
DevPartner Java Edition
Getting Started Guide

Release 4.5

Copyright © 2001–2009 Micro Focus (IP) Ltd.
All rights reserved.

Micro Focus (IP) Ltd. has made every effort to ensure that this book is correct and accurate,
but reserves the right to make changes without notice at its sole discretion at any time. The
software described in this document is supplied under a license and may be used or copied
only in accordance with the terms of such license, and in particular any warranty of fitness of
Micro Focus software products for any particular purpose is expressly excluded and in no
event will Micro Focus be liable for any consequential loss.

Animator®, COBOLWorkbench®, EnterpriseLink®, Mainframe Express®, Micro Focus®,
Net Express®, REQL® and Revolve® are registered trademarks, and AAI™, Analyzer™,
Application Quality Workbench™, Application Server™,
Application to Application Interface™, AddPack™, AppTrack™, AssetMiner™,
BoundsChecker™, CARS™, CCI™, DataConnect™, DevPartner™, DevPartnerDB™,
DevPartner Fault Simulator™, DevPartner SecurityChecker™,Dialog System™,
Driver:Studio™, Enterprise Server™, Enterprise View™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Server™, Mainframe Access™, Mainframe Manager™,
Micro Focus COBOL™, Micro Focus Studio™, Micro Focus Server™, Object COBOL™,
OpenESQL™, Optimal Trace™,Personal COBOL™, Professional COBOL™, QACenter™,
QADirector™, QALoad™, QARun™, Quality Maturity Model™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SoftICE™, SourceConnect™, SupportLine™,
TestPartner™, Toolbox™, TrackRecord™, WebCheck™, WebSync™, and Xilerator™ are
trademarks of Micro Focus (IP) Ltd. All other trademarks are the property of their respective
owners.

No part of this publication, with the exception of the software product user documentation
contained on a CD-ROM, may be copied, photocopied, reproduced, transmitted, transcribed,
or reduced to any electronic medium or machine-readable form without prior written consent
of Micro Focus (IP) Ltd. Contact your Micro Focus representative if you require access to the
modified Apache Software Foundation source files.

Licensees may duplicate the software product user documentation contained on a
CD-ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation, regardless of
whether the documentation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public domain, and
that the Software and Documentation are Commercial Computer Software provided with
RESTRICTED RIGHTS under Federal Acquisition Regulations and agency supplements to
them. Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause
at DFAR 252.227-7013 et. seq. or subparagraphs (c) (1) and (2) of the Commercial Computer
Software Restricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus (IP)
Ltd., 9420 Key West Avenue, Rockville, Maryland 20850. Rights are reserved under copyright
laws of the United States with respect to unpublished portions of the Software.

20091013100444

2 DevPartner Java Edition Getting Started Guide

Table of Contents
Preface . 7
Who Should Read This Manual . 7
What This Manual Covers . 7
Conventions Used In This Manual . 8
Getting Help . 9

Contact . 9

Chapter 1 · Analyzing Problems in Java Applications . 11
When Good Programs Produce Bad Results . 11

Scalability . 12
Perception of Performance . 12
Intense Computational Operations . 12
Memory Behavior . 13
Application Stability . 13

Finding Problem Code with DevPartner Java Edition . 13
DevPartner Java Edition Diagnostic Capability . 14

Computational Performance Analysis . 14
Memory Analysis . 14
Coverage Analysis . 14
When to Use DevPartner Java Edition . 15

DevPartner Java Edition User Interface . 16
Inline Help . 17
Integrated Online Help System . 17
Ways to View DevPartner Java Edition Diagnostics . 18

Command Line Utilities . 18
Detaching and Reattaching a Profiled Application . 19
Controlling Data Collection Results . 19

Using Session Controls . 19
Using Session Control Rules . 20
Using the Session Control API . 20
Configuring Data Collection Options . 21

Comparing Profiling Sessions . 21
What’s Next . 21

Chapter 2 · Finding Memory Problems . 23
Memory Problems in Java Applications . 23
Running a Memory Analysis Session . 24
Locating Memory Leaks . 26

Running a Memory Leak Analysis . 26
Memory Leak Analysis Results . 28
 DevPartner Java Edition Getting Started Guide 3

Table of Contents
Identifying Retained Objects . 34
Running an Object-Lifetime Analysis . 35
Object-Lifetime Analysis Results . 37

Solving Scalability Problems . 39
Running a Profile for Temporary Objects . 40
Temporary Object Analysis Results . 41

Managing Memory for Better Performance . 44
Measuring RAM Footprint . 45
Optimizing Memory Use . 49

How Memory Analysis Fits in Your Development Cycle . 49

Chapter 3 · Ensuring Testing Consistency . 51
Covering All Your Bases: Code Coverage Consistency . 51
Running Coverage Analysis from the Command Line . 51

Configuring a Session for Code Coverage . 51
Running the Code Coverage Example . 52

Viewing the Results of a Coverage Session . 52
Tracking Code Changes by Merging Session Files . 54

Manually Merging Session Files . 55
Automatically Merging Session Files . 55
Using Merged Session Files . 56
Automatic Merging and Live Monitoring . 58

Deadlock: The Deadly Embrace . 58
Analyzing Out of Order Thread Synchronization . 59
Detecting Out of Order Thread Synchronization . 62
Exclusions and Out of Order Synchronization Detection . 63

Tracking Code Execution and Code Base Stability and Reliability 64

Chapter 4 · Finding Performance Problems . 65
Identifying Performance Problems . 65

Performance Testing and Profiling in Software Development . 66
Performance Profiling Terminology . 66

Running a Performance Profiling Session . 69
Profiling in Global Mode . 70
Profiling in Local Mode . 72
Analyzing the Call Structure . 75
Finding Slow Code . 76
Looking at Program Responsiveness . 76

Using the Thread Viewer to Analyze Performance . 77
Analyzing Performance by Object Category . 79
Performance Analysis Pointers . 80

Chapter 5 · Working with Integrated Development Environments 81
Installing and Uninstalling IDE Integration . 82

Using the Add-in Manager . 82
Uninstalling IDE Integration . 83
4 DevPartner Java Edition Getting Started Guide

Table of Contents
Running DevPartner Java Edition from Within an IDE . 83
Compuware OptimalJ . 83
Borland JBuilder . 86
Manual integration with JBuilder 2008 . 86
Eclipse . 88
IBM Rational Application Developer . 90

Chapter 6 · Working with Application Servers . 93
Running Application Servers Through DevPartner Java Edition . 93

From the Command Line . 93
From the DevPartner Java Edition Start Page . 94

Including and Excluding Code for Profiling . 96
Flexible Profiling . 97

Index . 99
 DevPartner Java Edition Getting Started Guide 5

Table of Contents
6 DevPartner Java Edition Getting Started Guide

Preface
This manual describes how to get started using Micro Focus DevPartner Java Edition.

Who Should Read This Manual

This manual is intended for new DevPartner Java Edition users and for users of previous
versions who want an overview of new functions and interface changes. It is designed to help
you understand how DevPartner Java Edition can help you be a more productive software
developer, and to get you started using the software. It is not a comprehensive user’s guide.

New users should read Chapter 1, “Analyzing Problems in Java Applications” for a survey of
DevPartner Java Edition concepts. Subsequent chapters show how to use individual features
during a software development cycle.

Users of previous versions of DevPartner Java Edition should read the Release Notes to see
how this version differs from previous versions.

This manual assumes that you are familiar with the Windows or UNIX operating environ-
ments and with Java software development concepts.

What This Manual Covers

This manual contains the following chapters and appendixes:

� Chapter 1, “Analyzing Problems in Java Applications” describes the problems that Dev-
Partner Java Edition can help Java programmers uncover.

� Chapter 2, “Finding Memory Problems” explains how to use DevPartner Java Edition to
analyze how your Java program uses memory.

� Chapter 3, “Ensuring Testing Consistency” describes the concepts that underlie the Dev-
Partner Java Edition software’s ability to capture, display, and merge test coverage infor-
mation.

� Chapter 4, “Finding Performance Problems” explains how to locate performance bottle-
necks in your Java applications.

� Chapter 5, “Working with Integrated Development Environments” describes how to use
DevPartner Java Edition from within various IDEs.

� Chapter 6, “Working with Application Servers” describes how to profile code running
through application servers.
 DevPartner Java Edition Getting Started Guide 7

Preface
Conventions Used In This Manual

This book uses the following conventions to present information.

� Interactive features of the DevPartner Java Edition user interface appear in bold typeface.
For example:

To update the information displaying in the Application Testing tab of the Start page,
click Refresh.

� Computer commands appear in monospace typeface. For example:

Execute the nmjava command.

� File names and paths appear in boldfaced monospace typeface. For example:

The session file is saved in the /var/sessionfiles folder.

� Variables within computer commands and file names (for which you must supply values
appropriate for your installation) appear in italic monospace type. For example:

Enter http://servername/cgi-win/itemview.dll, where servername is the
designation of your server.
8 DevPartner Java Edition Getting Started Guide

Preface
Getting Help

If ever you have any problems or you would like additional technical information or advice,
there are several sources. In some countries, product support from Micro Focus may be avail-
able only to customers who have maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as described below. If you
obtained it from another source, such as an authorized distributor, contact them for help first.
If they are unable to help, contact us as described below.

However you contact us, please try to include the information below, if you have it. The more
information you can give, the better Product Support can help you. But if you don't know all
the answers, or you think some are irrelevant to your problem, please give whatever informa-
tion you have.

� The name, release (version), and build number of the product.

� Installation information, including installed options, whether the product uses local or net-
work databases, whether it is installed in the default folders, whether it is a standalone or
network installation, and whether it is a client or server installation.

� Environment information, such as the operating system and release on which the product
is installed, memory, hardware/network specifications, and the names and releases of other
applications that were running.

� The location of the problem in the product software, and the actions taken before the prob-
lem occurred.

� The exact product error message, if any.

� The exact application, licensing, or operating system error messages, if any.

� Your Micro Focus client, office, or site number, if available.

Contact

Our Web site gives up-to-date details of contact numbers and addresses. The product support
pages contain considerable additional information, including the WebSync service, where you
can download fixes and documentation updates. To connect, enter www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus Product Support customer, please see your Product Support
Handbook for contact information. You can download it from our Web site or order it in
printed form from your sales representative. Support from Micro Focus may be available only
to customers who have maintenance agreements.
 DevPartner Java Edition Getting Started Guide 9

http://supportline.microfocus.com/

Preface
10 DevPartner Java Edition Getting Started Guide

Chapter 1

Analyzing Problems in Java Applications
This chapter provides an overview of DevPartner Java Edition. It describes the kind of perfor-
mance problems that might hamper a Java application, and how to use DevPartner Java
Edition to diagnose those problems. For a more thorough exploration of Java program perfor-
mance, see Java Platform Performance — Strategies and Tactics by Steve Wilson and Jeff
Kesselman, or Effective Java by Joshua Bloch.

For information on how to install DevPartner Java Edition and to optimize its overall perfor-
mance, refer to the DevPartner Java Edition Installation Guide. For direct information on how
to use the product, refer to the task-oriented online help.

When Good Programs Produce Bad Results

Regardless of experience level, every Java programmer occasionally comes face-to-face with
a not-so-obvious application performance problem. The problem might manifest itself as
unexpected behavior. For example, a Web application might run smoothly when accessed by
1,800 simultaneous users, but lock up when the number of users exceeds 2,000. An otherwise
swiftly running application might take forever to start up.

When an application goes awry, the symptoms it exhibits may have a single cause, or they
might result from a combination of causes. For example, an application that runs slowly might
be using an inefficient algorithm, or it might have a memory leak, or it may have a combina-
tion of a memory leak and an inefficient algorithm.

The kinds of symptoms that good programs exhibit when they go bad fall into several broad
categories:

� Scalability problems – Code that works well with one set of users or inputs, but degrades
when the set expands.

� Perception of performance – Start-up delays, applications that take too much time drawing
a window, cursors that disappear for long periods.

� Excessive CPU use – Sluggish graphics performance, slow turnaround on database trans-
actions.

� Sharing critical resources, such as memory– Conflicts among multiple applications using
memory, starving threads in multi-threaded applications, excessive physical and virtual
memory use, applications that slow down over time.

� Adequate testing and application stability – Untested program sections, an unstable code
base.

The following sections take a closer look at these broad categories. See “Finding Problem
Code with DevPartner Java Edition” on page 13 for a strategy for tracking down these kinds of
problems.
 DevPartner Java Edition Getting Started Guide 11

Chapter 1 · Analyzing Problems in Java Applications
Scalability

Scalability can be an issue for any Java application, particularly Web-enabled applications.
The design of an application should take into account how far its major operations will scale.
Designers need to ask questions such as:

� How many simultaneous transactions should my application perform?

� What is the upper limit on the number of users that will not bog down my application?

� How many records per unit of time should my application be able to process?

Many factors can contribute to how scalable an application will be, including the amount of
memory it uses, the number of objects it instantiates and discards, the number of explicit
notifications it receives from a server process, plus many others. The key task is to understand
how much of a given resource each additional user/task consumes.

Perception of Performance

How a program appears to perform will vary from user to user, but almost every user will find
certain aspects of performance to be unacceptable, for example:

� The cursor disappears for more than 10 seconds

� Characters typed on the keyboard appear on the screen only after a delay

Other performance perceptions are more subtle: a program that takes a long time to load, or an
application where the user does not know what is going on. Application designers should ask
questions such as:

� Has the application provided visual clues about what is happening?

� Can program start-up procedures be shortened or deferred?

Using multiple threads is one of many ways to improve the perception of performance.

Intense Computational Operations

Computational problems, such as calculating a Fourier transform, require the construction of
simple or complex algorithms. Some algorithms often scale unacceptably as the amount of
data to be computed grows. Choosing algorithms is as much an art as a science.

Computational problems might also be caused by the choice of data structures in a program.
Data structures are used to store, retrieve, and manipulate data, and it can take time to access
this data storage depending on the type of structure.

Before you can experiment with alternate algorithms or data structures, you need to under-
stand what parts of your program might be causing performance bottlenecks.
12 DevPartner Java Edition Getting Started Guide

Chapter 1 · Analyzing Problems in Java Applications
Memory Behavior

Even though Java was designed to eliminate many of the memory allocation problems that
plague other languages, it still has memory issues that can cause poor program performance.
In spite of its automatic garbage collectors, Java programs can still create memory leaks, that
is, blocks of allocated memory that never get released, either due to programmer inattention or
to non-optimal data structure design. In addition, it is important to understand exactly how
much total memory an application uses. For example, if an application uses so much memory
that it forces the system to swap out to a virtual memory swap file, the application’s perfor-
mance suffers.

A memory leak is the leading suspect when you see a program’s use of memory increase over
time but never decrease, even after garbage collection. Eventually, such a program will crash.

See “Finding Memory Problems” on page 23 to learn more about applications that have
memory usage problems.

Application Stability

While it can be important to test an application as you write it, tests can be invalidated by a
code base that changes frequently. Calculating the changes to your code base, and identifying
the parts that have been tested or not tested, helps you decide when an application is stable
enough to deploy.

Testing strategy should provide answers to questions such as:

� How much of the application’s code was actually tested, or more importantly, not tested?

� Are current tests adequate for exercising all of the application’s functionality?

� Were tests revised to exercise newly added code?

See “Ensuring Testing Consistency” on page 51 for more information about adequately testing
Java applications.

Finding Problem Code with DevPartner Java Edition

DevPartner Java Edition helps programmers track down the root causes of the anomalous
symptoms that produce unwanted application behavior. Whether a program performs well or
has problems, programmers will likely benefit from studying the results of running their Java
applications with DevPartner Java Edition.

With DevPartner Java Edition, product development teams can track down specific run-time
errors, memory anomalies, performance bottlenecks, and code instability problems across all
tiers of a Java application environment. Without DevPartner Java Edition, teams rely more
heavily on guesswork, wasting valuable time and sacrificing product quality and end-user
confidence.

DevPartner Java Edition is an asset to all members of any Java development organization, not
just to a few of its experts. Both developers and quality assurance engineers can use the
comprehensive statistics and graphics to prioritize the results and focus on solving the
complex quality issues associated with Java development.
 DevPartner Java Edition Getting Started Guide 13

Chapter 1 · Analyzing Problems in Java Applications
DevPartner Java Edition provides an end-to-end understanding of problems associated with
run-time performance, memory use, performance, multi-threading, and the test coverage of
your:

� Java 2 Standard Edition (J2SE) programs, including applets and Java Web Start applica-
tions

� Java 2 Enterprise Edition (J2EE) programs, including servlets, Java Server Pages (JSP)
and Enterprise Java Beans (EJBs)

� Third-party pure Java components

DevPartner Java Edition Diagnostic Capability

DevPartner Java Edition delivers these analytical capabilities:

� Computational and wait-time Performance analysis – Uncovering application slowdowns
and bottlenecks

� Memory analysis – Detecting potential memory leaks, overall RAM footprint, and use of
temporary objects

� Coverage analysis – Ensuring that code is thoroughly tested

Computational Performance Analysis

Performance analysis identifies performance bottlenecks in the entire multi-tier Java environ-
ment. DevPartner Java Edition delivers top-to-bottom profiling capability, including Java
interpreted code, JIT-compiled code, third-party components, Java Server Pages (JSPs),
servlets, and Enterprise Java Beans (EJBs), as well as Java Virtual Machine (JVM) and under-
lying system code that makes use of JVM APIs. See “Finding Performance Problems” on page
65 for more information.

Memory Analysis

Memory analysis identifies memory-intensive methods and inefficient lines of code. It
monitors objects, references, and garbage collection, producing an accurate profile of the
program's memory use based on RAM footprint, temporary objects, and memory leaks. With
this data, developers can streamline the run-time performance and resource utilization of their
code by optimizing methods that consume the most memory. Memory analysis helps to locate
inefficient code that would otherwise take hours or days to find manually. See “Finding
Memory Problems” on page 23 for more information.

Coverage Analysis

Coverage analysis helps developers and testers quickly identify untested code in Java applica-
tions, components, and Web pages. DevPartner Java Edition takes the guesswork out of devel-
opment milestones such as code check-in, unit or integration testing, and final release. It
reduces testing time and improves overall code stability by measuring and tracking code that
was previously tested but is still undergoing development work, as well as code that might not
have been thoroughly tested. It helps teams avoid redundant testing so they can focus on the
effects of ongoing code design and development. See “Ensuring Testing Consistency” on page
51 for more information.
14 DevPartner Java Edition Getting Started Guide

Chapter 1 · Analyzing Problems in Java Applications
DevPartner Java Edition incorporates multi-thread analysis as part of Coverage analysis. It
helps developers identify run-time threading problems that can lead to performance and
reliability issues in the application. It pinpoints sections in code where Java threads synchro-
nize out of order. Such sections can sometimes — but not always — result in a deadlock
condition, and such intermittent deadlocks are notoriously difficult to diagnose. See “Tracking
Code Execution and Code Base Stability and Reliability” on page 64 for more information.

When to Use DevPartner Java Edition

Table 1-1 provides a starting point for using DevPartner Java Edition to diagnose performance
and memory problems in Java applications.

Java programmers can minimize performance and scalability problems in their applications by
routinely running all DevPartner Java Edition analyses as a regular part of the development
cycle. Duplicating those test runs with Coverage analysis identifies how much of the applica-
tion is being tested and provides a running record of test coverage.

