
Progress® Artix® Data Services

Getting Started
Version 3.9, May 2009

© 2009 Progress Software Corporation and/or its affiliates or subsidiaries. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation and/or its affiliates or subsidiaries. The infor-
mation in these materials is subject to change without notice, and Progress Software
Corporation and/or its affiliates or subsidiaries assume no responsibility for any errors
that may appear therein. The references in these materials to specific platforms sup-
ported are subject to change.

Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design), Artix, Business
Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EasyAsk, EdgeXtend,
Empowerment Center, Fathom, IntelliStream, IONA, IONA (and design), Mindreef, Neon, Neon New Era of Net-
works, ObjectStore, OpenEdge, Orbix, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier,
Progress, Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Soft-
ware Developers Network, Progress Sonic, ProVision, PS Select, SequeLink, Shadow, ShadowDirect, Shadow
Interface, Shadow Web Interface, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, Sonic Software (and design), SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology-Experience the Connection are registered trade-
marks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries.
AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store,
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Cache-Forward, DataDirect
Spy, DataDirect SupportLink, FUSE, FUSE Mediation Router, FUSE Message Broker, FUSE Services Framework,
Future Proof, Ghost Agents, GVAC, High Performance Integration, Looking Glass, ObjectCache, ObjectStore
Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress ESP
Event Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, PSE Pro, SectorAlliance,
SeeThinkAct, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, Smart-
Dialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability
Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server, StormGlass, The Brains Behind BAM,
WebClient, Who Makes Progress, and Your World. Your SOA. are trademarks or service marks of Progress Soft-
ware Corporation or one of its affiliates or subsidiaries in the U.S. and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.
Any other trademarks contained herein are the property of their respective owners.

Updated: May 20, 2009

Contents

Preface 5

Chapter 1 Creating Projects 7
Before You Begin 8

Starting ADS Designer 9
Downloading Sample Getting Started Data 10

Creating a Project 11

Chapter 2 Creating Data Models 13
Creating a Data Model from a Text File 14

Creating a Transactions Data Model from Transactions.txt 15
Creating a Customers Data Model from Customers.txt 24

Creating a Data Model from an XML Schema 30
Creating a Data Model from a Set of XML Documents 34
Creating a Data Model from a Database 38
Creating a Data Model Manually 44

Creating an Accounts Data Model Manually 45
Creating a Customers Data Model Manually 55

Adding Validation Rules 63
Adding Validation Rules for Accounts Data Model 64
Adding Validation Rules for Transactions Data Model 69

Chapter 3 Creating Transformations 73
Creating a Simple Transformation 74

Starting to Create a Transformation 75
Creating a Local Transformation 78
Testing the Local Transformation in Your Main Transformation 81
Creating a Filter 83
Testing the Filter in Your Main Transformation 85

Making Your Transformation More Complex 87
Before You Continue 88
Adding More Input Models to Your Main Transformation 90
Adding Local Transformations 92
3

CONTENTS
Adding Functions 95
Adding Nested Local Transformations 100
Adding Hash Tables 108
Adding Filters 112
Adding Java Methods 118
Adding Introspect Functions 122

Chapter 4 Creating a Simple Java Application 125
Generating Java Code 126

Setting Compile Options 127
Building the Code 131
Finding the Generated Code 134
Sample Generated Code 136

Writing the Application 142
Compiling and Running the Application 149

Chapter 5 Overview of Ant Tasks 155
4

Preface
What This Book Covers
This book is intended to help you get started quickly with Progress Artix
Data Services. It walks you through the various tasks that you can perform
in the ADS Designer.

Who Should Read This Book
This book is intended for Artix Data Services users who want to quickly
become familiar with, and learn how to use, Artix Data Services.

Prerequisites
See the Artix Data Services Installation Guide for a full list of supported
platforms and other prerequisites to using Artix Data Services.

How This Book Is Structured
This book contains the following chapters:

• Chapter 1, “Creating Projects” describes how to create projects using
the ADS Designer.

• Chapter 2, “Creating Data Models” describes how to create data
models in the ADS Designer from various different sources. It also
describes how to validate data models to ensure that they can
successfully parse valid data.

• Chapter 3, “Creating Transformations” describes how to create
transformations in the ADS Designer that allow you to map various
elements in one or more input data models to various elements in an
output data model. It also describes how to run your transformations to
ensure that they are valid.
5

http://www.iona.com/support/docs/artix/data_services/3.9/install_guide/index.htm

PREFACE
• Chapter 4, “Creating a Simple Java Application” describes how to
generate Java code from the sample data models and transformations
you created in earlier chapters. It also shows how you create and run a
simple Java application that uses the generated code to perform
various tasks.

• Chapter 5, “Overview of Ant Tasks” gives you an overview of the Artix
Data Services Ant tasks that are packaged within the
artix-ds-designerXXX.jar file. These enable deployment and exports
to be automated. This is useful where the building of Artix Data
Services generated components is to be included within an overall
project build, without any requirement to manually deploy the
components from within the ADS Designer.

The Artix Data Services Documentation Library
For information on the organization of the Artix Data Services
documentation library and the document conventions used, see the Library
Overview.
 6

http://www.iona.com/support/docs/artix/data_services/3.9/index.xml
http://www.iona.com/support/docs/artix/data_services/3.9/index.xml

CHAPTER 1

Creating Projects
In Artix Data Services, projects are used to store the data
models, transformations and other working files for the various
tasks you perform. Creating a project is, therefore, a
prerequisite before you can perform any other task in Artix
Data Services.

In this chapter This chapter discusses the following topics:

Before You Begin page 8

Creating a Project page 11
7

CHAPTER 1 | Creating Projects
Before You Begin

Overview Before you start working through the demonstrations in this guide, you must
start the ADS Designer and download the Getting Started plug-in.

In this section This section discusses the following topics:

Starting ADS Designer page 9

Downloading Sample Getting Started Data page 10
8

Before You Begin
Starting ADS Designer

Starting on Windows To start the ADS Designer on Windows, do any one of the following:

• From the Windows Start menu, select:

(All) Programs > Progress > Artix Data Services > ADS Designer

• Click the icon on your Windows desktop.

• Use Windows Explorer to navigate to your Artix Data Services
installation directory and double-click the artix-ds-designer.exe file.

Starting on UNIX To start the ADS Designer on UNIX:

• Run the artix-ds-designer.sh command from your Artix Data
Services installation directory.
9

CHAPTER 1 | Creating Projects
Downloading Sample Getting Started Data

Overview Your Artix Data Services installation includes sample data files and
completed examples that are designed to help you to work your way through
the demonstrations in this guide. Before you continue, you must download
all of the relevant getting started material.

Download steps Complete the following steps to download the sample getting started
material:

1. In the main window of the ADS Designer workbench, click the Getting
Started - Not Installed link. This opens the Confirm Download dialog.

2. Click OK to proceed with the download. You will be prompted when
the download has completed successfully.

Location of sample data By default, the sample getting started material is downloaded to the
following location on your machine:

Windows:
C:\Documents and Settings\username\My Documents\My ADS

Projects\Getting Started

UNIX:
$HOME/MyADSProjects/Getting Started

Layout of sample data The Getting Started folder contains the following subfolders:

/Guide Contains HTML files that link to the PDF and HTML versions of
this Getting Started guide.

/Samples Contains a series of subfolders that correspond to the chapters
in this guide. Each subfolder contains:

• The data files that you need to complete the
demonstrations.

• An example of the completed demonstration.

/Videos Contains an HTML file that links to video tutorials that you can
use to help you become familiar with Artix Data Services.
10

Creating a Project
Creating a Project

Overview This section describes how to create a project called MyProject.iop. This
project file is used as the basis for working through the rest of the getting
started material.

Demonstration steps To create a project complete the following steps:

1. Start ADS Designer, if you have not already done so.

2. Launch the project wizard by either:

♦ Clicking the Project Wizard link in the Welcome window; or

♦ Selecting File > New >Project

3. For the purposes of this demonstration, in the Setup panel, type
"MyProject" in the File name field.

4. Click the browse button (...) beside the Location field to open the file
browser.

5. For the purposes of this demonstration, navigate to My ADS
Projects/Getting Started, and click Open.

The selected path is displayed in the Location field.

6. Click Next.

7. In the Paths panel you can specify one or more directory location paths
in the file system where your working files, such as your data models,
are stored. The default path is:

Windows

C:\Documents and Settings\username\My Documents\My ADS Projects

UNIX
$HOME/MyADSProjects

Note: This demonstration caters for all properties associated with the
wizard. Some of these properties are not very useful at the beginning
stages of using ADS Designer, but it will become apparent later why the
properties were created.
11

CHAPTER 1 | Creating Projects
The alias represents the name by which the full path is represented
within ADS Designer.

8. You can add other paths by clicking the icon. For the purposes of
this demonstration:

i. Click the icon.

ii. In the Select dialog, notice that the My ADS Projects/Getting
Started directory is already highlighted.

iii. Click Select.

The selected path is automatically added to the Path column, and the
corresponding value in the Alias column is displayed as Getting
Started.

9. Click Finish. If you are prompted to open the project in a new frame,
click Yes. (This prompt only appears if you have already created
another project.)

The new project is displayed in the Project window along with the
various paths you added for the project.

Advanced optional panels The Project Wizard includes an Advanced button that allows you to display
or hide optional panels within the wizard. For the purposes of this
demonstration, you do not need to change any of the settings in these
advanced optional panels. The panels are:

• The Project Properties panel. These properties allow you to determine
how your project file is stored and accessed.

• The Profile Settings panel. These settings allow you to determine
characteristics and behavior of deployed Java code in terms of code
style, versioning and the location into which generated code is
deployed.

• The Aliases panel. This panel allows you to set up various preferred
aliases that enable you to choose between seeing different sets of
names for the same components within your data models.

For more information on the these panels, click on a field to view
context-sensitive help, which appears at the bottom of each panel.
12

CHAPTER 2

Creating Data
Models
Data models, or data object definition (.dod) files, are
organized within projects and can consist of various different
types of data components, including simple and complex
types. They are used to represent real-world data. From data
models, you can generate Java code that can be used to parse,
validate and transform conformant data. Data models
generally consist of about 10 or more different types of data
component. For the purposes of illustration, however, this
chapter focuses specifically on four components—simple data
types, complex types, elements and enumerations.

In this chapter This chapter discusses the following topics:

Creating a Data Model from a Text File page 14

Creating a Data Model from an XML Schema page 30

Creating a Data Model from a Set of XML Documents page 34

Creating a Data Model from a Database page 38

Creating a Data Model Manually page 44

Adding Validation Rules page 63
13

CHAPTER 2 | Creating Data Models
Creating a Data Model from a Text File

Overview This section describes how to create a data model by importing a text file.

In this section This section discusses the following topics:

Creating a Transactions Data Model from Transactions.txt page 15

Creating a Customers Data Model from Customers.txt page 24
14

Creating a Data Model from a Text File
Creating a Transactions Data Model from Transactions.txt

Overview This subsection demonstrates how to create a Transactions data model by
importing a Transactions.txt file. It shows you how to:

• Use the Text File Import Wizard to import a text file and set properties
for the fields associated with a model.

