a File System Connector, web pages retrieved by a Web Connector, and e-
mail messages retrieved by an Exchange Connector.

To use the Box Connector to index documents into IDOL Server, you must have a CFS. When you
install the Box Connector, you can choose to install a CFS or point the connector to an existing CFS.

For information about how to configure and use Connector Framework Server, refer to the Connector
Framework Server Administration Guide.

Filter Documents and Extract Subfiles

The documents that are sent by connectors to CFS contain only metadata extracted from the
repository, such as the location of a file or record that the connector has retrieved. CFS uses KeyView
to extract the file content and file specific metadata from over 1000 different file types, and adds this
information to the documents. This allows IDOL to extract meaning from the information contained in
the repository, without needing to process the information in its native format.

CFS also uses KeyView to extract and process sub-files. Sub-files are files that are contained within
other files. For example, an e-mail message might contain attachments that you want to index, or a
Microsoft Word document might contain embedded objects.

Manipulate and Enrich Documents

CFS provides features to manipulate and enrich documents before they are indexed into IDOL. For
example, you can:

« add additional fields to a document.
« divide long documents into multiple sections.

« runtasks including Eduction, Optical Character Recognition, or Face Recognition, and add the
information that is obtained to the document.

« run acustom Lua script to modify a document.

Box Connector (12.0) Page 11 of 94

Administration Guide
Chapter 1: Introduction

Index Documents

After CFS finishes processing documents, it automatically indexes them into one or more indexes.
CFS can index documents into:

« IDOL Server (or send them to a Distributed Index Handler, so that they can be distributed across
multiple IDOL servers).

« Haven OnDemand.

« Vertica.

Import Process

This section describes the import process for new files that are added to IDOL through CFS.

Format
Detection

Pre-import
processing

Key\iew
filtering

Index into
IDOL server

1. Connectors aggregate documents from repositories and send the files to CFS. A single CFS can
process documents from multiple connectors. For example, CFS might receive HTML files from
HTTP Connectors, e-mail messages from Exchange Connector, and database records from
ODBC Connector.

2. CFS runs pre-import tasks. Pre-Import tasks occur before document content and file-specific
metadata is extracted by KeyView.

3. KeyView filters the document content, and extracts sub-files.

Box Connector (12.0) Page 12 of 94

Administration Guide
Chapter 1: Introduction

4. CFS runs post-import tasks. Post-Import tasks occur after KeyView has extracted document
content and file-specific metadata.

5. Thedatais indexed into IDOL.

The IDOL Platform

At the core of Box Connector is the Intelligent Data Operating Layer (IDOL).

IDOL gathers and processes unstructured, semi-structured, and structured information in any format
from multiple repositories using IDOL connectors and a global relational index. It can automatically
form a contextual understanding of the information in real time, linking disparate data sources together
based on the concepts contained within them. For example, IDOL can automatically link concepts
contained in an email message to a recorded phone conversation, that can be associated with a stock
trade. This information is then imported into a format that is easily searchable, adding advanced
retrieval, collaboration, and personalization to an application that integrates the technology.

For more information on IDOL, see the IDOL Getting Started Guide.

System Architecture

An IDOL infrastructure can include the following components:
« Connectors. Connectors aggregate data from repositories and send the data to CFS.

« Connector Framework Server (CFS). Connector Framework Server (CFS) processes and
enriches the information that is retrieved by connectors.

« IDOL Server. IDOL stores and processes the information that is indexed into it by CFS.

« Distributed Index Handler (DIH). The Distributed Index Handler distributes data across multiple
IDOL servers. Using multiple IDOL servers can increase the availability and scalability of the
system.

« License Server. The License server licenses multiple products.

These components can be installed in many different configurations. The simplest installation consists

Lt

of a single connector, a single CFS, and a single IDOL Server.

CFS

Repository Connector

IDOL

Box Connector (12.0) Page 13 of 94

Administration Guide
Chapter 1: Introduction

A more complex configuration might include more than one connector, or use a Distributed Index

Handler (DIH) to index content across multiple IDOL Servers.

Repository Repository Repository

) l l
s s s

Connector Connector Connector

Connector Framework Server

l

DIH
IDOL IDOL IDOL

Box Connector (12.0)

Page 14 of 94

Chapter 2: Install Box Connector

This section describes how to install the Box Connector.

® SyStemM ReqUIrEMENTS 15
P erMIiS S ONS il 15
® Create a Box Application ... L 15
* Install Box Connector on Windows 16
® Install Box Connector ON LiNUX 19
® Configure OAuth Authentication 19

System Requirements

Box Connector can be installed as part of a larger system that includes an IDOL Server and an interface for
the information stored in IDOL Server. To maximize performance, Micro Focus recommends that you install
IDOL Server and the connector on different machines.

For information about the minimum system requirements required to run IDOL components, including Box
Connector, refer to the IDOL Getting Started Guide.

Permissions

To retrieve information from Box Enterprise the connector must authenticate with Box as an admin or co-
admin.

To retrieve information from Box Enterprise, you must contact Box and request that the impersonation (As-
User) permission be enabled for your API key. The connector requires this permission to retrieve information
from user accounts of Box Enterprise managed users. For more information about this permission, see
https://docs.box.com/reference#as-user-1.

Create a Box Application

To index content from Box, you must create a Box application to represent the connector.

NOTE:
This procedure is subject to change. For information about creating a Box application, refer to the Box
developer documentation.

To create a Box application

1. Create a Box user account.

2. Goto http://developers.box.com/.

Box Connector (12.0) Page 15 of 94

https://docs.box.com/reference#as-user-1
http://developers.box.com/

Administration Guide
Chapter 2: Install Box Connector

Click Create A Box Application.
Give the application a name and click Create Application.

In the OAuth2 parameters area, find and make a note of the client_id and client_secret. You
will need these values to configure authentication.

To use the OAuth configuration tool to configure OAuth authentication, ensure that the redirect_
uri for the application matches the URL where you will run the OAuth configuration tool. By
default this is http://localhost:7878/oauth.

Install Box Connector on Windows

To install the Box Connector on Windows, use the following procedure.

To install the Box Connector

1.

Run the Box Connector installation program.
The installation wizard opens.

Read the installation instructions and click Next.
The License Agreement dialog box opens.

Read the license agreement. If you agree to its terms, click | accept the agreement and click
Next.

The Installation Directory dialog box opens.
Choose an installation folder for Box Connector and click Next.
The Service Name dialog box opens.
In the Service name box, type a name to use for the connector's Windows service and click Next.
The Service Port and ACI Port dialog box opens.
Type the following information, and click Next.
Service port The port used by the connector to listen for service actions.

ACI port The port used by the connector to listen for actions.

The License Server Configuration dialog box opens.

Type the following information, and click Next.

License server host The host name or IP address of your License server.

License server port The ACI port of your License server.

The IDOL database dialog box opens.

Box Connector (12.0) Page 16 of 94

Administration Guide
Chapter 2: Install Box Connector

8. Inthe IDOL database box, type the name of the IDOL database into which you want to index
documents, and click Next.

The Proxy Server dialog box opens.

9. If a proxy is required to communicate with the repository from the machine on which you are
installing the connector, type the following information and then click Next.

Proxy host The host name or IP address of the proxy server to use to access the
repository.

Proxy port The port of the proxy server to use to access the repository.

Proxy username The user name to use to authenticate with the proxy server.

Proxy password The password to use to authenticate with the proxy server.

The Box connection dialog box opens.

10. Inthe Box user name box, type the user name to use to access the Box repository. If you want to
retrieve information from Box Enterprise, this must be the user name of an admin or co-admin.

11. (Optional) If you want to retrieve information from Box Enterprise, select the Box Enterprise
check box. You can also use regular expressions to limit the user accounts from which information

is retrieved.

"Must Have" regex A regular expression to restrict the user accounts synchronized by
the connector. If set, the connector does not synchronize a user
account unless the login name matches the regular expression.

"Cant Have" regex A regular expression to restrict the user accounts synchronized by
the connector. If set, the connector does not synchronize any
account where the login name matches the regular expression.

12. Click Next.

The OAuth Authentication Parameters dialog box opens.

13. Type the following information and click Next.

AppKey The application key that was provided when you set up an application to represent
the connector.

AppSecret The application secret that was provided when you set up an application to
represent the connector.

Redirect The URL at which the OAuth tool will run. For example,
URL http://localhost:7878/oauth.

The CFS dialog box opens.

14. Choose whether to install a new CFS or use an existing CFS.

Box Connector (12.0) Page 17 of 94

Administration Guide
Chapter 2: Install Box Connector

15.

16.

17.

18.

19.

20.

21.

« Toinstallanew CFS, select the Install a new CFS check box and click Next.
The Installation directory dialog box opens. Go to the next step.
« Touse an existing CFS, clear the Install a new CFS check box and click Next.

The CFS dialog box opens. Type the host name and port of your existing CFS installation.
Then, click Next and go to Step 19.

Choose an installation folder for the Connector Framework Server and then click Next.
The Installation name dialog box opens.

In the Service name box, type a unique name for the Connector Framework service and click
Next. The name must not contain any spaces.

The CFS dialog box opens.

Type the following information, and click Next.

Service port The port used by CFS to listen for service actions.

ACI port The port used by CFS to listen for actions.

Type the following information and click Next.

IDOL Server The host name or IP address of the IDOL server that you want to index
hostname documents into.
ACI port The ACI port of the IDOL server.

The Pre-Installation Summary dialog box opens.

Review the installation settings. If necessary, click Back to go back and change any settings. If
you are satisfied with the settings, click Next.

The connector is installed.

The installation program can run the OAuth tool, which obtains the token necessary to retrieve
information from Box.

« Torunthe OAuth tool, select the Run OAuth tool check box, and click Next.

Your default web browser opens to the Box web site, so that you can authorize the connector to
access Box. After you authorize the connector, the OAuth tool obtains the access token from
Box and writes it to a file named oauth. cfg, in the connector's installation folder. The
parameters in oauth. cfg are included in the default connector configuration.

« Tofinishinstalling the connector without running the OAuth tool, clear the Run OAuth tool
check box and click Finish. For information about how to run the OAuth tool at a later time, see
Configure OAuth Authentication, on the next page.

Click Finish.

The installation is complete.

Box Connector (12.0) Page 18 of 94

Administration Guide
Chapter 2: Install Box Connector

Install Box Connector on Linux

To install the Box Connector, use the following procedure.

To install Box Connector on Linux

1. Open a terminal in the directory in which you have placed the installer, and run the following
command:

./ConnectorName_VersionNumber_Platform.exe --mode text

2. Follow the on-screen instructions. For information about the options that are specified during
installation, see Install Box Connector on Windows. For more information about installing
IDOL components, refer to the IDOL Getting Started Guide.

Configure OAuth Authentication

You must configure OAuth authentication so that the connector can authenticate with Box. Micro
Focus recommends that you use the OAuth configuration tool that is supplied with the connector.

NOTE:
There is no need to complete this procedure if you ran the OAuth configuration tool during the

installation process.

To configure OAuth authentication

1. Open the folder where you installed the connector.
2. Open the file oauth_tool.cfg in atext editor.

3. Inthe [Default] section, specify any SSL or proxy settings necessary to connect to Box:
SSLMethod The version of SSL/TLS to use.

ProxyHost The host name or IP address of the proxy server that the connector must use.

ProxyPort The port of the proxy server that the connector must use.

For example:

SSLMethod=SSLV23
ProxyHost=10.0.0.1
ProxyPort=8080

4. Inthe [0AuthTool] section, set the following parameters:

Box Connector (12.0) Page 19 of 94

Administration Guide
Chapter 2: Install Box Connector

AppKey The client_id provided when you created a Box application to represent the
connector.

AppSecret The client_secret provided when you created a Box application to represent the
connector.

Do not modify the other parameters in this section.
5. Open a command-line window and run oauth_tool.exe.

Your default web browser opens to the Box web site. The web page asks you to authorize the
connector to access Box.

6. Authorize the application by entering the credentials of the account that you want to ingest data
from. To retrieve data from Box Enterprise this account must be an admin or co-admin.

Box provides the OAuth configuration tool with the necessary OAuth tokens. The OAuth tool
creates a file named oauth. cfg, which contains the parameters that the connector requires to
authenticate with Box. These parameters are automatically included in the connector configuration
file, because the connector configuration file includes the following line to import the parameters
into the [MyTask] section:

[MyTask] < "oauth.cfg" [OAUTH]

For more information about including parameters from another file, see Include an External
Configuration File, on page 24. The OAuth tool also prints the parameters it has set to the
command-line window so that you can set these directly in the connector's configuration file if you
prefer.

7. You can now configure a task to retrieve data from Box. See Retrieve Information from Box, on
page 47 or Retrieve Information from Box Enterprise, on page 48.

Box Connector (12.0) Page 20 of 94

Chapter 3: Configure Box Connector

This section describes how to configure the Box Connector.

® Box Connector Configuration File 21
* Modify Configuration ParameterValues 23
® Include an External Configuration File 24
® ENCrypt PassWoOras ... o L 27
® Configure Client AUthOrizZation ... L 29
® Registerwith a Distributed ConNnNector 31
® Set Up Secure CommuniCation L 32
* Backup and Restore the Connector's State 34
® Validate the Configuration File ... L 35

Box Connector Configuration File

You can configure the Box Connector by editing the configuration file. The configuration file is located in the
connector’s installation folder. You can modify the file with a text editor.

The parameters in the configuration file are divided into sections that represent connector functionality.

Some parameters can be set in more than one section of the configuration file. If a parameter is set in more
than one section, the value of the parameter located in the most specific section overrides the value of the
parameter defined in the other sections. For example, if a parameter can be set in "TaskName or FetchTasks
orDefault", the value in the TaskName section overrides the value in the FetchTasks section, which in turn
overrides the value in the Default section. This means that you can set a default value for a parameter, and
then override that value for specific tasks.

For information about the parameters that you can use to configure the Box Connector, refer to the Box
Connector Reference.

Server Section

The [Server] section specifies the ACI port of the connector. It can also contain parameters that control the
way the connector handles ACI requests.

Service Section

The [Service] section specifies the service port of the connector.

Box Connector (12.0) Page 21 of 94

Administration Guide
Chapter 3: Configure Box Connector

Actions Section

The [Actions] section contains configuration parameters that specify how the connector processes
actions that are sent to the ACI port. For example, you can configure event handlers that run when an
action starts, finishes, or encounters an error.

Logging Section

The [Logging] section contains configuration parameters that determine how messages are logged.
You can use log streams to send different types of message to separate log files. The configuration file
also contains a section to configure each of the log streams.

Connector Section

The [Connector] section contains parameters that control general connector behavior. For example,
you can specify a schedule for the fetch tasks that you configure.