Table 1-1. Symptoms and Analysis Tools

Symptom Analysis Tool

Performance degrades over time; improves after
restarting the application, but degrades again.

Memory Leaks

Scalability problems; temporary performance
degradation.

Object-Lifetime Analysis
Memory Leaks
Performance

Sluggish performance, does not improve after
restarting the application.

Performance
RAM Footprint

Application is slow to start Performance
RAM Footprint

Specific parts of the application are sluggish Performance

Application hangs intermittently Coverage (Out of order thread
synchronization)
 DevPartner Java Edition Getting Started Guide 15

Chapter 1 · Analyzing Problems in Java Applications
DevPartner Java Edition User Interface

The DevPartner Java Edition user interface has been designed for the cross-platform, multi-
browser Java environment. It is identical on a Linux, Solaris, or Windows platform.

Figure 1-1. DevPartner Java Edition Start Page

Required: The DevPartner Java Edition interface displays in a Web browser. If your
browser includes a popup blocker, configure it to disable blocking for the
DevPartner Java Edition window. If the popup blocker is enabled, DevPart-
ner Java Edition will not operate correctly.
16 DevPartner Java Edition Getting Started Guide

Chapter 1 · Analyzing Problems in Java Applications
The session, results, and settings pages in DevPartner Java Edition include tabs, options, and
graphics to guide you toward the desired result. The DevPartner Java Edition user interface
also includes supplemental inline help text and a comprehensive online help system.

Figure 1-2. DevPartner Java Edition User Interface

Concise inline help
that explains key
functions on a page

Online help contents,
or details about the
current page

Inline Help

The DevPartner Java Edition user interface contains concise inline help placed adjacent to
controls and other visual items on a page. The inline text leads you to informed choices based
on the current information that is displayed. You have the option to turn off the inline help on
the results summary pages by clicking Preferences.

Integrated Online Help System

A help icon appears at the upper right corner of every page in the DevPartner Java Edition
user interface. Click this icon to view:

� Help for this page – The online help topic that pertains to the current page. The topic pro-
vides details about the options, settings, and/or results that are displayed on that page.

� Help Contents – The online help system, with Table of Contents, Index, and Search tabs.
In this window, you can select a particular topic of interest.

� Java Platform Performance – The online version of Java Platform Performance —
Strategies and Tactics by Steve Wilson and Jeff Kesselman. This book provides informa-
tion about performance tuning, including both high-level strategies and code-level perfor-
mance tuning tactics. It is available through the Sun Microsystems Web site (http://
java.sun.com).

� About DevPartner Java Edition – A dialog box containing product and release informa-
tion.
 DevPartner Java Edition Getting Started Guide 17

Chapter 1 · Analyzing Problems in Java Applications
Ways to View DevPartner Java Edition Diagnostics

DevPartner Java Edition performs intensive analysis on your Java programs. When results are
generated, it displays the data in graphical displays, such as bar graphs, call trees, and tables. It
simplifies the task of trying to comprehend the scope of the analysis results by identifying the
top five or fewer items having the largest impact on your program (depending on the kind of
analysis performed). From this high-level view, you can drill down into the complete details of
the current analysis.

You can also manipulate the data that you want to see in various ways. You can select specific
column headings for various results views. Through the Preferences dialog box for a Session
Control page or Results Summary, you can specify the increments used to display the data:

� Precision – Zero, one, two, three, or four decimal places

� Time – Microseconds, milliseconds, or seconds
� Memory – Bytes, kilobytes, or megabytes

Consult the DevPartner Java Edition online help system for more information.

Command Line Utilities

Note: This section provides a general description of command line utilities. See the
online help or Linux/Solaris man pages for complete syntax. Other capabili-
ties, such as setting up a configuration or starting through an application
server, are available from the DevPartner Java Edition browser interface.
Refer to the online help to learn how to perform these functions.

The DevPartner Java Edition command line utilities enable you to launch and monitor a Java
program directly from the command line, either interactively or in batch mode:

� nmappletviewer – Monitors your Java applets outside a Web browser. Using nmapplet-
viewer is essentially equivalent to appletviewer.exe.

� nmextract – Exports data from DevPartner Java Edition session files to an ASCII file as
comma-separated values, to an HTML file, or to an XML file.

� nmjava – Monitors your standalone Java programs. Using nmjava is essentially equiva-
lent to using java.exe.

� nmserver – Monitors your Java code run in an application server (this capability is also
available from the DevPartner Java Edition browser interface).

� nmshell – Monitors all Java programs run in the shell, whether the Java program is exe-
cuted directly or indirectly (such as via a batch file).

When a program is launched from the command line, a DevPartner Java Edition session starts.
The Session Control page appears, unless you launch the application in batch mode, or you are
running on a UNIX system. If the Session Control page does not appear automatically, you can
start the DevPartner Java Edition user interface and navigate to the active session’s control
page.
18 DevPartner Java Edition Getting Started Guide

Chapter 1 · Analyzing Problems in Java Applications
Detaching and Reattaching a Profiled Application

After you start an application through a DevPartner Java Edition command line utility, the
application information is displayed in the Application Testing tab of the Start page. Through
this page, you can detach the application from the profiling session without stopping the appli-
cation; you can reattach the running application to create another profile, optionally selecting a
different configuration and/or analysis type for the new session.

While the application is being profiled, the session is listed in the Active Sessions tab. You can
review the session data by clicking View on the Application Testing tab to display the
Session Control page.

Figure 1-3. Application Testing

Controlling Data Collection Results

DevPartner Java Edition provides three ways to control when data is collected during the use
of your application, each of which gives you progressively finer granularity of control:

� Use the Session Control page for the active session to interactively control data collection
as your program runs.

� Use the Session Control rules to assign Session Control actions to specific methods in
your application modules.

� Use the Session Control API to control data collection in your program.

Using Session Controls

You can use the session controls on the Session Control page to control when DevPartner Java
Edition collects data.

While your program is running, the Session Control page is displayed (unless you are running
on UNIX or started the session in batch mode, as noted earlier). The Clear Collected Data
and View Results buttons let you focus data collection on the portions of your code that are
significant to you.
 DevPartner Java Edition Getting Started Guide 19

Chapter 1 · Analyzing Problems in Java Applications
Figure 1-4. Session Control Page for Coverage Analysis

Using Session Control Rules

Session control rules let you specify actions to occur at fixed places in your application code.
DevPartner Java Edition adds Session Control Rules that you create to the configuration file.
The session control rules enable you to:

� Specify Session Control actions prior to beginning a session

� Specify Session Control actions without altering the module’s source code

Using the Session Control API

The Session Control API lets your program code start and stop data collection anywhere
within a method.

Table 1-2. Session Control API

Session Control API Description

TakeSnapshot() Requests that the profiler take a snapshot.

ClearData() Requests that the profiler clear all collected data. If you
are interested in the data that was collected, do not call
ClearData() until after you call TakeSnapshot().
Note that RAM Footprint data is not cleared by Clear-
Data().

RequestGarbageCollection() Requests that the VM perform a garbage collection. This
is essentially the same as calling System.gc(*) and
Runtime.runFinalization() a few times

Mark() Informs the profiler that all objects that are allocated from
this point forward are of interest, not just objects allo-
cated within non-excluded code

UnMark() Reverses the effect of the Mark() call. If you are inter-
ested in the data that was collected, do not call
UnMark() until after you call TakeSnapshot().
20 DevPartner Java Edition Getting Started Guide

Chapter 1 · Analyzing Problems in Java Applications
Configuring Data Collection Options

To get the results you want from DevPartner Java Edition, you may need to modify the session
configuration options.

You can control the classes that are included in any DevPartner Java Edition analysis session
by changing the exclusion list in the configuration file for the session. As an alternative, you
can create an inclusion list to collect data only for specific classes.

See the online help for more information about using session controls, and configuring data
collection options.

Comparing Profiling Sessions

When you generate two or more session files using the same configuration, you can compare
any two files for Performance analysis or Coverage analysis. For example, you can analyze
performance, change the program code, and run another analysis, then compare the two
profiles to see how performance is improved by the change.

The Session Files tab of the Start page includes a link to the Compare Sessions screen, through
which you select the two files to compare.

The Comparison Results Summary displays the results of the two files side by side. Each side
displays all the information provided when you display the Results Summary for an individual
file. The graphical display makes it easy to see the differences between the two results files.

What’s Next

The remaining chapters in the DevPartner Java Edition Getting Started Guide provide insight
and guidance to help you get the most out of DevPartner Java Edition. Each chapter presents a
more detailed explanation of each DevPartner Java Edition feature, along with sample applica-
tions, usage scenarios, and analysis of the results.
 DevPartner Java Edition Getting Started Guide 21

Chapter 1 · Analyzing Problems in Java Applications
22 DevPartner Java Edition Getting Started Guide

Chapter 2

Finding Memory Problems
When running a Java program under Memory analysis, DevPartner Java Edition can:

� Show the amount of memory consumed by an object or class

� Track the references that are holding an object in memory

� Identify the lines of source code within a method responsible for allocating the memory.

More important, DevPartner Java Edition presents memory data in context, letting you
navigate object reference chains and calling sequences of the methods in your code. This
provides both an in-depth understanding of how a program uses memory and the critical infor-
mation needed to optimize memory use.

This chapter describes potential memory issues in Java programs and shows how to use
Memory analysis to improve Java application performance.

Memory Problems in Java Applications

Java frees developers from much of the effort of explicitly handling memory in applications.
However, memory allocation and use in Java applications can still cause performance bottle-
necks and resource depletion.

Any of these symptoms may indicate a performance problem:

� Slows down over time.

� Runs slowly, or slows down noticeably when you perform certain operations.

� Performs poorly under load conditions.

� Performs poorly when other applications are running.

But how do you know if the problem is memory-related?

A given number of a Java application’s classes must be loaded before the program can execute
a particular function. Is your program tying up memory resources by immediately loading
classes that will not be needed unless a particular task is performed? How many instances of a
particular class does your application create? How many do you really need?

Every program must create and allocate objects to do anything useful. Object allocation
always incurs memory costs. How do you know if your program is allocating too many
objects, or allocating them efficiently? Are the objects your program allocates being cleared
by the garbage collector? Are they being collected when you expect them to, or are they
remaining in memory long after their usefulness has passed?
 DevPartner Java Edition Getting Started Guide 23

Chapter 2 · Finding Memory Problems
Memory analysis provides a comprehensive view of the way your Java application uses
memory. DevPartner Java Edition provides three different types of Memory analysis, designed
to help you isolate different kinds of memory-related problems. Regardless of which type of
analysis you use, all include the following features:

� Real-time graph – DevPartner Java Edition presents a live view of your application’s
memory use as it runs. You can see how much memory is being used by your application
code (profiled code), system and other application code (excluded code), and how mem-
ory consumption compares to the memory reserved by the Java Virtual Machine (JVM).

� Dynamic list of classes – DevPartner Java Edition updates the list of profiled classes in
real time, showing you the number of objects allocated and number of bytes used by each
class, as your application runs.

� Static views – You can capture a static view of the heap at any time during program execu-
tion. DevPartner Java Edition saves this data in a session file that you can then use to ana-
lyze memory problems in depth. The interface provides multiple ways to drill down into
the session data, so you can see in detail how your application uses memory and ultimately
identify the methods or lines of code responsible for the most memory use.

Running a Memory Analysis Session

DevPartner Java Edition can help you quickly determine the way your application uses
memory resources, revealing current or potential problem areas. To run a standalone Java
application under DevPartner Java Edition, open a console window and use the nmjava
command

nmjava -mem ApplicationName

Running nmjava with the -mem option starts DevPartner Java Edition (if it is not already
running) and launches your application in a Memory analysis session.

Note: For information on running different types of Java applications under DevPart-
ner Java Edition, including command line options, see the online help.

When you run a Memory analysis session, you can choose to examine one of these important
potential problem areas:

� Memory leaks, including object retention
� Temporary object creation
� Overall RAM footprint

Table 2-1. Performance Symptoms and Memory Analysis Tools

Symptom Analysis Tool

Performance degrades over time; recovers on restart.
Performance improves after restarting the application, but
degrades again.

Memory Leaks

Scalability problems; temporary performance degrada-
tion.

Object-Lifetime Analysis
Memory Leaks

Sluggish performance, does not improve after restarting
the application.

RAM Footprint
24 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
The first thing you will see when running any Memory analysis session is the real-time graph
on the Session Control page. The real-time graph provides a visual representation of how your
application is using memory resources. Observe the pattern the graph makes as you exercise
your application. Different memory problems create characteristic patterns, so the real-time
graph provides the first clue to the existence and nature of a memory problem.

For example, if the graph shows a rising pattern that never returns to baseline, as in Figure 2-1,
your application is probably leaking memory. You may suspect that the progressive slowdown
of your application noticed by your QA team is consistent with a memory leak; the real-time
graph will confirm that diagnosis.

Figure 2-1. Memory Analysis Session Control Page

Among the possible causes of memory leaks are objects that are allocated in memory when
they are accessed by the program, but not freed after they are no longer needed by the
program. Running an Object-Lifetime analysis can identify the objects that survive garbage
collection even though they are not being used.

If the graph does return to baseline, but is characterized by periodic spikes in memory use,
your application is creating large numbers of objects as it runs. Granted, the memory allocated
is being freed, but such an application may not scale well under load. If your application
slowdown occurs in response to an increase in users or inputs, it could indicate a scalability
issue. Again, the real-time graph will indicate of the nature of the problem, enabling you to
immediately point your diagnostic efforts in the right direction.

Figure 2-2. Real-Time Graph — Memory Spikes

Even in the absence of a suggestive pattern, the real-time graph can provide important infor-
mation. For example, if your application consistently consumes nearly all the JVM reserved
memory, and that amount is large relative to the anticipated resources of your target users’
systems, you may want to reduce the overall memory footprint of your application. These
cases and their implications for application performance are detailed in this chapter.
 DevPartner Java Edition Getting Started Guide 25

Chapter 2 · Finding Memory Problems
Figure 2-3. Real-Time Graph — Reserved Memory Usage

Locating Memory Leaks

The amount of memory consumed by your application can have a major impact on how well
the application performs. The larger the amount of memory consumed (RAM footprint), the
more likely it is that the application will run slowly and scale poorly. Memory leaks — the
allocation of memory that is never reclaimed — do occur, even in the garbage-collected Java
environment; they can bloat your application’s RAM footprint. Java’s automatic garbage
collection relieves you of the responsibility to explicitly free the objects you create. But it is
still possible to retain references to objects that the program will never use again. Java’s
automatic garbage collection makes leaks more subtle, and therefore more difficult to locate.
Java memory leaks are, in a real sense, forgotten objects.

As long as a reference to an object exists, that object is considered to be a live object by the
garbage collector, and so it cannot be collected. Such references can be difficult to track down.
That is where Memory analysis helps you.

DevPartner Java Edition provides sample applications to help you understand how to run
Memory analysis sessions and interpret the results.

Running a Memory Leak Analysis

The sample application for memory leak analysis is called stackLeakExample.1 It is located
in the DevPartner Java Edition installation path.

Tip: The file paths should be typed as a single line with no breaks.

� Windows — DPJ_dir\samples\stackLeakExample

where DPJ_dir is the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/stackLeakExample

This application demonstrates memory leaks. It uses a stack with two operations, push and
pop. The stack is implemented by an array of stack entries. A push results in a new stack entry,
which is assigned to top of the stack. A pop discards the top stack entry.

The leak, a bug in the pop method, occurs because the array element holding the popped stack
entry is not zeroed out. Hence, the garbage collector cannot collect the discarded stack entry.

1.This example was inspired by Joshua Block, Effective Java Programming Language Guide.
Addison-Wesley, Boston, MA, 2001. ISBN:0-201-31005-8.
26 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
When a subsequent push assigns a new stack entry to the array element, the old stack entry is
collected, but this condition cannot be guaranteed.

At any point in time the stack can have a number of leaks, which can be substantial if the size
of the stack entry is large.

To run this example and see the leaks, follow these instructions:

1 At the command prompt, change the folder to

DPJ_dir\samples

where DPJ_dir is the full path of the DevPartner Java Edition product folder.

2 Enter the command

nmjava -mem stackLeakExample.StackLeakMain

DevPartner Java Edition starts (if it is not already running) with the Memory analysis
Session Control page active.

3 In the Session Control page, select Memory Leaks from the list of available analysis
types.

4 Enter 40 in the console window to simulate the push/pop operations. This warms up the
program to ensure that all classes are loaded and one-time intializations are run.

5 In the Session Control page, use a filter to show only your classes. In the Filter By field
on the Session Control page, type the package name stackLeakExample, then click
Apply.

6 Click Start Tracking to begin tracking memory allocations.

7 To exercise the program and check for memory leaks, enter 40 at the console prompt.

You see a spike in the real-time graph, and the number of tracked objects for StackEntry
in the list of profiled classes increases to 40.

8 Click Stop Tracking.

9 Exercise the program section again: Enter 30 at the console prompt for the number of
push/pops. The real-time graph spikes again.

10 Force a garbage collection: Click Run Garbage Collection in the Session Control page.

The count of tracked objects for StackEntry drops to 10. If all the memory allocated
while tracking had been freed, however, it would be zero. Also note that the memory
display in the real-time graph did not return to the pre-exercise level.
 DevPartner Java Edition Getting Started Guide 27

Chapter 2 · Finding Memory Problems
Figure 2-4. Session Control Page Data Display

It appears that ten instances of StackEntry and 100,000 instances of StackData have
leaked.

Click View Memory Leaks to create a session file that you can use to locate the source of the
leaks. DevPartner Java Edition displays the session data in the Memory Leak Results
Summary.

Memory Leak Analysis Results

DevPartner Java Edition defines a memory leak as any object that is allocated during a speci-
fied period of time, and has not been freed at the point at which you view memory data. The
aim of Memory Leak analysis is to reveal cases in which memory is not being freed when it
should be.

If memory use consistently rises and does not decrease (or does not decrease as you would
expect it to) in response to garbage collection, your application is probably leaking memory.
For an example, see Figure 2-4 (above). The real-time graph for the example you just ran
should look similar to the one in the figure (assuming you ran the example only once), and will
show that the rise in memory use that occurred when you ran the example did not return to
baseline after garbage collection.

In the data for the classes that belong to your application on the Profiled Classes list, note that
some tracked objects are not being collected by garbage collection. The number of uncollected
instances of these objects can be seen in the Tracked Objects column in Figure 2-4 on page
28.

The Memory Leaks Results Summary includes the following graphs:

� Classes with the Most Average Leaked Instance Bytes Including Children

� Objects that Refer to the Most Leaked Bytes

� Classes with the Most Leaked Bytes

� Methods with the Most Leaked Bytes

Each graph shows the top five classes, objects, or methods that are associated with leaked
memory. To see more classes, objects, or methods, click More Details for that graph.
28 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Which starting point you choose depends on the problem you are analyzing as well as how you
want to approach that problem. For example, if you notice an increase in memory use on the
real-time graph, and a corresponding increase in tracked bytes for a particular class on the real-
time list of profiled classes at the bottom of the Session Control page, you can create a session
file and use the links associated with the Classes with the Most Average Leaked Instance
Bytes Including Children graph to go directly to a list of all the instances for that class. If you
notice that a limited set of specific objects are being leaked, you can use the Objects that
Refer to the Most Leaked Bytes graph to quickly see which objects hold references to the
leaked objects. You may, however, want to start with the Methods with the Most Leaked
Bytes graph if you are familiar with the source code for the allocating method and can tell by
examining that source whether the leaked object should have been cleared. The Classes with
the Most Leaked Bytes graph presents a simple list of the classes responsible for the most
leaked memory.