• Use the Properties window to add Target Namespace details.

• Compare the model to the text file that you imported.

• Test the model’s accuracy by parsing a valid text file through it.

Creating a data model Complete the following steps to create your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/1 - From a Text File

ii. Right-click the From a Text File folder and select Import >
Import Text File. This opens the Text File Import Wizard.

3. In the Import File panel:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/1 - From a Text File

ii. Select the Transactions.txt file.

iii. Click Next.

4. In the Target Directory panel, accept the default folder From a Text
File as the location where you want the data model to be stored and
click Next.

Note: This sample data model is based on the Transactions.txt file
that is supplied in the Getting Started/Samples/B - Creating Data
Models/1 - From a Text File folder of your Artix Data Services Getting
Started material.
15

CHAPTER 2 | Creating Data Models
5. In the Profiles panel:

i. Accept the Default setting.

ii. Notice the Advanced button in the Steps section on the left-hand
side of the panel. Alternately clicking the Advanced button
displays and hides optional steps in the list of steps.

iii. Click Advanced to hide the optional steps. They are not relevant
in this demonstration.

iv. Click Next.

6. In the Model Name & Target Namespace panel:

i. Notice how the model name defaults to the name of the file that
is being imported.

ii. Leave the target namespace for now. You can specify it at a later
stage.

iii. Click Next.

7. In the Record Types panel:

i. In the Name column:

ii. Click the Type column for Row Count and select Fixed Length.

iii. Click Next.

8. In the Header panel, notice:

i. Notice that the wizard has automatically picked up that the
Header record is a delimited format type.

ii. Notice too how the delimiter is set as a comma (do not adjust
this).

iii. Click the various columns in the Preview table and notice how
the values in the Selected Column Name and Selected Column
Data Type fields change accordingly. In this case, the selected
column data type is always String, because these are header
values.

a. Double-click on Row 1, type "Customer Details" and press
Enter.

b. Double-click on Row 2, type "Row Count" and press Enter.
Notice how steps 9 and 10 in the left-hand pane change
from Row 1 and Row 2 to Customer Details and Row Count
respectively.
16

Creating a Data Model from a Text File
iv. Click Next.

9. In the Customer Details panel:

i. Notice that the wizard has picked up that the Customer Details
records are a delimited format type.

ii. Notice too how the delimiter is set as a comma (do not adjust
this).

iii. Click the various columns in the Preview table and notice how
the values in the Selected Column Name and Selected Column
Data Type fields change accordingly.

iv. Click Next.

10. In the Row Count panel:

i. Notice that the wizard has automatically picked up that the Row
Count record is a fixed format type.

ii. In the Fixed Offset Properties section, click the final column to
place a boundary between the = and 7. This causes a new
column to be displayed in the Preview – Column Data Types
section.

iii. Click the first column in the Preview – Column Data Types
section:

iv. Click the second column in the Preview – Column Data Types
section:

11. Click Finish.

A Transactions.dod file is created and displayed in the Project and Explorer
windows of the workbench. A Transactions.dod tab is displayed in the main
window of the workbench.

a. Type "Prefix" in the Selected Column Name field and press
Enter.

b. Leave String as the value in the Selected Column Data
Type field.

a. Type "Value" in the Selected Column Name field and press
Enter.

b. Leave long as the value in the Selected Column Data Type
field.
17

CHAPTER 2 | Creating Data Models
In the Messages window, an Importing Text File tab is opened to indicate
that the import has been successful.

Adding Target Namespace details You could have added the target namespace details when you were running
the Text File Import Wizard in the previous section. This section simply
demonstrates how you can add properties using the Properties window.

1. Click the Transactions.dod file in the Explorer window. The properties
for the data model are displayed in the Properties window.

2. In the General section of the Properties window, set the value for
Target Namespace to:
http://www.progress.com/ArtixDataServices/GettingStarted/

Transaction

3. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Comparing your model to the file
that you imported

To compare the data model with the Transactions.txt file that you
imported, complete the following steps:

1. In the Explorer window, under the Transactions.dod file, expand the
File node.

2. Double-click the Transactions complex type (marked with a
symbol).

3. In the Transactions tab, which opened within the Transactions.dod
tab, in the main window of the workbench, expand the Header,
Customer Details, and Row Count elements to view the contents.

4. Compare the details displayed with those in the Transactions.txt file
that you imported.

Setting up a validation rule Set up a validation rule that determines whether the value of the Row Count
record is equal to the number of Customer Details records. If it is not, a
validation error should be raised.
18

Creating a Data Model from a Text File
Complete the following steps to set up the validation rule:

1. Right-click Transactions.dod in the Explorer window and select New
> Validation Rule. This opens the New Validation Rule dialog.

2. In the New Validation Rule dialog, type "rowCheckRule" in the text box
and click OK.

This opens a rowCheckRule tab within the Transactions.dod tab in the
main window of the workbench, with a default type of XPath. In this
case, the rule is entered in the left hand pane of the tab and XPath
syntax is displayed in the right hand pane

3. Add the XPath syntax for Value as follows:

i. Click the Transactions tab to open it

ii. Expand Row Count.

iii. Right-click Value in the Component column and select Copy
XPath.

iv. Click the rowCheckRule tab to reopen it.

v. Click in the shaded text area in the left hand pane in the tab, and
select Edit>Paste from the menu bar.

This copies the XPath syntax for the Value element to the XPath rule.

4. Position the cursor at the end of the XPath rule before adding the next
part of the rule.

5. Scroll down in the right-hand pane and double-click the != (Not
Equal) operator to select it. This adds != to the XPath rule in the
left-hand pane. This enables the validation rule to check if the Value
element does not equal the number of Customer Details records.

6. Position the cursor at the end of the XPath rule before adding the next
part of the rule.

7. Specify that, in this case, we are dealing with a number count, by
scrolling up in the right-hand pane and double-clicking the number
count(node-set) function. This adds count() to the XPath rule in the
left-hand pane.

Note: Creating a validation rule directly under the .dod file itself
means that it is a global validation rule rather than being tied
specifically to any one particular element within the data model.
19

CHAPTER 2 | Creating Data Models
8. Specify that we want to count the number of Customer Details
records, as follows:

i. Click the Transactions tab to reopen it.

ii. Right-click Customer Details in the Component column, and
select Copy XPath from the context menu.

iii. Click the rowCheckRule tab to reopen it.

iv. Click within the parentheses for the count() function in the
left-hand pane, and select Edit > Paste from the menu bar. This
copies the XPath syntax for the Customer Details element to the
XPath rule.

9. In the Error Message pane, type "Invalid row count".

10. Uncheck the Ignore Document Node check box, to enable the
imported XPath syntax to be read successfully.

11. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the validation rule and update the data model.

Applying the validation rule to the
data model

Complete the following steps to apply the validation rule to the data model:

1. Click the Transactions tab to reopen it in the main window of the
workbench.

2. In the Type column, click Transactions. This displays the properties for
the Transactions complex type in the Properties window.

3. In the Properties window:

i. Scroll down to the Validation section.

ii. Click the field beside Validation Rules.

4. In the validation rules dialog, click the icon.

5. In the Add Validation Rule dialog:

i. Expand the Local node.

ii. Select the rowCheckRule global validation rule.

iii. Click OK.

Note: The XPath rule should now look as follows:
/Transactions/RowCount/Value!=count(Transactions/
CustomerDetails)
20

Creating a Data Model from a Text File
6. In the validation rules dialog:

i. Notice that the rowCheckRule validation rule has been added to
the list of rules.

ii. Click OK.

The Validation Rules field in the Properties window now displays 1.

7. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Testing the accuracy of your data
model

To ensure that your data model is accurate, try parsing some real-world
data. You can do this using a feature of the ADS Designer called the Run
Wizard, which allows you to read data into a model and create Java class
instances of that model. In this case, you can read the supplied
Transactions.txt file into your Transactions data model, as follows:

1. Ensure that the Transactions.dod file is open in the Explorer window.

2. Expand the File node.

3. Right-click the Transactions element (marked with a symbol) and
select Run Component.

4. In the Run Wizard dialog, notice that:

i. The Name field defaults to the name of the selected component;
in this case, Transactions.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

5. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

Note: Make sure you right-click the Transactions element in this
case rather than the Transactions complex type. This has
repercussions for the code that Artix Data Services generates for the
model, as described further in “Creating a Simple Java Application”
on page 125.
21

CHAPTER 2 | Creating Data Models
6. A Transactions tab opens within the Transactions.dod tab. This tab
shows the structure of the deployed object based on your data model.
Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run Transactions tab has
been created.

7. In the Transactions tab, click the (Load) icon.

8. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/1 - From a Text File folder.

ii. Select Transactions.txt.

iii. Click Open.

9. In the Confirm dialog, click Yes.

Artix Data Services creates instances of the model based on your data. A
green tick appears beside the Transactions node in the Transactions tab to
indicate that parsing has been successful. Expand the Transactions node to
view a Header record, seven CustomerDetails records, and a RowCount
record. In addition, the Run Transactions tab in the Messages window
displays a message indicating that parsing has been successful.

Checking the validation rule Complete the following steps to test the validation rule that you created in
“Setting up a validation rule” on page 18:

1. Click the icon at the bottom of the workbench to open the
Validation window. No validation errors are currently being reported.
This is because the value of RowCount matches the number of
CustomerDetails records loaded (that is, 7).

2. In the Transactions tab:

i. Expand the RowCount node.

ii. Change the value for the Value row to, for example, 5.

3. Click anywhere else in the tab and a validation error is automatically
reported in the Validation window.
22

Creating a Data Model from a Text File
4. Expand the validation error and it displays the Invalid row count
error message that you created in Step 9 of “Setting up a validation
rule” on page 18.

5. In the Transactions tab:

i. Change the value for Value back to 7.

ii. Click anywhere else in the tab and the validation error that was
reported in the Validation window automatically disappears.

The validation rule that you set up is working. It raises a validation error only
when expected.
23

CHAPTER 2 | Creating Data Models
Creating a Customers Data Model from Customers.txt

Overview This subsection demonstrates how to create a Customers data model by
importing a Customers.txt file. In the Text File Import Wizard, you can set
properties for the fields associated with a model instead of doing so in the
Properties window outside the wizard. After creating the model, you can test
its accuracy by parsing a valid text file through it.

Steps Complete the following steps to create your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/1 - From a Text File

ii. Right-click the From a Text File folder and select Import >
Import Text File. This opens the Text File Import Wizard.

3. In the Import File panel:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/1 - From a Text File and select the
Customers.txt file.

ii. Click Next.

4. In the Target Directory panel, accept the default folder From a Text
File as the location where you want the data model to be stored and
click Next.

Note: You can skip this section if you are going to follow the instructions
in “Creating a Customers Data Model Manually” on page 55.

Note: This sample data model is based on the Customers.txt file that is
supplied within the Getting Started/Samples/B - Creating Data
Models/1 - From a Text File folder of your Artix Data Services Getting
Started material.
24

Creating a Data Model from a Text File
5. In the Profiles panel:

i. Accept the Default setting.

ii. Notice the Advanced button in the Steps section on the left-hand
side of the panel. Alternately clicking the Advanced button
displays and hides optional steps in the list of steps.

iii. Click Advanced to hide the optional steps. They are not relevant
in this demonstration.

iv. Click Next.