Default Section

The [Default] section is used to define default settings for configuration parameters. For example,
you can specify default settings for the tasks in the [FetchTasks] section.

FetchTasks Section

The [FetchTasks] section lists the fetch tasks that you want to run. A fetch task is a task that
retrieves data from a repository. Fetch tasks are usually run automatically by the connector, but you
can also run a fetch task by sending an action to the connector’'s ACI port.

In this section, enter the total number of fetch tasks in the Number parameter and then list the tasks in
consecutive order starting from 0 (zero). For example:

[FetchTasks]
Number=2
0=MyTasko
1=MyTaskl

[TaskName] Section

The [TaskName] section contains configuration parameters that apply to a specific task. There must be
a [TaskName] section for every task listed in the [FetchTasks] section.

Box Connector (12.0) Page 22 of 94

Administration Guide
Chapter 3: Configure Box Connector

Ingestion Section

The [Ingestion] section specifies where to send the data that is extracted by the connector.

You can send data to a Connector Framework Server, Haven OnDemand, or another connector. For
more information about ingestion, see Ingestion, on page 65.

DistributedConnector Section

The [DistributedConnector] section configures the connector to operate with the Distributed
Connector. The Distributed Connector is an ACI server that distributes actions (synchronize, collect
and so on) between multiple connectors.

For more information about the Distributed Connector, refer to the Distributed Connector Administration
Guide.

ViewServer Section

The [ViewServer] section contains parameters that allow the connector’s view action to use a View
Server. If necessary, the View Server converts files to HTML so that they can be viewed in a web
browser.

License Section

The [License] section contains details about the License server (the server on which your license file
is located).

Document Tracking Section

The [DocumentTracking] section contains parameters that enable the tracking of documents through
import and indexing processes.

Related Topics
« Modify Configuration Parameter Values, below

« Customize Logging, on page 81

Modify Configuration Parameter Values

Y ou modify Box Connector configuration parameters by directly editing the parameters in the
configuration file. When you set configuration parameter values, you must use UTF-8.

Box Connector (12.0) Page 23 of 94

Administration Guide
Chapter 3: Configure Box Connector

CAUTION:
You must stop and restart Box Connector for new configuration settings to take effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:
TRUE = true = ON =on =Y =y =1

FALSE = false = OFF = off = N=n =0

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can indicate
the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird, "wing,beak",turtle
Alternatively, you can escape the comma with a backslash:
ParameterName=cat,dog,bird,wing\,beak,turtle

If any string in a comma-separated list contains quotation marks, you must put this string into quotation
marks and escape each quotation mark in the string by inserting a backslash before it. For example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Include an External Configuration File

You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

When you include content from an external configuration file, the GetConfig and ValidateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

../sharedconfig.cfg
K:\sharedconfig\sharedsettings.cfg
\\example.com\shared\idol.cfg
file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

Box Connector (12.0) Page 24 of 94

Administration Guide
Chapter 3: Configure Box Connector

NOTE:

You can use nested inclusions, for example, you can refer to a shared configuration file that
references a third file. However, the external configuration files must not refer back to your
original configuration file. These circular references result in an error, and Box Connector does
not start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Include the Whole External Configuration File

This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file

1. Open your configuration file in a text editor.
2. Find the place in the configuration file where you want to add the external configuration file.

3. Onanew line, type a left angle bracket (<), followed by the path to and name of the external
configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

4. Save and close the configuration file.

Include Sections of an External Configuration File

This method allows you to import one or more configuration sections from an external configuration file
at a specified point in your configuration file. You can include a whole configuration section in this way,
but the configuration section name in the external file must exactly match what you want to use in your
file. If you want to use a configuration section from the external file with a different name, see Merge a
Section from an External Configuration File, on the next page.

To include sections of an external configuration file

1. Open your configuration file in a text editor.
2. Find the place in the configuration file where you want to add the external configuration file section.

3. Onanew line, type a left angle bracket (<), followed by the path to and name of the external
configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the configuration section name that you want to include. For
example:

< "K:\sharedconfig\extrasettings.cfg" [License]

Box Connector (12.0) Page 25 of 94

Administration Guide
Chapter 3: Configure Box Connector

NOTE:
You cannot include a section that already exists in your configuration file.

4. Save and close the configuration file.

Include a Parameter from an External Configuration File

This method allows you to import a parameter from an external configuration file at a specified point in
your configuration file. You can include a section or a single parameter in this way, but the value in the
external file must exactly match what you want to use in your file.

To include a parameter from an external configuration file

1. Open your configuration file in a text editor.

2. Find the place in the configuration file where you want to add the parameter from the external
configuration file.

3. Onanew line, type a left angle bracket (<), followed by the path to and name of the external
configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the name of the configuration section name that contains the
parameter, followed by the parameter name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external configuration
file, specify the configuration section, parameter name, and then an equals sign (=) followed by the
default value. For example:

< "license.cfg" [License] LicenseServerHost=localhost

4. Save and close the configuration file.

Merge a Section from an External Configuration File

This method allows you to include a configuration section from an external configuration file as part of
your Box Connector configuration file. For example, you might want to specify a standard

SSL configuration section in an external file and share it between several servers. You can use this
method if the configuration section that you want to import has a different name to the one you want to
use.

To merge a configuration section from an external configuration file

1. Open your configuration file in a text editor.
2. Find or create the configuration section that you want to include from an external file. For example:
[SSLOptions1]

3. After the configuration section name, type a left angle bracket (<), followed by the path to and

Box Connector (12.0) Page 26 of 94

Administration Guide
Chapter 3: Configure Box Connector

name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptions1l] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

[SSLOptions1l] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, Box Connector uses the values in the [SharedSSLOptions] section of the
external configuration file as the values in the [SSLOptions1] section of the Box Connector
configuration file.

NOTE:

You can include additional configuration parameters in the section in your file. If these
parameters also exist in the imported external configuration file, Box Connector uses the
values in the local configuration file. For example:

[SSLOptionsl] < "ssloptions.cfg" [SharedSSLOptions]
SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

4. Save and close the configuration file.

Encrypt Passwords

Micro Focus recommends that you encrypt all passwords that you enter into a configuration file.

Create a Key File

A key file is required to use AES encryption.
To create a new key file
1. Open a command-line window and change directory to the Box Connector installation folder.
2. Atthe command line, type:
autpassword -x -tAES -oKeyFile=./MyKeyFile.Ry

A new key file is created with the name MyKeyFile.ky

CAUTION:
To keep your passwords secure, you must protect the key file. Set the permissions on the key

file so that only authorized users and processes can read it. Box Connector must be able to read
the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password

The following procedure describes how to encrypt a password.

Box Connector (12.0) Page 27 of 94

Administration Guide

Chapter 3: Configure Box Connector

To encrypt a password

1. Open a command-line window and change directory to the Box Connector installation folder.

2. Atthe command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]

PasswordString

where:

Option

-t
EncryptionType

-oKeyFile

-cFILE -
SSECTION -
pPARAMETER

PasswordString

For example:

Description

The type of encryption to use:
« Basic
e AES

For example: -tAES

NOTE:
AES is more secure than basic encryption.

AES encryption requires a key file. This option specifies the path and file
name of a key file. The key file must contain 64 hexadecimal characters.

For example: -oKeyFile=. /key.ky

(Optional) You can use these options to write the password directly into
a configuration file. You must specify all three options.

« ~-c. The configuration file in which to write the encrypted password.

« -s. The name of the section in the configuration file in which to write
the password.

o -p. The name of the parameter in which to write the encrypted
password.

For example:

-c./Config.cfg -sMyTask -pPassword

The password to encrypt.

autpassword -e -tBASIC MyPassword

autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword

MyPassword

The password is returned, or written to the configuration file.

Box Connector (12.0)

Page 28 of 94

Administration Guide
Chapter 3: Configure Box Connector

Decrypt a Password

The following procedure describes how to decrypt a password.

To decrypt a password
1. Open a command-line window and change directory to the Box Connector installation folder.
2. Atthe command line, type:

autpassword -d -tEncryptionType [-oKeyFile] PasswordString

where:
Option Description
-t The type of encryption:
EncryptionType .
« Basic
o AES
For example: -tAES
-oKeyFile AES encryption and decryption requires a key file. This option specifies

the path and file name of the key file used to decrypt the password.
For example: -oKeyFile=./key.ky

PasswordString The password to decrypt.

For example:
autpassword -d -tBASIC 9t3M3t7awt/J8A
autpassword -d -tAES -oKeyFile=./key.ky 9t3M3t7awt/J8A

The password is returned in plain text.

Configure Client Authorization

You can configure Box Connector to authorize different operations for different connections.

Authorization roles define a set of operations for a set of users. You define the operations by using the
StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

For more information about the available parameters, see the Box Connector Reference.

IMPORTANT:
To ensure that Box Connector allows only the options that you configure in
[AuthorizationRoles], make sure that you delete any deprecated RoleClients parameters

Box Connector (12.0) Page 29 of 94

Administration Guide
Chapter 3: Configure Box Connector

from your configuration (where Role corresponds to a standard role name, for example
AdminClients).

To configure authorization roles

1. Open your configuration file in a text editor.
2. Findthe [AuthorizationRoles] section, or create one if it does not exist.

3. Inthe [AuthorizationRoles] section, list the user authorization roles that you want to create.
For example:

[AuthorizationRoles]
0=AdminRole
1=UserRole

4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

[AdminRole]

5. Inthe section for each role, define the operations that you want the role to be able to perform. You
can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed actions
by using Actions, and ServiceActions. Forexample:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus

[UserRole]
Actions=GetVersion
ServiceActions=GetStatus

NOTE:

The standard roles do not overlap. If you want a particular role to be able to perform all
actions, you must include all the standard roles, or ensure that the clients, SSL identities,
and so on, are assigned to all relevant roles.

6. Inthe section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the operations
allowed by the role. For example:

[AdminRole]
StandardRoles=Admin,ServiceControl,ServiceStatus
Clients=localhost
SSLIdentities=admin.example.com

7. Save and close the configuration file.

8. Restart Box Connector for your changes to take effect.

IMPORTANT:
If you do not provide any authorization roles for a standard role, Box Connector uses the default

Box Connector (12.0) Page 30 of 94

Administration Guide

Chapter 3: Configure Box Connector

client authorization for the role (localhost for Admin and ServiceControl, all clients for Query
and ServiceStatus). If you define authorization only by actions, Micro Focus recommends that
you configure an authorization role that disallows all users for all roles by default. For example:

[ForbidAllRoles]

StandardRoles=Admin,Query,ServiceControl,ServiceStatus

Clients=""

This configuration ensures that Box Connector uses only your action-based authorizations.

Register with a Distributed Connector

To receive actions from a Distributed Connector, a connector must register with the Distributed
Connector and join a connector group. A connector group is a group of similar connectors. The
connectors in a group must be of the same type (for example, all HTTP Connectors), and must be able
to access the same repository.

To configure a connector to register with a Distributed Connector, follow these steps. For more
information about the Distributed Connector, refer to the Distributed Connector Administration Guide.

To register with a Distributed Connector

1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. Inthe [DistributedConnector] section, set the following parameters:

RegisterConnector

HostN
PortN
DataPortN

ConnectorGroup

ConnectorPriority

SharedPath

Box Connector (12.0)

(Required) To register with a Distributed Connector, set this parameter to
true.

(Required) The host name or IP address of the Distributed Connector.
(Required) The ACI port of the Distributed Connector.
(Optional) The data port of the Distributed Connector.

(Required) The name of the connector group to join. The value of this
parameter is passed to the Distributed Connector.

(Optional) The Distributed Connector can distribute actions to
connectors based on a priority value. The lower the value assigned to
ConnectorPriority, the higher the probability that an action is assigned
to this connector, rather than other connectors in the same connector

group.

(Optional) The location of a shared folder that is accessible to all of the
connectors in the ConnectorGroup. This folder is used to store the
connectors’ datastore files, so that whichever connector in the group
receives an action, it can access the information required to complete it.

Page 31 of 94

Administration Guide
Chapter 3: Configure Box Connector

If you set the DataPortN parameter, the datastore file is streamed
directly to the Distributed Connector, and this parameter is ignored.

4. Save and close the configuration file.
5. Start the connector.

The connector registers with the Distributed Connector. When actions are sent to the Distributed
Connector for the connector group that you configured, they are forwarded to this connector or to
another connector in the group.

Set Up Secure Communication

You can configure Secure Socket Layer (SSL) connections between the connector and other ACI
servers.

Configure Outgoing SSL Connections

To configure the connector to send data to other components (for example Connector Framework
Server) over SSL, follow these steps.

To configure outgoing SSL connections

1. Open the Box Connector configuration file in a text editor.
2. Specify the name of a section in the configuration file where the SSL settings are provided:

« Tosend datato an ingestion server over SSL, set the IngestSSLConfig parameter in the
[Ingestion] section. To send data from a single fetch task to an ingestion server over SSL,
set IngestSSLConfigina [TaskName] section.

« Tosend datato a Distributed Connector over SSL, set the SSLConfig parameter in the
[DistributedConnector] section.

« Tosenddatatoa View Serverover SSL, set the SSLConfig parameterin the [ViewServer]
section.

You can use the same settings for each connection. For example:
[Ingestion]
IngestSSLConfig=SSLOptions

[DistributedConnector]
SSLConfig=SSLOptions

3. Create a new section in the configuration file. The name of the section must match the name you
specified in the IngestSSLConfig or SSLConfig parameter. Then specify the SSL settings to use.

Box Connector (12.0) Page 32 of 94

Administration Guide
Chapter 3: Configure Box Connector

4.
5.

SSLMethod The SSL protocol to use.
SSLCertificate (Optional) The SSL certificate to use (in PEM format).

SSLPrivateKey (Optional) The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
SSLMethod=TLSV1.2
SSLCertificate=hostl.crt
SSLPrivateKey=host1.key

Save and close the configuration file.

Restart the connector.

Related Topics

« Start and Stop the Connector, on page 36

Configure Incoming SSL Connections

To configure a connector to accept data sent to its ACI port over SSL, follow these steps.

To configure an incoming SSL Connection

1.
2.
3.

Stop the connector.
Open the configuration file in a text editor.

Inthe [Server] section set the SSLConfig parameter to specify the name of a section in the
configuration file for the SSL settings. For example:

[Server]
SSLConfig=SSLOptions

Create a new section in the configuration file (the name must match the name you used in the
SSLConfig parameter). Then, use the SSL configuration parameters to specify the details for the
connection. You must set the following parameters:

SSLMethod The SSL protocol to use.
SSLCertificate The SSL certificate to use (in PEM format).