Regardless of the graph you choose to start drilling into the data, you can quickly switch to a
view that shows another aspect of your data, for example, a chain of memory allocations, or a
Call Graph of method calls, or go directly to source code.

Objects that Refer to the Most Leaked Bytes

In the following example, the Objects that Refer to the Most Leaked Bytes graph is the
starting point for identifying memory leaks, because a limited set of objects responsible for the
leaked memory exist.

If the garbage collector cannot clear an object, it means that there is at least one existing refer-
ence to that object. When your application runs, it creates objects. Some objects are needed for
as long as the program runs. These are permanent objects. Many if not most objects, however,
should become eligible for garbage collection when they are no longer referenced by another
object.

Figure 2-5. Objects that Refer to the Most Leaked Bytes Graph

This graph shows the objects that hold references to the leaked objects, and are thus responsi-
ble for preventing the leaked objects from being freed. Referring objects that account for the
biggest memory hit appear at the top of the graph. Since the data indicates a particular set of
objects is responsible for the leaked memory, use this graph to drill into the session data and
locate the source of the leak.

Clicking a bar in the graph or the corresponding object name, for example Object[], opens
the Details window, from which you can open an Instance List.
 DevPartner Java Edition Getting Started Guide 29

Chapter 2 · Finding Memory Problems
Figure 2-6. Details Window

Note that this object refers to over 100,000 instances of leaked objects. Click View Instances
to display a list of all the leaked objects referenced by Object[].

To help you see patterns in the data, you can sort the Instance List by clicking any column
head. When there are many instances, it is useful to sort the Referenced Bytes column in
descending order to see the instances that are consuming the most memory. You may also find
it useful to sort on the Allocation Trace column, to reveal instances allocated in repetitive
patterns, for example, instances allocated in a loop.

With the Instance List sorted by Referenced Bytes, notice that the ten instances of StackEn-
try are the most expensive of the objects referenced by Object[]. The Allocation Trace
column indicates that the reference to StackEntry was created on line 11 of StackEn-
try.java.

Figure 2-7. Instance List — Leaked Objects Referenced by Object[]

Click the first instance of StackEntry to open the Referring Object window. Click View
Object Reference Path to display the Object Reference Graph. This graph shows the chain of
references that led to the reference to the selected object in an Instance List. It shows why the
selected object, StackEntry, is still in memory, by showing the objects that hold references
to it.

In the Instance List, scroll down and notice that there are also ten instances of Object[] (in
stackLeakExample.StackEntry). Select an instance of Object[] and display the Object
Reference Graph. Note that the chain of referrers is more extensive. Scroll further down the
list of instances to StackData. As you notice in the Referenced Bytes column, each instance
of StackData is small (16 bytes) but there are many instances. If you look again at the real-
time list of profiled classes (see Figure 2-4 on page 28), you can see that 100,000 tracked
StackData objects (i.e., objects allocated while you were tracking memory allocations)
remained in memory after garbage collection.
30 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Display the Object Reference Graph for StackData. The chain of referring objects is now
more extensive. The next step is to determine the point in the chain of referring objects where
it is most efficient to eliminate the leak.

Figure 2-8. Object Reference Graph for an Instance of StackData.

In this case, the chain of referring objects shown in the Object Reference Graph is relatively
simple. However, in many cases, there are multiple referrers and the graph can become very
complex. Drag the rectangle or click a node in the overview pane to change the nodes
displayed in the detail pane. If you are presented with a complex graph, you can simplify the
view by doing one or more of the following:

� Use Alternate Layout to arrange the nodes of the graph differently.

� Change the depth of the graph. In a complex graph you may have to increase depth to fol-
low an object reference to the root.

� Drag nodes into position. If the graph is so confusing that even clicking Alternate Layout
doesn’t simplify it, you can click and drag nodes into whatever arrangement you find most
suitable.

The labels such as st or elements on the connecting arrows represent the referring data
member in the next class in the graph. Bracketed numbers identify arrays. If you know your
code very well, these labels can speed the process of zeroing in on potential problem areas.

Clicking any node in the graph displays source code, if available. When you view the source
code for StackData, or for Object[], you can see that DevPartner Java Edition highlights
the line in the method that allocated the object in the graph. To increase program understand-
ing, you can view the source for each node in the graph sequentially and see the events that led
to the allocation of the memory that leaked. DevPartner Java Edition offers alternate ways to
view these program events. For example, the Allocation Trace Graph shows who called each
method that allocated the selected object.

Note: The active configuration file determines whether DevPartner Java Edition
displays trivial methods in an Allocation Trace Graph, Call Graph, or Method
List. If trivial methods are not monitored (the default), they do not appear in
these views. For more information on monitoring trivial methods, see “Trivial
Methods” on page 68.

Or, you can go directly from the object in the Instance List to the source code. Since the
current example involves a limited set of objects, continue with the Object Reference Graph.
However remember that in real-world problem solving, you should drill down using methods
suitable to the problem being resolved or corresponding to the way you think about your code.
 DevPartner Java Edition Getting Started Guide 31

Chapter 2 · Finding Memory Problems
In the Object Reference Graph, click the StackData node to view the source code for
StackEntry.java. Backtrack through the graph, viewing the source code for the instance of
Object[] that refers to StackData, and for StackEntry, which refers to Object[].

Figure 2-9. Source Code for StackData

All three objects were allocated in the CreateStackEntry() method. Since there were 10
leaked instances of StackEntry, and each entry on the stack refers to 10,000 StackData
objects, you can see where the 100,000 leaked instances of StackData came from. But this
does not explain why they are still in memory.

In the Object Reference Graph, click the Object[] node that refers to StackEntry to view
the source code for Stack.java. DevPartner Java Edition highlights line 33, which is the line
on which this Object[] array was allocated in the pop() method.

Figure 2-10. Source Code for Stack.Java

Examine the code for this method. In our example, you will notice the comment on line 24, but
if this were your code you would realize that if you had set

elements[size] = null

the application would not be leaking memory.
32 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
In the preceding example, the Object Reference Path locates the source of the leak. However,
the problem can be approached in several other ways. For example, you could view the
Allocation Trace Graph to determine who called the method that allocated the object, and from
there, view the source code. Or you could view the source code directly from the Instance List.

DevPartner Java Edition presents four different views of data on the Memory Leak Results
Summary. Depending on the complexity of the data or on your own preferences you could
have examined the problem from any of the other graphs on the Results Summary.

Classes with the Most Average Leaked Instance Bytes Including Children

If your application is leaking memory, you want to locate the classes, objects, or methods that
are responsible for the leaked memory. More important, you want to focus your attention on
those parts of your application that, when fixed, will have the greatest impact on memory use,
and therefore, on application performance.

The Classes with the Most Average Leaked Instance Bytes Including Children graph
shows the top five classes that, when averaged across all instances of the class, are responsible
for the largest number of leaked bytes, including bytes attributable to children. For Memory
analysis, DevPartner Java Edition computes average instance bytes including children by
summing the bytes allocated for each live instance of the class and all bytes allocated for
children of each instance, then dividing the total by the number of live instances of the class.
The classes at the top of the list will be the classes for which a smaller number of instances is
associated with a larger number of leaked bytes. In other words, the classes at the top of the list
have the highest ratio of leaked bytes per instance of the class.

Figure 2-11. Classes with the Most Average Leaked Instance Bytes Including Children

When a number of classes are associated with leaked memory, this graph enables you to
immediately zero in on those classes where fixing a relatively small number of instances will
have the greatest impact on the amount of memory your application uses.

Methods with the Most Leaked Bytes

This graph shows the top five methods that allocated objects that were leaked. Clicking a
method in this graph enables you to see the instances allocated from the method that were
leaked, or to view the source code for the method, showing the lines that allocated the leaked
objects. Click a line that allocated objects to view an Instance List of objects allocated on that
line.
 DevPartner Java Edition Getting Started Guide 33

Chapter 2 · Finding Memory Problems
Figure 2-12. Methods with the Most Leaked Bytes

To drill down, do one of the following:

� Choose the source view.

� From one of the source lines that allocated objects, go to an Instance List of the allocated
objects.

� From the object instance, view the referring objects or allocation trace.

� From a node in the Object Reference Graph or Allocation Trace Graph, view source for
that node and troubleshoot

Classes with the Most Leaked Bytes

If many objects are leaked, you can use this graph to gain an understanding of the kinds of
objects that were leaked. From this graph, you can view the instances of the class that were
leaked. From any instance, you can view an Object Reference Graph or Allocation Trace
Graph, or view the source code.

Figure 2-13. Classes with the Most Leaked Bytes

As an alternative, you can view the methods that allocated the leaked instances. From the
Method List, you can view the source code for the method. The line that allocated the object
provides a link to the instances allocated on that line. As with any Instance List, you can
continue to drill into your data via the Object Reference Graph or Allocation Trace Graph.
Once you understand the progression that led to the leaked bytes, you can view the source
code to troubleshoot the problem.

Identifying Retained Objects

Among the reasons for memory leaks are objects that are retained in memory after they are no
longer needed by the program. Running an Object-Lifetime analysis can identify the objects
that persist longest in memory.
34 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Normally, a session file includes only objects that are still live when the session ends. To
include objects that have been garbage collected but that were retained a long time, select
Enable Object Retention for the session configuration.

Note: Including retained objects in the session file incurs overhead and can make
the session file very large; select this option only if you are specifically inter-
ested in retained objects.

While the analysis is running, select Object-Lifetime Analysis in the Session Control page.
When the session ends, the results are displayed in the Object-Lifetimes Results Summary
tab of the Start page.

When you collect data on retained objects, do not use Run Garbage Collection or View
Object Lifetimes (which forces a garbage collection before displaying a snapshot of the
session) during the session. Some objects may persist throughout the session for valid reasons;
for example, an object may be used both at the start and at the end of the program’s run. If you
force a garbage collection, you in effect create a “false positive” for such objects, identifying
them as retained when they are not wasting memory. To get accurate data on retained objects,
allow the program to run unimpeded until it stops, then view the session file for the entire
program run.

Running an Object-Lifetime Analysis

The sample application for object retention analysis is called objectRetentionExample. It
is located in the following folders:

� Windows — DPJ_dir\samples\objectRetentionExample
where DPJ_dir is the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/objectRetentionExample

The application demonstrates how a memory leak can be caused by retaining objects in
memory after they should have been released. It consists of a server and a client. The server
waits for a client to connect to it and replies to queries from the client.

To exercise the client, you enter the following information:

� The hostname of the server

� The number of times to query the server

Using this information, the client requests an instance of DataConnection from Connection-
Pool the specified number of times. ConnectionPool is initialized with a single DataConnec-
tion instance and keeps track of two collections:

� Connections that are currently unused and available

� Connections currently in use by the client

When the client returns a connection, the pool checks whether it is a connection that the pool
created. If it is, the connection is returned to the “available” collection to be reused for a subse-
quent request.

In this example, however, the connection is not released back to the pool when the client is
finished with it, thus creating a memory leak.
 DevPartner Java Edition Getting Started Guide 35

Chapter 2 · Finding Memory Problems
Using the sample application involves three tasks:

1 Create a configuration that has object retention enabled.

2 Run the server.

3 Run the client.

Create the Configuration

Note: If you have previously run this sample application and ObjRetConfig is
included in the list in the Configurations tab, you do not need to create a new
configuration. You can use the existing ObjRetConfig configuration.

1 Open the DevPartner Java Edition Start page and select the Configurations tab.

2 Click New to display the Explorer User Prompt. Type ObjRetConfig for the configura-
tion name, then click OK to create the new configuration.

3 In the left pane, select Object Retention. The object retention options are displayed in the
tab.

4 Select Enable Object Retention. You do not need to select or change any other options
for this example.

The new configuration is saved automatically.

Run the Server

1 At the command prompt, change the folder to

DPJ_dir\samples

where DPJ_dir is the full path of the DevPartner Java Edition product folder.

2 Enter the command

java objectRetentionExample.PurchasesServerMain

Note: The server continues to run until you press Ctrl + C.

Run the Client

1 Open another command console and change to the samples folder.

2 Enter the command (as one line)

nmjava -mem -config ObjRetConfig objectRetentionExample.Purchases-
ClientMain

3 The Session Control page opens. The real-time graph at the top of the window shows the
memory usage as the application runs. Select Object-Lifetime Analysis from the list.
36 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Figure 2-14. Session Control Page for Object-Lifetime Analysis

4 Return to the console in which you executed the client. It displays the prompt Enter Pur-
chases server hostname. Enter the IP address of the machine on which the server is run-
ning. My IP address is 10.20.16.215.

5 The console displays the prompt Enter # of times to query the server. Enter 4.

6 Return to the Session Control page. The real-time graph spikes as the queries are executed.

Figure 2-15. Real-Time Graph for objectRetentionExample.PurchasesClientMain

7 After the fourth query, the client quits. You are prompted to view the last session file that
was created for the session. Click Yes to display the Object-Lifetimes Results Summary.

Note: As the client executes, the console in which you executed it displays a series
of messages, ending with Completed all requests... The server console
displays messages confirming the queries. If you do not want to exercise the
client again, press Ctrl + C in the server console to stop the server and close
both consoles.

Object-Lifetime Analysis Results

When you run an Object-Lifetime analysis, the results are displayed in two tabs:

� Object-Lifetimes Results Summary
� Temporary Objects Results Summary

The data on the Temporary Objects Results Summary tab can help you resolve scalability
problems (see “Solving Scalability Problems” on page 39).
 DevPartner Java Edition Getting Started Guide 37

Chapter 2 · Finding Memory Problems
The Object-Lifetimes Results Summary tab displays three graphs that provide information
about retained objects:

� Objects Retained the Longest
� Classes with the Longest Average Retention Duration
� Entry Points with the Most Retained Instances

For the sample application, the Objects Retained the Longest graph provides the most useful
information for identifying memory leaks.

Objects Retained the Longest

The Objects Retained the Longest graph shows that the DataConnection instances were
retained. The number at the end of each bar (instance) in the graph shows the number of
garbage collections that occurred since the instance was last used.

Figure 2-16. Objects Retained the Longest Graph

Note: For more complex applications than this sample, the graph displays five bars,
for the five objects that were retained in memory for the longest time.

Click More Details to display the list of all instances. This list shows that all the instances are
not yet garbage collected (the is Garbage Collected column lists false for each instance).

Figure 2-17. Retained Objects List

By default, the Instance List is sorted by the Object-Retention Span column, from largest to
smallest value. Click the first instance to display its Referring Object window, then click View
Allocation Trace Graph. The graph appears below the Instance List. The nodes represent the
method calls that led to allocation of memory for the instance.

Figure 2-18. Allocation Trace Graph

The Allocation Trace Graph shows that the instance of DataConnection created during the
initialization of ConnectionPool was retained the longest. This should not have been the case.
38 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Because the server is queried more than once, the connection should have been released, then
reused for another query. That the connection was never reused is a clue that it was retained in
memory. It is a possible cause of a memory leak.

Classes with the Longest Average Retention Duration

Identifying individual objects that are retained the longest time does not always zero in on the
source of memory leaks; the problem may be the combined effect of retained instances associ-
ated with a specific class. This graph identifies the classes with instances that are retained the
longest average time.

You can click a class to open the Details window, through which you can display a list of the
retained instances for the class. Clicking More Details displays a longer list of classes of
retained object; this list specifies the number of retained objects for each class and the average
retention span (the average number of garbage collections the objects survived).

Entry Points with the Most Retained Instances

Like the previous graph, this graph focuses on the combined effect of retained objects to
identify the cause of memory leaks.It identifies entry points (or the methods invoked by the
entry point) that have allocated most number of retained instances.

Figure 2-19. Entry Points with the Most Retained Instances

Clicking an entry point displays a Details window through which you can display the Call
Graph or a list of the retained instances allocated either by the entry point or by a method that
was invoked by the entry point. Clicking More Details displays the complete list of entry
points with retained objects; this list includes the number of instances retained by the entry
point and the instances including children).

Solving Scalability Problems

When performing Memory analysis with DevPartner Java Edition, you can use the Tempo-
rary Objects Results Summary tab to diagnose and correct scalability problems.

Scalability problems surface when an application runs well until users begin to work with it
more intensively. For a client-server application, this might happen when the number of users
increases. For a standalone application, this might happen after numerous text manipulations
or mathematical computations. These can be labeled as scalability problems. As the scale of
the work done by the application increases, performance degrades.

One possible cause of scalability problems is the creation of too many temporary objects. In
this case, object creation can become performance bottleneck — a problem that requires
correction.

The creation and use of objects is important in Java programs. Unfortunately, some coding
techniques have the side-effect of creating many objects.
 DevPartner Java Edition Getting Started Guide 39

Chapter 2 · Finding Memory Problems
Part of the problem is the creation of immutable objects, such as those created with the
String class. Immutable objects cannot be changed. It takes processing cycles to create
objects and later destroy them. If you can reduce the number of objects created, you can gener-
ally expect better performance.

DevPartner Java Edition tracks the objects allocated by your code and categorizes them based
on how long it takes for them to be collected. There are three categories:

� Short-lived – Collected at the next garbage collection

� Medium-lived – Survives at least one garbage collection

� Long-lived – Survives across many (or all) garbage collections during the run of the pro-
gram

DevPartner Java Edition combines short-lived and medium-lived object allocations in a
temporary category.

Individual short-lived objects have less impact on newer garbage collectors although there is
still a performance penalty for calling the object's constructor. However, creating large
numbers of short-lived objects can cause bottlenecks and memory shortages.

Medium-lived objects cause the garbage collector to work harder than necessary. It consumes
CPU cycles in a way that typical performance profilers have difficulty identifying the particu-
lar method causing the problem. These objects can cause your program to fail with an
OutOfMemoryError under heavy-load situations.

If you think your code has scalability issues, you can use DevPartner Java Edition to monitor
your code as it executes. If the real-time view suggests that too many temporary objects are the
problem, you can use DevPartner Java Edition to analyze Call Graphs, entry points, and
methods. You can also identify specific lines of code that allocate temporary objects, and you
can see how much memory they consume.

To help you understand how to use these capabilities, DevPartner Java Edition includes a
sample application that demonstrates excessive creation of temporary objects. The next few
sections describe how to run the sample application and interpret the results.

Running a Profile for Temporary Objects

To run the temporary object sample file, follow these instructions:

1 At the command prompt, change the folder to

DPJ_dir\samples

where DPJ_dir is the full path of the DevPartner Java Edition product folder.

2 Enter the command

nmjava -mem tempObjExample.TempObjMain

3 In the Session Control page, select Object-Lifetime Analysis from the list of available
analysis types.

4 In the console window, enter 1 to simulate creation of a temporary object. This warms up
the program to ensure that all classes are loaded and one-time intializations are run.
40 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
5 Click Clear Collected Data to clear what has been collected so far.