6. In the Model Name & Target Namespace panel:

i. Notice how the model name defaults to the name of the file that
is being imported.

ii. Under Target Namespace, enter:

iii. Click Next.

7. In the Record Types panel:

i. In the Name column, double-click on Row, type "Customer" and
press Enter.

Notice how step 6 in the left-hand pane automatically changes
from Row to Customer.

ii. Click the Type column and select Fixed Length.

iii. Click Next.

8. In the Customer panel, specify the syntax properties associated with
each record type in your sample data. In this demonstration, this
information is stored in the Customers.xls file that is supplied within
the Getting Started/Samples/B - Creating Data Models/1 - From

http://www.progress.com/ArtixDataServices/GettingStarted/
Customer
25

CHAPTER 2 | Creating Data Models
a Text File folder of your Artix Data Services Getting Started material.
Notice, for example, that in the Customers.xls file, the length for
Customer Number is 6. Therefore:

i. In the Fixed Offset Properties section, click column 6 to place a
boundary between columns 5 and 6. This causes a new column
to be displayed in the Preview – Column Data Types section.

i. Click the first column in the Preview – Column Data Types
section and:

9. According to the data in the Customers.xls file, the length for
Customer Acronym is 12. Therefore:

i. In the Fixed Offset Properties section, click column 18 to place a
boundary between columns 17 and 18. This causes a new
column, to be displayed in the Preview - Column Data Types
section.

ii. Click the second column in the Preview - Column Data Types
section and:

10. Repeat step 9 in a similar fashion for the remaining fields, which are
summarized in the following table:

a. Type "Customer Number" in the Selected Column Name
field and press Enter.

b. Leave String as the value in the Selected Column Data
Type field.

a. Type "Customer Acronym" in the Selected Column Name
field and press Enter.

b. Accept String as the value in the Selected Column Data
Type field.

Column Name Column Data
Type

Start
Column

End
Column

Customer Number String 0 5

Customer Acronym String 6 17

Address Line 1 String 18 67
26

Creating a Data Model from a Text File
11. Click Finish.

A Customers.dod file is created and displayed in the Project and
Explorer windows of the workbench. A Transactions.dod tab is
displayed in the main window of the workbench.

In the Messages window, an Importing Text File tab is opened to
indicate that the import has been successful.

12. In the Explorer window, expand the File node, right-click the
Customers complex type (marked with a symbol), select Rename,
and rename it to "Customers File".

Address Line 2 String 68 117

Address Line 3 String 118 167

Address Line 4 String 168 217

Address Line 5 String 218 267

Post Zip Code String 268 275

Telephone Number String 276 295

Email Address String 296 345

BIC String 346 356

Fax Number String 357 376

Telex Number String 377 396

Country of Residence String 397 398

Fedwire Code String 399 407

Chips Participant Code String 408 411

Chips UID String 412 417

Sort Code String 418 423

Bankleitzhal Code String 424 431

Column Name Column Data
Type

Start
Column

End
Column
27

CHAPTER 2 | Creating Data Models
13. In the Explorer window, right-click the Customers element (marked
with a symbol), select Rename, and rename it to "Customers File"
also.

14. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Comparing your model with the
file you imported

To compare the data model with the Customers.txt file that you imported,
complete the following steps:

1. In the Explorer window, under the Customers.dod file, expand the File
node.

2. Double-click the Customers File complex type (marked with a
symbol).

3. In the Customers File tab, which opened within the Customers.dod
tab in the main window of the workbench, expand the Customer
element to view the contents.

4. Compare the details displayed with those in the Customers.txt file
that you imported.

Testing the accuracy of your data
model

To ensure that your data model is accurate, try parsing some real-world
data. You can do this using a feature of the ADS Designer called the Run
Wizard, which allows you to read data into a model and creates Java class
instances of that model. In this case, you can read the supplied
Customers.txt file into your Customers data model, as follows:

1. Ensure that the Customers.dod file is open in the Explorer window.

2. Expand the File node.

3. Right-click the Customers File element (marked with a symbol)
and select Run Component.

Note: Make sure you right-click the Customers File element in this
case rather than the Customers File complex type. This has
repercussions for the code that Artix Data Services can generate for
the model, as described further in “Creating a Simple Java
Application” on page 125.
28

Creating a Data Model from a Text File
4. In the Run Wizard, notice that;

i. The Name field defaults to the name of the selected component.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

5. Accept all the default values and click Run.

6. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

7. A Customers File tab opens within the Customers.dod tab. This tab
shows the structure of the deployed object based on your data model.
Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run Customers File tab has
been created.

8. In the Customers File tab, click the (Load) icon.

9. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/1 - From a Text File folder.

ii. Select Customers.txt.

iii. Click Open.

10. In the Confirm dialog, click Yes.

Artix Data Services creates instances of the model based on your data. A
green tick appears beside the CustomersFile node in the Customers File tab
to indicate that parsing has been successful. Expand the CustomersFile
node in the main window to view all the records in the file.

In addition, the Run Customers File tab in the Messages window displays a
message indicating that parsing has been successful.
29

CHAPTER 2 | Creating Data Models
Creating a Data Model from an XML Schema

Overview This section describes how to create a data model by importing an XML
schema. It demonstrates how to create a Statements data model by
importing a Statements.xsd file. In the XML Schema Import Wizard, you
can set properties for the fields associated with the model instead of doing
so in the Properties window outside the wizard. After creating the model,
you can test its accuracy by parsing a valid XML file through it.

Steps Complete the following steps to create your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/2 - From an XML Schema

ii. Right-click the From an XML Schema folder and select Import >
Import XML Schema. This opens the XML Schema Import
Wizard.

3. In the Files To Import panel:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/2 - From an XML Schema and select the
Statements.xsd file.

ii. Click Next.

Note: This sample data model is based on the Statements.xsd file that
is supplied within the Getting Started/Samples/B - Creating Data
Models/From an XML Schema folder of your Artix Data Services Getting
Started material.
30

Creating a Data Model from an XML Schema
4. In the Target Directory panel:

i. Accept the default folder From an XML Schema as the location
where you want the data model to be stored.

ii. Notice the Advanced button in the Steps section on the left-hand
side of the panel. Alternately clicking the Advanced button
displays and hides optional steps in the list of steps.

iii. Click Advanced to hide the optional steps. They are not relevant
in this demonstration.

iv. Click Finish.

A Statements.dod file is created and displayed in the Project and
Explorer windows of the workbench. A Statements.dod tab is opened
in the main window of the workbench.

In the Messages window, an Importing XML Schema tab is opened to
indicate that the import has been successful.

5. In the Explorer window, click the Statements.dod file.

6. In the Properties window, notice how the Target Namespace field has
been populated with a namespace:

http://www.progress.com/ArtixDataServices/Training/Statements

This is taken from the imported schema.

7. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Comparing your model with the
file you imported

To compare the data model with the Statements.xsd file that you imported,
complete the following steps:

1. In the Explorer window, under the Statementa.dod file, double-click
the StatementFile complex type (marked with a symbol).

2. In the StatementFile tab, which opens within the Statements.dod tab
in the main window of the workbench, expand the Statement element
to view the contents.

3. Compare the details displayed with those in the Statements.xsd file
that you imported.
31

CHAPTER 2 | Creating Data Models
Testing the accuracy of your data
model

To ensure that your data model is accurate, try parsing some real-world
data. You can do this using a feature of the ADS Designer called the Run
Wizard, which allows you to read data into a model and creates Java class
instances of that model. In this case, you can read the supplied
StatementsXML.xml file into your Statements data model, as follows:

1. Ensure that the Statements.dod file is currently open in the Explorer
window.

2. Right-click the StatementFile element (marked with symbol) and
select Run Component.

3. In the Run Wizard dialog, notice that:

i. The Name field defaults to the name of the selected component.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

4. Accept the default values and click Run.

5. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

6. A StatementFile tab opens within the Statements.dod tab. This tab
shows the structure of the deployed object based on your data model.
Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state, with a red X.

ii. In the Messages window, an empty Run StatementFile tab has
been created.

7. In the StatementFile tab, click the (Load) icon.

Note: Make sure you right-click the StatementFile element in this
case rather than the StatementFile complex type. This has
repercussions for the code that Artix Data Services can generate for
the model, as described further in “Creating a Simple Java
Application” on page 125.
32

Creating a Data Model from an XML Schema
8. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/2. From an XML Schema folder.

ii. Select the StatementsXML.xml file.

iii. Click Open.

9. In the Confirm dialog, click Yes.

There are no parsing errors. Artix Data Services creates instances of the
model, based on your data. A green tick appears beside the StatementFile
node in the StatementFile tab to indicate that parsing has been successful.
Expand the StatementFile node to view all of the records in the file.
33

CHAPTER 2 | Creating Data Models
Creating a Data Model from a Set of XML
Documents

Overview This section demonstrates how to create an AccountsXML data model by
importing an AccountsXML.xml file. In the XML Instance(s) Import Wizard,
you can set properties for the fields associated with a model instead of doing
so in the Properties window outside the wizard. After creating the model,
you can test its accuracy by parsing a valid XML file through it.

Steps Complete the following steps to create your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/3 - From Other Sources

ii. Right-click the From Other Sources folder and select Import >
Import XML Instance(s). This opens the XML Instance(s) Import
Wizard.

3. In the File To Import panel:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/3 - From Other Sources

ii. Select the AccountsXML.xml file.

iii. Click Next.

Note: This sample data model is based on the AccountsXML.xml file that
is supplied within the Getting Started/Samples/B - Creating Data
Models/3 - From Other Sources folder of your Artix Data Services Getting
Started material.
34

Creating a Data Model from a Set of XML Documents
4. In the Target Directory panel

i. Accept the default folder From Other Sources as the location
where you want the data model to be stored.

ii. Notice the Advanced button in the Steps section on the left-hand
side of the panel. Alternately clicking the Advanced button
displays and hides optional steps in the list of steps.

iii. Click Advanced to hide the optional steps. They are not relevant
in this demonstration.

iv. Click Finish.

An AccountsXML.dod file is created and displayed in the Project and
Explorer windows of the workbench. A AccountsXML.dod tab is
opened in the main window of the workbench.

In the Messages window, an Importing XML... tab is opened to
indicate that the import has been successful.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Comparing your model with the
file you imported

To compare the data model with the AccountsXML.xml file that you
imported, complete the following steps:

1. In the Explorer window, under the AccountsXML.dod file, expand the
AccountsFile node.

2. Double-click the AccountsFile complex type (marked with a
symbol).

3. In the AccountsFile tab, which opens within the AccountsXML.dod tab
in the main window of the workbench, expand the Account element to
view the contents.