SSLPrivateKey The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
SSLMethod=TLSV1.2
SSLCertificate=hostl.crt
SSLPrivateKey=host1l.key

Box Connector (12.0) Page 33 of 94

Administration Guide
Chapter 3: Configure Box Connector

5. Save and close the configuration file.
6. Restart the connector.
Related Topics
« Start and Stop the Connector, on page 36

Backup and Restore the Connector’s State

After configuring a connector, and while the connector is running, you can create a backup of the
connector’s state. In the event of a failure, you can restore the connector’s state from the backup.

To create a backup, use the backupServer action. The backupServer action saves a ZIP file to a path
that you specify. The backup includes:

« acopy of the actions folder, which stores information about actions that have been queued, are
running, and have finished.

« acopy of the configuration file.

« acopy of the connector’'s datastore files, which contain information about the files, records, or other
data that the connector has retrieved from a repository.

Backup a Connector’s State

To create a backup of the connectors state

« Inthe address bar of your Web browser, type the following action and press ENTER:
http://host:port/action=backupServer&path=path
where,
host The host name or IP address of the machine where the connector is running.
port The connector's ACI port.

path The folder where you want to save the backup.

For example:

http://localhost:1234/action=backupServer&path=./backups

Box Connector (12.0) Page 34 of 94

Administration Guide
Chapter 3: Configure Box Connector

Restore a Connector’s State

To restore a connector’s state

« Inthe address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=restoreServer&filename=filename

where,
host The host name or IP address of the machine where the connector is running.
port The connector’'s ACI port.

filename The path of the backup that you created.

For example:

http://localhost:1234/action=restoreServer&filename=. /backups/filename.zip

Validate the Configuration File

You can use the validateConfig service action to check for errors in the configuration file.

NOTE:

For the validateConfig action to validate a configuration section, Box Connector must have
previously read that configuration. In some cases, the configuration might be read when a task
is run, rather than when the component starts up. In these cases, ValidateConfig reports any
unread sections of the configuration file as unused.

To validate the configuration file

« Send the following action to Box Connector:
http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where Box Connector is installed.

ServicePort is the service port, as specified in the [Service] section of the configuration file.

Box Connector (12.0) Page 35 of 94

Chapter 4: Start and Stop the Connector

This section describes how to start and stop the Box Connector.

® Start the COoNNEC O . L 36

* Verify that Box Connectoris RUNNING 37

® Stopthe CoNNECtOr il 37
NOTE:

You must start and stop the Connector Framework Server separately from the Box Connector.

Start the Connector

After you have installed and configured a connector, you are ready to run it. Start the connector using one of
the following methods.

Start the Connector on Windows

To start the connector using Windows Services

1. Open the Windows Services dialog box.
2. Select the connector service, and click Start.

3. Close the Windows Services dialog box.

To start the connector by running the executable

« Inthe connector installation directory, double-click the connector executable file.

Start the Connector on UNIX

To start the connector on a UNIX operating system, follow these steps.

To start the connector using the UNIX start script

1. Change to the installation directory.
2. Enter the following command:
./startconnector.sh

3. If you want to check the Box Connector service is running, enter the following command:

Box Connector (12.0) Page 36 of 94

Administration Guide
Chapter 4: Start and Stop the Connector

ps -aef | grep ConnectorInstallName

This command returns the Box Connector service process ID number if the service is running.

Verify that Box Connector is Running

After starting Box Connector, you can run the following actions to verify that Box Connector is running.
« GetStatus

« GetLicenselnfo

GetStatus

You can use the GetStatus service action to verify the Box Connector is running. For example:

http://Host:ServicePort/action=GetStatus

NOTE:
You can send the GetStatus action to the ACI port instead of the service port. The GetStatus
ACI action returns information about the Box Connector setup.

GetLicenselnfo

You can send a GetLicenseInfo action to Box Connector to return information about your license. This
action checks whether your license is valid and returns the operations that your license includes.

Send the GetLicenseInfo action to the Box Connector ACI port. For example:
http://Host:ACIport/action=GetLicenseInfo
The following result indicates that your license is valid.

<autn:license>
<autn:validlicense>true</autn:validlicense>
</autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

Stop the Connector

You must stop the connector before making any changes to the configuration file.

Box Connector (12.0) Page 37 of 94

Administration Guide
Chapter 4: Start and Stop the Connector

To stop the connector using Windows Services

1. Open the Windows Services dialog box.
2. Select the ConnectorInstal LName service, and click Stop.

3. Close the Windows Services dialog box.

To stop the connector by sending an action to the service port
« Type the following command in the address bar of your Web browser, and press ENTER:
http://host:ServicePort/action=stop
host The IP address or host name of the machine where the connector is running.

ServicePort The connector’s service port (specified inthe [Service] section of the
connector’s configuration file).

Box Connector (12.0) Page 38 of 94

Chapter 5: Send Actions to Box Connector

This section describes how to send actions to Box Connector.

® Send Actions to Box ConNNeCtOr 39
® ASYNChronOUS ACHIONS 39
® Store Action Queues in an External Database 41
® Store Action QUEUES IN IMEMIONY . o L 43
® Use XSL Templates to Transform Action ReSpONSes 44

Send Actions to Box Connector

Box Connector actions are HTTP requests, which you can send, for example, from your web browser. The
general syntax of these actions is:

http://host:port/action=action¶meters

where:
host is the IP address or name of the machine where Box Connector is installed.
port is the Box Connector ACI port. The ACI port is specified by the Port parameter in the
[Server] section of the Box Connector configuration file. For more information about the
Port parameter, see the Box Connector Reference.
action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

NOTE:
Separate individual parameters with an ampersand (&). Separate parameter names from values with
an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the Box Connector Reference.

Asynchronous Actions

When you send an asynchronous action to Box Connector, the connector adds the task to a queue and
returns a token. Box Connector performs the task when a thread becomes available. You can use the token
with the QueueInfo action to check the status of the action and retrieve the results of the action.

Most of the features provided by the connector are available through action=fetch, so when you use the
QueueInfo action, query the fetch action queue, for example:

/action=QueueInfo&QueueName=Fetch&QueueAction=GetStatus

Box Connector (12.0) Page 39 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

Check the Status of an Asynchronous Action

To check the status of an asynchronous action, use the token that was returned by Box Connector with
the QueueInfo action. For more information about the QueueInfo action, refer to the Box Connector
Reference.

To check the status of an asynchronous action

« Send the QueueInfo action to Box Connector with the following parameters.

QueueName The name of the action queue that you want to check.

QueueAction The action to perform. Set this parameter to GetStatus.

Token (Optional) The token that the asynchronous action returned. If you do not
specify a token, Box Connector returns the status of every action in the
queue.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued

To cancel an asynchronous action that is waiting in a queue, use the following procedure.

To cancel an asynchronous action that is queued

« Send the QueueInfo action to Box Connector with the following parameters.

QueueName The name of the action queue that contains the action to cancel.
QueueAction The action to perform . Set this parameter to Cancel.
Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Cancel&Token=...

Stop an Asynchronous Action that is Running

You can stop an asynchronous action at any point.

Box Connector (12.0) Page 40 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

To stop an asynchronous action that is running

« Send the QueueInfo action to Box Connector with the following parameters.

QueueName The name of the action queue that contains the action to stop.
QueueAction The action to perform. Set this parameter to Stop.
Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Stop&Token=...

Store Action Queues in an External Database

Box Connector provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. You can configure Box Connector to store
these queues either in an internal database file, or in an external database hosted on a database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to the
shared queue. Whenever a server is ready to start processing a new request, it takes the next request
from the shared queue, runs the action, and adds the results of the action back to the shared database
so that they can be retrieved by any of the servers. You can therefore distribute requests between
components without configuring a Distributed Action Handler (DAH).

NOTE:
You cannot use multiple servers to process a single request. Each request is processed by one
server.

NOTE:

Although you can configure several connectors to share the same action queues, the
connectors do not share fetch task data. If you share action queues between several
connectors and distribute synchronize actions, the connector that processes a synchronize
action cannot determine which items the other connectors have retrieved. This might result in
some documents being ingested several times.

Prerequisites

« Supported databases:
o PostgreSQL 9.0 or later.
o MySQL 5.0 or later.
« If youuse PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxvarChar to @ (zero).

Box Connector (12.0) Page 41 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

If you use a DSN, you can configure this parameter when you create the DSN. Otherwise, you can
set the MaxvarcharSize parameter in the connection string.

Configure Box Connector

To configure Box Connector to use a shared action queue, follow these steps.

To store action queues in an external database

1. Stop Box Connector, if it is running.
2. Open the Box Connector configuration file.
3. Find the relevant section in the configuration file:

« To store queues for all asynchronous actions in the external database, find the [Actions]
section.

« To store the queue for a single asynchronous action in the external database, find the section
that configures that action.

4. Set the following configuration parameters.
AsyncStoreLibraryDirectory The path of the directory that contains the library to use to

connect to the database. Specify either an absolute path, or a
path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database. You
can omit the file extension. The following libraries are
available:

« postgresAsyncStoreLibrary - for connectingto a
PostgreSQL database.

o mysqlAsyncStoreLibrary - for connecting to a MySQL
database.

ConnectionString The connection string to use to connect to the database. The
user that you specify must have permission to create tables in
the database. For example:

ConnectionString=DSN=my_ASYNC_QUEUE
or

ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;
Database=SharedActions; Uid=user; Pwd=password;
MaxVarcharSize=0;

For example:

Box Connector (12.0) Page 42 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

[Actions]

AsyncStorelLibraryDirectory=acidlls
AsyncStoreLibraryName=postgresAsyncStorelLibrary
ConnectionString=DSN=ActionStore

5. If you are using the same database to store action queues for more than one type of component,
set the following parameter in the [Actions] section of the configuration file.

DatastoreSharingGroupName The group of components to share actions with. You can set
this parameter to any string, but the value must be the same for
each server in the group. For example, to configure several Box
Connectors to share their action queues, set this parameter to
the same value in every Box Connector configuration. Micro
Focus recommends setting this parameter to the name of the
component.

CAUTION:

Do not configure different components (for example, two
different types of connector) to share the same action
queues. This will result in unexpected behavior.

For example:

[Actions]

DatastoreSharingGroupName=ComponentType
6. Save and close the configuration file.

When you start Box Connector it connects to the shared database.

Store Action Queues in Memory

Box Connector provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. These queues are usually stored in a
datastore file or in a database hosted on a database server, but in some cases you can increase
performance by storing these queues in memory.

NOTE:
Storing action queues in memory improves performance only when the server receives large

numbers of actions that complete quickly. Before storing queues in memory, you should also
consider the following:

« The queues (including queued actions and the results of finished actions) are lost if Box
Connector stops unexpectedly, for example due to a power failure or the component being
forcibly stopped. This could result in some requests being lost, and if the queues are restored
to a previous state some actions could run more than once.

« Storing action queues in memory prevents multiple instances of a component being able to
share the same queues.

Box Connector (12.0) Page 43 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

« Storing action queues in memory increases memory use, so please ensure that the server
has sufficient memory to complete actions and store the action queues.

If you stop Box Connector cleanly, Box Connector writes the action queues from memory to disk so
that it can resume processing when it is next started.

To configure Box Connector to store asynchronous action queues in memory, follow these steps.

To store action queues in memory

1. Stop Box Connector, if it is running.
2. Open the Box Connector configuration file and find the [Actions] section.
3. If you have set any of the following parameters, remove them:
e AsyncStorelLibraryDirectory
e AsyncStorelLibraryName
e ConnectionString
e UseStringentDatastore
4. Set the following configuration parameters.
UseInMemoryDatastore A Boolean value that specifies whether to keep the

queues for asynchronous actions in memory. Set
this parameter to TRUE.

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at which
the action queues are written to disk. Writing the
queues to disk can reduce the number of queued
actions that would be lost if Box Connector stops
unexpectedly, but configuring a frequent backup
will increase the load on the datastore and might
reduce performance.

For example:

[Actions]
UseInMemoryDatastore=TRUE
InMemoryDatastoreBackupIntervalMins=30

5. Save and close the configuration file.

When you start Box Connector, it stores action queues in memory.

Use XSL Templates to Transform Action Responses

You can transform the action responses returned by Box Connector using XSL templates. You must
write your own XSL templates and save them with either an . xs1 or . tmpl file extension.

Box Connector (12.0) Page 44 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

After creating the templates, you must configure Box Connector to use them, and then apply them to
the relevant actions.

To enable XSL transformations

1. Ensure that the autnxs1t library is located in the same directory as your configuration file. If the
library is not included in your installation, you can obtain it from Micro Focus Support.

2. Open the Box Connector configuration file in a text editor.

3. Inthe [Server] section, ensure that the XSLTemplates parameter is set to true.

CAUTION:
If XSLTemplates is set to true and the autnxs1t library is not present in the same
directory as the configuration file, the server will not start.

4. (Optional) Inthe [Paths] section, set the TemplateDirectory parameter to the path to the
directory that contains your XSL templates. The default directory is acitemplates.

5. Save and close the configuration file.

6. Restart Box Connector for your changes to take effect.

To apply a template to action output
« Add the following parameters to the action:

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started, set this
parameter to true to force the ACI server to reload the template from
disk rather than from the cache.

For example:

action=QueueInfo&QueueName=Fetch
&QueueAction=GetStatus
&Token=...
&Template=myTemplate

In this example, Box Connector applies the XSL template myTemplate to the response from a
QueueInfo action.

NOTE:
If the action returns an error response, Box Connector does not apply the XSL template.

Example XSL Templates

Box Connector includes the following sample XSL templates, inthe acitemplates folder:

Box Connector (12.0) Page 45 of 94

Administration Guide
Chapter 5: Send Actions to Box Connector

XSL Description

Template

LuaDebug Transforms the output from the LuaDebug action, to assist with debugging Lua
scripts.

Box Connector (12.0) Page 46 of 94

Chapter 6: Use the Connector

This section describes how to use the connector.

® Retrieve Information from BoX ... L 47
® Retrieve Information from Box Enterprise ... 48
® Schedule Fetch Tasks 50
® Synchronize from Identifiers ... L 51
® Insert Files INtO BOX . . 52

Retrieve Information from Box

To retrieve information from a single Box account, create a new fetch task by following these steps. The
connector runs fetch tasks automatically, based on the schedule that is configured in the configuration file.

NOTE:

Before configuring a fetch task, you must create a Box application to represent the connector and
configure OAuth authentication. For more information, see Create a Box Application, on page 15 and
Configure OAuth Authentication, on page 19.