6 Click Run Garbage Collection.

7 In the console window, enter 1000 to simulate a creation of many temporary objects.
Note the spike in memory use.

DevPartner Java Edition enables you to locate potential troubles spots and then drill down into
your program's use of temporary objects to identify problems and improve the overall quality
of your code.

The real-time graph provides a high-level view that enables you to identify areas that might be
causing problems.

Figure 2-20 shows a real-time graph that suggests excessive temporary object creation. Spikes
in the graph of temporary object creation show where your application is creating more
objects. Excessive object creation can create major performance or scalability issues in a Java
application. Methods that allocate many short-lived objects often indicate easy-to-fix perfor-
mance problems.

Figure 2-20. Excessive Temporary Object Creation

Temporary Object Analysis Results

Click View Object Lifetimes to collect data at a specific point in your program (this action
forces a garbage collection). This option displays the Object-Lifetimes Results Summary
tab; select the Temporary Objects Results Summary tab, as shown in Figure 2-21, to see the
entry points and methods that are creating the most temporary objects. From this view, you
can drill deeper back into your code, to the point where you can identify precisely which lines
of code are generating objects, and how much memory theses objects are consuming.
 DevPartner Java Edition Getting Started Guide 41

Chapter 2 · Finding Memory Problems
Figure 2-21. Temporary Objects Results Summary Tab

Clicking a method name to the right of the Methods requiring the Most Temporary Space
graph displays the Details window, from which you can display a Call Graph or source code.
Clicking More Details displays the complete list of methods called by your program.

The Details window also lists the number of short-lived, medium-lived, and long-lived objects
and the temporary space they consume.

By default, the Call Graph shows the critical path. This is the sequence of child method calls
that resulted in the largest cumulative memory allocation for the selected method. The Call
Graph also displays caller and executed methods.

Figure 2-22. Call Graph

Methods appear as nodes on the Call Graph. Each node can display data about temporary
objects in a method, including the number of bytes consumed and the number of objects
created by a method. Of special note are the display percentages of temporary objects.

The Call Graph shows the percentage of temporary bytes allocated in two ways:

� The percentage allocated by the child method (and its children) as a percentage of the
bytes allocated to execute that path

� The percentage allocated by a method computed as percentage of bytes allocated by all
methods during the session

Note: The active configuration file determines whether DevPartner Java Edition
displays trivial methods in an Allocation Trace Graph, Call Graph, or Method
List. If trivial methods are not monitored (default), they do not appear in Call
Graphs, Allocation Trace Graphs, or in the Method List view. For more infor-
mation on monitoring trivial methods, see “Trivial Methods” on page 68.
42 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
When you view the source code for an entry point or method listed in the Temporary Objects
Results Summary tab, the following columns are displayed by default to the left of the source
code:

� Execution Count – Number of times this method was called.

� Temporary Bytes including Children (Bytes) – Amount of temporary space (short and
medium) used by this method and its child methods when called.

� % Temporary Bytes including Children – Same as above, but expressed as a percentage
of the total amount of accumulated temporary space seen in this profiling run.

� Temporary Objects including Children – Number of accumulated temporary objects
allocated by this method and the child methods that it called

� Source – The complete path to the source code appears in the top of the view. The source
code appears in the column below the heading.

Highlighting draws your attention to significant lines in the source code:

� Yellow highlighting identifies the first line of the selected method.

� For tracking temporary object creation, the line that consumes the most memory is noted
in red type.

Click Column Selection to display the following optional columns:

� Child Methods – Number of child methods called by this method.

� Short-lived Bytes including Children (Bytes) – Amount of short-lived temporary space
used by this method and its child methods when called.

� % Short-lived Bytes – Same as above, but expressed as a percentage of the total amount
of short-lived temporary space seen in this profiling run.

� Short-lived Objects including Children – Number of short-lived temporary objects allo-
cated by this method and the child methods that it called.

� Medium-lived Bytes including Children – Amount of medium-lived temporary space
used by this method and its child methods when called.

� % Medium-lived Bytes – Same as above, but expressed as a percentage of the total
amount of medium-lived temporary space seen in this profiling run.

� Medium-lived Objects including Children – Number of medium-lived temporary
objects allocated by this method and the child methods that it called.

� Long-lived Bytes including Children – Amount of long-lived temporary space used by
this method and its child methods when called.

� % Long-lived Bytes – Same as above, but expressed as a percentage of the total amount
of long-lived temporary space seen in this profiling run.

� Long-lived Objects including Children – Number of long-lived temporary objects allo-
cated by this method and the child methods that it called.

� Line Number – The line number in the source code.
 DevPartner Java Edition Getting Started Guide 43

Chapter 2 · Finding Memory Problems
The following are some of the ways to interpret Memory analysis results to fix memory-
related scalability problems:

� Review the Temporary Objects Results Summary tab and modify the code for the entry
point or method that requires the most temporary space.

� Review the source code and modify the method noted in red type, which identifies the line
that consumes the most memory.)

� View the Details window and compare the number of short- and medium-lived objects, as
well as the amount of temporary space they consume. Use this information to determine
which parts of your code to modify.

� If the Details window shows that both short-lived and medium-lived objects consume sim-
ilar amounts of temporary space, run a Performance analysis to find out how much time
the constructor uses to create the temp object.

� Use the Call Graph to evaluate methods. Examine characteristics of different methods:
local and global percentages of memory consumed; actual bytes used; numbers of tempo-
rary objects created. Use this information to identify which method to modify.

� Use the Object-Lifetimes Results Summary tab to identify code that can be modified so
objects will not be retained in memory after they are no longer needed by the program.

Managing Memory for Better Performance

Specific memory problems are examined in this chapter, such as memory leaks, which can
cause your application to consume more and more memory as it runs until it eventually
exhausts the heap. Periodic spikes in memory use caused by excessive temporary object
creation, which can lead to scalability issues.

These problems affect your application’s memory use in negative ways. They also contribute
to your application’s memory footprint. What do you do, however, if your application is well-
behaved with respect to these errors, but it still feels slow, especially when run on the kinds of
hardware your target users are likely to have?

One cause of sluggish performance is that your application may be using excessive amounts of
memory as it runs. What is excessive? That depends on the hardware and software environ-
ment in which your application is used. You may have a pretty good idea of what that environ-
ment is, but you cannot know for certain that your target users will not try to run several other
applications at the same time as they run yours. Nor can you force hardware upgrades on your
users every time you release a new version of your application. All of this makes a strong
argument for keeping your application’s memory footprint small.

RAM footprint is not the same as overall memory use. The worst thing you can do to ruin
application performance — and your end-users’ perception of your application — is to force it
to rely on the operating system’s virtual memory system.

What can you do to optimize your application’s use of RAM resources? DevPartner Java
Edition provides RAM Footprint analysis as part of its Memory analysis capability. Run this
analysis regularly as you develop your application. The way your application uses RAM
resources is most likely a result of application design and architecture. It is much easier to re-
design a feature early in the development process than to wait until the application is ready for
beta release.
44 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Measuring RAM Footprint

What contributes to footprint? in Java Platform Performance, Steve Wilson and Jeff Kessel-
man provide this list:

� Objects
� Classes
� Threads
� Native data structures
� Native code

The objects your program allocates and the classes it loads typically account for the largest
part of an application’s RAM footprint. DevPartner Java Edition helps you focus your tuning
efforts on the areas that will have the greatest impact on RAM consumption.

When you run your application under RAM Footprint analysis, DevPartner Java Edition
enables you to:

� View the real-time graph of your application’s RAM consumption and the real-time list of
profiled classes associated with the most bytes of memory.

� Take a snapshot of the heap, which you use to examine the objects or classes responsible
for the most memory use.

Tip: You can collect RAM Footprint data at the same time you analyze memory leaks
by checking the Include RAM Footprint Information option on the Memory Leaks
Session Control page.

To run your application under RAM Footprint analysis:

1 Start your application under a Memory analysis session.

See the online help for information on starting a DevPartner Java Edition session from the
command line, an application server, or an IDE.

2 In the Session Control page, select RAM Footprint.

3 Exercise the application to allow classes to load and one-time initializations to run.

As you run the application, observe the real-time graph. Be alert for patterns that may
indicate a specific problem, such as a leak or excessive spiking due to temporary object
creation.

Notice the amount of RAM consumed. The y-axis of the real-time graph indicates the total
in megabytes. To see the amount of RAM being used in relation to the memory reserved
by the JVM, select Show JVM Reserved Memory.

4 Get the application into a steady (idle) state.

5 Click View RAM Footprint to generate a session file and display the RAM Footprint
Results Summary tab, which reflects the current state of the heap.
 DevPartner Java Edition Getting Started Guide 45

Chapter 2 · Finding Memory Problems
Note: If, when you click View RAM Footprint, you see the message “Details:
java.lang.OutOfMemoryError”, you need to increase the memory allotment.
Quit DevPartner Java Edition, then open the file DPJServer.args. Change -
Xmx128m to -Xmx1024m, then save and close the file. In Windows XP and 2003
Server, this file is located in C:\Documents and Settings\All
Users\Application Data\Micro Focus\DevPartner Java
Edition\var\conf. (By default, the Application Data folder is hidden. To
display the conf folder and its contents, type the path in the Address bar of
Windows Explorer and press Enter.) In other supported Windows operating
systems, it is in C:\Program Data\Micro Focus\DevPartner Java
Edition\var\conf. In UNIX, it is in DPJ_dir/var/conf, where DPJ_dir is
the product installation folder.

Use the RAM Footprint Results Summary to gain an in-depth understanding of how your
application is using memory. This page includes the following graphs to drill down into your
data:

� Object Distribution
� Classes with the Most Average Live Instance Bytes Including Children
� Objects that Refer to the Most Live Bytes
� Classes of Profiled Instances Taking up the Most Space

Which you use first will depend on the data presented, and to some extent, on the way you
think about your application.

Object Distribution

DevPartner Java Edition presents the distribution of objects in memory as a pie chart so you
can immediately see the proportion of memory used by your application (profiled code)
relative to that used by system code (excluded) and the balance of memory reserved by the
JVM, but not currently used.

Figure 2-23. Object Distribution Pie Chart

If the Profiled Objects section of the pie chart is small, your application is not the main
allocator of memory. This is a good thing. If your application (profiled code) is the largest
wedge in the pie, and memory use is moderate to high relative to expected resources in the
target deployment environment, you should determine which part(s) of your application
allocates the most memory. Click View Allocating Methods to see the Method List for your
profiled objects.

In the Method List, click a method to display the Details window, in which you can select to
view the source code for the method, view a Call Graph for any of the profiled methods, or add
a Session Control Rule.
46 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
In the source code view, DevPartner Java Edition highlights the first line of the selected
method in yellow, and the line in the method that allocated the most memory is indicated with
red type.

You can navigate from a line that allocated memory to an Instance List of live objects
allocated on that line. By default, this Instance List is sorted by Referenced Bytes. This
enables you to focus on instances of a class or object responsible for the largest amount of
memory. The next column, Allocation Trace, shows the location of the method that allocated
the memory, including the number of the line on which it was allocated.

Click the largest object (referenced bytes) in the Instance List to display the Details window.
From the Details window, you can view:

� An Object Reference Graph to see the object’s referrers, that is, why the object is still in
memory

� An Allocation Trace Graph to see the chain of methods that led to the allocation of the
memory

For information on using the Object Reference Graph and Allocation Trace Graph, see page
29.

Classes with the Most Average Live Instance Bytes including Children

If your application is using too much memory, you want to locate the classes, objects, or
methods that are responsible for the memory use. You also want to focus your attention on
those parts of your application that, when fixed, will have the greatest impact on memory use,
and therefore, on application performance.

Figure 2-24. Classes with the Most Average Live Instance Bytes including Children

As described earlier, the Classes with the Most Average Live Instance Bytes including
Children graph shows the top five classes that, when averaged across all live instances of each
class, are responsible for the largest number of bytes in memory (including bytes attributable
to children) at the time the snapshot of the heap was taken. The classes at the top of the list
have the highest ratio of bytes in memory per instance of the class. Hence, this graph enables
you to focus immediately on those classes for which fixing a relatively small number of
instances will have the greatest impact on the amount of memory your application uses.

Objects that Refer to the Most Live Bytes

This graph shows the largest objects in memory. Objects in the graph include bytes attributable
to all child objects for which that object is the only parent. Considered singly, objects in Java
tend to be small. However, an object with several child objects, each of which might also have
child objects, plus per-object overhead for parent and child objects, might actually be consum-
 DevPartner Java Edition Getting Started Guide 47

Chapter 2 · Finding Memory Problems
ing a large amount of memory. In essence, DevPartner Java Edition uses the Object Reference
Path to roll up the bytes associated with child objects and attributes them to the parent object.

From the Objects that Refer to the Most Live Bytes graph, you can navigate to:

� A Details window for the object, including the number of bytes allocated for the object
and its child objects. This window provides a link to a list of classes of the child objects
referenced by the large object. Click a bar in the graph or an object name to display the
Details window.

� A detailed list of all objects holding references to live objects at the time the session file
was created.

Figure 2-25. Objects that Refer to the Most Live Bytes

When you view source code (available via the Method List), you can jump from any line that
allocated memory to a list of all the instances allocated by that line. From the Instance List,
you can view:

� An Object Reference Graph to see why the object is still in memory

� An Allocation Trace Graph to see the methods that allocated memory

For information on using the Object Reference Graph and Allocation Trace Graph, see page
29.

Classes of Profiled Instances Taking up the Most Space

This graph shows the profiled classes in memory with the largest summed instance sizes at the
time the session file (results summary) was created. This graph gives an overview of the kinds
of classes that are consuming the most memory. Click a class to view details and drill into the
instance data.

Figure 2-26. Classes of Profiled Instances Taking up the Most Space.
48 DevPartner Java Edition Getting Started Guide

Chapter 2 · Finding Memory Problems
Optimizing Memory Use

Once you understand how your application is using memory, you can begin to optimize
memory use. Classes and objects are typically the largest memory consumers. Take them as
starting points.

Your program probably creates many objects as it runs. Do you simply try to reduce the
number objects created? How do you know where to focus your tuning efforts?

DevPartner Java Edition does much of the cost/benefit calculating for you. Remember that
individual objects in Java tend to be small; but when you consider objects with their children,
some objects are much larger than others. DevPartner Java Edition uses the concept of large
object to alert you to those objects which, with their child objects, are large consumers of
memory. Focusing your tuning efforts on these object allocations promises the most rapid
route to a reduced footprint.

When a class is loaded, the following entities consume memory1:

� Bytecodes
� Reflective data structures
� Constant pool entries
� JIT compiled code

Each entity entails a memory cost. Various strategies exist for optimizing class loading. One
strategy is to avoid loading too many classes before they are needed. Another is to avoid creat-
ing too many small classes. But which classes do you focus on?

Knowing which classes are associated with high memory use is a step in the right direction;
but if there are hundreds of instances of a class, each responsible for a few bytes, it will be
difficult to troubleshoot and maintain the development schedule. DevPartner Java Edition
shows you not only which classes are associated with the most memory use, but which classes
have the highest average memory allocation. That means fewer instances of these classes are
taking up a larger amount of memory. If you use the Classes of Profiled Instances Taking up
the Greatest Average Space graph as a view into your application’s memory use, you can
focus your optimizing efforts on those class instances that will have maximum impact.

How Memory Analysis Fits in Your Development Cycle

It is not necessary to wait until you suspect that you have a problem to begin testing. If you run
Memory analysis early and often, and know what to look for when you analyze your applica-
tion, you can correct problems early, when they are both easier to track down and entail less
risk to fix.

Memory problems in Java are often the result of larger design and architecture decisions,
rather than simple coding errors. For example, one source of memory loss is an object that is
not collected because of an out-dated reference to it that is not freed. This can be the result of
revisions made in another part of the code. The later these problems are identified in the devel-
opment cycle, the more difficult and expensive they will be to fix.

1.For details, see page 62 in Wilson, Steve, and Kesselman, Jeff, Java Platform Performance.
Addison-Wesley, Boston, MA, 2000. ISBN:0-201-70969-4.
 DevPartner Java Edition Getting Started Guide 49

Chapter 2 · Finding Memory Problems
It is valuable to use Memory analysis as part of a continuous testing program throughout the
development cycle. For example, using it during unit testing provides an understanding of how
the individual modules handle memory. Once you identify and fix areas that need improve-
ment, run another Memory analysis to verify the fix. Then, as you integrate the modules into
your application, repeat your memory testing to ensure that new memory problems do not
appear.
50 DevPartner Java Edition Getting Started Guide

Chapter 3

Ensuring Testing Consistency
DevPartner Java Edition helps development teams save testing time and improve code reliabil-
ity by measuring and tracking code execution and code base stability during development.

Covering All Your Bases: Code Coverage Consistency

Coverage testing verifies that all possible execution paths in an application have been
executed: that there are no missed if-else clauses, no missed case statement branches, no
untested exception handling code, and so on.

Code coverage testing is an important weapon in your development process’s testing arsenal.
Without adequate coverage testing, sections of your application’s code might not be exercised
prior to release. These untested sections could hide bugs that will manifest themselves in
production.

A good coverage tool must be able to consolidate coverage data gathered over time, and from
separate testing sessions. It must be able to do its work even on the changing landscape of an
application under development. It must track changes in the application, so that you can adjust
coverage testing as application code is modified, added, and removed.

DevPartner Java Edition covers all these bases.

You can employ DevPartner Java Edition during the development and testing phases of the
software development cycle. Developers use the Coverage analysis feature in unit testing
significant code check-ins.

Software testers can also use the Coverage analysis feature during routine regression and
reliability testing to ensure that applications and components have been thoroughly exercised.

Running Coverage Analysis from the Command Line

The command line utilities enable you to launch and monitor a Java application, an applet, or
components running in an application server). Monitoring can be performed either interac-
tively or in batch mode. In interactive mode, the user interface is active while the application
runs; you can view collected data in real time. In batch mode, the monitoring occurs in the
“background” and results are saved to a session file. To view the collected data, you must
launch DevPartner Java Edition and open the session file.

Configuring a Session for Code Coverage

DevPartner Java Edition defines extremely short methods as trivial methods (see “Trivial
Methods” on page 68). Trivial methods are treated in a particular fashion, and if you are not
aware of this, coverage results might appear to be erroneous.
 DevPartner Java Edition Getting Started Guide 51

Chapter 3 · Ensuring Testing Consistency
Generally, you should enable Monitor Trivial Methods in the configuration setup to monitor
all methods, so you will see the full execution path of your program. If you do not monitor
trivial methods, your results might be confusing. For example, suppose you are convinced that
your coverage tests will provide 100% coverage of the application, but running them through
DevPartner Java Edition shows that a tiny percentage of the code is still uncovered. This might
well be because you have disabled the monitoring of Trivial Methods, in which case DevPart-
ner Java Edition will not have flagged them as having executed.

Sometimes, there are benefits to not monitoring trivial methods. Turning off trivial method
monitoring significantly reduces data collection overhead. One tack to take would be to
disable monitoring of trivial methods after you understand how DevPartner Java Edition
monitors code and you are satisfied with the execution path of your program. This will allow
you to reduce testing time during the bulk of the development and testing cycle. However, near
the end of your testing process, re-enable monitoring of trivial methods as a final check that all
of your code is being exercised.