4. Compare the details displayed with those in the AccountsXML.xml file
that you imported.
35

CHAPTER 2 | Creating Data Models
Testing the accuracy of your data
model

To ensure that your data model is accurate, try parsing some real-world
data. You can do this using a feature of ADS Designer called the Run
Wizard, which allows you to read data into a model and creates Java class
instances of that model. In this case, you can read the supplied
AccountsXML.xml file into your AccountsXML data model, as follows:

1. Ensure that the AccountsXML.dod file is open in the Explorer window.

2. Right-click the AccountsFile element (marked with a symbol) and
select Run Component.

3. In the Run Wizard dialog, notice that:

i. The Name field defaults to the name of the selected component;
in the case, AccountsFile.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

4. In the resulting dialog, which prompts you to load the data that you
want to parse, click the icon.

5. An AccountsFile tab opens within the AccountsXML.dod tab. This
tab shows the structure of the deployed object based on your data
model. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run AccountsFile tab has
been created.

6. In the AccountsFile tab, click the (Load) icon.

Note: Make sure you right-click the AccountsFile element in this
case rather than the AccountsFile complex type. This has
repercussions for the code that Artix Data Services generates for the
model, as described further in “Creating a Simple Java Application”
on page 125.
36

Creating a Data Model from a Set of XML Documents
7. In the Select Input File / Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/3 - From Other Sources folder.

ii. Select AccountsXML.xml.

iii. Click Open.

8. In the Confirm dialog, click Yes.

There are no parsing errors. Artix Data Services creates instances of the
model, based on your data. A green tick appears beside the AccountsFile
node in the AccountsFile tab to indicate that parsing has been successful.
Expand the AccountsFile node to view all of the records in the file.

In addition, the Run AccountsFile tab in the Messages window displays a
message indicating that parsing has been successful.
37

CHAPTER 2 | Creating Data Models
Creating a Data Model from a Database

Overview This subsection demonstrates how to create a data model by importing a
MySQL database called adsubs (Artix Data Services Universal Banking
System). After creating the model, you can test its validity by parsing valid
database entries through it.

Prerequisites Before you proceed with this demonstration, you must:

1. Have MySQL and MySQL Connector/J 5.0 or higher installed and
configured on your machine. You can download these products from
the following website:

♦ http://dev.mysql.com/downloads/

2. If you have not already done so, add the JDBC driver classpath to the
ADS Designer Hibernate options as follows:

i. Start the ADS Designer.

ii. Select Edit > Preferences

iii. In the Preferences dialog, select Hibernate.

iv. In the Hibernate pane, click JDBC Class Path.

v. In the Edit Application Classpath dialog, click the icon and
navigate to and select the mysql-connector-java-x.x.x-bin.jar
file (where x.x.x represents the version number) in your MySQL
Connector/J folder.

vi. Click OK.

vii. In the Warning dialog that tells you to restart the application,
click OK.

viii. Restart the ADS Designer for the classpath settings to take affect.

3. Artix Data Services includes an ADSUBS_SQL.txt file that contains the
SQL needed to create the database and its constituent tables. It is
located in the Getting Started/Samples/B - Creating Data
38

http://dev.mysql.com/downloads/

Creating a Data Model from a Database
Models/3 - From Other Sources folder in your Artix Data Services
Getting Started material. To also add data to to the database, edit the
ADSUBS_SQL.txt file as follows:

i. Add the following lines anywhere between two create table
tablename (); entries:

ii. Remove the following line from the create table accounts ();
entry:

iii. Save your changes.

4. Use the MySQL source option to execute the statements in the
ADSUBS_SQL.txt text file and create the database. For example:

For more information on using MySQL, see:

♦ http://forge.mysql.com/

♦ http://dev.mysql.com/doc/

insert into customer values('100022','DAVIDC','Our
House','Blunderstone','Suffolk','England','','D23
CO1','4418501850','david@copperfield.com','','','','GB','','','','721721','');

insert into accounts values('002023785873','David
Copperfield','N',2000.10,560.80,'100022','GBP','2009-03-03','2009-04-03','2009-03-03',52,'432
5648641593278');

foreign key (customer) references customer(customer_number)

mysql> source adsubs_sql_txt
39

http://forge.mysql.com/
http://dev.mysql.com/doc/

CHAPTER 2 | Creating Data Models
Steps After you have used MySQL to create the adsubs database, complete the
following steps to create your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, selecting File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/3 - From Other Sources

ii. Right-click the From Other Sources folder and select Import >
Import Database. This opens the Import Database Wizard.

3. In the Target Directory panel, accept the default folder From Other
Sources as the location where you want the data model to be stored
and click Next.

4. In the Connection Properties panel:

i. In the Model Name field: type "ADSUBS".

ii. In the Target Namespace field, type
http://www.progress.com/ArtixDataServices/GettingStarted

/ADSUBS

iii. In the Database Dialect field, select MySQL from the drop-down
menu. This indicates the type of database from which you want
to import.

iv. Notice that the JDBC Driver Class Name field is automatically
populated with com.mysql.jdbc.Driver.

v. In the Database URL field, update the URL with the name of your
database; that is, jdbc:mysql://localhost:3306/adsubs

vi. In the Username field, type a valid user name for connecting to
the database.

Note: The default port for MySQL is 3306. If you are using an
alternative port, replace 3306 in the preceding URL with whatever
port your installation of MySQL is using.

Note: If you do not have a specific username for accessing MySQL,
type root as the username for this demonstration.
40

Creating a Data Model from a Database
vii. In the Password field, if your MySQL server requires a password,
enter the password.

viii. Add the MySQL Connector/J
mysql-connector-java-x.x.x-bin.jar file to your classpath:

ix. Click Next.

5. In the Import Type panel, notice how the Automatic table detection
check box is checked by default and click Next.

6. In the Table Selection panel, which lists all of the possible tables in
your database that can be imported, notice that:

i. All of the tables in the database are selected for import by default.

ii. The Import related tables check box and the Child only button
are both selected by default. (Do not adjust these settings.)

iii. Click Next.

7. In the Import Options panel:

i. Notice the various default selections and values on this panel. (Do
not adjust these.)

ii. Click Next.

8. In the Types Mapping panel, click Next repeatedly to display each of
your database tables in turn. In each case, all of the fields and their
types and the primary keys are displayed. You can change the types at
this stage or you can wait until later.

9. Click Finish.

An ADSUBS.dod file is created and displayed in the Project and Explorer
windows of the workbench. Each imported table is created as a
complex type.

a. Click Edit Classpath.

b. Click the icon and navigate to and select the
mysql-connector-java-x.x.x-bin.jar file (where x.x.x
represents the version number) in your MySQL Connector/J
folder. This adds the .jar file to the classpath.

Note: Some characters such as "/", "(" and ")" are incompatible with
the ADS Designer. If some of your fields have such characters in
them, the ADS Designer prompts you to change the name.
41

CHAPTER 2 | Creating Data Models
In the messages window, an Importing database tab is opened to
indicate that the import has been successful.

10. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Comparing your model with the
file you imported

To compare the data model with the ADSUBS_SQL.txt file that you imported,
complete the following steps:

1. In the Explorer window, under the ADSUBS.dod file, double-click each
complex type in turn to open it in its own tab.

2. Compare the details displayed in each tab with those in the
ADSUBS_SQL.txt file that you imported.

Testing the accuracy of your data
model

To ensure that your data model is accurate, test if it can parse some
real-world data. You can do this using a feature of the ADS Designer called
the Run Wizard, which allows you to read data into a model and creates
Java class instances of that model. In this case, you can read the contents
of the adsubs database into your ADSUBS data model.

1. Ensure that the ADSUBS.dod is currently open in the Explorer window.

2. Right-click the accounts element type and select Run Component.

3. In the Run Wizard dialog, notice that:

i. The Name field defaults to the name of the selected component;
in the case, accounts.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

4. In the resulting dialog, which prompts you to load the data that you
want to parse, click the icon.

5. An accounts tab opens within the ADSUBS.dod tab. This tab shows
the structure of the deployed object based on your data model. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run accounts tab has been
created.
42

Creating a Data Model from a Database
6. Click the (Advanced) icon in the accounts tab.

7. In the Advanced dialog:

i. Ensure that the Input icon is selected.

ii. In the Format field, select (Database) from the drop-down menu.

iii. In the Confirm dialog, click Yes.

iv. In the JDBC Driver Class Name field, type
"com.mysql.jdbc.Driver".

v. In the Database URL field, type
"jdbc:mysql://localhost:3306/adsubs".

vi. In the Username field, type a valid user name for connecting to
the database.

vii. In the Password field, type a password if there is one.

viii. Click OK.

8. In the Database Load Params dialog:

i. In the Select By field, ensure that SQL Query is selected.

ii. Type the following SQL query in the textbox:

iii. Click OK.

A green tick appears beside the accounts node in the accounts tab to
indicate that parsing has been successful. Expand the accounts node
to view all of the records and data.

Note: If you are using an alternative port, replace 3306 in the
preceding URL with whatever port your installation of MySQL is
using.

Note: For the purposes of connecting to a MySQL database, you
might need to type a user name of root.

SELECT * FROM accounts;
43

CHAPTER 2 | Creating Data Models
Creating a Data Model Manually

Overview This section describes how to manually create two different data models—
one called Accounts, and another called Customer.

In this section This section discusses the following topics:

Creating an Accounts Data Model Manually page 45

Creating a Customers Data Model Manually page 55
44

Creating a Data Model Manually
Creating an Accounts Data Model Manually

Overview This subsection demonstrates how to:

• Manually create an Accounts data model. The data model is built from
simple types into complex types. Each simple type has its own
properties, such as minimum and maximum lengths, that are specified
accordingly. The model contains two complex types—one that
represents an individual account record (called Account) and another
that represents a series of account records (called Accounts File).

• Deploy the Accounts model and test its accuracy by parsing a valid
text file through it.

Creating the empty data model Complete the following steps to create your empty data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/4 - Manually

ii. Right-click the Manually folder and select New > Data Model.
This opens the New Data Model Wizard.

3. In the Setup panel:

i. Ensure that the Create new empty data model button is selected.

ii. In the Data Model name field, type "Accounts".

Note: This sample data model is based on the information in the
Accounts.xls file that is supplied within the Getting Started/Samples/B
- Creating Data Models/4 - Manually folder of your Artix Data Services
Getting Started material.

Note: Some types, such as dates, also require validation. However,
validation rules are outside the scope of this particular demonstration.
45

CHAPTER 2 | Creating Data Models
iii. In the Namespace field, type:

iv. In the Location field, accept the default location.

v. Click Finish.

An Accounts.dod file is created and displayed in the Project and Explorer
windows of the workbench. An Accounts.dod tab opens in the main window
of the workbench.

Creating an AccountNumber type Now that you have created an empty data model, start creating data types
for it. First, create an AccountNumber type as follows:

1. In the Explorer window, right-click the Accounts.dod file and select
New > Atomic Simple Type from the context menu. This opens the
Atomic Simple Type Wizard.

2. In the Type Name panel:

i. In the Type name field, enter "AccountNumber".

ii. Click Next.

3. In the Base Type panel:

i. Select String.

ii. Click Next.

4. In the Type Properties panel, click Finish.

In the Explorer window, click AccountNumber, which has been added
under Accounts.dod. This opens the properties for the type in the
Properties window.

5. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 12.

http://www.progress.com/ArtixDataServices/GettingStarted/
Account
46

Creating a Data Model Manually
Creating other simple types Repeat steps 1-5 to create the data types shown in Table 1. Simply
substitute the name of the data type that you are creating for AccountNumber
each time it appears in the steps.