To create a new Fetch Task

1. Stop the connector.
2. Open the configuration file in a text editor.

3. Inthe [FetchTasks] section of the configuration file, specify the number of fetch tasks using the Number
parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch tasks have
already been configured, increase the value of the Number parameter by one (1). Below the Number
parameter, specify the names of the fetch tasks, starting from zero (0). For example:

[FetchTasks]
Number=1
0=MyTask

4. Below the [FetchTasks] section, create a new TaskName section. The name of the section must
match the name of the new fetch task. For example:

[FetchTasks]
Number=1
0=MyTask

[MyTask]

5. Inthe new section, set the parameters required to authenticate with Box. The OAuth configuration tool
(described in Configure OAuth Authentication, on page 19) creates a file that contains these parameters,

Box Connector (12.0) Page 47 of 94

Administration Guide
Chapter 6: Use the Connector

and you can include them in the connector's configuration file using the following syntax:
[MyTask] < "oauth.cfg" [OAUTH]

For more information about including parameters from another file, see Include an External
Configuration File, on page 24

6. Set the following configuration parameters:

Username The user ID orlogin name to use to retrieve information from Box.
ProxyHost (Optional) The host name or IP address of the proxy server to use to access Box.

ProxyPort (Optional) The port of the proxy server to use to access Box.

For more information about the configuration parameters that you can use to configure the
connector, refer to the Box Connector Reference.

7. Save and close the configuration file.

Retrieve Information from Box Enterprise

To retrieve information from the users associated with a Box Enterprise repository, create a new fetch
task by following these steps.

NOTE:

Before configuring a fetch task, you must create a Box application to represent the connector
and configure OAuth authentication. For more information, see Create a Box Application, on
page 15 and Configure OAuth Authentication, on page 19.

To create a new Fetch Task

1. Stop the connector.
2. Open the configuration file in a text editor.

3. Inthe [FetchTasks] section of the configuration file, specify the number of fetch tasks using the
Number parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch
tasks have already been configured, increase the value of the Number parameter by one (1). Below
the Number parameter, specify the names of the fetch tasks, starting from zero (0). For example:

[FetchTasks]
Number=1
0=MyTask

4. Below the [FetchTasks] section, create a new TaskName section. The name of the section must
match the name of the new fetch task. For example:

[FetchTasks]
Number=1
0=MyTask

[MyTask]

Box Connector (12.0) Page 48 of 94

Administration Guide
Chapter 6: Use the Connector

5.

6.

In the new section, set the parameters required to authenticate with Box. The OAuth configuration
tool (described in Configure OAuth Authentication, on page 19) creates a file that contains these
parameters, and you can include them in the connector's configuration file using the following
syntax:

[MyTask] < "oauth.cfg" [OAUTH]

For more information about including parameters from another file, see Include an External
Configuration File, on page 24

In the new section, set the following configuration parameters:

BoxEnterprise A Boolean value that specifies whether you are configuring
the connector to access Box through a Box Enterprise
admin or co-admin account, in order to synchronize the
accounts of all managed users. Set this parameter to TRUE.

Username The user ID or login name to use to retrieve information
from Box. This must be the username of an admin or co-
admin.

MappedSecurity (Optional) To extract security information and add Access
Control Lists (ACLs) to documents, set this parameter to
TRUE.

EnterpriseLoginCantHaveRegex (Optional) A regular expression to restrict the user accounts
synchronized by the connector. The connector does not
synchronize any account where the login name matches
the regular expression.

EnterpriseLoginMustHaveRegex (Optional) A regular expression to restrict the user accounts
synchronized by the connector. The connector does not
synchronize a user account unless the login name matches
the regular expression.

ProxyHost (Optional) The host name or IP address of the proxy server
to use to access Box.

ProxyPort (Optional) The port of the proxy server to use to access
Box.

For example:

[MyTask] < "oauth.cfg" [OAUTH]
BoxEnterprise=TRUE
Username=admin@my_domain.com
MappedSecurity=TRUE
EnterpriselLoginMustHaveRegex=.*@my_domain\.com
ProxyHost=proxy.domain.com

ProxyPort=8080

For more information about the configuration parameters that you can use to configure the
connector, refer to the Box Connector Reference.

Box Connector (12.0) Page 49 of 94

Administration Guide
Chapter 6: Use the Connector

7.

Save and close the configuration file. You can now start the connector.

Schedule Fetch Tasks

The connector automatically runs the fetch tasks that you have configured, based on the schedule in
the configuration file. To modify the schedule, follow these steps.

To schedule fetch tasks

1.

2
3.
4

Stop the connector.
Open the connector’s configuration file in a text editor.

Find the [Connector] section.

. The EnableScheduleTasks parameter specifies whether the connector should automatically run

the fetch tasks that have been configured in the [FetchTasks] section. To run the tasks, set this
parameter to true. For example:

[Connector]
EnableScheduledTasks=True

Inthe [Connector] section, set the following parameters:

ScheduleStartTime The start time for the fetch task, the first time it runs after you start the
connector. The connector runs subsequent synchronize cycles after the
interval specified by ScheduleRepeatSecs.

Specify the start time in the format H[H][:MM][:SS]. To start running
tasks as soon as the connector starts, do not set this parameter or use
the value now.

ScheduleRepeatSecs Theinterval (in seconds) from the start of one scheduled synchronize
cycle to the start of the next. If a previous synchronize cycle is still
running when the interval elapses, the connector queues a maximum of
one action.

ScheduleCycles The number of times that each fetch task is run. To run the tasks
continuously until the connector is stopped, set this parameterto -1. To
run each task only one time, set this parameter to 1.

For example:

[Connector]
EnableScheduledTasks=True
ScheduleStartTime=15:00:00
ScheduleRepeatSecs=3600
ScheduleCycles=-1

(Optional) To run a specific fetch task on a different schedule, you can override these parameters
in a TaskName section of the configuration file. For example:

Box Connector (12.0) Page 50 of 94

Administration Guide
Chapter 6: Use the Connector

[Connector]
EnableScheduledTasks=TRUE
ScheduleStartTime=15:00:00
ScheduleRepeatSecs=3600
ScheduleCycles=-1

[FetchTasks]
Number=2
0=MyTasko
1=MyTask1l

[MyTask1]
ScheduleStartTime=16:00:00
ScheduleRepeatSecs=60
ScheduleCycles=-1

In this example, MyTasko follows the schedule defined in the [Connector] section, and MyTask1
follows the scheduled defined in the [MyTask1] TaskName section.

7. Save and close the configuration file. You can now start the connector.

Related Topics
« Start and Stop the Connector, on page 36

Synchronize from Identifiers

The connector’'s synchronize action searches a repository for document updates and sends these
updates for ingestion (for example, to CFS, for indexing into IDOL Server).

You can use the identifiers parameter to synchronize a specific set of documents, whether they
have been updated or not, and ignore other files. For example:

/action=fetch&fetchaction=synchronize&identifiers=<identifiers>

(where <identifiers> is acomma-separated list of identifiers that specifies the documents to
synchronize).

For example, if some documents fail the ingestion process, and are indexed into an IDOL Error Server,
you can use the identifiers parameter with the synchronize action to retrieve those documents
again. You can retrieve a list of identifiers for the failed documents by sending a query to the IDOL Error
Server. For more information about IDOL Error Server, refer to the IDOL Error Server Technical Note.
For more information about the synchronize action, refer to the Box Connector Reference.

Box Connector (12.0) Page 51 of 94

Administration Guide
Chapter 6: Use the C

Insert Fil

onnector

es into Box

The connector's insert fetch action inserts files into the Box repository. To use the insert action, you
must construct some XML that specifies where to add each file, and the information to insert. URL
encode the XML and add it to the action as the value of the insertXML action parameter. For example:

http://host:port/action=Fetch

&FetchAction=Insert
&ConfigSection=MyTask
&InsertXML=[URL encoded XML]

The following table describes the properties that you must set in the insertXML provided to the insert

action:
Property Description
ENTERPRISE_ The login name of the user account to add the file to. If
USER_LOGIN you are inserting files into Box Enterprise, you can set
this property or the UID property. You can only use this
property with Box Enterprise.
PATH The desired destination path of the file in the Box
repository, relative to the top-level accessible folder.
uiD The user ID of the Box user.
For example:
<insertXML>
<insert>
<property name="PATH" value="/folder/file.txt"/>
<property name="UID" value="..."/>
<file>
<type>content</type>
<content>SGVsbG8gV29ybGQNCg==</content>
</file>
</insert>
</insertXML>

Required

No

Yes

Yes, unless you are
inserting files into Box
Enterprise and have set
ENTERPRISE_USER_LOGIN
instead.

The <file> element contains the file to insert into the repository. You can supply the path to afile,

base-64 encoded content, or choose to send the file to the connector's data port. For more information
about the insert fetch action and the XML elements you can use in the insertXML parameter, refer to
the Box Connector Reference.

Box Connector (12.0)

Page 52 of 94

Chapter 7: Manipulate Documents

This section describes how to manipulate documents that are created by the connector and sent for ingestion.

O INtrOdUCHION 53
* Add aField to Documents using an Ingest Action 53
® Customize Document ProCesSing 54
® Standardize Field Names il 55
O RUN LU SO S . 60
® Example Lua SCripts .. . 63
Introduction

IDOL Connectors retrieve data from repositories and create documents that are sent to Connector
Framework Server, another connector, or Haven OnDemand. You might want to manipulate the documents
that are created. For example, you can:

« Add or modify document fields, to change the information that is indexed into IDOL Server or Haven
OnDemand.

« Add fields to a document to customize the way the document is processed by CFS.

« Convert information into another format so that it can be inserted into another repository by a connector
that supports the Insert action.

When a connector sends documents to CFS, the documents only contain metadata extracted from the
repository by the connector (for example, the location of the original files). To modify data extracted by
KeyView, you must modify the documents using CFS. For information about how to manipulate documents
with CFS, refer to the Connector Framework Server Administration Guide.

Add a Field to Documents using an Ingest Action

To add a field to all documents retrieved by a fetch task, or all documents sent for ingestion, you can use an
Ingest Action.

NOTE:

To add a field only to selected documents, use a Lua script (see Run Lua Scripts, on page 60). For an
example Lua script that demonstrates how to add a field to a document, see Add a Fieldto a
Document, on page 63.

Box Connector (12.0) Page 53 of 94

Administration Guide
Chapter 7: Manipulate Documents

To add a field to documents using an Ingest Action

1. Open the connector’'s configuration file.
2. Find one of the following sections in the configuration file:

« Toadd the field to all documents retrieved by a specific fetch task, find the [TaskName]
section.

« Toadd afield to all documents that are sent for ingestion, find the [Ingestion] section.

NOTE:

If you set the IngestActions parameterin a [TaskName] section, the connector does not
run any IngestActions setinthe [Ingestion] section for documents retrieved by that
task.

3. Usethe IngestActions parameter to specify the name of the field to add, and the field value. For
example, to add a field named AUTN_NO_EXTRACT, with the value SET, type:
IngestActions@=META:AUTN_NO_EXTRACT=SET

4. Save and close the configuration file.

Customize Document Processing

You can add the following fields to a document to control how the document is processed by CFS.
Unless stated otherwise, you can add the fields with any value.

AUTN_FILTER_META_ONLY

Prevents KeyView extracting file content from a file. KeyView only extracts metadata and adds this
information to the document.

AUTN_NO_FILTER

Prevents KeyView extracting file content and metadata from a file. You can use this field if you do not
want to extract text from certain file types.

AUTN_NO_EXTRACT

Prevents KeyView extracting subfiles. You can use this field to prevent KeyView extracting the
contents of ZIP archives and other container files.

AUTN_NEEDS_MEDIA_SERVER_ANALYSIS

Identifies media files (images, video, and documents such as PDF files that contain embedded
images) that you want to send to Media Server for analysis, using a MediaServerAnalysis import
task. You do not need to add this field if you are using a Lua script to run media analysis. For more
information about running analysis on media, refer to the Connector Framework Server Administration
Guide.

AUTN_NEEDS_TRANSCRIPTION

Identifies audio and video assets that you want to send to an IDOL Speech Server for speech-to-text
processing, using an IdolSpeech import task. You do not need to add this field if you are using a Lua

Box Connector (12.0) Page 54 of 94

Administration Guide
Chapter 7: Manipulate Documents

script to run speech-to-text. For more information about running speech-to-text on documents, refer to
the Connector Framework Server Administration Guide.

AUTN_FORMAT_CORRECT_FOR_TRANSCRIPTION

To bypass the transcoding step of an Ido1Speech import task, add the field AUTN_FORMAT_CORRECT _
FOR_TRANSCRIPTION. Documents that have this field are not sent to a Transcode Server. For more
information about the Ido1Speech task, refer to the Connector Framework Server Administration
Guide.

AUTN_AUDIO_LANGUAGE

To bypass the language identification step of an Ido1Speech import task add the field AUTN_AUDIO
LANGUAGE. The value of the field must be the name of the IDOL Speech Server language pack to use for
extracting speech. Documents that have this field are not sent to the IDOL Speech Server for language
identification. For more information about the Ido1Speech task, refer to the Connector Framework
Server Administration Guide.

Standardize Field Names

Field standardization modifies documents so that they have a consistent structure and consistent field
names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information.

For example, documents created by the File System Connector can have a field named FILEOWNER.
Documents created by the Documentum Connector can have a field named owner_name. Both of these
fields store the name of the person who owns a file. Field standardization renames the fields so that
they have the same name.

Field standardization only modifies fields that are specified in a dictionary, which is defined in XML
format. A standard dictionary, named dictionary.xml, is supplied in the installation folder of every
connector. If a connector does not have any entries in the dictionary, field standardization has no
effect.

Configure Field Standardization

IDOL Connectors have several configuration parameters that control field standardization. All of these
are set in the [Connector] section of the configuration file:

« EnableFieldNameStandardization specifies whether to run field standardization.
o FieldNameDictionaryPath specifies the path of the dictionary file to use.

o FieldNameDictionaryNode specifies the rules to use. The default value for this parameter matches
the name of the connector, and Micro Focus recommends that you do not change it. This prevents
one connector running field standardization rules that are intended for another.

To configure field standardization, use the following procedure.

NOTE:
You can also configure CFS to run field standardization. To standardize all field names, you
must run field standardization from both the connector and CFS.

Box Connector (12.0) Page 55 of 94

Administration Guide
Chapter 7: Manipulate Documents

To enable field standardization

1. Stop the connector.
2. Open the connector’'s configuration file.

3. Inthe [Connector] section, set the following parameters:

EnableFieldNameStandardization A Boolean value that specifies whether to enable field
standardization. Set this parameter to true.