Running the Code Coverage Example

As a quick introduction to collecting coverage data in an interactive session, you can run the
coverageExample sample program as follows:

1 At the command prompt, change the folder to

DPJ_dir\samples\coverageExample

where DPJ_dir is the DevPartner Java Edition product folder.

2 Run the command

nmjava -cov -cp .. coverageExample.CoverageMain coverageEx-
ample.Class1

3 The Session Control page is displayed, prompting you to choose whether to view results
or clear collected data. The sample application will terminate immediately. Click Yes
when prompted to view the final coverage results.

(For further instructions on using the coverageExample sample file to explore coverage
features of DevPartner Java Edition, refer to the online help.)

To perform Coverage analysis on an application, use the nmjava command instead of the java
command. For example:

nmjava -cov [-config configuration-name] [-batch] <application-name>

Note: Optionally, you can specify a configuration that sets parameters on what code
is monitored. For information on specifying a configuration, see the online
help.

Viewing the Results of a Coverage Session

When your program has finished executing, you can analyze the data gathered by DevPartner
Java Edition.

To view your Coverage session results:
52 DevPartner Java Edition Getting Started Guide

Chapter 3 · Ensuring Testing Consistency
1 If you have run the application in interactive mode, select Yes when prompted to open the
most recent session file. Otherwise, navigate to the Session Files tab of the Start page,
select the correct configuration from the list, and open the most recent coverage session
file.

2 The Coverage Results Summary appears.

The Coverage Results Summary graphically displays Code Coverage data. Figure 3-1 shows a
sample Coverage Results Summary.

Figure 3-1. Coverage Results Summary

By default, the Coverage Results Summary tab is selected. It includes the following graphs:

� Overall Coverage Statistics

This pair of simple bar graphs shows the number and percentage of methods and lines that
have been executed. They give a high-level view of the overall coverage.

If out of order thread synchronization monitoring is enabled in the session configuration, a
line of text below these bar graphs indicates whether out of order thread synchronizations
were found. If none are found, the line simply states that. Otherwise, the line provides a
More Details link to a screen from which you can explore the specifics of the potential
deadlock. (For more information on out of order thread synchronization, see “Deadlock:
The Deadly Embrace” on page 58.)

� Methods with the Most Lines Not Covered

This graph shows the top five methods with the most uncovered lines.

� Classes with the Most Lines Not Covered

The last graph displays the top five classes with the most uncovered lines.
 DevPartner Java Edition Getting Started Guide 53

Chapter 3 · Ensuring Testing Consistency
The bottom two graphs provide links that let you drill down into the details of the gathered
data. For example, click either a bar or the associated method/class name, and a Details
window appears, showing the numeric statistics associated with the item selected. You can
also view the source code from the Details window.

Clicking More Details takes you to the detailed view, as shown in Figure 3-2.

Figure 3-2. Detailed View

Tracking Code Changes by Merging Session Files

Merging Coverage session files achieves several objectives:

� It assembles the results of individual coverage sessions into a unified whole. It is unlikely
that a testing regime will include a single coverage test; more probably there will be many
coverage tests, each designed to explore a different area of the application. Merging pro-
vides the means of gathering the results of these tests into a single vantage point from
which you can survey the coverage landscape to determine which portions of the entire
application have been covered, and which have not.

� It tracks the progress of your coverage testing. For any sizeable application, it is a rare test
plan that -- on the first try -- produces tests that provide 100% coverage. In the real world,
the creation of coverage tests is usually a series of successive approximations. The first
tests will coat broad tracts of the source code. But proper testing demands comprehensive-
ness, so follow-up tests must be created to exercise the missed nooks and crannies. How-
ever, missed nooks and crannies can multiply as a project evolves, and new source is
added. Tests must be either modified, or new tests continually added.

All this demands a mechanism whereby you can track testing’s progress. Such tracking
allows you to answer specific key questions. How quickly are you approaching total
coverage? Are you responding with new coverage tests nimbly enough to stay abreast of
new source additions? These questions are key because they form the foundation atop
which sits the most important question: Will coverage testing be complete in time to meet
the shipping deadlines?

� It tracks the rate of change in the code being tested. DevPartner Java Edition charts the
volatility of the code on the Merge Details graph. The volatility quantifies the amount of
change in the target code from session to session, so that you can know if and when it's
time to step up coverage testing efforts. It even identifies methods that have been added,
altered, or removed since the last session.
54 DevPartner Java Edition Getting Started Guide

Chapter 3 · Ensuring Testing Consistency
Generally, coverage data is accumulated in several sessions and then analyzed to provide the
total coverage statistics. Accumulating data in this manner lets you track changes in your code
so that you can gauge the stability of your code base.

Merged session files maintain a record of all the classes and methods that were loaded in any
of the contributing session files. To create a merged session file, you can either merge existing
session files manually or automatically.

Manually Merging Session Files

To manually merge session files:

1 On the Session Files tab of the Start page, click Merge to display the Merge screen.

2 Select the desired configuration from the list.

3 Select the session files to merge. You can select any number of files.

Note: If you select a range of files to merge, those sessions are merged in chrono-
logical order. But, be careful. If at a later time, you merge additional session
files into the same merge file, those additional files will be added to the merge
file as though they had been created at a point in time later than the original
session files, even if they have not. This could have unexpected and errone-
ous consequences.
The reason for this behavior is complex, but has to do with the fact that the
merged file contains information that is calculated at the time it is created. As
such, it is impossible (without making the processing time burdensome) to add
a new file out of order, and expect the merge process to insert that new
session’s information at the proper chronological position in the dataset. That
would require wholesale recalculation of the merge file whenever a new file
was added. Once a merge file included data from a large number of session
files, the time consumed to merge a new file would make the entire process
impractical.
If such a situation occurs, you can remedy it by simply re-merging all the files
into a new merge file (with the understanding that files will be merged based
on their creation dates).

4 Specify whether to create a new merge file or add to an existing merge file.

� Create a new merge file – Type a name in the field.

� Add to an existing merge file – Select the file from the list.

Automatically Merging Session Files

You can specify that all session files for a configuration are merged into a specified merge file
automatically. To automatically merge session files:

1 Select the Configurations tab of the Start page.

2 From the Configuration list, select the configuration for which you want sessions auto-
matically merged.
 DevPartner Java Edition Getting Started Guide 55

Chapter 3 · Ensuring Testing Consistency
Note: If session files already exist for the chosen configuration, they will not be
included in the automatic merge. Only session files created after you change
the configuration will be merged.

3 Select Automatically merge Coverage Session.

4 If you want to use a different name for the merged file, click Change File and type the
new name in the Explorer User Prompt dialog box.

Using Merged Session Files

When you merge session files, the merged session file is listed on the Session Files tab and
can be opened just like any other coverage session file. The following is the Results Summary
from a sample merged session:

Figure 3-3. Coverage Results Summary for Merged Sessions

The Merged Session History graph features three lines: Methods Covered, Lines Covered,
and Volatility. All three indicate percentage measurements. Data points on the first two graphs
represent accumulated data (the graphs are read from left to right). The leftmost data point
represents data from the first session file in the merge. The next data point to the right repre-
sents data from the second session file, combined with data from the first. The next data point
to the right represents data from the third session file, combined with the first two, and so on.

The blue line shows the percentage of methods covered. This percentage is calculated by
dividing the number of covered methods by the total number of methods. A method is counted
as covered if it has been executed at least once.

The green line shows the percentage of lines covered. Similar to the preceding graph, the
percentage is calculated by dividing the number of covered lines by the total number of lines.

The red line shows volatility. Although volatility is also a percentage, volatility measurements
are not accumulated as on the preceding two graphs. The volatility line represents the percent-
age of methods that changed in your code between sessions. (For example, the third data point
on a Volatility graph reflects changes in the code between the second and third session files
merged into the merge file. And it is not influenced by changes in the source code between the
first and second session files merged in.) Volatility characterizes the stability of your code. The
higher the volatility, the more the code changed.
56 DevPartner Java Edition Getting Started Guide

Chapter 3 · Ensuring Testing Consistency
Tip: The Session Files tab lists all files; both individual sessions and merge files. If
you want to see a complete list of the individual session files that have been merged
into a particular merge file, select the Session Details tab of the Coverage Results
Summary for the merge file.

To see more details about a specific session file, click one of the numbers below the Merged
Session History graph. These numbers are called session file axis numbers.

To see more details about the merged session and source code that changed, click the Merge
Details link to the right of Merged Session History. Figure 3-4 shows a sample Merge Details
window.

Figure 3-4. Merge Details Window

The frame in the left side of the window contains the following:

� A view of the class structure – Items are arranged in a hierarchical tree that reveals the
package and class structure. Branches of the tree are indicated by triangles that you can
click to expand or collapse, thereby revealing the branch structure. The number in paren-
theses to the right of each entry indicates the number of lines of code not executed in the
session.

� Inactive Source – This item on the tree includes those classes that were removed in the
most recent session, but were loaded and executed in earlier sessions.

� Removed Methods – Similar to Inactive Source, this item includes the methods that
were deleted in the most recent session, but were executed in earlier sessions.

As you merge session files, code changes are reflected in the Merge States. To see the Merge
States, click the Method List tab. If you do not see the States column, click Column Selec-
tion and check the States check box.

The status of the code from session to session contributes to the overall volatility of the appli-
cation. The less change in the code from session to session, the more consistent results from
Coverage analysis, and the less volatile the code base. Using these states helps you understand
the volatility level of the application. That is, they indicate changes in the application since the
last session file was recorded. Merge States that are associated with methods have the follow-
ing values:
 DevPartner Java Edition Getting Started Guide 57

Chapter 3 · Ensuring Testing Consistency
� Added – The method has been added since the last session.

� Removed – The method appeared in one session, but was absent from the next session.

� Changed – The method has been changed from a previous session.

� Unchanged – The method has not changed from a previous session.

Similar merge states apply to classes:

� Added – This class was added in the most recent session.

� Inactive – This class was loaded in a previous session, but not in the most recent session.

� Activated – A class is activated if it was previously inactive, but has been loaded in the
most recent session.

Using the status definitions, you can easily determine what code has been changed and where
additional testing has become necessary.

Automatic Merging and Live Monitoring

DevPartner Java Edition’s automatic merge feature can sometimes collide with its live
monitoring capability, as in the following example:

1 You have specified in a configuration that files be merged automatically.

2 You are currently viewing the merge file in DevPartner Java Edition while a Coverage ses-
sion is running.

3 When that Coverage session ends, the session file data is automatically merged into the
merge session you are viewing. The data you are looking at is now invalid, because the file
that you are looking at just changed.

When this situation occurs, DevPartner Java Edition issues a warning that the session file you
are viewing is out of date. To view the updated data, close your view into the merge session
file, return to the Start page, and open the new copy of the merge session file.

Deadlock: The Deadly Embrace

Deadlock is a common problem with multithreaded applications. In Java applications,
deadlock can be caused by threads calling into a series of synchronized blocks or methods in
different order. DevPartner Java Edition can assist in the analysis of applications deadlocked
by such “out of order synchronization” calls.

For example, a deadlock can occur if Java thread T1 synchronizes on objects O1, O2, and O3
(in that order) but thread T2 synchronizes on the same objects in a different order (for
example, O3, O2, and O1). Deadlocks can be sporadic, making detection difficult.
58 DevPartner Java Edition Getting Started Guide

Chapter 3 · Ensuring Testing Consistency
Note: “Thread T1 synchronizes on object O1”, means that thread T1 has entered
object O1’s monitor. Object O1 might be a class (in the case of class-based
synchronization), an implied object instance (in the case of a synchronized
method), or a specified object (in the case of a synchronized block).

Throughout this section on out of order synchronization, “sequences of calls
into synchronized methods” refers to nested calls. For example, “thread T1
calls synchronized methods M1 and M2 in that order,” means that M2 is called
while still in the scope of M1.

The out of order thread synchronization feature of DevPartner Java Edition is integrated with
Coverage analysis. It detects potential deadlock situations by tracing your code's execution.

Note: Apparent out of order synchronization sequences will not trigger deadlock
detection if they are “protected.” If one thread calls synchronized methods M1,
M2, and M3; and another thread calls those methods in the order M1, M3, and
M2; that will not trigger deadlock detection. The sub-sequences involving M2
and M3 are protected by M1, so no deadlock can occur.

Analyzing Out of Order Thread Synchronization

The Out of Order Thread Synchronizations window shows the contents of a sample session
file that recorded out of order thread synchronization. Figure 3-5 is an example of this
window.

Figure 3-5. Out of Order Thread Synchronization Details

The window provides the following information:

� Synchronized blocks and methods involved in the potential deadlock scenario

� Method calls that led up to entry into those sequences
 DevPartner Java Edition Getting Started Guide 59

Chapter 3 · Ensuring Testing Consistency
Each frame shows a synchronization trace. A synchronization trace is a list of synchronized
methods or blocks, depending on the context. (A synchronized block entry is accompanied by
its enclosing method name.) A synchronization trace looks like a stack trace; the method
names in the list are arranged from bottom to top, in the order they were called.

A synchronization trace can include the following items:

� Synchronized method – A method that can only be executed by one thread at any given
time.

� Synchronized block – Similar to a synchronized method in that only one thread can exe-
cute a synchronized block at any given time.

� Plain method – Any method that is not a synchronized method. The only plain methods
shown in the synchronization traces are those that led up to entry into the conflicting
sequences.

� Lock tag – A shorter name that is substituted for a longer method name or a synchronized
block. The form is Lx (where x is a number starting with 1 and incremented with each
instance) followed by either the text Synchronization Block or the name of the method
that caused out of order thread synchronization. Using lock tags makes it easier for you to
find synchronization traces that occurred out of order, even if the synchronization trace is
quite long.

Out of order traces are always presented in pairs (i.e., one synchronization trace shows
that one thread called the methods in one order, and the other synchronization trace shows
that a different thread called the methods in a different order). Lock tags are particularly
helpful when you are comparing synchronization traces that include synchronized blocks.
A block has no associated name; a lock tag supplies a name for the block, so that you can
match a block in one trace with its occurrence in another trace.

Note: DevPartner Java Edition labels the synchronization traces with the name of
the last method executed by that thread.

The elements in the synchronization trace lists are hyperlinks that lead you to the appropriate
place in the source code (via the Source View) corresponding to the method or block. For
example, click a link for a synchronized block, and you are taken to a source-code window.
The window is positioned in the source to the location of the block, and the first line of the
block is highlighted in yellow.

In Figure 3-5, there are two synchronization traces, one in the left frame (referred to as the
“primary sequence”) and another in the right pane (referred to as the “conflicting sequence”).
Each synchronization trace shows the order of program execution for a particular thread,
reading from the bottom line up.

The Synchronization Trace list in the left pane and the Conflicts with list in the right pane
allow you to select a specific sequence. The Synchronization Trace list allows you to select
the primary sequence. The Conflicts with lists includes all the sequences that conflict with the
current primary sequence.

Figure 3-6 shows a sample synchronization trace where deadlock was detected.
60 DevPartner Java Edition Getting Started Guide

Chapter 3 · Ensuring Testing Consistency
Figure 3-6. Out of Order Thread Synchronization Traces

The following describes the execution path of the left pane (primary sequence):

1 The thread begins by executing the main() method. (Note that the class name is
SynchBlocks1.)

2 From the main() method, the thread calls the RunTests() method.

3 The RunTests() method calls the synch1() method. While executing the synch1()
method, the thread enters the first synchronized block that participates in this particular
conflict. The synchronized block is identified by the lock tag L1.

4 The thread enters the synch2() method, in which there is another synchronized block,
identified by the lock tag L2. This process repeats for methods synch3() and synch4();
these methods are associated with L3 and L4, respectively.

After these steps, the thread exits “pops out” of the nested method calls, and ends execution.

Only one conflict pair is displayed at a time. When you select a primary conflict, DevPartner
Java Edition populates the Conflicts with list with all the traces that conflict with the selected
primary trace. You then select which secondary trace to display.
 DevPartner Java Edition Getting Started Guide 61

Chapter 3 · Ensuring Testing Consistency
Detecting Out of Order Thread Synchronization

If you suspect that deadlock is occurring, perform the following steps to analyze and debug the
deadlocks:

1 To enable monitoring of out of order thread synchronizations as part of Coverage analysis,
select Monitor out of order thread synchronization (Coverage only) on the Configu-
rations tab of the Start page.

Figure 3-7. Configurations Tab

2 Run DevPartner Java Edition against that program, making sure you specify a configura-
tion that has enabled out of order thread synchronization using a command line similar to
the following:

nmjava -config config-name -cov -batch Program-name

where config-name is the selected configuration and Program-name is the name of
your program.

3 Exercise the target application in such a way that potential deadlocking sequences are exe-
cuted.

4 On the Coverage Results Summary tab, click More Details for Out of Order Thread
Synchronizations Found to display information that will help identify deadlocks in your
code.
62 DevPartner Java Edition Getting Started Guide

Chapter 3 · Ensuring Testing Consistency
Figure 3-8. Coverage Results Summary Tab

5 From the Synchronization Trace list on the left pane of the Out of Order Thread Syn-
chronizations window, select the primary synchronization trace to examine.

6 From the Conflicts with list on the right pane, select one of the conflicting traces. (See
Figure 3-6 on page 61 for the output of a sample run.)

7 Examine the sequences to determine where the sequence of Synchronization Blocks dif-
fers. In this example, the primary sequences shows that the thread labeled sync4 method
executes synchronization blocks L3 and L4 in that order, while the conflicting sequence
shows the thread labeled sync2 method has the sequence of L3 and L2. This is the out of
order conflict in this example.

8 To determine how this happened, examine the code of the method preceding the point of
departure. Look for areas in the code where some global variable, if statement, case
statement, or other code element might have caused the divergence.

9 If you do not find an instance where a decision point might have caused the divergence,
examine the code in the next higher parent. Again look for decisions that would cause the
thread to take different a path of execution.

Exclusions and Out of Order Synchronization Detection

If a class with the synchronized method or block is excluded, DevPartner Java Edition does
not monitor that class. As a result, if synchronized methods or blocks in the excluded code
participate in out of order deadlock, DevPartner Java Edition does not detect them.

Excluding a parent class (whose synchronized methods are not overridden in included classes)
excludes this class from analysis. Any synchronized methods from the parent class that partic-
ipate in out of order deadlock will not be detected by DevPartner Java Edition.
 DevPartner Java Edition Getting Started Guide 63

Chapter 3 · Ensuring Testing Consistency
Excluding the target class of a synchronized statement does not exclude the class performing
the synchronization. For example, if you had an object A of class C, and a method that looked
like the following, excluding class C does not cause the method to be excluded from any
synchronization traces in which it would otherwise appear.

public int method()
 {
 synchronized(A) { ... }

 }

Tracking Code Execution and Code Base Stability and Reliability

To ensure the reliability of your software, you must know how much of your code is being
exercised by your tests and how stable your code base is.

DevPartner Java Edition Coverage analysis tracks code execution and code base stability,
helping you locate untested code and areas of volatility. With this information, you can
minimize testing time while maximizing the productivity of your testing efforts.

� Coverage analysis collects coverage data for Java, down to individual lines of code.

� Session Controls let you focus your Coverage analysis on any phase of your application.
Use the Session Controls to take a snapshot of the data currently collected, or clear data
collected to that point and then continue recording.