Creating OpeningBalance and
ClosingBalance types

Create an OpeningBalance type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. In the Type Name panel:

i. In the Type name field, enter "OpeningBalance".

ii. Click Next.

3. In the Base Type panel:

i. Expand the Built-in > Numeric.

ii. Click decimal.

iii. Click Next.

4. In the Type Properties panel, click Finish.

OpeningBalance is displayed under Accounts.dod in the Explorer
window.

5. In the Properties window, scroll down to the Validation section and set
the values for Min Total Digits and Max Total Digits to 1 and 16
respectively.

Repeat steps 1–4 to create a ClosingBalance type. Simply substitute
ClosingBalance for OpeningBalance each time it appears in the steps.

Table 1: Manually Creating Data Types

Simple Type Base Data Type Min Length Max Length

AccountName String 20 20

Blocked String 1 1

Customer String 6 6

Currency String 3 3

CardNumber String 16 16
47

CHAPTER 2 | Creating Data Models
Creating OpeningBalanceDate,
ClosingBalanceDate and
LastStatementDate types

Create an OpeningBalanceDate type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. In the Type Name panel:

i. In the Type name field, enter "OpeningBalanceDate".

ii. Click Next.

3. In the Base Type panel:

i. Select Generic date.

ii. Click Next.

4. In the Type Properties panel, click Finish.

OpeningBalanceDate is displayed under Accounts.dod in the Explorer
window.

Repeat steps 1–4 to create a ClosingBalanceDate and LastStatementDate
type respectively. Simply substitute the name of the data type that you are
creating for OpeningBalanceDate each time it appears in the steps.

Creating a LastStatementNo type Next create a LastStatementNo type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. In the Type Name panel:

i. In the Type name field, enter "LastStatementNo".

ii. Click Next.

3. In the Base Type panel:

i. Select int.

ii. Click Next.

4. In the Type Properties panel, click Finish.

LastStatementNo is displayed under Accounts.dod in the Explorer
window.

5. In the Properties window, scroll down to the Validation section and set
the values for both Min Total Digits and Max Total Digits to 12.
48

Creating a Data Model Manually
Creating an Account complex type Next create an Account complex type that will represent one account record
whose fields are based on all of the simple types you have already created:

1. In the Explorer window, right-click on Accounts.dod and select New >
Complex Type from the context menu.

2. In the New Complex Type dialog:

i. Type "Account" in the text box.

ii. Click OK.

The Account complex type is displayed under Accounts.dod in the
Explorer window. An Account tab is opened within the Accounts.dod
tab in the main window of the workbench.

3. Select all of the simple types displayed under Accounts.dod in the
Explorer window and drag and drop them into the Account complex
type in the main window of the workbench.

4. Click the Account complex type in the Explorer window to display its
properties in the Properties window.

5. The account records are based on data in a fixed-format text file called
Accounts.txt. The record format needs to be specified as a property of
the Account complex type. In the Properties window, scroll down to
the Presentation section and set the value for Format Type to Fixed.

6. Each record in the Accounts.txt file ends with a CRLF (carriage return
line feed). This needs to be set as another property of the Account
complex type, so that the data model will know to look for the CRLF at
the end of each record it comes across in the text file. In the Properties
window, click in the text area beside the Terminator field and click the

 icon in the field.

7. In the Insert Character dialog:

i. Select CR and click Insert.

ii. Select LF and click Insert.

iii. Click OK.

This causes <CR><LF> and 0D0A to be displayed as the value for
Terminator.

8. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.
49

CHAPTER 2 | Creating Data Models
Creating an Accounts File complex
type

Next create an Accounts File complex type that can consist of multiple
instances of the Account complex type (that is, it can contain multiple
account records):

1. In the Explorer window, right-click on Accounts.dod and select New >
Complex Type from the context menu.

2. In the New Complex Type dialog:

i. Type "Accounts File" in the text box.

ii. Click OK.

The Accounts File complex type is displayed under Accounts.dod in
the Explorer window. An Accounts File tab is also opened within the
Accounts.dod tab in the main window of the workbench.

3. Click the Account complex type in the Explorer window, and drag and
drop it over to the Accounts File complex type in the main window of
the workbench.

4. The cardinality value determines how many instances of the Account
complex type the Accounts File complex type can contain. This is set
to 1 by default. The Accounts File needs to be able to contain one or
more Account records. To update the cardinality:

i. In the Component column, right-click the Account simple type

ii. Select Cardinality > 1..*.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating an Accounts File element To enable the model to be used in code, you must also create an element for
the Accounts File complex type:

1. Select the Account tab to open it.

2. In the Explorer window, right-click on Accounts.dod and select New >
Element from the context menu.

3. In the New Element dialog:

i. Type "Accounts File" in the text box

ii. Click OK.
50

Creating a Data Model Manually
4. In the Select Type dialog:

i. Expand Local.

ii. Click the Accounts File complex type

iii. Click OK.

5. In the dialog box that prompts you to open the type for the element,
click Yes.

The Accounts File element is displayed under Accounts.dod in the
Explorer window.

6. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

You have now finished building the framework of your Accounts data model.
It consists of:

• An Accounts File complex type and element that can represent your
accounts file.

• An Account complex type that can represent each record in your
accounts file.

• Various simple types that can represent the various fields in each
account record.

Testing the accuracy of your data
model

To ensure that your data model is accurate, try parsing some real-world
data. For example, you can read the supplied Accounts.txt file into your
Accounts data model:

1. Ensure that the Accounts.dod file is currently open in the Explorer
window.

2. Right-click the Accounts File element (marked with the symbol)
in the Explorer window and select Run Component.

Note: Make sure you right-click the Accounts File element in this
case rather than the Accounts File complex type. This will have
repercussions for the code that Artix Data Services can generate for
the model, as described further in “Creating a Simple Java
Application” on page 125.
51

CHAPTER 2 | Creating Data Models
3. In the Run Wizard dialog, notice that:

i. The Name field defaults to the name of the selected component;
in the case, Accounts File.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

4. In the resulting dialog, which prompts you to load the data that you
want to parse, click the icon.

5. An Accounts File tab opens within the Accounts.dod tab. This tab
shows the structure of the deployed object based on your data model.
Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run Accounts File tab has
been created.

6. In the Accounts File tab, click the (Load) icon.

7. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/4 - Manually folder.

ii. Select Accounts.txt.

iii. Click Open.

8. In the Confirm dialog, click Yes.

In the case of this demonstration, a dialog box opens indicating that there is
a parsing error. The error is displayed in the Run Accounts File tab in the
Messages window and shows that there is a problem with the
OpeningBalance type.

Fixing parsing errors relating to
balance amounts

Parsing errors are an indication that a data model is not completely
accurate. The Accounts.txt file expects the opening balance amount to
consist of 14 integer digits and 2 fraction digits, but these have not been set
as properties of the OpeningBalance type in the data model.
52

Creating a Data Model Manually
Complete the following steps to fix the parsing error:

1. Click OpeningBalance in the Explorer window.

2. In the Properties window:

i. Scroll down to the Presentation/Advanced section.

ii. In the Decimal Separator field, type ".". The value . [2e] is
displayed.

iii. Scroll down to the Validation section.

iv. Set the values for Min Integer Digits and Max Integer Digits to 1
and 14 respectively.

v. Set the value for Min Fraction Digits and Max Fraction Digits to 0
and 2 respectively.

3. Click the (Reload Active Run Configuration) icon on the toolbar to
reload the Accounts.txt file into the updated model.

A dialog box opens indicating that there is another parsing error. The
error is also displayed in the Run Accounts File tab in the Messages
window. The Accounts.txt file expects the closing balance amount to
consist of 14 integer digits and 2 fraction digits, but these have not
been set as properties of the ClosingBalance type in the data model.

4. Click ClosingBalance in the Explorer window and repeat steps 2 and 3
above.

Again, a dialog box opens indicating that there is a parsing error.

Fixing parsing errors relating to
dates

The Accounts.txt file expects OpeningBalanceDate, ClosingBalanceDate
and LastStatementDate to each have a format of yyMMdd. This has not been
set in the data model. Complete the following steps for each of the date
elements to set the date format:

1. Click the date element, for example, OpeningBalanceDate, in the
Explorer window.

2. In the Properties window:

i. Scroll down to the Presentation section.

ii. Click the Date Format field.

iii. In the date format dialog, click the icon.
53

CHAPTER 2 | Creating Data Models
iv. In the Insert Character dialog, in the Char column, double-click y
twice, followed by M twice, and d twice. The Pattern field on the
Insert Character dialog should display yyMMdd.

v. Click OK. The Pattern field in the date format dialog should
display yyMMdd.

vi. Click OK.

vii. The Date Format field in the Properties window displays yyMMdd.

When you have set the date format property for all of the date elements,
click the (Reload Active Run Configuration) icon to reload the
Accounts.txt file into the updated model. The data model is finally
accurate and all parsing errors have been fixed. Artix Data Services creates
instances of the model, based on your data. A green tick appears beside
AccountsFile in the Accounts File tab to indicate that parsing has been
successful. The Run AccountsFile tab in the Messages window also displays
a message that parsing has been successful. You can now expand the
AccountsFile node in the main window to view all of the records in the file.
54

Creating a Data Model Manually
Creating a Customers Data Model Manually

Overview This subsection demonstrates how to manually create a Customers data
model. The data model is built up from simple types into complex types.
The model contains two complex types—one that represents an individual
customer record (called Customer) and another that represents a list of
customer records (called Customers File). It then shows how to deploy the
Customers data model and test its accuracy by parsing a valid text file
through it.

Creating the empty data model Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/B -
Creating Data Models/4 - Manually

ii. Right-click the Manually folder and select New > Data Model.
This opens the New Data Model Wizard.

3. In the Setup panel:

i. Ensure that the Create new empty data model button is selected.

ii. In the Data Model name field, type "Customers".

Note: An alternative way of creating the Customers data model is to
import its contents from the Customers.txt file. You can skip this section
if you have already followed the instructions in “Creating a Data Model
from a Text File” on page 14.

Note: The information on which this data model is based is contained in
the Customers.xls file that is supplied within the Getting
Started/Samples/B - Creating Data Models/4 - Manually folder of
your Artix Data Services Getting Started material.

Note: Some types, such as dates, also require validation. However,
validation rules are outside the scope of this particular demonstration.
55

CHAPTER 2 | Creating Data Models
iii. In the Namespace field, type:

iv. In the Location field, accept the default location.

v. Click Finish.

A Customers.dod file is created and displayed in the Project and Explorer
windows of the workbench. An Customers.dod tab opens in the main
window of the workbench.

Creating a Customer Number type Now that you have created an empty data model, start creating data types
for it. First, create a Customer Number type as follows:

1. In the Explorer window, right-click the Customers.dod file and select
New > Atomic Simple Type from the context menu. This opens the
Atomic Simple Type Wizard.

2. In the Type Name panel:

i. In the Type name field, enter "Customer Number".

ii. Click Next.

3. In the Base Type panel:

i. Select String.

ii. Click Next.

4. In the Type Properties panel, click Finish.

In the Explorer window, click Customer Number, which has been added
under Customers.dod.

5. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 6.

http://www.progress.com/ArtixDataServices/GettingStarted/
Customer
56

Creating a Data Model Manually
Creating other simple types Repeat steps 1-5 to create the data types shown in Table 2. Simply
substitute the name of the data type that you are creating for Customer
Number each time it appears in the steps.

Creating an Address complex type Next create an Address complex type that will be able to hold multiple
address lines, as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Complex Type from the context menu.

2. In the New Complex Type dialog:

i. Type "Address" in the text box.

ii. Click OK.

Table 2: Manually Creating Other Simple Types

Simple
Type

Base Data
Type

Min

Length

Max
Length

Customer Acronym String 12 12

Address Line String 0 50

Post Zip Code String 8 8

Telephone Number String 20 20

Email Address String 50 50

BIC String 11 11

FAX Number String 20 20

Telex Number String 0 20

Country Of Residence String 0 2

Fedwire Code String 0 9

Chips Participant Code String 0 4

Chips UID String 0 4

Sort Code String 0 6

Bankleitzhal Code String 0 8
57

CHAPTER 2 | Creating Data Models
The Address complex type is displayed under Customers.dod in the
Explorer window. An Account tab opens within the Accounts.dod tab
in the main window of the workbench.

3. Click the Address Line type in the Explorer window and drag and drop
it over to the Address complex type in the main window of the
workbench.

4. The address needs to contain five address lines. To update the
cardinality:

i. In the Component column, right-click the Address Line.

ii. Select Cardinality > n.

iii. Type "5".

iv. Click OK.

Creating a Customer complex type Next create a Customer complex type that will represent one customer
record whose fields are based on all of the simple types you have already
created:

1. In the Explorer window, right-click on Customers.dod and select New
> Complex Type from the context menu.

2. In the New Complex Type dialog:

i. Type "Customer" in the text box.

ii. Click OK.

The Customer complex type is displayed under Customers.dod in the
Explorer window. A Customer tab opens within the Accounts.dod tab
in the main window of the workbench.

3. Click the icon in the dialog box that prompts you that you can add
components to the complex type.

4. Select all of the simple types, except Address Line, displayed under
Customers.dod in the Explorer window, and drag and drop them to the
Customer complex type in the main window of the workbench.

Note: The Address complex type is already set up to pull in the
Address Line type with a cardinality of 5.
58

Creating a Data Model Manually
5. The customer records are based on data in a fixed-format text file
called Customers.txt. You need to specify the record format as a
property of the Customer complex type:

i. Click the Customer complex type in the Explorer window.

ii. In the Properties window:

6. Each record in the Customers.txt file ends with a CRLF (carriage return
line feed). You need to set this as another property of the Customer
complex type. In the Properties window:

i. Click in the text area beside the Terminator field.

ii. Click the icon.

iii. In the Insert Character dialog:

<CR><LF> and 0D0A are displayed as the value for Terminator.

7. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating a Customers File
complex type

Next create a Customers File complex type that can consist of multiple
instances of the Customer complex type (that is, it can contain multiple
customer records) as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Complex Type from the context menu.

2. In the New Complex Type dialog:

i. Type "Customers File" in the text box.

ii. Click OK.

The Customers File complex type is displayed under Customers.dod
in the Explorer window. A Customers File tab opens within the
Customers.dod tab in the main window of the workbench.

a. Scroll down to the Presentation section.

b. Set the value for Format Type to Fixed.

a. Select CR and click Insert.

b. Select LF and click Insert.

c. Click OK.
59

CHAPTER 2 | Creating Data Models
3. Click the Customer complex type in the Explorer window, and drag and
drop it over to the Customers File complex type in the main window
of the workbench.

4. The cardinality value determines how many instances of the Customer
complex type the Customers File complex type can contain. This is
set to 1 by default. The Customers File needs to be able to contain
one or more Customer records. To update the cardinality:

i. In the Component column, right-click the Customer simple type

ii. Select Cardinality > 1..*.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating a Customers File element To enable the model to be subsequently used in code, you must also create
an element for the Customers File complex type as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Element from the context menu.

2. In the New Element dialog:

i. Type "Customers File" in the text box.

ii. Click OK.

3. In the Select Type dialog:

i. Expand Local.

ii. Click the Customers File complex type.

iii. Click OK.

4. In the dialog box prompting you to open the type for the element, click
Yes. The Customers File element is displayed under Customers.dod in
the Explorer window.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

At this point, you have finished establishing the framework of your
Customers data model. It now consists of:

• A Customers File complex type and element that can represent your
customers file.

• A Customer complex type that can represent each record in your
customers file.
60

Creating a Data Model Manually
• Various simple types that can represent the various fields in each
customer record.

Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and creates Java class instances of that model. In this case, you can read
the supplied Customers.txt file into your Customers data model, as follows:

1. Ensure that the Customers.dod file is open in the Explorer window.

2. Right-click the Customers File element (marked with the symbol)
in the Explorer window and select Run Component.

3. In the Run Wizard dialog:

i. The Name field defaults to the name of the selected component;
in the case, Customers File.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

4. In the resulting dialog, which prompts you to load the data that you
want to parse, click the icon.

5. An Customers File tab opens within the Customers.dod tab. This
tab shows the structure of the deployed object based on your data
model. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run Customers File tab has
been created.

6. In the Customers File tab, click the (Load) icon.

Note: Make sure you right-click the Customers File element in this
case rather than the Customers File complex type. This will have
repercussions for the code that Artix Data Services can generate for
the model, as described further in “Creating a Simple Java
Application” on page 125.
61

CHAPTER 2 | Creating Data Models
7. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/4 - Manually folder.

ii. Select Customers.txt.

iii. Click Open.

8. In the Confirm dialog, click Yes.

There are no parsing errors. Artix Data Services creates instances of the
model based on your data. A green tick appears beside CustomersFile in
the Customers File tab to indicate that parsing has been successful. You
may now expand the CustomersFile node in the main window to view all
the records in the file.
62

Adding Validation Rules
Adding Validation Rules

Overview Data types such as dates, or elements with a type of double, must be
validated to enable them to work in ADS Designer. Validation is commonly
performed in the Properties window. Some properties have lists (that is,
enumerations) associated with them, which are defined in the Properties
window. Elements with a type of double require integer and fraction
composition to be specified. This demonstration shows how to set up such
validation rules for the Accounts and Transactions data models.

In this section This section discusses the following topics:

Adding Validation Rules for Accounts Data Model page 64

Adding Validation Rules for Transactions Data Model page 69
63

CHAPTER 2 | Creating Data Models
Adding Validation Rules for Accounts Data Model

Overview This subsection demonstrates how to set up validation rules for the
Accounts data model.

Opening the Accounts.dod file Complete the following steps to open the Accounts.dod file (if it is not
already open):

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. Navigate to the My ADS Projects/Getting Started/Samples/B -
Creating Data Models/4 - Manually folder.

3. Right-click the Accounts.dod file and select Open Selected.

The Accounts.dod file opens in the Explorer window of the workbench.
The Accounts.dod tab opens in the main window of the workbench.

Adding validation rules for
Blocked type

Complete the following steps to add validation rules for the Blocked type:

1. Click Blocked in the Explorer window.

2. In the Properties window:

i. Scroll down to the Validation section.

ii. Click in the Enumeration field.

iii. Click the icon.

3. In the Select Component dialog, click Enumeration.

4. In the New Enumeration dialog:

i. Type "Blocked" as the name of the enumeration.

ii. Click OK.

5. In the Blocked tab within the Accounts.dod tab, click the icon.

Note: The validation values assigned in this demonstration are based on
the values specified in the Accounts_validation.xls file that is supplied
within the Getting Started/Samples/B - Creating Data Models/5 -
Adding Validation Rules folder of your Artix Data Services Getting
Started material.
64

Adding Validation Rules
6. In the New Enumeration Value dialog:

i. Type "Y".

ii. Click OK.

A new row is added to the Blocked tab, with Y as its displayed value.

7. Click the icon again.

8. In the New Enumeration Value dialog:

i. Type "N"

ii. Click OK.

A new row is added to the Blocked tab, with N as its displayed value.

9. Double-click the Name column of the N row, type "No" and press Enter.

10. Double-click the Name column of the Y row, type "Yes" and press
Enter.

11. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Adding validation rules for
CardNumber type

Complete the following steps to add validation rules for the CardNumber
type:

1. Click CardNumber in the Explorer window.

2. In the Properties window:

i. Scroll down to the Validation section

ii. Click in the Pattern field.

iii. Select Java Regex from the drop down list.

iv. Click the icon to the right of the field.

3. In the Insert Character dialog:

i. Select the following pattern or type it manually in the Pattern
field on the Insert Character dialog:

[0-9]{4}[0-9]{4}[0-9]{4}[0-9]{4}

ii. Click OK.

The pattern is displayed in the Properties window.

4. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.
65

CHAPTER 2 | Creating Data Models
Verifying that validation is correct To ensure that all validation is correct:

1. In the Explorer window, right-click Accounts.dod and select Verify
Component(s).

This opens a Verification tab in the Messages window and the last line
should read "Verification passed".

2. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Validating your data model Complete the following steps to validate your data model:

1. Ensure that the Accounts.dod is open in the Explorer window.

2. Right-click the Accounts File element (marked with the symbol)
and select Run Component.

3. In the Run Wizard dialog:

i. The Name field defaults to the name of the selected component;
in the case, Accounts File.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

4. In the resulting dialog, which prompts you to load the data that you
want to parse, click the icon.

An Accounts File tab opens within the Accounts.dod tab. This tab
shows the structure of the deployed object based on your data model.

Note: Make sure you right-click the Accounts File element in this
case rather than the Accounts File complex type. This will have
repercussions for the code that Artix Data Services can generate for
the model, as described further in “Creating a Simple Java
Application” on page 125.
66

Adding Validation Rules
Notice:

i. Because you have not yet loaded any data into the object, it is
displayed in its empty state with a red X.

ii. In the Messages window, an empty Run Accounts File tab has
been created.

5. In the Accounts File tab, click the (Load) icon.

6. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/4 - Manually folder.

ii. Select Accounts.txt.

iii. Click Open.

7. In the Confirm dialog, click Yes.

There are no parsing errors. Artix Data Services creates instances of the
model based on your data. A green tick appears beside AccountsFile
in the Accounts File tab to indicate that parsing has been successful.
You may now expand the AccountsFile node in the main window to
view all the records in the file.

Loading invalid data Try loading some invalid data for the Blocked type, to see what happens.

1. In the Accounts File tab, click the (Load) icon.

2. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/5 - Adding Validation Rules folder.

ii. Select Accounts_invalid.txt.

iii. Click Open.

3. Click OK on the Note dialog that prompts you that files in
subdirectories will be parsed by default.

4. Click Yes on the Confirm dialog is displayed prompting you that
changing the URI will allow your data to be overwritten.

5. Notice how the first Account record is marked with a red X. Expand it
and you will see that the Blocked element is also marked in red. This
is because the Blocked type is only meant to accept a value of Y or N,
but it is currently displaying an invalid value of A for the first record.
67

CHAPTER 2 | Creating Data Models
6. Click the Validation tab at the bottom of the workbench to open the
Validation window. A validation failure is reported against the Blocked
element.