FieldNameDictionaryPath The path to the dictionary file that contains the rules to
use to standardize documents. A standard dictionary is
included with the connector and is named
dictionary.xml

For example:

[Connector]
EnableFieldNameStandardization=true
FieldNameDictionaryPath=dictionary.xml

4. Save the configuration file and restart the connector.

Customize Field Standardization

Field standardization modifies documents so that they have a consistent structure and consistent field
names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information. Field standardization only
modifies fields that are specified in a dictionary, which is defined in XML format. A standard dictionary,
named dictionary.xml, is supplied in the installation folder of every connector.

In most cases you should not need to modify the standard dictionary, but you can modify it to suit your
requirements or create dictionaries for different purposes. By modifying the dictionary, you can
configure the connector to apply rules that modify documents before they are ingested. For example,
you can move fields, delete fields, or change the format of field values.

The following examples demonstrate how to perform some operations with field standardization.

The following rule renames the field Author to DOCUMENT_METADATA_AUTHOR_STRING. This rule applies
to all components that run field standardization and applies to all documents.

<FieldStandardization>
<Field name="Author">
<Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
</Field>
</FieldStandardization>

The following rule demonstrates how to use the Delete operation. This rule instructs CFS to remove
the field Keyviewversion from all documents (the Product element with the attribute
key="ConnectorFrameWork" ensures that this rule is run only by CFS).

Box Connector (12.0) Page 56 of 94

Administration Guide
Chapter 7: Manipulate Documents

<FieldStandardization>
<Product key="ConnectorFrameWork">
<Field name="KeyviewVersion">
<Delete/>
</Field>
</Product>
</FieldStandardization>

There are several ways to select fields to process using the Field element.

Field element Description

attribute

name Select a field where the field name
matches a fixed value.

path Select a field where its path matches a
fixed value.

nameRegex Select all fields at the current depth
where the field name matches a regular
expression.

pathRegex Select all fields where the path of the

field matches a regular expression.

This operation can be inefficient
because every metadata field must be
checked. If possible, select the fields to
process another way.

Box Connector (12.0)

Example

Select the field MyField:

<Field name="MyField">
</Field>

Select the field subfield, whichis a
subfield of MyField:

<Field name="MyField">
<Field name="Subfield">

</Field>
</Field>

Select the field Subfield, whichis a
subfield of MyField.

<Field path="MyField/Subfield">
</Field>

In this case the field name must begin
with the word File:

<Field nameRegex="File.*">
</Field>

This example selects all subfields of
MyField.

<Field pathRegex="MyField/[~/]*">
</Field>

This approach would be more efficient:

<Field name="MyField">

<Field nameRegex=".*">

Page 57 of 94

Administration Guide
Chapter 7: Manipulate Documents

</Field>
</Field>

You can also limit the fields that are processed based on their value, by using one of the following:

Field element Description Example

attribute

matches Process afield if its value Process a field named MyField, if its value matches
matches a fixed value. abc.

<Field name="MyField" matches="abc">
</Field>
matchesRegex Process afield if its entire Process a field named MyField, if its value matches

value matches aregular one or more digits.

expression.
P <Field name="MyField" matchesRegex="\d+">

</Field>
containsRegex Process afield if its value Process a field named MyField if its value contains

contains amatchtoa three consecutive digits.

regular expression.
9 P <Field name="MyField" containsRegex="\d{3}">

</Field>

The following rule deletes every field or subfield where the name of the field or subfield begins with
temp.

<FieldStandardization>
<Field pathRegex="(.*/)?temp[~/]*">
<Delete/>
</Field>
</FieldStandardization>

The following rule instructs CFS to rename the field Author to DOCUMENT_METADATA_AUTHOR_STRING,
but only when the document contains a field named DocumentType with the value 230 (the KeyView
format code for a PDF file).

<FieldStandardization>
<Product key="ConnectorFrameWork">
<IfField name="DocumentType" matches="230"> <!-- PDF -->
<Field name="Author">
<Move name="DOCUMENT_METADATA_ AUTHOR_STRING"/>
</Field>
</IfField>
</Product>
</FieldStandardization>

Box Connector (12.0) Page 58 of 94

Administration Guide
Chapter 7: Manipulate Documents

TIP:

In this example, the IfField element is used to check the value of the DocumentType field. The
IfField element does not change the current position in the document. If you used the Field
element, field standardization would attempt to find an Author field that is a subfield of
DocumentType, instead of finding the Author field at the root of the document.

The following rules demonstrate how to use the ValueFormat operation to change the format of dates.
The first rule transforms the value of a field named CreatedDate. The second rule transforms the value
of an attribute named Created, on a field named Date.

<FieldStandardization>
<Field name="CreatedDate">
<ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
</Field>
<Field name="Date">
<Attribute name="Created">
<ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
</Attribute>
</Field>
</FieldStandardization>

The valueFormat element has the following attributes:

type To convert the date into the IDOL AUTNDATE format, specify autndate. To
convert the date into a custom format, specify customdate and then set the
attribute targetformat.

format The format to convert the date from. Specify the format using standard IDOL date
formats.

targetformat The format to convert the date into, when you set the type attribute to customdate.
Specify the format using standard IDOL date formats.

As demonstrated by the previous example, you can select field attributes to process in a similar way to
selecting fields.

You must select attributes using either a fixed name or a regular expression:
Select a field attribute by name <Attribute name="MyAttribute">

Select attributes that match a regular expression <Attribute nameRegex=".*">

You can then add a restriction to limit the attributes that are processed:

Process an attribute only if its value <Attribute name="MyAttribute" matches="abc">
matches a fixed value

Process an attribute only if its value ~ <Attribute name="MyAttribute" matchesRegex=".*">
matches a regular expression

Process an attribute only if its value ~ <Attribute name="MyAttribute" containsRegex="\w+">

Box Connector (12.0) Page 59 of 94

Administration Guide
Chapter 7: Manipulate Documents

contains a match to a regular
expression

The following rule moves all of the attributes of a field to sub fields, if the parent field has no value. The
id attribute on the first Field element provides a name to a matching field so that it can be referred to
by later operations. The GetName and GetValue operations save the name and value of a selected field
or attribute (in this case an attribute) into variables (in this case $'name' and $ 'value')which can be
used by later operations. The AddField operation uses the variables to add a new field at the selected
location (the field identified by id="parent™").

<FieldStandardization>
<Field pathRegex=".*" matches=
<Attribute nameRegex=".*">
<GetName var="name"/>
<GetValue var="value"/>
<Field fieldId="parent">
<AddField name="$'name'" value="$'value'"/>
</Field>
<Delete/>
</Attribute>
</Field>
</FieldStandardization>

id="parent">

The following rule demonstrates how to move all of the subfields of UnwantedParentField to the root
of the document, and then delete the field UnwantedParentField.

<FieldStandardization id="root">
<Product key="MyConnector">
<Field name="UnwantedParentField">
<Field nameRegex=".*">
<Move destId="root"/>
</Field>
<Delete/>
</Field>
</Product>
</FieldStandardization>

Run Lua Scripts

IDOL Connectors can run custom scripts written in Lua, an embedded scripting language. You can use
Lua scripts to process documents that are created by a connector, before they are sent to CFS and
indexed into IDOL Server. For example, you can:

o Add or modify document fields.
« Manipulate the information that is indexed into IDOL.

« Call out to an external service, for example to alert a user.

Box Connector (12.0) Page 60 of 94

Administration Guide
Chapter 7: Manipulate Documents

There might be occasions when you do not want to send documents to a CFS. For example, you might
use the Collect action to retrieve documents from one repository and then insert them into another.
You can use a Lua script to transform the documents from the source repository so that they can be
accepted by the destination repository.

To run a Lua script from a connector, use one of the following methods:

« Setthe IngestActions configuration parameter in the connector’s configuration file. For information
about how to do this, see Run a Lua Script using an Ingest Action, on the next page. The connector
runs ingest actions on documents before they are sent for ingestion.

o Setthe IngestActions action parameter when using the Synchronize action.

« Setthe InsertActions configuration parameter in the connector’s configuration file. The connector
runs insert actions on documents before they are inserted into a repository.

« Setthe CollectActions action parameter when using the Collect action.

Write a Lua Script

A Lua script that is run from a connector must have the following structure:

function handler(config, document, params)

end

The handler function is called for each document and is passed the following arguments:

Argument Description

config A LuaConfig object that you can use to retrieve the values of configuration parameters
from the connector’s configuration file.

document A LuaDocument object. The document object is an internal representation of the
document being processed. Modifying this object changes the document.

params The params argument is a table that contains additional information provided by the
connector:

« TYPE. The type of task being performed. The possible values are ADD, UPDATE,
DELETE, or COLLECT.

« SECTION. The name of the section in the configuration file that contains
configuration parameters for the task.

« FILENAME. The document filename. The Lua script can modify this file, but must
not delete it.

« OWNFILE. Indicates whether the connector (and CFS) has ownership of the file. A
value of true means that CFS deletes the file after it has been processed.

The following script demonstrates how you can use the config and params arguments:

function handler(config, document, params)
-- Write all of the additional information to a log file

Box Connector (12.0) Page 61 of 94

Administration Guide
Chapter 7: Manipulate Documents

end

for k,v in pairs(params) do
log("logfile.txt", k..": "..tostring(v))
end

-- The following lines set variables from the params argument
type = params["TYPE"]

section = params["SECTION"]

filename = params["FILENAME"]

-- Read a configuration parameter from the configuration file
-- If the parameter is not set, "DefaultValue" is returned
val = config:getValue(section, "Parameter", "DefaultValue")

-- If the document is not being deleted, set the field FieldName
-- to the value of the configuration parameter
if type ~= "DELETE" then
document:setFieldvValue("FieldName", val)
end

-- If the document has a file (that is, not just metadata),
-- copy the file to a new location and write a stub idx file
-- containing the metadata.

if filename ~= "" then
copytofilename = "./out/"..create_uuid(filename)
copy_file(filename, copytofilename)
document:writeStubIdx(copytofilename..".idx")
end

return true

For the connector to continue processing the document, the handler function must return true. If the
function returns false, the document is discarded.

You can write a library of useful functions to share between multiple scripts. To include a library
of functions in a script, add the code dofile("1library.lua™) to the top of the lua script,
outside of the handler function.

Run a Lua Script using an Ingest Action

To run a Lua script on documents that are sent for ingestion, use an Ingest Action.

To run a Lua script using an Ingest Action

1.

Open the connector’s configuration file.

2. Find one of the following sections in the configuration file:

Box Connector (12.0) Page 62 of 94

Administration Guide
Chapter 7: Manipulate Documents

« Torun aLua script on all documents retrieved by a specific task, find the [TaskName] section.

« Torun a Lua script on all documents that are sent for ingestion, find the [Ingestion] section.

NOTE:
If you set the IngestActions parameterin a [TaskName] section, the connector does not
run any IngestActions setinthe [Ingestion] section for that task.

3. Usethe IngestActions parameter to specify the path to your Lua script. For example:

IngestActions=LUA:C:\Autonomy\myScript.lua

4. Save and close the configuration file.

Related Topics
« Write a Lua Script, on page 61

Example Lua Scripts

This section contains example Lua scripts.
« Add aField to a Document, below

« Merge Document Fields, on the next page

Add a Field to a Document

The following script demonstrates how to add a field named “MyField” to a document, with a value of
“MyValue”.

function handler(config, document, params)
document:addField("MyField", "MyValue");
return true;

end

The following script demonstrates how to add the field AUTN_NEEDS_MEDIA SERVER_ANALYSIS toall
JPEG, TIFF and BMP documents. This field indicates to CFS that the file should be sent to a Media
Server for analysis (you must also define the MediaServerAnalysis task in the CFS configuration file).

The script finds the file type using the DREREFERENCE document field, so this field must contain the file
extension for the script to work correctly.

function handler(config, document, params)
local extensions_for_ocr = { jpg =1 , tif =1, bmp = 1 };
local filename = document:getFieldValue("DREREFERENCE");
local extension, extension_found = filename:gsub("~.*%.(%w+)$", "%1", 1);

if extension_found > @ then
if extensions_for_ocr[extension:lower()] ~= nil then
document:addField("AUTN_NEEDS_MEDIA_SERVER_ANALYSIS", "");
end

Box Connector (12.0) Page 63 of 94

Administration Guide
Chapter 7: Manipulate Documents

end

return true;
end

Merge Document Fields

This script demonstrates how to merge the values of document fields.

When you extract data from a repository, the connector can produce documents that have multiple
values for a single field, for example:

#DREFIELD ATTACHMENT="attachment.txt"
#DREFIELD ATTACHMENT="image.jpg"
#DREFIELD ATTACHMENT="document.pdf"

This script shows how to merge the values of these fields, so that the values are contained in a single
field, for example:

#DREFIELD ATTACHMENTS="attachment.txt, image.jpg, document.pdf"
Example Script

function handler(config, document, params)
onefield(document, "ATTACHMENT", "ATTACHMENTS")
return true;

end

function onefield(document,existingfield,newfield)
if document:hasField(existingfield) then
local values = { document:getFieldValues(existingfield) }
local newfieldvalue=""
for i,v in ipairs(values) do
if i>1 then
newfieldvalue = newfieldvalue ..", "
end

newfieldvalue = newfieldvalue..v
end

document:addField(newfield,newfieldvalue)
end

return true;
end

Box Connector (12.0) Page 64 of 94

Chapter 8: Ingestion

After a connector finds new documents in a repository, or documents that have been updated or deleted, it
sends this information to another component called the ingestion target. This section describes where you
can send the information retrieved by the Box Connector, and how to configure the ingestion target.

INErOdUC ON 65
Send Data to Connector Framework Server 66
Send DatatoHaven OnDemand il 67
Send Data to Another Repository 69
Index Documents Directly into IDOL Server 70
Index Documents INt0 VertiCa 71
Send DatatoaMetaStore .. . 74
Run aLua Script after Ingestionl 75

Introduction

A connector can send information to a single ingestion target, which could be:

Connector Framework Server. To process information and then index it into IDOL, Haven OnDemand, or
Vertica, send the information to a Connector Framework Server (CFS). Any files retrieved by the connector
are imported using KeyView, which means the information contained in the files is converted into a form
that can be indexed. If the files are containers that contain subfiles, these are extracted. You can
manipulate and enrich documents using Lua scripts and automated tasks such as field standardization,
image analysis, and speech-to-text processing. CFS can index your documents into one or more indexes.
For more information about CFS, refer to the Connector Framework Server Administration Guide.

L .

Repository Connector CFS IDOL

Haven OnDemand. You can index documents directly into a Haven OnDemand text index. Haven
OnDemand can extract text, metadata, and subfiles from over 1000 different file formats, so you might not
need to send documents to CFS.