� File merging combines the coverage data from multiple session files into a single file.
Accumulating data lets you track changes in your code so that you can gauge the stability
of your code base.

� Out of order thread synchronization detects potential thread deadlock conditions. When
you enable out of order thread synchronization for a session, all synchronization points in
your program that have conflicts requiring examination are recorded in the coverage ses-
sion file.

Run Coverage analysis even after you have 100% code coverage. Just because your code tests
at 100% coverage doesn’t mean that each method or class has the same number of tests. In
many situations, multiple tests must be run on the same feature to ensure that the functionality
is flawless. Use DevPartner Java Edition to determine which areas of your application need
more testing.
64 DevPartner Java Edition Getting Started Guide

Chapter 4

Finding Performance Problems
The Performance analysis capabilities of DevPartner Java Edition help you to track down
poorly-performing code. In this chapter, you’ll see how to use DevPartner Java Edition to
gather performance data on an application, and how to use its intuitive interface to navigate
through that data and home in on performance hotspots.

Identifying Performance Problems

Ensuring that an application performs optimally is a top priority for any Java programmer.
Recognizing the importance of optimal performance, however, does not alleviate the task of
finding and correcting the problem code. Performance issues are often more complex than a
developer might at first suspect. Finding the origin of the problem often requires exhaustive
testing of the application, followed by a laborious walk-through of the suspicious areas of
code.

Suppose testing has revealed that an application is functioning properly. It is doing what it was
designed to do. Members of the testing group, however, have reported that the application is
slower than users are likely to tolerate. The testers have not quantified their findings; they are
simply reporting their subjective experience with the application.

After running the application yourself, you concur with the testing group. The application is
unacceptably slow, though you are not sure why. You are faced with two questions:

� How can you collect performance data on the application?

� How can you use that data to isolate the offending code?

The answer to both, of course, is to use a Performance analysis tool such as DevPartner Java
Edition. However, even with DevPartner Java Edition, the proper cure for performance
problems is not to address those problems after someone complains of your application’s
sluggishness. The real solution is more proactive than reactive.
 DevPartner Java Edition Getting Started Guide 65

Chapter 4 · Finding Performance Problems
Performance Testing and Profiling in Software Development

Performance problems can be largely eliminated if you include performance testing and profil-
ing into the software development cycle, as illustrated in Figure 4-1.1

Figure 4-1. Performance Testing as Part of Software Development

Performance testing + profiling
Performance analysis

In Java Platform Performance, Strategies and Tactics, the authors show how performance
testing and profiling fit into the software development life cycle. As they suggest, after you
have determined that your code’s execution is functionally correct, you employ performance
testing to verify that your application’s execution time is acceptable.

If your application passes the performance tests, you can move to the next stage of the cycle
(which is often deployment). Otherwise, you follow the testing with a performance profiling
step, in which you gather data to locate the problem (or problems). Analysis of the results of
the profiling step will send you back to a preceding stage in the cycle where the problem can
be corrected. Perhaps the slow code was a design flaw; or, perhaps it was a poorly-coded
algorithm. In any case, the performance testing and profiling steps produce a cyclic process.
You run performance tests and use profiling to determine whether you must loop back to a
previous step (analysis, design, coding) in order to fix a problem. Cycles will be repeated until
the application meets design standards.

Performance Profiling Terminology

Before you run a Performance analysis session in DevPartner Java Edition, there are concepts
and terms used throughout the documentation that you might be unfamiliar with.

Profiled versus Excluded Code

Profiled code is the code for which you want DevPartner Java Edition to gather performance
data. Generally, this is the application code you actually wrote. Profiled code is distinguished
from excluded code, for which DevPartner Java Edition does not collect performance data.

1. Java Platform Performance, Strategies and Tactics, Wilson, Kesselman)
66 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
Excluded code is usually that part of your application’s source over which you have no direct
control; for example, system code and third-party libraries.

Note: Occasionally, you may want to explicitly exclude portions of your own code to
narrow your area of investigation. By default, DevPartner Java Edition
excludes classes in the Java Runtime Environment (JRE), application server
classes, and IDE classes.

DevPartner Java Edition lets you select which parts of an application are profiled and which
are excluded. You do this in the Packages and Classes section of the Configurations tab of
the DevPartner Java Edition Start page. (See the online help for details.)

Entry Points

When your program runs, profiling begins with the first call to a method that is not on your
excluded list. In DevPartner Java Edition, such methods are called entry points. (Methods that
are called by other profiled methods are not entry points.) The Entry Points with the Slowest
Average Response Time graph on the Performance Results Summary identifies execution
paths that consume the most clock time and, consequently, should be explored for poorly
performing code.

Performance Timings

DevPartner Java Edition recognizes timing values: wait time, real time, and thread time. The
following equation illustrates the relationship of these timings:

wait time = real time – thread time

Wait Time

Wait time is the amount of time that a thread spends waiting to execute. A thread can accumu-
late wait time while it is blocked on an I/O operation, while it is waiting for a synchronization
object, or simply when it is preempted by other threads.

Note: Wait time is associated with a method. A method’s overall wait time is the sum
of the individual times that all the threads that have executed that method
have spent waiting. Real time and thread time values (defined below) are also
associated with methods.

Real Time

Real time (also called clock time or elapsed time) is the total time from the moment the
profiled method is called to the moment the method exits, summed across all invocations of
the method. If a method is called at time T1, exits at time T2, is called later at time T3, and
exits at time T4, its real time is (T2 – T1) + (T4 – T3).

Real time includes timings for other events, child methods, and threads executing outside of
the context of the profiled portion of the application; it may even include the times of other
processes that preempted the application. It may help to think of real time as the amount of
time that a user perceives a method as having taken to execute.

Besides reporting the elapsed real time, DevPartner Java Edition also reports a method’s
average real time, which is simply the method’s real-time measurement divided by the number
of times the method is called.
 DevPartner Java Edition Getting Started Guide 67

Chapter 4 · Finding Performance Problems
Thread Time

Thread time (also called CPU time) is the amount of time threads spend executing in a particu-
lar method, independent of any other events taking place. It excludes time spent in any child
methods. Thread time is the time that pertains only to the method being profiled.

Example: Wait Time, Real Time, and
Thread Time

A simple illustration might clarify the relationship of these different time values. Suppose your
application consists of a single method, run by a single thread. The instant the method begins
executing, an LED is illuminated on the front panel of your system. When the method termi-
nates, the LED turns off. In the midst of executing the method, however, the system preempts
your application, runs a background task for several tens of microseconds, then returns to
complete your application. The real time would be the length of time the LED was illumi-
nated. The wait time would be the amount of time that the background task executed (the time
“stolen” from your application). The thread time would be the real time less the wait time.

Trivial Methods

A trivial method is, as its name implies, an extremely brief and simple method. It performs
only one of the following operations:

� Returns a constant value, or a member, static, or parameter variable.

� Returns the length of an array.

� Puts a constant value, an array length, or a member, static, or parameter variable into a
member or static variable.

� Calls one other function, passing parameters that are constant values, array lengths, or val-
ues that can be retrieved from member, static, or parameter variables.

DevPartner Java Edition lets you enable or disable monitoring of trivial methods. You do this
in the Configurations tab. Generally, the first time that you profile for performance, it is a
good idea to enable Monitor Trivial Methods. This ensures that DevPartner Java Edition
monitors all methods so that you see the entire execution path of your program, rather than
only a filtered view. If you elect not to monitor trivial methods, your results might be mislead-
ing. For example, if your code executes method_a, method_b, and method_c (in that order),
but method_b is a trivial method, the performance Call Graph (see example in Figure 4-9 on
page 75) would show method_a calling method_c; method_b would not even appear in the
Call Graph. Because you disabled that setting, you would not know whether method_b was
ever executed. When you enable the monitoring of trivial methods, however, DevPartner Java
Edition would accurately include all methods (trivial or not) in its analysis results.

A benefit of not monitoring trivial methods is that you significantly reduce data collection
overhead. This, however, may cause you to misinterpret the results. A good approach is to
enable the monitoring of trivial methods the first time you profile your code. Once you fully
understand the execution path of your program, you can run a subsequent Performance analy-
sis, this time without monitoring trivial methods, to focus your attention on the critical
methods in your application that are causing the greatest performance hits.
68 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
Bubble Graphs

DevPartner Java Edition uses bubble graphs to represent three variables in two dimensions.
The Methods Using the Most Thread Time graph, for example, shows the top five methods
that use the most thread time.

Figure 4-2. Top Consumers of Thread Time

Top consumer of thread time depicted in
Methods Using the Most Thread Time graph

Each method is depicted as a bubble. The size of each bubble represents the accumulated
thread time for the associated method. Hence, the larger the bubble, the more thread time that
the method has accumulated.

The location of a bubble in the graph helps you identify which factor likely contributes the
most to the corresponding method’s accumulated thread time. The closer a bubble is to the top
of the graph, the more frequently the associated method is called. In that case, you would
likely accomplish the largest reduction in the method’s overall thread time by reducing the
number of times it is called. The farther to the right side of the graph a bubble is situated, the
greater its associated method’s average thread time. For such a method, the largest reduction in
thread time would most likely come from optimizing within the method itself.

Running a Performance Profiling Session

DevPartner Java Edition provides various ways to look at Performance analysis results.
Whatever direction you take, you can drill down into your data using one of the graphs
provided from a performance profiling session. Choose a graph that focuses on the problem
you are trying to solve. Table 4-1 provides some rules of thumb.

Table 4-1. Using DevPartner Java Edition for Performance Analysis

Performance Problem
Performance Analysis
Tool Issues Addressed

Methods with long execution
times that are entry points into the
application code

Entry Points with the
Slowest Average
Response Time graph
(see Figure 4-12 on page
76)

Responsiveness, compu-
tational performance,
start-up time

Methods that take a long time to
execute because of conditions
within the method itself (i.e., con-
tains an inefficient algorithm or
data structure)

Methods Using the Most
Thread Time graph (see
Figure 4-7 on page 74)

Computational perfor-
mance, scalability
 DevPartner Java Edition Getting Started Guide 69

Chapter 4 · Finding Performance Problems
Regardless of the graph you choose, you can drill down to another view that shows a different
aspect of the captured results. For example:

� You can view a Call Graph to look at the chain of calls leading to a particular method call.

� You can view performance and timing details about a method.

� You can view a table listing all the methods in the application to compare performance and
timing data at a glance.

� You can go directly to the source code to find slow lines of code.

To illustrate how you can use DevPartner Java Edition to find performance problems, use one
of the sample applications provided with the installation. The sample application is called
waitTimeExample and is located in the following path location(s):

� Windows — DPJ_dir\samples\waitTimeExample

where DPJ_dir is the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/waitTimeExample

This example explores how to use DevPartner Java Edition to locate excessive wait time in a
Java program. This multi-threaded program writes to a simple in-memory log object that
consists of a small, circular buffer. You can run this application in one of two modes:

� Global, in which all threads use a single synchronized buffer

� Local, in which each thread uses its own buffer

Each mode illustrates different capabilities of DevPartner Java Edition. Start by profiling the
application in global mode and focus on computational performance issues. Following that,
profile in local mode, for a different perspective, and drill down to results that look at compu-
tational performance factors as well as program responsiveness.

Profiling in Global Mode

To run this sample application in global mode:

1 At the command prompt, change the folder to

DPJ_dir\samples\waitTimeExample

where DPJ_dir is the DevPartner Java Edition product folder.

Methods that spend excessive
time waiting because of being
blocked, (i.e., waiting on I/O or a
shared resource)

Methods Spending the
Most Time Waiting
graph (see Figure 4-4 on
page 72)

Responsiveness, compu-
tational performance

Table 4-1. Using DevPartner Java Edition for Performance Analysis

Performance Problem
Performance Analysis
Tool Issues Addressed
70 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
2 Run the command

nmjava -perf -cp .. waitTimeExample.ThreadLogMain global

This command profiles the application in global mode. As your application runs, the
Session Control page appears and prompts you to view results.

Note: For a demonstration of the Thread Viewer in the Session Control page, see
“Using the Thread Viewer to Analyze Performance” on page 77.

3 Click Yes at the prompt.

The Performance Results Summary displays the performance graphs, as shown in Figure 4-3.

Figure 4-3. Performance Results Summary — Global Mode

In the Methods Spending the Most Time Waiting graph, ThreadLogMain.run() is at the
top of the list because it calls the Log.log() method. The method Log.log() executes the
writing to the circular buffer, and is synchronized to eliminate the possibility of corruption.
Because this application runs several threads — each thread executing ThreadLog-
Main.run() — the threads spend most of their time in ThreadLogMain.run(), waiting for
Log.log() to become available.
 DevPartner Java Edition Getting Started Guide 71

Chapter 4 · Finding Performance Problems
Figure 4-4. Methods Spending the Most Time Waiting to Execute

Click the hyperlink to the right of the graph to display a Details window for ThreadLog-
Main.run(), in which you can see the wait time.

Figure 4-5. Details of ThreadLogMain.run()

More time
spent waiting
than executing

Look at the bottom of the window. Notice that the code executing ThreadLogMain.run()
spends far more time waiting (Wait Time entry) than actually executing (Thread Time entry).

Profiling in Local Mode

An alternative to logging information into a single, shared buffer is to allot a buffer to each
thread. This enables each thread to save data to its own local buffer for later merging. This
approach is demonstrated using the local mode of the sample application. It dramatically
reduces the synchronization overhead of the log call itself.

To run this sample application in local mode:

1 At the command prompt, change the folder to

DPJ_dir\samples\waitTimeExample

where DPJ_dir is the DevPartner Java Edition product folder.

2 Run the command

nmjava -perf -cp .. waitTimeExample.ThreadLogMain local

This command profiles the application in local mode. As your application runs, the
Session Control page appears and prompts you to view results.
72 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
Note: For a demonstration of the Thread Viewer in the Session Control page, see
“Using the Thread Viewer to Analyze Performance” on page 77.

3 Click Yes at the prompt.

The Performance Results Summary displays results captured in the local mode.

As shown in Figure 4-6, the results in the local mode vary somewhat from the results in the
global mode. Instead of sharing a single buffer, each of the five threads now has its own
buffer. The wait time has been shifted from the ThreadLogMain.run() method down into
the Log.log() method. In the global version, wait time was caused by loitering threads
waiting to get into the synchronized Log.log() method. In the local method, virtually all the
wait time is associated with threads contending for the CPU. Even though the local mode
finishes faster, the total amount of thread time (CPU time) has actually increased (this increase
is even more apparent if you are on a single CPU system). This is due, in part, to the fact that
this sample application is completely CPU-bound.

Figure 4-6. Performance Results Summary — Local Mode
 DevPartner Java Edition Getting Started Guide 73

Chapter 4 · Finding Performance Problems
The Methods Using the Most Thread Time graph provides a snapshot of the greatest
consumers of pure thread time in the program, when it was profiled in the local mode.

Figure 4-7. Methods Using the Most Thread Time
Wait_Meths_UsingMostThreadTime.tif

The graph provides several clues. The largest bubble is the method
Log.log(java.Lang.String), shown in red at the upper part of the graph. Because it is
the largest bubble, the associated method has accumulated the most thread time relative to all
other methods profiled. And, because the bubble is near the top of the graph, execution count
plays the larger role — compared to the method’s average thread time — in the accumulated
time.

The graph highlights ThreadLogMain.run(). The position of the yellow bubble closest to
the right side of the graph indicates that this method is expensive because, on average, it
consumes a lot of thread time.

Next, look at the methods that call into Log.log(java.lang.String), and determine if it
is feasible to reduce the number of times it is called. Click the link for
Log.log(java.Lang.String) to open a Details window.

Figure 4-8. Details Window — Profiled in Local Mode

More time
spent waiting
than executing

This window lists additional details about Log.log(java.lang.String). Like when this
program is profiled in the global mode (Figure 4-5 on page 72), more time is spent waiting to
execute (wait time) rather than actually executing (thread time). This information quantifies
the graphical representation just evaluated.
74 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
Analyzing the Call Structure

Look at the call structure for Log.log(java.lang.String), to see methods that might be
affected if making a change to this method. To view the Call Graph for this method, click
View Call Graph in the Details window.

Figure 4-9. Call Graph Showing run() Calling into Log.log()

The nodes in the Call Graph are displayed sequentially from left to right in the order in which
they were called. DevPartner Java Edition displays the critical path by determining the
sequence of child method calls that resulted in the largest cumulative consumption of thread
time for the selected method. The percentage that appears to the left of each node in the critical
path is local to that path. It represents the time allocated by the child method (and its children)
as a percentage of the time allocated in the execution of that path. In contrast, the percentage
that appears inside the node or in the Details window is global. This value is computed as a
percentage of time allocated by all methods during the profiling session.

Our sample application is a simple console program with a single call into a child node, and
this is confirmed by the Call Graph. It shows ThreadLogMain.run(), appearing as run(),
calling into Log.log(java.lang.String). It further tells us that run() would be affected
by a change to the code in Log.log.

To go to the Source View, click the node for Log.log(java.lang.String). This displays
the Method Details window, as shown in Figure 4-10. Click the hyperlink View Source
appearing in this window.

Figure 4-10. Details of Log.log(java.lang.String)
 DevPartner Java Edition Getting Started Guide 75

Chapter 4 · Finding Performance Problems
Finding Slow Code

The following example shows the Source View for Log.log(java.lang.String).
DevPartner Java Edition highlights the slow lines of code in red. For both slow lines of code,
more time is spent waiting (Wait Time column) than executing (Thread Time column).

Another factor in performance is how many times a line executes; For example, the second
highlighted line of code executes 250,000 times (Execution Count column).

Figure 4-11. Source View for Log.log

Reducing the number of calls is an important way to help improve overall performance.

DevPartner Java Edition presents another way to understand program performance and
responsiveness, through the analysis of the Entry Points with the Slowest Average Response
Time graph on the Performance Results Summary.

Looking at Program Responsiveness

In the preceding solution track, after profiling in local mode, methods that were the greatest
consumers of thread time and executed most often were analyzed. In addition, the amount of
time that the method spent waiting to execute was analyzed. A program’s responsiveness can
also be evaluated by looking at the Entry Points with the Slowest Average Response Time
graph on the Performance Results Summary, when profiled in local mode Figure 4-6 on page
73).

Figure 4-12. Entry Points with Slowest Average Response Time — Local Mode
76 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
As described earlier, the Entry Points with the Slowest Average Response Time graph
shows those entry points with the longest average clock time. In the example above, the bulk
of the execution time is in ThreadLogMain.run(), so it is at the top of the list. In addition,
there are few entry points in this sample application because it runs as a command line appli-
cation. Results from this graph coincide with other data about expensive methods. Remember
that ThreadLogMain.run() is also one of the top consumers of thread time in the program,
and that this method calls into the method that consumes the most thread time,
Log.log(java.lang.String) (Figure 4-9 on page 75).

Using the Thread Viewer to Analyze Performance

The Thread Viewer in the Session Control page provides a live view of thread states. It lists all
the threads that are currently running or recently terminated. The graph shows how long each
thread is running or waiting (possibly blocked on the monitor), and when the thread is termi-
nated.

The Thread Viewer is enabled by default; you can disable it in the session configuration.
(When it is disabled, the Thread Viewer is not displayed in the Session Control page.)