7. Make the format of one of the CardNumber elements invalid, as follows:

i. Expand an Account record.

ii. Click the value for its constituent CardNumber.

iii. Click the down arrow that is displayed in the CardNumber field.

iv. In the Multiline textual value dialog, insert a hyphen after every
fourth digit, as follows: 4325-6486-3757-2678

v. Click OK.

vi. Click anywhere in the workbench and notice that the CardNumber
element and its parent Account component are marked in red
with an X.

The Validation window reports additional validation errors against
the CardNumber element.

8. Now try loading valid data again, as follows:

i. Click the (Load) icon.

ii. In the Select Input File/Directory dialog:

♦ Navigate to the Getting Started/Samples/B - Creating Data
Models/4 - Manually folder.

♦ Select Accounts.txt file.

♦ Click Open.

All Account records are displayed as valid again.

This proves that the validation rules for the Blocked and CardNumber types
are working, because validation failures are reported against invalid data.
68

Adding Validation Rules
Adding Validation Rules for Transactions Data Model

Overview Xpath is predominantly used to apply validation rules to data models. This
subsection demonstrates how to use Xpath to set up a rule to validate the
Commission field in the Transactions data model.

Opening the Transactions.dod file Complete the following steps to open the Transactions.dod file (if it is not
already open):

1. In the Project window, ensure that MyProject.iop is opened. If you
need to open it, select File > Open Project from the menu bar.

2. Navigate to the My ADS Projects/Getting Started/Samples/B -
Creating Data Models/1 - From a Text File folder.

3. Right-click the Transactions.dod file and select Open Selected. This
opens the Transactions.dod file in the Explorer window and the
Transactions.dod tab in the main window of the workbench.

Adding a rule for Commission type Creating a validation rule directly under the .dod file means that it is a
global validation rule. It is not tied specifically to any one particular element
within the data model and can be reused. To create a global validation rule,
complete the following steps:

1. Right-click Transactions.dod in the Explorer window and select New
> Validation Rule.

2. In the New Validation Rule dialog:

i. Type "Commission Check" in the text box.

ii. Click OK.

A Commission Check tab opens within the Transactions.dod tab, with
a default type of XPath. The rule is entered in the left hand pane of the
tab and XPath syntax is displayed in the right hand pane.

3. Create a rule that determines whether the value of commission is
greater than the product of 0.02 and the value of amount:

i. Click in the shaded area at the top of the left-hand pane in the
main window.

ii. Type "Commission > 0.08 * Amount" as the XPath rule.
69

CHAPTER 2 | Creating Data Models
4. If the validation rule is true, the data model should throw an error.
Type "Commission Error" in the Error Message pane.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

6. In the Explorer window, expand File and double-click the
Transactions complex type. This opens the Transactions complex
type in the main window of the workbench.

7. Because the node names used in the Xpath rule do not refer to the
parent node in any way, the rule must be applied directly to the
Customer Details complex type, so that the model can interpret the
validation rule correctly. In the Type column, click Customer Details.
This displays the properties for the Customer Details type in the
Properties window.

8. In the Properties window:

i. Scroll down to the Validation section

ii. Click the field beside Validation Rules. This opens a validation
rules dialog.

9. In the validation rules dialog, click the icon.

10. In the Add Validation Rule dialog, apply the global Commission Check
validation rule to the Customer Details type as follows:

i. Expand Local.

ii. Select the Commision Check global validation rule.

iii. Click OK.

This adds Commission Check to the validation rules dialog.

iv. Click OK.

The Validation Rules field in the Properties window now displays 1.

11. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.
70

Adding Validation Rules
Validating your data model Complete the following steps to validate your data model:

1. Ensure that the Transactions.dod is open in the Explorer window.

2. Expand File.

3. Right-click the Transactions element type and select Run
Component.

4. In the Run Wizard dialog:

i. The Name field defaults to the name of the selected component;
in the case, Transactions.

ii. The Target field defaults to the path location of the selected
component.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

5. In the resulting dialog, which prompts you to load the data that you
want to parse, click the icon.

6. A Transactions tab opens within the Transactions.dod tab. This tab
shows the structure of the deployed object based on your data model.

Notice:

i. Because you have not yet loaded any data into the object, it is
displayed in its empty state with a red X.

ii. In the Messages window, an empty Run transactions tab has
been created.

7. In the Transactions tab, click the (Load) icon.

8. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/1 - From a Text file folder.

ii. Select Transactions.txt.

iii. Click Open.

9. In the Confirm dialog, click Yes.

Note: Make sure you right-click the Transactions element rather
than the Transactions complex type. This has repercussions for the
code that Artix Data Services generates for the model, as described
further in “Creating a Simple Java Application” on page 125.
71

CHAPTER 2 | Creating Data Models
There are no parsing errors. Artix Data Services creates instances of the
model based on your data. A green tick appears beside Transactions
in the Transactions tab to indicate that parsing has been successful.
You may now expand the Transactions node in the main window to
view all the records in the file.

Loading invalid data Try loading some invalid data to see what happens:

1. In the Transactions tab, click the (Load) icon.

2. In the Select Input File dialog:

i. Navigate to the Getting Started/Samples/B - Creating Data
Models/5 - Adding Validation Rules folder.

ii. Select Transactions_invalid.txt.

iii. Click Open.

3. Click Yes on the Confirm dialog.

4. Notice that one of the Customer Details records now shows a red
(invalid) X.

5. Expand the Customer Details record that is marked with a red (invalid)
X.

6. Check the value of Amount and the value of Commission. Notice how
Amount is -500.4 and Commission is 8.

7. Click the Validation tab at the bottom of the workbench to open the
Validation window.

8. Expand the node beside the component name in the Validation
window to view the invalid records. Notice how "Commission Error" is
displayed as the error message in each case.

The Commission Check validation rule is working and validation failures are
being correctly reported against records where the value of Commission is
greater than the value of Amount * 0.08.
72

CHAPTER 3

Creating
Transformations
This chapter shows how to create transformations in the ADS
Designer. Transformations are created within projects and
consist of at least two data models that represent input and
output data. They allow users to map elements in the input
model to elements in the output model for the purposes of
transforming your data in some way. A transformation can
consist of multiple input and output models. This chapter first
describes how to create a simple transformation and then
describes how to make it more complex by adding various types
of component.

In this chapter This chapter discusses the following topics:

Creating a Simple Transformation page 74

Making Your Transformation More Complex page 87
73

CHAPTER 3 | Creating Transformations
Creating a Simple Transformation

Overview This section is designed to get you started with creating a simple
transformation called StatGen.tfd. The transformation will contain one input
model called Transactions and one output model called Statements. Its
purpose is to read in a series of Customer Details records and to produce
statement lines for various customers. After creating the simple
transformation, you can run it in the Run Wizard to test its validity and
generate Java class instances from it.

In this section This section discusses the following topics:

Note: A completed version of this transformation is supplied in the
Getting Started/Samples/C - Creating Transformations/1 - Simple
Transformation/Completed Transformation folder.

Starting to Create a Transformation page 75

Creating a Local Transformation page 78

Testing the Local Transformation in Your Main Transformation page 81

Creating a Filter page 83

Testing the Filter in Your Main Transformation page 85
74

Creating a Simple Transformation
Starting to Create a Transformation

Steps Complete the following steps to start creating a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/C -
Creating Transformations/1 - Simple Transformation

ii. Right-click the Simple Transformation folder and select New >
Transform. This opens the New Transform wizard.

3. In the Setup panel:

i. Type "StatGen" in the Transform name field.

ii. Accept the default location in the Location field.

iii. Click the Advanced button to display some optional panels.

iv. Click Next.

4. In the Select New Input Data Type panel, which allows you to add the
data model that you want to use as input for the transformation, select
the Transactions data model as follows:

i. Click the icon.

ii. In the Select New Input Data Model dialog:

iii. In the Select New Input Type dialog:

a. Navigate to My ADS Projects/Getting Started/Samples/C
- Creating Transformations.

b. Select Transactions.dod.

c. Click OK.

a. Expand Local.

b. Expand File.

c. Select the Transactions complex type.

d. Click OK.
75

CHAPTER 3 | Creating Transformations
The Transactions data model (that is, the Transactions.dod file) is
added to the Select New Input Data Type panel.

5. Click Next.

6. In the Select New Output Data Type panel, which allows you to add
the data model that you want to use as output for the transformation,
select the Statements data model as follows:

i. Click the icon.

ii. In the Select New Output Data Model dialog:

iii. In the Select New Output Type dialog:

The Statements data model (that is, the statements.dod file) is now
added to the Select New Output Data Type panel.

7. Click Finish.

StatGen.tfd is created and displayed in the Project and Explorer views of
the workbench. A StatGen.tfd tab opens in the main view of the workbench.
Notice how the Transactions complex type is displayed along with its
Header, Customer Details and Row Count elements in the Inputs section of
the MAIN tab. Notice also how the StatementFile complex type is
displayed along with its Statement element in the Outputs section of the
MAIN tab.

a. Navigate to My ADS Projects/Getting Started/Samples/C
- Creating Transformations.

b. Select Statements.dod.

c. Click OK.

a. Expand Local.

b. Expand the StatementFile complex type.

c. Click OK.
76

Creating a Simple Transformation
Adding Target Namespace details To add target namespace details to your transformation:

1. Click the StatGen.tfd file in the Explorer window. The properties for
the transformation are displayed in the Properties window.

2. In the General section of the Properties window, set the value for
Target Namespace to:
http://www.progress.com/ArtixDataServices/GettingStarted/

Transform

3. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.
77

CHAPTER 3 | Creating Transformations
Creating a Local Transformation

Overview A transformation is made functional by adding functions to it. This is done
by creating a local transformation that is contained within the main
transformation. The local transformation represents an individual operation
and encapsulates functionality that can be reused within the main
transformation, to cause an iterative loop effect. Therefore, elements with a
cardinality of more than 1 (that is, elements of which there can be multiple
instances) must be mapped within a local transformation so that they can
be handled correctly. Local transformations work in exactly the same way as
other transformations. This section describes how to add a local
transformation called Record to StmtLine within your main StatGen
transformation.

Adding a local transformation Complete the following steps to add a local transformation within your main
transformation:

1. Expand Statement in the Outputs section to display its three
sub-elements.

2. Click Customer Details in the Inputs section to highlight it.

3. Click Customer Details again and drag and drop it to the StmtLine in
the Outputs section.

4. The following warning is displayed:

5. Click OK.

This creates a Customer Details To StmtLine local transformation and
opens it in a new tab (with a icon beside its name) within the

The translation requires a mapping between two different complex
types. Would you like to create a local transform and proceed with
the mapping?
78

Creating a Simple Transformation
StatGen.tfd tab. The new local transformation has Customer Details
as its input parameter and StatementLine as its output parameter.

Mapping input "Name" to output
"PostingNarrative"

In this example, you want the name in each Customer Details record to be
displayed as a posting narrative in your output statements. You, therefore,
need to map Name in your input model to PostingNarrative in your output
model. To do this:

1. Click the Record to StmtLine tab to reopen it.

2. In the Inputs section, select Name and drag and drop it to
PostingNarrative in the Outputs section.

An arrow appears and goes from Name to PostingNarrative. This
arrow indicates that there is a mapping between these two elements.