Another Connector. Use another connector to keep another repository up-to-date. When a connector
receives documents, it inserts, updates, or deletes the information in the repository. For example, you
could use an Exchange Connector to extract information from Microsoft Exchange, and send the
documents to a Notes Connector so that the information is inserted, updated, or deleted in the Notes
repository.

NOTE:
The destination connector can only insert, update, and delete documents if it supports the insert,

Box Connector (12.0) Page 65 of 94

Administration Guide
Chapter 8: Ingestion

I update, and delete fetch actions.

In most cases Micro Focus recommends ingesting documents through CFS, so that KeyView can
extract content from any files retrieved by the connector and add this information to your documents.
You can also use CFS to manipulate and enrich documents before they are indexed. However, if
required you can configure the connector to index documents directly into:

« IDOL Server. You might index documents directly into IDOL Server when your connector produces
metadata-only documents (documents that do not have associated files). In this case there is no
need for the documents to be imported. Connectors that can produce metadata-only documents
include ODBC Connector and Oracle Connector.

« Vertica. The metadata extracted by connectors is structured information held in structured fields, so
you might use Vertica to analyze this information.

« MetaStore. You can index document metadata into a MetaStore for records management.

Send Data to Connector Framework Server

This section describes how to configure ingestion into Connector Framework Server (CFS).

To send data to a CFS

1. Stop the connector.
2. Open the connector’'s configuration file in a text editor.

3. Inthe [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to CFS, set this parameter to CFS.
IngestHost The host name or IP address of the CFS.
IngestPort The ACI port of the CFS.

For example:

[Ingestion]

EnableIngestion=True
IngesterType=CFS
IngestHost=1ocalhost
IngestPort=7000

4. (Optional) If you are sending documents to CFS for indexing into IDOL Server, set the
IndexDatabase parameter. When documents are indexed, IDOL adds each document to the
database specified in the document's DREDBNAME field. The connector sets this field for each
document, using the value of IndexDatabase.

Box Connector (12.0) Page 66 of 94

Administration Guide
Chapter 8: Ingestion

IndexDatabase The name of the IDOL database into which documents are indexed. Ensure

that this database exists in the IDOL Server configuration file.

« Toindex all documents retrieved by the connector into the same IDOL database, set this
parameter in the [Ingestion] section.

« Touse adifferent database for documents retrieved by each task, set this parameter in the
TaskName section.

5. Save and close the configuration file.

Send Data to Haven OnDemand

This section describes how to configure ingestion into Haven OnDemand. Box Connector can index
documents into a Haven OnDemand text index, or send the documents to a Haven OnDemand
combination which can perform additional processing and then index the documents into a text index.

NOTE:

Haven OnDemand combinations do not accept binary files, so any documents that have
associated binary files are indexed directly into a text index and cannot be sent to a

combination.

Prepare Haven OnDemand

Before you can send documents to Haven OnDemand, you must create a text index. For information
about how to create text indexes, refer to the Haven OnDemand documentation.

Before you can send documents to a Haven OnDemand combination endpoint, the combination must
exist. Box Connector requires your combination to accept the following input parameters, and produce

the following output.

Input Parameters

Name

json

index

duplicate_mode

Output

Box Connector (12.0)

Type

any

string

string

Description

A JSON object that contains a single attribute 'documents' that is
an array of document objects.

The name of the text index that you want the combination to add
documents to. Box Connector uses the value of the parameter
HavenOnDemandIndexName to set this value.

Specifies how to handle duplicates when adding documents to
the text index. Box Connector uses the value of the parameter
HavenOnDemandDuplicateMode to set this value.

Page 67 of 94

https://dev.havenondemand.com/docs

Administration Guide
Chapter 8: Ingestion

Name Type Description
result any The result of the call to AddToTextIndex made by the
combination.

Send Data to Haven OnDemand

This section describes how to send documents to Haven OnDemand.

To send data to Haven OnDemand

1. Stop the connector.
2. Open the connector’s configuration file in a text editor.

3. Inthe [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to Haven OnDemand, set this parameter to
HavenOnDemand.

HavenOnDemandApiKey Your Haven OnDemand API key. You can obtain the key

from your Haven OnDemand account.

HavenOnDemandIndexName The name of the Haven OnDemand text index to index
documents into.

IngestSSLConfig The name of a section in the connector's configuration file
that contains SSL settings. The connection to Haven
OnDemand must be made over TLS. For more information
about sending documents to the ingestion server over TLS,
see Configure Outgoing SSL Connections, on page 32.

HavenOnDemandCombinationName (Optional) The name of the Haven OnDemand combination
to send documents to. If you set this parameter, Box
Connector sends documents to the combination endpoint
instead of indexing them directly into the text index.

NOTE:

Haven OnDemand combinations do not accept binary
files. Therefore any document that has an associated
binary file is indexed directly into the text index.

If you don't set this parameter, Box Connector indexes all
documents directly into the text index specified by
HavenOnDemandIndexName.

For example:

[Ingestion]
EnableIngestion=True

Box Connector (12.0) Page 68 of 94

Administration Guide
Chapter 8: Ingestion

IngesterType=HavenOnDemand
HavenOnDemandApiKey=[Your API Key]
HavenOnDemandIndexName=MyTextIndex
IngestSSLConfig=SSLOptions
HavenOnDemandCombinationName=MyCombination

[SSLOptions]
SSLMethod=TLSV1

4. Save and close the configuration file.

Send Data to Another Repository

You can configure a connector to send the information it retrieves to another connector. When the
destination connector receives the documents, it inserts them into another repository. When
documents are updated or deleted in the source repository, the source connector sends this information
to the destination connector so that the documents can be updated or deleted in the other repository.

NOTE:
The destination connector can only insert, update, and delete documents if it supports the
insert, update, and delete fetch actions

To send data to another connector for ingestion into another repository

1. Stop the connector.
2. Open the connector’s configuration file in a text editor.

3. Inthe [Ingestion] section, set the following parameters:

EnableIngestion To enableingestion, setthis parameterto true.

IngesterType To send data to another repository, set this parameter to Connector.

IngestHost The host name or IP address of the machine hosting the destination
connector.

IngestPort The ACI port of the destination connector.

IngestActions Set this parameter so that the source connector runs a Lua script to convert
documents into form that can be used with the destination connector's
insert action. For information about the required format, refer to the
Administration Guide for the destination connector.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Connector
IngestHost=AnotherConnector

Box Connector (12.0) Page 69 of 94

Administration Guide
Chapter 8: Ingestion

IngestPort=7010
IngestActions=Lua:transformation.lua

4. Save and close the configuration file.

Index Documents Directly into IDOL Server

This section describes how to index documents from a connector directly into IDOL Server.

TIP:

In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has
retrieved, and can manipulate and enrich documents before they are indexed. CFS also has the
capability to insert documents into more than one index, for example IDOL Server and a Vertica
database. For information about sending documents to CFS, see Send Data to Connector
Framework Server, on page 66

To index documents directly into IDOL Server

1. Stop the connector.
2. Open the connector’s configuration file in a text editor.

3. Inthe [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.
IngesterType To send data to IDOL Server, set this parameter to Indexer.

IndexDatabase The name of the IDOL database to index documents into.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Indexer
IndexDatabase=News

4. Inthe [Indexing] section of the configuration file, set the following parameters:
IndexerType Tosend datatoIDOL Server, set this parameter to IDOL.
Host The host name or IP address of the IDOL Server.
Port The IDOL Server ACI port.
SSLConfig (Optional) The name of a section in the connector's configuration file that

contains SSL settings for connecting to IDOL.

For example:

Box Connector (12.0) Page 70 of 94

Administration Guide
Chapter 8: Ingestion

[Indexing]
IndexerType=IDOL
Host=10.1.20.3
Port=9000
SSLConfig=SSLOptions

[SSLOptions]
SSLMethod=SSLV23

5. Save and close the configuration file.

Index Documents into Vertica

Box Connector can index documents into Vertica, so that you can run queries on structured fields
(document metadata).

Depending on the metadata contained in your documents, you could investigate the average age of
documents in a repository. You might want to answer questions such as: How much time has passed
since the documents were last updated? How many files are regularly updated? Does this represent a
small proportion of the total number of documents? Who are the most active users?

TIP:

In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has
retrieved, and can manipulate and enrich documents before they are indexed. CFS also has the
capability to insert documents into more than one index, for example IDOL Server and a Vertica
database. For information about sending documents to CFS, see Send Data to Connector
Framework Server, on page 66

Prerequisites

« Box Connector supports indexing into Vertica 7.1 and later.

« You must install the appropriate Vertica ODBC drivers (version 7.1 or later) on the machine that
hosts Box Connector. If you want to use an ODBC Data Source Name (DSN) in your connection
string, you will also need to create the DSN. For more information about installing Vertica ODBC
drivers and creating the DSN, refer to the Vertica documentation.

New, Updated and Deleted Documents

When documents are indexed into Vertica, Box Connector adds a timestamp that contains the time
when the document was indexed. The field is named VERTICA INDEXER_TIMESTAMP and the timestamp
is in the format YYYY-MM-DD HH:NN:SS.

When a document in a data repository is modified, Box Connector adds a new record to the database
with a new timestamp. All of the fields are populated with the latest data. The record describing the

Box Connector (12.0) Page 71 of 94

http://www.vertica.com/documentation

Administration Guide
Chapter 8: Ingestion

older version of the document is not deleted. You can create a projection to make sure your queries only
return the latest record for a document.

When Box Connector detects that a document has been deleted from a repository, the connector
inserts a new record into the database. The record contains only the DREREFERENCE and the field
VERTICA_ INDEXER_DELETED set to TRUE.

Fields, Sub-Fields, and Field Attributes

Documents that are created by connectors can have multiple levels of fields, and field attributes. A
database table has a flat structure, so this information is indexed into Vertica as follows:

« Document fields become columns in the flex table. An IDOL document field and the corresponding
database column have the same name.

« Sub-fields become columns in the flex table. A document field named my_field with a sub-field
named subfield results intwo columns, my fieldandmy field.subfield.

« Field attributes become columns in the flex table. A document field named my field, with an
attribute named my_attribute results in two columns, my_field holding the field value and my_
field.my_attribute holding the attribute value.

Prepare the Vertica Database

Indexing documents into a standard database is problematic, because documents do not have a fixed
schema. A document that represents an image has different metadata fields to a document that
represents an e-mail message. Vertica databases solve this problem with flex tables. You can create a
flex table without any column definitions, and you can insert a record regardless of whether a
referenced column exists.

You must create a flex table before you index data into Vertica.
When creating the table, consider the following:

« Flex tables store entire records in a single column named __raw__. The default maximum size of the
__raw__ columnis 128K. You might need to increase the maximum size if you are indexing
documents with large amounts of metadata.

« Documents are identified by their DREREFERENCE. Micro Focus recommends that you do not restrict
the size of any column that holds this value, because this could result in values being truncated. As
a result, rows that represent different documents might appear to represent the same document. If
you do restrict the size of the DREREFERENCE column, ensure that the length is sufficient to hold the
longest DREREFERENCE that might be indexed.

To create a flex table without any column definitions, run the following query:
create flex table my table();

To improve query performance, create real columns for the fields that you query frequently. For
documents indexed by a connector, this is likely to include the DREREFERENCE:

create flex table my_table(DREREFERENCE varchar NOT NULL);

Box Connector (12.0) Page 72 of 94

Administration Guide
Chapter 8: Ingestion

You can add new column definitions to a flex table at any time. Vertica automatically populates new
columns with values for existing records. The values for existing records are extracted from the __ raw_
_ column.

For more information about creating and using flex tables, refer to the VVertica Documentation or contact
Vertica technical support.

Send Data to Vertica

To send documents to a Vertica database, follow these steps.

To send data to Vertica

1. Stop the connector.
2. Open the connector’'s configuration file in a text editor.

3. Inthe [Ingestion] section, set the following parameters:

EnableIngestion To enableingestion, setthis parameterto true.

IngesterType To send data to a Vertica database, set this parameter to Indexer.

For example:

[Ingestion]
EnableIngestion=TRUE
IngesterType=Indexer

4. Inthe [Indexing] section, set the following parameters:

IndexerType To send data to a Vertica database, set this parameter to Library.
LibraryDirectory The directory that contains the library to use to index data.

LibraryName The name of the library to use to index data. You can omit the .d11 or . so
file extension. Set this parameter to verticaIndexer.

ConnectionString The connection string to use to connect to the Vertica database.

TableName The name of the table in the Vertica database to index the documents into.
The table must be a flex table and must exist before you start indexing
documents. For more information, see Prepare the Vertica Database, on
the previous page.

For example:

[Indexing]
IndexerType=Library
LibraryDirectory=indexerdlls
LibraryName=verticaIndexer

Box Connector (12.0) Page 73 of 94

http://www.vertica.com/documentation

Administration Guide
Chapter 8: Ingestion

ConnectionString=DSN=VERTICA
TableName=my_flex_table

5. Save and close the configuration file.

Send Data to a MetaStore

You can configure a connector to send documents to a MetaStore. When you send data to a Metastore,
any files associated with documents are ignored.

TIP:

In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has
retrieved, and can manipulate and enrich documents before they are indexed. CFS also has the
capability to insert documents into more than one index, for example IDOL Server and a
MetaStore. For information about sending documents to CFS, see Send Data to Connector
Framework Server, on page 66

To send data to a MetaStore
1. Stop the connector.

2. Open the connector’s configuration file in a text editor.

3. Inthe [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a MetaStore, set this parameter to Indexer.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Indexer

4. Inthe [Indexing] section, set the following parameters:

IndexerType To send datato aMetaStore, set this parameter to MetaStore.

Host The host name of the machine hosting the MetaStore.
Port The port of the MetaStore.

For example:

[Indexing]

IndexerType=Metastore
Host=MyMetaStore

Box Connector (12.0) Page 74 of 94

Administration Guide
Chapter 8: Ingestion

Port=8000

5. Save and close the configuration file.

Run a Lua Script after Ingestion

You can configure the connector to run a Lua script after batches of documents are successfully sent to
the ingestion server. This can be useful if you need to log information about documents that were
processed, for monitoring and reporting purposes.

To configure the file name of the Lua script to run, set the IngestBatchActions configuration
parameter in the connector's configuration file.

« Torun the script for all batches of documents that are ingested, set the parameter in the
[Ingestion] section.

« Torun the script for batches of documents retrieved by a specific task, set the parameter in the
[TaskName] section.

NOTE:
If you set the parameter in a [TaskName] section, the connector does not run any scripts
specified in the [Ingestion] section for that task.

For example:

[Ingestion]
IngestBatchActions@=LUA:./scripts/myScript.lua

For more information about this parameter, refer to the Box Connector Reference.
The Lua script must have the following structure:

function batchhandler(documents, ingesttype)

end
The batchhandler function is called after each batch of documents is sent to the ingestion server. The
function is passed the following arguments:

Argument Description

documents A table of document objects, where each object represents a document that was sent
to the ingestion server.