To see a demonstration of the Thread Viewer, use the sample application threadExample.

This demonstration uses the default settings in the session configuration.

1 At the command prompt, change the folder to

DPJ_dir\samples\threadExample

where DPJ_dir is the DevPartner Java Edition product folder.

2 Run the command

nmjava -perf -cp .. threadExample.BounceThread

The DevPartner Java Edition interface and the Bounce application window open.

3 To start the Bounce application, click Start. A ball appears; it bounces randomly around
the screen 1,000 times, then disappears.

To add more bouncing balls to the screen, click Start again; each new ball is a separate
thread. Use the Clear button to stop all the ball threads, which removes the balls from the
Bounce window.

To increase or decrease the bouncing speed, click the + (plus) or - (minus) button.

To stop the application and close the Bounce window, click Close.
 DevPartner Java Edition Getting Started Guide 77

Chapter 4 · Finding Performance Problems
As the Bounce application runs, its threads are displayed in the “live view” graph in the
Session Control page.

Figure 4-13. Thread Viewer

The thread names are listed down the Y-axis of the graph; long thread names may be truncated.
The X-axis shows the time intervals. Thread status is identified by color: yellow for running,
red for waiting, purple for blocked, and black for terminated. Each time you click Start and a
new ball appears in the Bounce window, a new thread begins running and appears in the graph.

The graph is refreshed once every second. You may not see a thread's state change between
Running and Waiting if the state changes too quickly to be captured by the refresh. If a thread
is never listed in the graph, either it runs and terminates too quickly to be captured (i.e. less
than a second), or it was never executed.

The duration for displaying thread states ranges from a minimum of 5 seconds through a
maximum of 120 seconds. The default is 30 seconds.

Note: A higher duration requires higher overhead for retaining the data, and may
degrade performance. If the profiling proceeds unacceptably slowly, disable
the Thread Viewer.

A terminated thread continues to be listed only for the number of seconds specified for Thread
Viewer History in the Live View in the session configuration (for example, for another 30
seconds, if the default duration is used).

The thread data is not saved to a file; it persists only as long as the thread is displayed in the
graph.

While the application runs, you use the buttons below the graph to open a Performance Results
Summary window to view the data collected thus far, or to clear the collected data.

The Threads tab at the bottom of the Session Control page displays a table that provides four
columns of information about the currently running threads:

� Thread Name — The threads are listed in the same order as in the graph. A terminated
thread disappears from the table when it disappears from the graph.
78 DevPartner Java Edition Getting Started Guide

Chapter 4 · Finding Performance Problems
� Unique ID — DevPartner Java Edition assigns a unique identifier to each thread because
multiple threads may have the same name, or thread names may be truncated to identical
strings.

� Monitors Held — As each thread runs, this column displays the number of synchronized
methods or blocks of Java code currently held by the thread. You may see the number
change as the thread holds and releases the monitors. A ball thread can hold up to 5 moni-
tors.

� State — This column displays the current state of the thread: Running, Waiting, or Termi-
nated.

Note: For descriptions of the other two tabs, see the “Session Control – Perfor-
mance” topic in the online help.

When you close the Bounce window, you are prompted to display the session results.

Analyzing Performance by Object Category

The API Categorization and Transaction configuration option focuses Performance analysis
on specific parts of your program. For example, if you change one area of code, you can assign
all the affected objects to the same category so performance data for the objects will be
grouped together for analysis. The option is enabled by default.

The Configurations tab lists default categories. You can create your own categories as
needed. You can use regular expressions for the categories (see the online help for details).

The category statistics are displayed in a pie chart on the Performance Results Summary, as
shown in the following example.

Figure 4-14. Performance Results by Category
 DevPartner Java Edition Getting Started Guide 79

Chapter 4 · Finding Performance Problems
Performance Analysis Pointers

To recap:

� Performance analysis should be a planned step (not an afterthought) in the development
process. Its point of inclusion is suggested in Java Platform Performance, Strategies and
Tactics, which gives other information regarding the development process, and the role
that Performance analysis plays in it.

� The ability of DevPartner Java Edition to drill down into session data is critical in uncov-
ering the cause of a performance bottleneck. When you have identified a problem, locating
it requires the ability to easily shift your view from charts to Call Graphs to numeric data
to source code and so on. Pinpointing the source of the problem is like calculating a paral-
lax, and that is most easily done when the problem can be viewed from different angles,
and by different means. DevPartner Java Edition's interconnected user interface lets you
jump quickly from one view to another.

� Although there is no formal recipe for tracking the problem to its source, a good rule-of-
thumb approach is to begin with the Entry Points with the Slowest Average Response
Time graph, and tunnel into the session data along a route charted by the Call Graph and
guided by the Methods Using the Most Thread Time and Methods Spending the Most
Time Waiting graphs. The latter two graphs not only will suggest the destination, but will
indicate the nature of the problem (whether it is processing that must be optimized, or wait
time that must be reduced). Experience with this process will enable you to improve it
over time.

� Finally, keep in mind that, in Java applications, many performance problems have their
root causes in improper memory management. Locating such problems will require you to
employ DevPartner Java Edition’s Memory analysis capability, as described in Chapter 2.
80 DevPartner Java Edition Getting Started Guide

Chapter 5

Working with Integrated Development
Environments
In the preceding chapters, you saw how Java applications, applets, and components could be
profiled either by using DevPartner Java Edition command line utilities, or by executing the
applications interactively through the DevPartner Java Edition user interface. There is yet
another way to incorporate DevPartner Java Edition in your development process. DevPartner
Java Edition integrates with several of the most popular Java integrated development environ-
ments (IDEs).

After DevPartner Java Edition has been incorporated into an IDE, its presence is virtually
unnoticeable unless you specifically activate it. In most cases, controls for activating DevPart-
ner Java Edition appear either as a new menu on the menubar, or as a new entry in an existing
menu. You can run a target project under DevPartner Java Edition as easily as if you had run
the target from the IDE without using DevPartner Java Edition.

For example, as soon as a particular module is ready to run, you can launch the module under
DevPartner Java Edition to analyze its memory consumption (or its execution performance),
return to the IDE to make any changes, rerun through DevPartner Java Edition to test the
modifications, and so on.

IDE integration is available only in Windows environments.

For the most part, profiling an application (or applet or Java component) with DevPartner Java
Edition from within an IDE is as easy as launching that application with the IDE’s Run
command. After DevPartner Java Edition is installed in the IDE through the Add-in Manager,
no additional work is necessary to make a new or existing project in the IDE compatible with
DevPartner Java Edition.

Nevertheless, there are details of which you should be aware:

� Almost all IDEs have built-in debugging facilities. Some have various profiling capabili-
ties. These facilities are disabled when you run a target under DevPartner Java Edition.

� Many of the IDEs are accompanied by “test-bed” application servers and EJB containers.
You can launch servlets, JSPs, and EJBs from within the IDE to execute in the application
server, and profile those components under DevPartner Java Edition as easily as launching
them directly from the IDE without involving DevPartner Java Edition. In such a case,
however, the behavior of DevPartner Java Edition will be slightly different than were the
components executed in the application server (or EJB container) by the DevPartner Java
Edition nmserver command or from the Application Server Testing tab of the DevPart-
ner Java Edition Start page.

When DevPartner Java Edition launches the application server, an entry for it appears on
the Application Server Testing tab. If, however, the application server is launched as part
of a project from within an IDE, no entry appears in the DevPartner Java Edition interface.
The behavior of the tested components, the application server, and DevPartner Java
Edition are not otherwise affected.
 DevPartner Java Edition Getting Started Guide 81

Chapter 5 · Working with Integrated Development Environments
Installing and Uninstalling IDE Integration

DevPartner Java Edition includes utilities for integrating it into IDEs and for removing the
integration.

Note: You can also invoke the profiler through your IDE by including the -Xrun
argument in the JVM settings. For details, see the online help topic “Using -
Xrun to Invoke the Profiler”.

Using the Add-in Manager

You can integrate DevPartner Java Edition into your IDE at the time you install DevPartner
Java Edition. If you select this option, the installer automatically launches the DevPartner Java
Edition IDE Add-in Manager (see Figure 5-1). If you do not integrate DevPartner Java Edition
as part of installation, you can perform this task at any time afterward. The procedure is the
same during or after installation.

If the Add-In Manager is not opened by the installation wizard, select it from the Windows
Start menu: Programs>Micro Focus>DevPartner Java Edition>Utilities>Java IDE Add-
in Manager.

Figure 5-1. IDE Add-in Manager

Within the utility, perform the following steps:

1 From the list, select the IDE into which you want to integrate DevPartner Java Edition.

2 Click Continue to display the Installing addin dialog box.

3 In the field, type the root folder in which the IDE has been installed; or click the browse
button to navigate to and select the location.

4 Click Install. A message confirms that the integration was successful.
82 DevPartner Java Edition Getting Started Guide

Chapter 5 · Working with Integrated Development Environments
Uninstalling IDE Integration

Use the Java IDE Add-in Uninstallation utility to remove DevPartner Java Edition integration
from an IDE.

1 From the Windows Start menu, select Programs>Micro Focus>DevPartner Java Edi-
tion>Utilities>Java IDE Add-in Uninstallation.

2 In the window, select the IDE and click OK.

3 The DevPartner Java Edition integration is removed from the selected IDE. A confirma-
tion message appears.

IDE integration is uninstalled automatically when you uninstall DevPartner Java Edition.

Running DevPartner Java Edition from Within an IDE

The Java IDE Add-in Manager can integrate DevPartner Java Edition with the following
IDEs:

� Compuware OptimalJ (page 83)

� Borland JBuilder (page 86)

� Eclipse (page 88)

� IBM Rational Application Developer (page 90)

Compuware OptimalJ

You can access DevPartner Java Edition features from within Compuware OptimalJ. OptimalJ
enables you to profile Java applications, applets, JSPs, servlets, and EJBs.

When you profile an application with DevPartner Java Edition, OptimalJ automatically creates
a DevPartner Java Edition configuration file for the module or class that you are profiling. You
can edit these configuration files in DevPartner Java Edition by clicking the Configurations
tab of the DevPartner Java Edition Start page.

You can use OptimalJ with DevPartner Java Edition to profile:

� An OptimalJ project
 DevPartner Java Edition Getting Started Guide 83

Chapter 5 · Working with Integrated Development Environments
� A specific Java class

Profiling an OptimalJ Application

When you run DevPartner Java Edition profiling on an application from within OptimalJ, the
results are displayed in the DevPartner Java Edition interface after the integrated test environ-
ment starts. All OptimalJ integrated test environment features are available while profiling
your application with DevPartner Java Edition.

Note: Users of Internet Explorer should clear the option Reuse windows for
launching shortcuts on the Advanced tab of the Internet Options dialog
box, displayed through the browser’s Tools menu. Otherwise, you might not
be aware of the multiple sessions started.

DevPartner Java Edition profiling messages are displayed with the application server
messages in the Application Server tab of the OptimalJ Output window.

OptimalJ powered by NetBeans

To profile an application in OptimalJ powered by NetBeans, do one of the following:

� From the OptimalJ menu bar, choose Debug>Start Application Server under DevPart-
ner; then select the desired analysis type from the submenu:

� Analyze Memory Usage
� Analyze Performance
� Analyze Coverage

� In the Code Model explorer, locate the file for your application. Right-click the file to dis-
play the popup menu, choose Tools>Start Application Server under DevPartner, and
select the desired analysis from the submenu.

OptimalJ built on Eclipse

To profile an application in OptimalJ built on Eclipse, you must be in the Application perspec-
tive. To begin the profiling, choose Test>Start Application Server under DevPartner; then
select the desired analysis type from the submenu:

� Analyze Memory Usage
� Analyze Performance
� Analyze Coverage

Profiling a Specific Application Module

It is not possible to deploy both the EJB and Web modules in the integrated test environment
and restrict the DevPartner Java Edition profiling to an individual application module.
DevPartner Java Edition profiles the entire process running your test application server and
any application modules deployed to it during that test session. For example, if you start the
integrated test environment with DevPartner Java Edition profiling enabled and deploy just
your application's EJB module, the profile information covers the running application server
and the deployed EJB module only. If you subsequently deploy the application's Web module
to the existing test session, it will be added to the profiling information from that moment
forward.
84 DevPartner Java Edition Getting Started Guide

Chapter 5 · Working with Integrated Development Environments
Note: If you are testing on JBoss and configured OptimalJ to use the Tomcat instal-
lation provided with the NetBeans IDE, you will not be able to profile the Web
module for your application because it runs in a separate process.

To profile a specific application module:

1 In the Code Model view, locate the archive file for the application module you want to
profile.

Examples of application archives include the following:

ejbModuleNameEjb.jar

webModuleNameWeb.war

2 Right-click the file to display the popup menu, then choose the command:

� OptimalJ powered by NetBeans — Tools>Start Application Server under DevPart-
ner

� OptimalJ built under Eclipse — Test>Start Application Server under DevPartner

Then select the desired analysis from the submenu.

The integrated test environment starts and the DevPartner Java Edition profile window
appears. All OptimalJ integrated test environment features are available while profiling your
application with DevPartner Java Edition.

DevPartner Java Edition profiling messages appear with the application server messages in the
Output window.

Profiling a Specific Java Class

If your application contains a Java class that requires only the Java Runtime Environment to
execute, you can enable DevPartner Java Edition profiling in the class. OptimalJ displays
DevPartner Java Edition profiling status in the DevPartner tab of the Output window. The
message “Class is profiled” indicates that the class has been executed and profiling is enabled.

OptimalJ powered by NetBeans

To profile a class in OptimalJ powered by NetBeans:

1 Compile the code for your application.

2 In the Code Model explorer, select the Java class to profile.

3 From the menu bar, choose Debug>DevPartner, then select the desired analysis type
from the submenu:

� Analyze Memory Usage
� Analyze Performance
� Analyze Coverage.

4 OptimalJ enables the DevPartner Java Edition profiling and executes the selected class in
the Java Runtime Environment.
 DevPartner Java Edition Getting Started Guide 85

Chapter 5 · Working with Integrated Development Environments
OptimalJ built on Eclipse

To profile a class in OptimalJ built on Eclipse, right-click the class in the Code Model view,
then do one of the following:

� Choose Run As from the context menu, then select the desired analysis type from the sub-
menu:

� DevPartner Coverage Analysis
� DevPartner Memory Analysis
� DevPartner Performance Analysis

� Choose DevPartner Java from the context menu, then select the desired analysis type from
the submenu:

� Coverage Analysis
� Memory Analysis
� Performance Analysis

Borland JBuilder

DevPartner Java Edition does not support JBuilder in the IDE Add-in Manager. To use
JBbuilder, you must manually configure the integration.

Manual integration with JBuilder 2008

Add the -Xrun or -agentlib argument to the JVM Arguments section in JBuilder in order to
invoke DevPartner Java Edition from within JBuilder.

Configuring the Application

To configure the application:

1 Select Run>Open Run Dialog… from the menu.

2 In the Create, manage and run configurations dialog box, create a new launch configura-
tion.

3 Click the Arguments tab.

4 Do one of the following:

� If you are using JVMPI (JDK 5.0 or below), add the -Xrun argument to the VM Argu-
ments field, as described in Using -Xrun to Invoke the Profiler in the online help. A
sample string is listed below:

-XrundpjCore:NM_ANALYSIS_TYPE=performance:NM_CONFIG_NAME=test

� If you are using JVMTI (JDK 6.0 or above), add the -agentlib argument to the VM
Arguments field, as described in Using -agentlib to Invoke the Profiler in the online
help. A sample string is listed below:
86 DevPartner Java Edition Getting Started Guide

Chapter 5 · Working with Integrated Development Environments
-
agentlib:dpjJvmtiCore=NM_ANALYSIS_TYPE=performance,N
M_CONFIG_NAME=test

Configuring the Server

To configure the server:

You will need to modify the server configuration profile used when launching the Application
server or create a configuration profile especially designed for this purpose.

1 Select Run>Open Run Dialog… from the drop down menu.

2 Select the target server configuration created for this application.

3 Click the Arguments tab.

4 In the dialog box do one of the following:

� If you are using JVMPI (JDK 5.0 or below), add the -Xrun argument to the VM
parameters text box, as described in Using -Xrun to Invoke the Profiler in the online
help. A sample string is listed below.

-XrundpjCore:NM_ANALYSIS_TYPE=performance:NM_CONFIG_NAME=test

Note: This is one string without a newline character inserted. This string must be
inserted before any other arguments in this box.

� If you are using JVMTI (JDK 6.0 or above), add the -agentlib argument to the VM
parameters, as described in Using -agentlib to Invoke the Profiler in the online help. A
sample string is listed below.
 DevPartner Java Edition Getting Started Guide 87

Chapter 5 · Working with Integrated Development Environments
-
agentlib:dpjJvmtiCore=NM_ANALYSIS_TYPE=performance,NM_CONFIG_NA
ME=test

Note: This is one string without a newline character inserted. Also note the comma
delimiter prior to NM_CONFIG_NAME.This string must be inserted before any
other arguments in this box.

Eclipse

You can run coverage, memory, and performance analyses from within Eclipse.

From the Package Explorer

In the Package Explorer, you can select an object to analyze in DevPartner Java Edition.

1 In the Package Explorer, right-click the object you want to analyze and select DevPartner
Java from the menu.

2 From the submenu, select the type of analysis you want to perform.

The selected object runs under DevPartner Java Edition, and the results are displayed in the
DevPartner Java Edition interface.

From the Run Menu or Toolbar

Run Command

You can execute the Run command from the menu or toolbar to run a DevPartner Java Edition
analysis.
88 DevPartner Java Edition Getting Started Guide

Chapter 5 · Working with Integrated Development Environments
1 In the Package Explorer, select the object you want to analyze.

2 Select Run from the Run menu, or click Run. The Run Configuration dialog box
appears.

3 In the Configurations list, select DevPartner Java Applet, DevPartner Java Applica-
tion, or DevPartner Java Eclipse Application, as appropriate, then click New. The dia-
log box changes to display the Name field and tabs containing configuration options. In
addition to the standard Eclipse configuration tabs, the dialog box includes the Analysis
tab in which you select the type of DevPartner Java Edition analysis you want to run.

4 In the tabs, select options as needed to define the configuration.

5 If desired, change the default configuration name in the Name field. The name you specify
will also be the name of the configuration in DevPartner Java Edition.

6 After defining the configuration, click Run.

When the analysis runs, the results are displayed in the DevPartner Java Edition interface.

Run As Command

From the Run menu, you can also select the Run As command, and then select a DevPartner
Java Edition analysis from the submenu.

Starting JBoss, WebLogic, and Tomcat with Eclipse WTP

There are three ways to start JBoss, WebLogic, and Tomcat using Eclipse WTP. For first time
use, the Select Preferred Launcher dialog box appears. Select Override workspace settings
and DPJ Launcher and click OK.

From WTP Server View:

1 From the Servers tab, Right-click JBoss, WebLogic, or Tomcat and choose Profile. If this
is a first time run, the Select Preferred Launcher dialog box appears. Otherwise, the Dev-
Partner Java Plug-in dialog box appears.

2 Select the desired analysis type and click OK.

From Profile on Server:

1 From the Package Explorer tab, right-click the package and choose Profile As>Profile on
Server. The Profile on Server dialog box appears.