A document object is an internal representation of a document. You can modify the
document object and this changes the document. However, as the script runs after
the documents are sent to the ingestion server, any changes you make are not sent to
CFS orIDOL.

ingesttype A string that contains the ingest type for the documents. The batchhandler function
is called multiple times if different document types are sent.

Box Connector (12.0) Page 75 of 94

Administration Guide
Chapter 8: Ingestion

For example, the following script prints the ingest type (ADD, DELETE, or UPDATE) and the reference for

all successfully processed documents to stdout:

function batchhandler(documents, ingesttype)
for i,document in ipairs(documents) do
local ref = document:getReference()
print(ingesttype..": "..ref)
end
end

Box Connector (12.0)

Page 76 of 94

Chapter 9: Monitor the Connector

This section describes how to monitor the connector.

O DO AAMIN . 77
® View Connector Statistics il 79
® Usethe ConNeCtOr LOgS o o 80
* Monitorthe Progress of @ Task il 82
¢ Monitor Asynchronous Actions using Event Handlers 84
® Set Up Performance Monitoringl 86
® Set Up Document TraCKing ... il 88

IDOL Admin

IDOL Admin is an administration interface for performing ACI server administration tasks, such as gathering
status information, monitoring performance, and controlling the service. IDOL Admin provides an alternative
to constructing actions and sending them from your web browser.

Prerequisites

Box Connector includes the admin. dat file that is required to run IDOL Admin.
IDOL Admin supports the following browsers:

« Internet Explorer 11

o Edge

« Chrome (latest version)

« Firefox (latest version)

Install IDOL Admin

You must install IDOL Admin on the same host that the ACI server or component is installed on. To set up a
component to use IDOL Admin, you must configure the location of the admin. dat file and enable Cross Origin
Resource Sharing.

To install IDOL Admin

1. Stopthe ACI server.
2. Savethe admin.dat file to any directory on the host.

3. Using a text editor, open the ACI server or component configuration file. For the location of the

Box Connector (12.0) Page 77 of 94

Administration Guide
Chapter 9: Monitor the Connector

configuration file, see the ACI server documentation.

4. Inthe [Paths] section of the configuration file, set the AdminFile parameter to the location of the
admin.dat file. If you do not set this parameter, the ACI server attempts to find the admin.dat file
in its working directory when you call the IDOL Admin interface.

5. Enable Cross Origin Resource Sharing.

6. Inthe [Service] section, add the Access-Control-Allow-Origin parameter and set its value to
the URLSs that you want to use to access the interface.

Each URL must include:

o thehttp:// orhttps:// prefix

NOTE:
URLs can contain the https:// prefix if the ACI server or component has SSL enabled.

« The host that IDOL Admin is installed on

« The ACI port of the component that you are using IDOL Admin for

Separate multiple URLs with spaces.

For example, you could specify different URLs for the local host and remote hosts:

Access-Control-Allow-Origin=http://localhost:9010
http://Computerl.Company.com:9010

Alternatively, you can set Access-Control-Allow-Origin=*, which allows you to access IDOL
Admin using any valid URL (for example, localhost, direct IP address, or the host name). The
wildcard character (*) is supported only if no other entries are specified.

If you do not set the Access-Control-Allow-0Origin parameter, IDOL Admin can communicate
only with the server's ACI port, and not the index or service ports.

7. Start the AClI server.

You can now access IDOL Admin (see Access IDOL Admin, below).

Access IDOL Admin

You access IDOL Admin from a web browser. You can access the interface only through URLSs that are
setinthe Access-Control-Allow-Origin parameterin the ACI server or component configuration file.
For more information about configuring URL access, see Install IDOL Admin, on the previous page.

To access IDOL Admin

« Type the following URL into the address bar of your web browser:
http://host:port/action=admin

where:

Box Connector (12.0) Page 78 of 94

Administration Guide
Chapter 9: Monitor the Connector

host is the host name or IP address of the machine where the IDOL component is installed.

port is the ACI port of the IDOL component you want to administer.

View Connector Statistics

Box Connector collects statistics about the work it has completed. The statistics that are available
depend on the connector you are using, but all connectors provide information about the number and
frequency of ingest-adds, ingest-updates, and ingest-deletes.

To view connector statistics

o Usethe GetStatistics service action, for example:
http://host:serviceport/action=GetStatistics

where host is the host name or IP address of the machine where the connector is installed, and
serviceport is the connector’s service port.

For information about the statistics that are returned, refer to the documentation for the
GetStatistics service action.

The connector includes an XSL template (ConnectorStatistics.tmpl)that you can use to visualize
the statistics. You can use the template by adding the template parameter to the request:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics

When you are using the ConnectorStatistics template, you can also add the filter parameter to
the request to return specific statistics. The filter parameter accepts a regular expression that
matches against the string autnid: : name, where autnid and name are the values of the corresponding
attributes in the XML retumed by the GetStatistics action. For example, the following request returns
statistics only for synchronize actions:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics
&filter="synchronize:

The following request returns statistics only for the task mytask:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics
&filter=:mytask:

Box Connector (12.0) Page 79 of 94

Administration Guide
Chapter 9: Monitor the Connector

The following image shows some example statistics returned by a connector:

SYNCHRONIZE:MYTASK SYNCHRONIZE:MYTASK
HTTP Receive Bytes Ingest Adds
Per Second Total: 24473293 Per Second Total: 70
Current Total: 10319536 Current Total: 30
Previcus Total: 14133757 Previous Total: 40
140k 0.45
120K 040\
0.35 |
100k
030 | BN
80K 0.25
60k 020 | BN
015 |
40k
0.10 |
20k oos |
0 0
$ & F F L LS g ¥ & F L £
§ & &FTSS, g F&TFTESS $F
L H & & B g o L& & B -
2 & & =& oA

Above each chart is a title, for example SYNCHRONIZE : MYTASK, that specifies the action and task to
which the statistics belong.

You can see from the example that in the last 60 seconds, the connector has generated an average of
approximately 0.4 ingest-adds per second. In the charts, partially transparent bars indicate that the
connector has not completed collecting information for those time intervals. The information used to
generate statistics is stored in memory, sois lost if you stop the connector.

The following information is presented above the chart for each statistic:

« Total is a running total since the connector started. In the example above, there have been 70
ingest-adds in total.

« Current Total is the total for the actions that are currently running. In the example above, the
synchronize action that is running has resulted in 30 ingest-adds being sent to CFS.

« Previous Total provides the totals for previous actions. In the example above, the previous
synchronize cycle resulted in 40 ingest-adds. To see the totals for the 24 most recent actions, hover
the mouse pointer over the value.

Use the Connector Logs

As the Box Connector runs, it outputs messages to its logs. Most log messages occur due to normal
operation, for example when the connector starts, receives actions, or sends documents for ingestion.
If the connector encounters an error, the logs are the first place to look for information to help
troubleshoot the problem.

Box Connector (12.0) Page 80 of 94

Administration Guide
Chapter 9: Monitor the Connector

The connector separates messages into the following message types, each of which relates to specific
features:

Log Message Type Description

Action Logs actions that are received by the connector, and related messages.
Application Logs application-related occurrences, such as when the connector starts.
Collect Messages related to the Collect fetch action.

Delete Messages related to the Delete fetch action.

Insert Messages related to the Insert fetch action.

Synchronize Messages related to the Synchronize fetch action.

SynchronizeGroups Messages related to the SynchronizeGroups fetch action.

View Messages related to the View action.

Customize Logging

You can customize logging by setting up your own log streams. Each log stream creates a separate log
file in which specific log message types (for example, action, index, application, orimport) are logged.

To set up log streams

1.
2.

Open the Box Connector configuration file in a text editor.

Find the [Logging] section. If the configuration file does not contain a [Logging] section, add
one.

Inthe [Logging] section, create a list of the log streams that you want to set up, in the format
N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For example:

[Logging]
LoglLevel=FULL
LogDirectory=1logs
O=ApplicationLogStream
1=ActionLogStream

You can also use the [Logging] section to configure any default values for logging configuration
parameters, such as LogLevel. For more information, see the Box Connector Reference.

Create a new section for each of the log streams. Each section must have the same name as the
log stream. For example:

[ApplicationLogStream]
[ActionLogStream]

Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), whether to display log messages on the console, the

Box Connector (12.0) Page 81 of 94

Administration Guide
Chapter 9: Monitor the Connector

maximum size of log files, and so on. For example:

[ApplicationLogStream]
LogTypeCSVs=application
LogFile=application.log
LogHistorySize=50
LogTime=True
LogEcho=False
LogMaxSizekKBs=1024

[ActionLogStream]
LogTypeCSVs=action
LogFile=1logs/action.log
LogHistorySize=50
LogTime=True
LogEcho=False
LogMaxSizeKBs=1024

6. Save and close the configuration file. Restart the service for your changes to take effect.

Monitor the Progress of a Task

This section describes how to monitor the progress of a task.

NOTE:
Progress reporting is not available for every action.

To monitor the progress of a task

« Send the following action to the connector:
action=QueueInfo&QueueName=fetch&QueueAction=progress&Token=...

where,

Token The token of the task that you want to monitor. If you started the task by sending an action
to the connector, the token was returned in the response. If the connector started the task
according to the schedule in its configuration file, you can use the QueueInfo actionto
find the token (use /action=QueueInfo&QueueName=fetch&QueueAction=getstatus).

The connector returns the progress report, inside the <progress> element of the response. The
following example is for a File System Connector synchronize task.

<autnresponse>
<action>QUEUEINFO</action>
<response>SUCCESS</response>
<responsedata>
<action>
<token>MTAuMi4xMDUuMTAzOjEyMzQ6RkVUQOgEMTAXNZzMOMzgz0Q==</token>
<status>Processing</status>

Box Connector (12.0) Page 82 of 94

Administration Guide
Chapter 9: Monitor the Connector

<progress>
<building_mode>false</building_mode>
<percent>7.5595</percent>
<time_processing>18</time_processing>
<estimated_time_remaining>194</estimated_time_remaining>
<stage title="MYTASK" status="Processing" weight="1" percent="7.5595">
<stage title="Ingestion" status="Processing" weight="999"
percent="7.567">
<stage title="C:\Test Files\" status="Processing" weight="6601"
percent="7.567" progress="0" maximum="6601">
<stage title="Folder@l" status="Processing" weight="2317"
percent="43.116" progress="999" maximum="2317"/>
<stage title="Folder@2" status="Pending" weight="2567"/>
<stage title="Folder@3" status="Pending" weight="1715"/>
<stage title="." status="Pending" weight="2"/>
</stage>
</stage>
<stage title="Deletion" status="Pending" weight="1"/>
</stage>
</progress>
</action>
</responsedata>
</autnresponse>

To read the progress report

The information provided in the progress report is unique to each connector and each action. For
example, the File System Connector reports the progress of a synchronize task by listing the folders
that require processing.

A progress report can include several stages:

A stage represents part of a task.

A stage can have sub-stages. In the previous example, the stage "C:\Test Files\" has three stages
that represent sub-folders ("Folder01", "Folder02", and "Folder03") and one stage that represents the
contents of the folder itself ("."). You can limit the depth of the sub-stages in the progress report by
setting the MaxDepth parameter in the QueueInfo action.

The weight attribute indicates the amount of work included in a stage, relative to other stages at the
same level.

The status attribute shows the status of a stage. The status can be "Pending", "Processing", or
"Finished".

The progress attribute shows the number of items that have been processed for the stage.

The maximum attribute shows the total number of items that must be processed to complete the
stage.

The percent attribute shows the progress of a stage (percentage complete). In the previous
example, the progress report shows that MYTASK is 7.5595% complete.

Box Connector (12.0) Page 83 of 94

Administration Guide
Chapter 9: Monitor the Connector

« Finished stages are grouped, and pending stages are not expanded into sub-stages, unless you set
the action parameter A11Stages=true in the QueueInfo action.

Monitor Asynchronous Actions using Event Handlers

The fetch actions sent to a connector are asynchronous. Asynchronous actions do not run
immediately, but are added to a queue. This means that the person or application that sends the action
does not receive an immediate response. However, you can configure the connector to call an event
handler when an asynchronous action starts, finishes, or encounters an error.

You can use an event handler to:
« return data about an event back to the application that sent the action.

« write event data to a text file, to log any errors that occur.

You can also use event handlers to monitor the size of asynchronous action queues. If a queue
becomes full this might indicate a problem, or that applications are making requests to Box Connector
faster than they can be processed.

Box Connector can call an event handler for the following events.

OnStart The OnStart event handler is called when Box Connector starts processing an
asynchronous action.

OnFinish The OnFinish event handler is called when Box Connector successfully finishes
processing an asynchronous action.

OnError The onError event handler is called when an asynchronous action fails and
cannot continue.

OnErrorReport The OnErrorReport eventis called when an asynchronous action encounters an
error, but the action continues. This event is not available for every connector.

OnQueueEvent The OnQueueEvent handleris called when an asynchronous action queue
becomes full, becomes empty, or the queue size passes certain thresholds.

o AQueueFull event occurs when the action queue becomes full.

« AQueueFilling event occurs when the queue size exceeds a configurable
threshold (QueueFillingThreshold)and the last event was a QueueEmpty or
QueueEmptying event.

« AQueueEmptying event occurs when the queue size falls below a configurable
threshold (QueueEmptyingThreshold)and the last event was a QueueFull or
QueueFilling event.

« AQueueEmpty event occurs when the action queue becomes empty.

Box Connector supports the following types of event handler:
« The TextFileHandler writes event data to a text file.

« TheHttpHandler sends event datatoa URL.

Box Connector (12.0) Page 84 of 94

Administration Guide
Chapter 9: Monitor the Connector

« The LuaHandler runs a Lua script. The event data is passed into the script.

Configure an Event Handler

To configure an event handler, follow these steps.

To configure an event handler

1. Stop the connector.
2. Open the connector’s configuration file in a text editor.

3. SettheoOnStart, OnFinish, OnErrorReport, OnError, or OnQueueEvent parameter to specify
the name of a section in the configuration file that contains the event handler settings.

« Torunan event handler for all asynchronous actions, set these parameters inthe [Actions]
section. For example:

[Actions]
onStart=NormalEvents
OnFinish=NormalEvents
OnErrorReport=ErrorEvents
OnError=ErrorEvents

« Torun an event handler for specific actions, use the action name as a section in the
configuration file. The following example calls an event handler when the Fetch action starts
and finishes successfully:

[Fetch]
OnStart=NormalEvents
OnFinish=NormalEvents

4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnStart, OnFinish,
OnErrorReport, OnError, or OnQueueEvent parameter.