2 Choose JBoss, WebLogic, or Tomcat from the server list and click Next. The Add and
Remove Projects dialog box appears.

3 Add or remove projects as necessary and click Finish. The DevPartner Java Plug-in dialog
box appears.

4 Select the desired analysis type and click OK.

From the Profile Launch Configuration:
 DevPartner Java Edition Getting Started Guide 89

Chapter 5 · Working with Integrated Development Environments
1 From the Package Explorer tab, right-click the package and choose Profile As>Open Pro-
file Dialog. The Profile dialog box appears.

2 Choose JBoss, WebLogic, or Tomcat from the server list and click Profile. If this is a first
time run, the Select Preferred Launcher dialog box appears. Otherwise, the DevPartner
Java Plug-in dialog box appears.

3 Select the desired analysis type and click OK.

Uninstalling DevPartner Java Edition from Eclipse

If you need to uninstall Eclipse, make sure you uninstall the DevPartner Java Edition plug-in
before uninstalling Eclipse. Use the Java IDE Uninstallation utility to uninstall DevPartner
Java Edition.

IBM Rational Application Developer

When you integrate DevPartner Java Edition into IBM Rational Application Developer
(RAD), you can profile Java applications, Java Beans, applets, JSPs, servlets, and EJBs from
within the RAD interface.

When DevPartner Java Edition is integrated with Rational Application Developer, it is
attached to the Run menu, which is accessible from multiple perspectives.

As shown in Figure 5-2, the Rational Application Developer Run menu is opened from the
Run menu item. When you select that menu option, a Run dialog box appears. The DevPart-
ner choices, identified by the DevPartner Java Edition product icon, appear at the top of the
list. Choose one of the analysis types to launch the currently selected target under DevPartner
Java Edition.

Figure 5-2. DevPartner Java Edition in Rational Application Developer
90 DevPartner Java Edition Getting Started Guide

Chapter 5 · Working with Integrated Development Environments
Figure 5-3 shows another means by which an application can be launched under DevPartner
Java Edition: open the Web or J2EE perspective, select the index HTML page of a web appli-
cation by right-clicking it, and scroll down to choose the DevPartner item from the shortcut
menu. Choosing one of the analysis types launches the Web application. The application runs
in the integrated Rational Application Server, with DevPartner Java Edition monitoring using
the selected form of analysis.

Figure 5-3. Launching DevPartner Java Edition from Within RAD

For more information about using DevPartner Java Edition from within Rational Application
Developer, see the online help.
 DevPartner Java Edition Getting Started Guide 91

Chapter 5 · Working with Integrated Development Environments
Uninstalling DevPartner Java Edition from Rational Application
Developer

Before you uninstall DevPartner Java Edition from Rational Application Developer, you must
first delete all related Launch Configurations by doing the following:

1 Select Run>Run...

2 Select a DevPartner Java Edition-related Launch Configuration and click Delete.

3 Click Yes in the Confirm Launch Configuration Deletion message box.

4 Repeat steps 2 and 3 for each DevPartner Java Edition-related Launch Configuration.
92 DevPartner Java Edition Getting Started Guide

Chapter 6

Working with Application Servers
DevPartner Java Edition can monitor your Java code as it executes in an application server as
easily as it can profile a standalone Java application. It is compatible with a number of the
most popular application servers, and configuring DevPartner Java Edition for a server is
quick and easy. As in other profiling scenarios, you do not have to modify your code to profile
it with DevPartner Java Edition.

For the list of supported application servers, refer to the “Supported Environments” topic in
the online help.

If you did not create a configuration for your application server when you installed DevPartner
Java Edition, you can use the Administration Console to perform this task at any time after-
ward. If your application server is not listed as supported, you can create a generic configura-
tion for it. Note, however, that support is not guaranteed if the application server is not in the
list.

For more information, see the online help in the DevPartner Java Edition Administration
Console.

Running Application Servers Through DevPartner Java Edition

When you have created a configuration for an application server, you can control the profiling
of Java code within that application server through either the DevPartner Java Edition
command line utilities or the user interface.

From the Command Line

The DevPartner Java Edition command line utility nmserver enables you to start, attach, kill,
and detach from an application server, using the appropriate parameters. To see a list of the
utility's parameters, execute nmserver -help.

Many of the command line parameters are self-explanatory. For example, nmserver -kill
terminates an executing application server. Executing nmserver -detach detaches the
current profiling session from the application server, but leaves the server running.

Executing nmserver -attach attaches a DevPartner Java Edition profiling session to an
application server. If the application server is not executing, DevPartner Java Edition starts it,
then hooks itself to it. If the application server is already executing, the -attach parameter
“hooks” DevPartner Java Edition to the application server.

Note: You can use the -attach parameter only with an application server that was
started through DevPartner Java Edition.
 DevPartner Java Edition Getting Started Guide 93

Chapter 6 · Working with Application Servers
In addition to controlling the execution state of the application server, you can define which
analysis type DevPartner Java Edition performs, as well as which configuration to use for the
session. To specify the analysis type, use the appropriate switch: -mem, -cov, or -perf.
Specify the configuration with the -config switch, which has the format -
config configuration-name (where configuration-name is the name of an existing
or new configuration).

For example, the command line

nmserver -attach -config test -mem rg:Tomcat

launches the Apache Tomcat server under a DevPartner Java Edition Memory analysis session
with a configuration named test.

Note: If you do not specify a configuration with the -config switch, DevPartner Java
Edition creates a configuration with a name based on the name of the speci-
fied application server. For example, the command line nmserver -attach -
mem rg:Tomcat creates a configuration named rg_Tomcat, with default param-
eters.

The full range of command line options for the nmserver utility are described in detail in the
online help.

From the DevPartner Java Edition Start Page

You can also control application servers via the Application Server Testing tab of the
DevPartner Java Edition Start page.

When you create an application server configuration through the Administration Console, an
entry for that application server appears on the Application Server Testing tab (see Figure 6-
1.) In this window is a table that displays the status of all application servers for which
DevPartner Java Edition configurations have been created. The table includes buttons for
viewing, detaching, and stopping each application server.

Figure 6-1. DevPartner Java Edition Application Server Testing Tab

Above the table are lists from which you select the session configuration and the analysis type.
94 DevPartner Java Edition Getting Started Guide

Chapter 6 · Working with Application Servers
The help text below the table describes the steps for starting an application server:

1 From the Configuration list, select a configuration.

2 From the Analysis Type list, select Performance, Memory Analysis, or Coverage.

3 Select the application server by clicking the corresponding Start button.

DevPartner Java Edition launches the chosen application server with the specified parameters,
and displays the Session Control page. The format of the Session Control screen varies
depending on the analysis type. (For details, see the online help.)

While a server is executing under DevPartner Java Edition, you can view intermediate results,
clear the data collected so far in the session, detach from and reattach to the server, and so on.

In the Application Server Testing tab, the buttons for those application servers that you have
started are active:

� Click View to return to the Session Control page for that particular application server.

� Click Detach to detach DevPartner Java Edition data collection from the application
server. The application server continues running.

� When you click Detach, the Attach button becomes available. Click this button to start a
new profiling session for the application server.

� Click Stop to terminate the application server, which also terminates the current session.

Selecting Detach or Stop for an application server running under DevPartner Java Edition
analysis generates a session file.

Note: If your application server is BEA WebLogic or Oracle OC4J Standalone and
you started the server through the Application Server Testing tab of the Start
page, then stopping the application server by using the Stop button causes an
abnormal termination and a session file named AbnormalTerminationx
(where x is an incremental number) is created.

You can generate an accurate session file for these application servers by
doing either of the following:

� In the Application Server Testing tab, use Detach rather than Stop to
end the profiling session. When you use Detach, the application server
continues to run after you end the session.

� Stop the server from outside DevPartner Java Edition by using the server
console or running a script.

There is no functional difference between starting an application server using nmserver and
starting the server from the Application Server Testing tab. Both methods use the same
techniques for controlling the application server.

If you start an application server from the command line, using nmserver with the -batch
command line switch, then launch the DevPartner Java Edition interface, you can manage the
session as though you had launched it from the Application Server Testing tab. If you
launched the application server from the Application Server Testing tab, you can detach from
it by executing nmserver -detach.
 DevPartner Java Edition Getting Started Guide 95

Chapter 6 · Working with Application Servers
Including and Excluding Code for Profiling

Because application servers are largely written in Java, when you run a servlet, JSP, or EJB in
an application server, Java code executes that is not part of your application. The JVM,
however, does not distinguish code that is part of the application server from code that is part
of your application.

DevPartner Java Edition enables you to exclude the server code from the analysis through the
Packages and Classes section of the Configurations tab.

As shown in Figure 6-2, this section offers two methods of specifying which code to profile:

� Collect data for everything except – Specify packages to exclude from profiling, in
which case all other packages and their constituent classes are profiled.

� Collect data only for – Specify the packages and classes to profile, in which case all other
packages and classes are excluded.

Figure 6-2. Package and Classes Section of the Configurations Tab

When you create a new configuration, that configuration's exclusion list is automatically
populated with a default set of packages. The packages have been chosen so that the collected
session data will exclude the most likely packages and classes that comprise the runtime of
most frequently used libraries, application servers, and IDEs.

You can modify the contents of the inclusion and exclusion lists using the Add, Modify, and
Remove buttons that appear to the right of each list box. The Restore Defaults button returns
both lists to their states at the time the configuration was created. For more details, see the
online help.

Note: You can use Perl-compatible regular expressions in the Exclusion and Inclu-
sion lists. See the online help for details.
96 DevPartner Java Edition Getting Started Guide

Chapter 6 · Working with Application Servers
Flexible Profiling

Profiling Java components in an application server is extremely flexible. You can, for
example, simultaneously profile multiple application servers from a single instance of
DevPartner Java Edition — and each profiling session can be executing a different analysis
type.

You can profile Java components executing in an application server running on a remote
machine. This capability is useful if you need to profile an enterprise application in an applica-
tion server running on a staging system that is separate from your development system.

Note: DevPartner Java Edition’s remote capabilities are not limited to working with
application servers. For more information about remote profiling, see the
online help.
 DevPartner Java Edition Getting Started Guide 97

Chapter 6 · Working with Application Servers
98 DevPartner Java Edition Getting Started Guide

Index
A
analysis tools

Memory 24
Performance 15

Application Server Testing tab 94
application servers

launched from IDE 81
nmserver utility 93
profiling

from the command line 93
from the DevPartner Java Edition interface 94
remote machine 97

Automatically merge Coverage Session configura-
tion option 56
average instance bytes 33

B
BEA WebLogic 95
Borland JBuilder 86
bubble graphs 69

C
Call Graph 75
Classes with the Longest Average Retention Dura-
tion graph 39
Classes with the Most Average Leaked Instance
Bytes Including Children graph 29, 33
Classes with the Most Average Live Instance
Bytes including Children graph 47
Classes with the Most Leaked Bytes graph 34
Classes with the Most Lines Not Covered
graph 53
clock time 67
command line utilities 18
comparing profiling sessions 21
Comparison Results Summary 21
configuration

application server 93

Automatically merge Coverage Session 56
Enable Object Retention 35
Monitor out of order thread synchronization 53,

62
Monitor Trivial Methods 52, 68
Packages and Classes 96

contacting Customer Care 9
Coverage analysis

comparing sessions 21
configuring sessions 51
definition 14
merging session files 54, 56
out of order thread synchronization 53, 59
trivial methods 52
volatility 56

Coverage Results Summary 53
Classes with the Most Lines Not Covered

graph 53
Methods with the Most Lines Not Covered

graph 53
Overall Coverage Statistics graph 53

coverageExample 52
Customer Care 9

D
development cycle 49, 66

E
Eclipse 88
Enable Object Retention configuration option 35
entry points 69

definition 67
Entry Points Requiring the Most Temporary Space
graph 41
Entry Points with the Most Retained Instances
graph 39
Entry Points with the Slowest Average Response
Time graph 69, 76
99 DevPartner Java Edition Getting Started Guide

 Index
excluded code 66
excluding packages and classes from profiling 96

G
global mode

definition 70
sample application 70

H
highlighting in source code view 43

I
IBM Rational Application Developer 90
IDE (integrated development environment)

Add-in Manager 81
Add-in Uninstaller 83
integration with 82
uninstalling 83
versions supported 81

including packages and classes in profiling 96
inline help 17

J
JBuilder 86

L
live objects 26
local mode

definition 70
sample application 72

lock tag 60
long-lived objects 40

M
medium-lived objects 40
Memory analysis

definition 14
interpreting 44

Memory Leaks 26
Object-Lifetime 35
RAM Footprint 44
real-time graph 24
role in development cycle 49
sample application 26, 35, 40
Session Control page 25
tools 24

memory leaks 26
definition 28

Memory Leaks Results Summary 28
Classes with the Most Average Leaked Instance

Bytes Including Children graph 29, 33
Classes with the Most Leaked Bytes graph 34
Methods with the Most Leaked Bytes graph 33
Objects that Refer to the Most Leaked Bytes

graph 29
merging Coverage session files 54

automatically 55
manually 55
viewing results 56

Methods Requiring the Most Temporary Space
graph 41
Methods Spending the Most Time Waiting
graph 70

sample application 71
Methods Using the Most Thread Time graph 69

sample application 74
Methods with the Most Leaked Bytes graph 33
Methods with the Most Lines Not Covered
graph 53
Monitor out of order thread synchronization (con-
figuration option) 53, 62
Monitor Trivial Methods configuration option 52,
68

N
nmappletviewer

definition 18
nmextract

definition 18
nmjava

analyzing synchronization 62
Coverage analysis 52
Coverage sample application 52
definition 18
Memory analysis 24
Memory analysis sample command 40
Performance analysis sample command 71, 72
100 DevPartner Java Edition Getting Started Guide

Index
nmserver 93
definition 18
sample command 94

nmshell
definition 18

O
Object Distribution graph 46
object retention 35
Object-Lifetime analysis 35

displaying results 37
sample application 35
Session Control page 36

Object-Lifetimes Results Summary 38
Classes with the Longest Average Retention

Duration 39
Objects Retained the Longest graph 38

objectRetentionExample 35
objects

long-lived 40
medium-lived 40
short-lived 40

Objects Retained the Longest graph 38
Objects that Refer to the Most Leaked Bytes
graph 29
Objects that Refer to the Most Live Bytes graph 47
online help system 17
Oracle OC4J Standalone 95
out of order thread synchronization 53, 59
Overall Coverage Statistics graph 53

P
Performance analysis

bubble graphs 69
clock time 67
comparing sessions 21
definition 14
excluded code 66
global mode 70
local mode 72
profiled code 66
real time 67
sample application 70
tools 15
wait time 67

Performance Results Summary 71, 73
Entry Points with the Slowest Average Response

Time graph 69, 76
Methods Spending the Most Time Waiting

graph 70
Methods Using the Most Thread Time graph 69

Preferences dialog box 18
profiled code 66

R
RAM footprint

definition 45
measuring 45

RAM Footprint analysis 45
RAM Footprint Results Summary 46

Classes with the Most Average Live Instance
Bytes including Children graph 47

Object Distribution graph 46
Objects that Refer to the Most Live Bytes

graph 47
Rational Application Developer 90
real time 67
real-time graph 24
referring objects 29
retained objects 35

S
sample applications

Memory Leak analysis 26
Object-Lifetime analysis 35
Performance analysis 70
Temporary Objects analysis 40

scalability 12, 39
Session Control page

Memory analysis 25
Object-Lifetime analysis 36
real-time graph 24

session controls 19
session files

merging 54
automatically 55
manually 55
viewing results 56

Session Files tab 21, 56
short-lived objects 40
Source View 76
stackLeakExample 26
 DevPartner Java Edition Getting Started Guide 101

 Index
Start page 16
inline help 17

synchronization exclusions 63
synchronization trace 60

T
tempObjExample 40
Temporary Objects Results Summary 39, 41, 43

Entry Points Requiring the Most Temporary
Space graph 41

Methods Requiring the Most Temporary Space
graph 41

thread time 69
trivial methods

definition 68
including in session profiles 52, 68

U
uninstalling IDEs 83
user interface

features 16
inline help 17
profiling application servers 94

V
volatility 56

W
wait time 67, 70
waitTimeExample 70
WebLogic 95
102 DevPartner Java Edition Getting Started Guide

	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	Getting Help
	Contact

	Analyzing Problems in Java Applications
	When Good Programs Produce Bad Results
	Scalability
	Perception of Performance
	Intense Computational Operations
	Memory Behavior
	Application Stability

	Finding Problem Code with DevPartner Java Edition
	DevPartner Java Edition Diagnostic Capability
	Computational Performance Analysis
	Memory Analysis
	Coverage Analysis
	When to Use DevPartner Java Edition

	DevPartner Java Edition User Interface
	Inline Help
	Integrated Online Help System
	Ways to View DevPartner Java Edition Diagnostics

	Command Line Utilities
	Detaching and Reattaching a Profiled Application
	Controlling Data Collection Results
	Using Session Controls
	Using Session Control Rules
	Using the Session Control API
	Configuring Data Collection Options

	Comparing Profiling Sessions
	What’s Next

	Finding Memory Problems
	Memory Problems in Java Applications
	Running a Memory Analysis Session
	Locating Memory Leaks
	Running a Memory Leak Analysis
	Memory Leak Analysis Results

	Identifying Retained Objects
	Running an Object-Lifetime Analysis
	Object-Lifetime Analysis Results

	Solving Scalability Problems
	Running a Profile for Temporary Objects
	Temporary Object Analysis Results

	Managing Memory for Better Performance
	Measuring RAM Footprint
	Optimizing Memory Use

	How Memory Analysis Fits in Your Development Cycle

	Ensuring Testing Consistency
	Covering All Your Bases: Code Coverage Consistency
	Running Coverage Analysis from the Command Line
	Configuring a Session for Code Coverage
	Running the Code Coverage Example

	Viewing the Results of a Coverage Session
	Tracking Code Changes by Merging Session Files
	Manually Merging Session Files
	Automatically Merging Session Files
	Using Merged Session Files
	Automatic Merging and Live Monitoring

	Deadlock: The Deadly Embrace
	Analyzing Out of Order Thread Synchronization
	Detecting Out of Order Thread Synchronization
	Exclusions and Out of Order Synchronization Detection

	Tracking Code Execution and Code Base Stability and Reliability

	Finding Performance Problems
	Identifying Performance Problems
	Performance Testing and Profiling in Software Development
	Performance Profiling Terminology

	Running a Performance Profiling Session
	Profiling in Global Mode
	Profiling in Local Mode
	Analyzing the Call Structure
	Finding Slow Code
	Looking at Program Responsiveness

	Using the Thread Viewer to Analyze Performance
	Analyzing Performance by Object Category
	Performance Analysis Pointers

	Working with Integrated Development Environments
	Installing and Uninstalling IDE Integration
	Using the Add-in Manager
	Uninstalling IDE Integration

	Running DevPartner Java Edition from Within an IDE
	Compuware OptimalJ
	Borland JBuilder
	Manual integration with JBuilder 2008
	Eclipse
	IBM Rational Application Developer

	Working with Application Servers
	Running Application Servers Through DevPartner Java Edition
	From the Command Line
	From the DevPartner Java Edition Start Page

	Including and Excluding Code for Profiling
	Flexible Profiling

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