5. Inthe new section, set the LibraryName parameter.

LibraryName The type of event handler to use to handle the event:

« Towrite event data to a text file, set this parameter to TextFileHandler, and
then set the FilePath parameter to specify the path of the file.

« Tosendevent datato a URL, set this parameter to HttpHandler, and then
use the HTTP event handler parameters to specify the URL, proxy server
settings, credentials and so on.

« Torunalua script, set this parameter to LuaHandler, and then set the
LuaScript parameter to specify the script to run. For information about
writing the script, see Write a Lua Script to Handle Events, on the next page.

For example:

Box Connector (12.0) Page 85 of 94

Administration Guide
Chapter 9: Monitor the Connector

[NormalEvents]
LibraryName=TextFileHandler
FilePath=./events.txt

[ErrorEvents]
LibraryName=LuaHandler
LuaScript=./error.lua

6. Save and close the configuration file. You must restart Box Connector for your changes to take
effect.

Write a Lua Script to Handle Events

The Lua event handler runs a Lua script to handle events. The Lua script must contain a function named
handler with the arguments request and xm1, as shown below:

function handler(request, xml)

end

o request is atable holding the request parameters. For example, if the request was
action=Example&MyParam=Value, the table will contain a key MyParam with the value Value. Some
events, for example queue size events, are not related to a specific action and so the table might be
empty.

« xmlis astring of XML that contains information about the event.

Set Up Performance Monitoring

You can configure a connector to pause tasks temporarily if performance indicators on the local
machine or a remote machine breach certain limits. For example, if there is a high load on the CPU or
memory of the repository from which you are retrieving information, you might want the connector to
pause until the machine recovers.

NOTE:
Performance monitoring is available on Windows platforms only. To monitor a remote machine,
both the connector machine and remote machine must be running Windows.

Configure the Connector to Pause

To configure the connector to pause

1. Open the configuration file in a text editor.

2. Findthe [FetchTasks] section, ora [TaskName] section.

Box Connector (12.0) Page 86 of 94

Administration Guide
Chapter 9: Monitor the Connector

« Topause all tasks, use the [FetchTasks] section.
« To specify settings for a single task, find the [TaskName] section for the task.

3. Set the following configuration parameters:

PerfMonCounterNameN The names of the performance counters that you want the
connector to monitor. You can use any counter that is available in
the Windows perfmon utility.

PerfMonCounterMinN The minimum value permitted for the specified performance
counter. If the counter falls below this value, the connector pauses
until the counter meets the limits again.

PerfMonCounterMaxN The maximum value permitted for the specified performance
counter. If the counter exceeds this value, the connector pauses
until the counter meets the limits again.

PerfMonAvgOverReadings (Optional) The number of readings that the connector averages
before checking a performance counter against the specified
limits. For example, if you set this parameter to 5, the connector
averages the last five readings and pauses only if the average
breaches the limits. Increasing this value makes the connector
less likely to pause if the limits are breached for a short time.
Decreasing this value allows the connector to continue working
faster following a pause.

PerfMonQueryFrequency (Optional) The amount of time, in seconds, that the connector
waits between taking readings from a performance counter.

For example:

[FetchTasks]

PerfMonCounterName®=\\machine-hostname\Memory\Available MBytes
PerfMonCounterMin®=1024

PerfMonCounterMax0=1024000
PerfMonCounterNamel=\\machine-hostname\Processor(_Total)\% Processor Time
PerfMonCounterMinl=0

PerfMonCounterMax1=70

PerfMonAvgOverReadings=5

PerfMonQueryFrequency=10

NOTE:
You must set both a minimum and maximum value for each performance counter. You can
not set only a minimum or only a maximum.

4. Save and close the configuration file.

Box Connector (12.0) Page 87 of 94

Administration Guide
Chapter 9: Monitor the Connector

Determine if an Action is Paused

To determine whether an action has been paused for performance reasons, use the QueueInfo action:
/action=queueInfo&queueAction=getStatus&queueName=fetch

You can also include the optional token parameter to return information about a single action:
/action=queueInfo&queueAction=getStatus&queueName=fetch&token=...

The connector returns the status, for example:

<autnresponse>
<action>QUEUEINFO</action>
<response>SUCCESS</response>
<responsedata>
<actions>
<action owner="2266112570">
<status>Processing</status>
<queued_time>2016-Jul-27 14:49:40</queued_time>
<time_in_queue>1</time_in_queue>
<process_start_time>2016-Jul-27 14:49:41</process_start_time>
<time_processing>219</time_processing>
<documentcounts>
<documentcount errors="0" task="MYTASK"/>
</documentcounts>
<fetchaction>SYNCHRONIZE</fetchaction>
<pausedforperformance>true</pausedforperformance>
<token>...</token>
</action>
</actions>
</responsedata>
</autnresponse>

When the element pausedforperformance has a value of true, the connector has paused the task for
performance reasons. If the pausedforperformance element is not present in the response, the
connector has not paused the task.

Set Up Document Tracking

Document tracking reports metadata about documents when they pass through various stages in the
indexing process. For example, when a connector finds a new document and sends it for ingestion, a
document tracking event is created that shows the document has been added. Document tracking can
help you detect problems with the indexing process.

You can write document tracking events to a database, log file, or IDOL Server. For information about
how to set up a database to store document tracking events, refer to the IDOL Server Administration
Guide.

Box Connector (12.0) Page 88 of 94

Administration Guide
Chapter 9: Monitor the Connector

To enable Document Tracking

1. Open the connector's configuration file.
2. Create a new section in the configuration file, named [DocumentTracking].
3. Inthe new section, specify where the document tracking events are sent.

« Tosend document tracking events to a database through ODBC, set the following parameters:

Backend To send document tracking events to a database, set this parameter to
Library.
LibraryPath Specify the location of the ODBC document tracking library. This is

included with IDOL Server.

ConnectionString The ODBC connection string for the database.

For example:

[DocumentTracking]

Backend=Library
LibraryPath=C:\Autonomy\IDOLServer\IDOL\modules\dt_odbc.d1ll
ConnectionString=DSN=MyDatabase

« Tosend document tracking events to the connector's synchronize log, set the following
parameters:

Backend To send document tracking events to the connector's logs, set this
parameter to Log.

DatabaseName The name of the log stream to send the document tracking events to. Set
this parameter to synchronize.

For example:

[DocumentTracking]
Backend=Log
DatabaseName=synchronize

« Tosend document tracking events to an IDOL Server, set the following parameters:

Backend To send document tracking events to an IDOL Server, set this parameter to
IDOL.

TargetHost The host name or IP address of the IDOL Server.

TargetPort Theindex port of the IDOL Server.

For example:

[DocumentTracking]
Backend=IDOL

Box Connector (12.0) Page 89 of 94

Administration Guide
Chapter 9: Monitor the Connector

TargetHost=idol
TargetPort=9001

For more information about the parameters you can use to configure document tracking, refer to
the Box Connector Reference.

4. Save and close the configuration file.

Box Connector (12.0) Page 90 of 94

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates operations
on unstructured information for cross-
enterprise applications. ACI enables an
automated and compatible business-to-
business, peer-to-peer infrastructure. The
AClI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email, Web
pages, Microsoft Office documents, and IBM
Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

ACL (access control list)
An ACL is metadata associated with a
document that defines which users and
groups are permitted to access the
document.

action
A request sent to an ACI server.

active directory
A domain controller for the Microsoft
Windows operating system, which uses
LDAP to authenticate users and computers
on a network.

C

Category component
The IDOL Server component that manages
categorization and clustering.

Box Connector (12.0)

Community component
The IDOL Server component that manages
users and communities.

connector
An IDOL component (for example File
System Connector) that retrieves information
from a local or remote repository (for
example, a file system, database, or Web
site).

Connector Framework Server (CFS)
Connector Framework Server processes the
information that is retrieved by connectors.
Connector Framework Server uses KeyView
to extract document content and metadata
from over 1,000 different file types. When the
information has been processed, it is sent to
an IDOL Server or Distributed Index Handler
(DIH).

Content component
The IDOL Server component that manages
the data index and performs most of the
search and retrieval operations from the
index.

D

DAH (Distributed Action Handler)
DAH distributes actions to multiple copies of
IDOL Server or a component. It allows you to
use failover, load balancing, or distributed
content.

DIH (Distributed Index Handler)
DIH allows you to efficiently split and index
extremely large quantities of data into
multiple copies of IDOL Server or the
Content component. DIH allows you to
create a scalable solution that delivers high
performance and high availability. It provides
a flexible way to batch, route, and categorize
the indexing of internal and external content
into IDOL Server.

Page 91 of 94

Administration Guide
Glossary: IDOL - OmniGroupServer (OGS)

that users are allowed to access the system
| that contains the result data. At the back end,
entitlement checking and authentication
IDOL combine to ensure that query results contain

The Intelligent Data Operating Layer (IDOL)
Server, which integrates unstructured, semi-
structured and structured information from
multiple repositories through an
understanding of the content. It delivers a
real-time environment in which operations
across applications and content are
automated.

IDOL Proxy component

An IDOL Server component that accepts
incoming actions and distributes them to the
appropriate subcomponent. IDOL Proxy also
performs some maintenance operations to
make sure that the subcomponents are
running, and to start and stop them when
necessary.

Import

Importing is the process where CFS, using
KeyView, extracts metadata, content, and
sub-files from items retrieved by a connector.
CFS adds the information to documents so
that it is indexed into IDOL Server. Importing
allows IDOL server to use the information in
a repository, without needing to process the
information in its native format.

Ingest

Ingestion converts information that exists in
a repository into documents that can be
indexed into IDOL Server. Ingestion starts
when a connector finds new documents in a
repository, or documents that have been
updated or deleted, and sends this
information to CFS. Ingestion includes the
import process, and processing tasks that
can modify and enrich the information in a
document.

Intellectual Asset Protection System (IAS)
An integrated security solution to protect your
data. At the front end, authentication checks

Box Connector (12.0)

only documents that the user is allowed to
see, from repositories that the user has
permission to access. For more information,
refer to the IDOL Document Security
Administration Guide.

K

KeyView
The IDOL component that extracts data,
including text, metadata, and subfiles from
over 1,000 different file types. KeyView can
also convert documents to HTML format for
viewing in a Web browser.

L

LDAP
Lightweight Directory Access Protocol.
Applications can use LDAP to retrieve
information from a server. LDAP is used for
directory services (such as corporate email
and telephone directories) and user
authentication. See also: active directory,
primary domain controller.

License Server
License Server enables you to license and
run multiple IDOL solutions. You must have a
License Server on a machine with a known,
static IP address.

O

OmniGroupServer (OGS)
A server that manages access permissions
for your users. It communicates with your
repositories and IDOL Server to apply
access permissions to documents.

Page 92 of 94

Administration Guide
Glossary: primary domain controller - XML

P

primary domain controller
A server computer in a Microsoft Windows
domain that controls various computer
resources. See also: active directory, LDAP.

Vv

View
An IDOL component that converts files in a
repository to HTML formats for viewing in a
Web browser.

W

Wildcard
A character that stands in for any character
or group of characters in a query.

X

XML
Extensible Markup Language. XML is a
language that defines the different attributes
of document content in a format that can be
read by humans and machines. In IDOL
Server, you can index documents in XML
format. IDOL Server also returns action
responses in XML format.

Box Connector (12.0) Page 93 of 94

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Administration Guide (Micro Focus Box Connector 12.0)
Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

Box Connector (12.0) Page 94 of 94

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus Box Connector 12.0)

	Chapter 1: Introduction
	Box Connector
	Supported Actions
	Mapped Security
	Display Online Help

	Connector Framework Server
	The IDOL Platform
	System Architecture

	Chapter 2: Install Box Connector
	System Requirements
	Permissions
	Create a Box Application
	Install Box Connector on Windows
	Install Box Connector on Linux
	Configure OAuth Authentication

	Chapter 3: Configure Box Connector
	Box Connector Configuration File
	Modify Configuration Parameter Values
	Include an External Configuration File
	Include the Whole External Configuration File
	Include Sections of an External Configuration File
	Include a Parameter from an External Configuration File
	Merge a Section from an External Configuration File

	Encrypt Passwords
	Create a Key File
	Encrypt a Password
	Decrypt a Password

	Configure Client Authorization
	Register with a Distributed Connector
	Set Up Secure Communication
	Configure Outgoing SSL Connections
	Configure Incoming SSL Connections

	Backup and Restore the Connector’s State
	Backup a Connector’s State
	Restore a Connector’s State

	Validate the Configuration File

	Chapter 4: Start and Stop the Connector
	Start the Connector
	Verify that Box Connector is Running
	GetStatus
	GetLicenseInfo

	Stop the Connector

	Chapter 5: Send Actions to Box Connector
	Send Actions to Box Connector
	Asynchronous Actions
	Check the Status of an Asynchronous Action
	Cancel an Asynchronous Action that is Queued
	Stop an Asynchronous Action that is Running

	Store Action Queues in an External Database
	Prerequisites
	Configure Box Connector

	Store Action Queues in Memory
	Use XSL Templates to Transform Action Responses
	Example XSL Templates

	Chapter 6: Use the Connector
	Retrieve Information from Box
	Retrieve Information from Box Enterprise
	Schedule Fetch Tasks
	Synchronize from Identifiers
	Insert Files into Box

	Chapter 7: Manipulate Documents
	Introduction
	Add a Field to Documents using an Ingest Action
	Customize Document Processing
	Standardize Field Names
	Configure Field Standardization
	Customize Field Standardization

	Run Lua Scripts
	Write a Lua Script
	Run a Lua Script using an Ingest Action

	Example Lua Scripts
	Add a Field to a Document
	Merge Document Fields

	Chapter 8: Ingestion
	Introduction
	Send Data to Connector Framework Server
	Send Data to Haven OnDemand
	Prepare Haven OnDemand
	Send Data to Haven OnDemand

	Send Data to Another Repository
	Index Documents Directly into IDOL Server
	Index Documents into Vertica
	Prepare the Vertica Database
	Send Data to Vertica

	Send Data to a MetaStore
	Run a Lua Script after Ingestion

	Chapter 9: Monitor the Connector
	IDOL Admin
	Prerequisites
	Install IDOL Admin
	Access IDOL Admin

	View Connector Statistics
	Use the Connector Logs
	Customize Logging

	Monitor the Progress of a Task
	Monitor Asynchronous Actions using Event Handlers
	Configure an Event Handler
	Write a Lua Script to Handle Events

	Set Up Performance Monitoring
	Configure the Connector to Pause
	Determine if an Action is Paused

	Set Up Document Tracking

	Glossary
	Send documentation feedback