Mapping input "Amount" to output
"TxAmount"

In this case, you also want the amount in each Customer Details record to
be displayed as a transaction amount in your output statements. You
therefore need to map Amount in your input model to TxAmount in your
output model. To do this:

1. In the Inputs section, click Amount and drag and drop it to TxAmount
in the Outputs section.

2. The following message appears:

This message indicates that you cannot set up a straightforward
mapping between Amount and TxAmount because they are not of the
same type—one is a double and the other is a float.

Note: For the purposes of this example, rename the local transformation
to Record to StmtLine. To do this, click the MAIN tab, right-click the local
transformation in the ALL section, select Rename. Type "Record to
StmtLine" and click OK. The new name is automatically reflected in the
local transformation and its corresponding tab.

The translation requires a narrowing of the valid range of numbers.
Would you like to create a CAST function and proceed with the
mapping?

Note: The reason why you could set up a direct mapping between
Name and PostingNarrative is because they are both strings.
79

CHAPTER 3 | Creating Transformations
3. Click OK.

A CAST function that forces a compatible mapping between the Amount
double type and the TxAmount float type is created. It is displayed in
the ALL section of the Record to StmtLine tab. Amount is connected to
Arg1 in the CAST function, and Result in the CAST function connected
to TxAmount.

4. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the transformation.
80

Creating a Simple Transformation
Testing the Local Transformation in Your Main Transformation

Overview Now that you have set up a local transformation and its associated functions
and mappings, you can check to see how it has made your main
transformation more functional.

Running the transformation Complete the following steps to run the transformation and view its results:

1. Click the MAIN tab. Notice that:

♦ The Record to StmtLine local transformation is displayed in the
ALL section.

♦ Customer Details in the Inputs section is connected to Customer
Details in the local transformation.

♦ StatementLine in the local transformation is connected to
StmtLine in the Outputs section.

2. In the Explorer window, right-click StatGen.tfd and select Run
Component.

3. In the Run Wizard dialog:

i. The Name field defaults to the name of the selected component.

ii. The Target field defaults to the path location of the selected
transformation.

iii. The Build Before Running check box is checked by default.

4. Accept all the default values and click Run.

5. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

6. A StatGen tab opens within the StatGen.tfd tab. This tab will show
the results of running your transformation. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run StatGen tab has been
created.

7. Click the (Load) icon in the Inputs section.
81

CHAPTER 3 | Creating Transformations
8. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/C - Creating
Transformations folder.

ii. Select Transactions.txt.

iii. Click Open.

iv. In the Confirm dialog, click Yes.

This loads the relevant data records into your input model.

9. Expand Transactions in the Inputs section to view the various
Customer Details records that form your input. Notice how an arrow
is mapped from each CustomerDetails record to Customer Details in
the Record to StmtLine local transformation.

10. Click the (Perform Transformation) icon on the toolbar.

This sets up a connection between StatementLine in the Record to
StmtLine local transformation and the output model. Relevant data
from the input model is automatically loaded in the output model.

In this case, expand StatementFile and Statement and you will see
seven StmtLine records corresponding to the seven CustomerDetails
records in the Inputs section.

11. Expand each StmtLine record and you will see that it includes values
for TxAmount and PostingNarrative. This proves that your local
transformation is working correctly. It has produced the expected
results.

Note: The errors being reported in the Outputs section are validation
errors. These are due to the fact that various other mandatory elements
(that is, elements with a cardinality of 1) within StatementFile are not
currently being mapped. Ignore these validation errors for the purposes of
this demonstration.
82

Creating a Simple Transformation
Creating a Filter

Overview Suppose that you want to produce statement lines for only one particular
customer rather than all customers. In this case, you can add a filter to your
transformation to filter out any Customer Details records that you are not
interested in. For the purposes of this example, let’s assume that you now
only want to produce statement lines for the customer Mr. Scrooge.

Starting to create a filter Complete the following steps to start creating a filter within your main
transformation:

1. Click the Design tab.

2. Click the MAIN tab to reopen the transformation.

3. Click the arrow that is between the Inputs section and the local
transformation, to highlight it.

4. Right-click the highlighted arrow and select Add Filter from the context
menu. This opens a Filter Customer Details tab for the filter (with a

 icon beside its name) within the StatGen.tfd tab.

Notice how the Inputs section of the filter tab is populated with the
relevant input type. Notice also how it is automatically mapped to the
Value pane in the Outputs section.

5. Rename the filter to JustScrooge as follows:

i. Click the MAIN tab.

ii. Right-click the filter in the ALL section and select Rename.

iii. Type "JustScrooge" and click OK.

The new name is automatically reflected in the filter and its
corresponding tab.

Note: The Outputs section for a filter is divided into a Condition
pane and a Value pane. The purpose of these is demonstrated in the
rest of this section. You cannot add output models to filters.
83

CHAPTER 3 | Creating Transformations
Adding the EQUALS function to
your filter

You now need to specify the logic of the filter that you want to implement.
For this example, use a logic function called EQUALS. Complete the following
steps to add the EQUALS function to your filter:

1. Click the JustScrooge tab to reopen it.

2. In the ALL section, right-click and select New > Function.

3. In the New Function dialog:

i. Expand Logic.

ii. Select EQUALS.

iii. Click OK.

The EQUALS function is now displayed in the ALL section.

4. Connect Name in the Inputs section to Arg1 in the EQUALS function.

An arrow goes from Name to Arg1, and Arg1 is now displayed in black.

5. Right-click Arg2 in the EQUALS function and select Set Constant Value
from the context menu.

6. In the Set Constant Value dialog:

i. Type "Mr Scrooge" in the text box.

ii. Click OK.

Mr Scrooge is now displayed in the ALL section as a constant value for
Arg2.

7. Connect Result in the EQUALS function to boolean in the Condition part
of the Outputs section.

An arrow goes from Result to boolean, and Result is now displayed in
black.

8. Select File > Save All from the menu bar, or click the icon on the
toolbar.
84

Creating a Simple Transformation
Testing the Filter in Your Main Transformation

Overview Now that you have set up a filter and its associated functions and mappings,
you can check to see what difference it makes to your transformation.

Mapping main inputs and outputs When you set up a filter, it is displayed in the ALL section of your main
transformation. Click the MAIN tab and you will see that the JustScrooge
filter is displayed in the ALL section, with Customer Details as its input
parameter and Value as its output parameter.

Notice how Customer Details in the Inputs section now maps to Customer
Details in the JustScrooge filter. Notice also how Value in the
JustScrooge filter maps to Customer Details in the Record to StmtLine
local transformation.

Running the transformation You can now run your transformation to see the results that the new filter
produces. To do this:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component.

2. In the Run Wizard dialog:

i. The Name field automatically defaults to the name of the selected
component; in this case, StatGen.

ii. The Target field defaults to the path location of the selected
transformation.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

A StatGen tab opens within the StatGen.tfd tab. This tab shows the
results of running your transformation. The relevant data records are
automatically reloaded into your input model.

Note: You can move components around and change their position in the
ALL section if you want. Simply click the name of a component in the ALL
section and drag your mouse while holding the left mouse key. The
component moves position accordingly.
85

CHAPTER 3 | Creating Transformations
3. Expand Transactions in the Inputs section to view the various
Customer Details records that form your input. Notice how an arrow
goes from each CustomerDetails record to Customer Details in the
JustScrooge filter.

4. Relevant data from the input model is automatically loaded in the
output model:

i. Expand StatementFile and Statement. Notice that there is only
two StmtLine records.

ii. Expand each StmtLine record and you will see that they are
based on the two CustomerDetails records for Mr Scrooge. No
StmtLine records have been produced for any other customer.
This proves that your newly added filter is working correctly. It
has produced the expected results.

You have now successfully created a simple transformation that includes
both a local transformation and a filter with associated functions and
mappings. The next section looks at how you can make your transformation
more complex by adding more models and components to it.

Note: Again, the errors being reported in the Outputs section are
validation errors due to the fact that various other mandatory elements
(that is, elements with a cardinality of 1) within StatementFile are not
currently being mapped to. Ignore these validation errors for the purposes
of this demonstration.
86

Making Your Transformation More Complex
Making Your Transformation More Complex

Overview This section expands on what you learned in the previous section. It shows
how you can make your transformation more complex by adding various
other components to it.

In this section This section discusses the following topics:

Before You Continue page 88

Adding More Input Models to Your Main Transformation page 90

Adding Local Transformations page 92

Adding Functions page 95

Adding Nested Local Transformations page 100

Adding Hash Tables page 108

Adding Filters page 112

Adding Java Methods page 118

Adding Introspect Functions page 122
87

CHAPTER 3 | Creating Transformations
Before You Continue

Overview Some of the features and components in the simple transformation that you
created in the previous section, “Creating a Simple Transformation” on
page 74, are not relevant to the more complex example. To make your
transformation suitable for continuing with the complex example, you need
to make various adjustments to the transformation. These modifications are
a good way of showing you how you can modify a transformation.

Delete the JustScrooge filter The JustScrooge filter is not a relevant feature of the more complex
demonstration. Delete the JustScrooge filter as follows:

1. Click the Design tab.

2. Click the MAIN tab.

3. Right-click the JustScrooge filter and select Delete.

4. In the Confirm Delete dialog, click OK.

5. In the Confirm Component Delete dialog, click Yes.

The filter and its associated mappings are deleted from the MAIN tab.

Delete the CAST function The CAST function is not a relevant feature of the Record to StmtLine local
transformation in the more complex demonstration. Delete the CAST function
from the Record to StmtLine local transformation as follows:

1. Click the Record to StmtLine tab.

2. Right-click the CAST function and select Delete.

3. In the Confirm Delete dialog, click OK.

The function and its associated mappings are deleted from the Record
to StmtLine tab.

Note: Notice how Customer Details in the Record to StmtLine local
transformation is now displayed in red, because you have removed its
corresponding input mapping.
88

Making Your Transformation More Complex
Delete the mapping between
Name and PostingNarrative

The mapping between Name and PostingNarrative is not a relevant feature
of the Record to StmtLine local transformation in the more complex
demonstration. Delete the mapping between Name and PostingNarrative
from the Record to StmtLine local transformation as follows:

1. Click the Record to StmtLine tab.

2. Right-click the mapping between Name and PostingNarrative, and
select Delete.

3. In the Confirm Delete dialog, click OK.

The connection between Name and PostingNarrative is deleted from
the Record to StmtLine tab.
89

CHAPTER 3 | Creating Transformations
Adding More Input Models to Your Main Transformation

Overview The main StatGen transformation already contains one input model called
Transactions. Making it more complex by adding two more input models—
Customers and Accounts.

Steps Complete the following steps to add the additional input models:

1. Click the MAIN tab.

2. In the Inputs section, click the (Global Input) icon.

3. In the Select New Input Data Model dialog:

i. Navigate to My ADS Projects/Getting Started/Samples/C -
Creating Transformations.

ii. Select Customers.dod and click OK.

4. In the Select New Input Type dialog:

i. Expand Local.

ii. Select the Customers File complex type, and click OK.

The Customers data model is now added as part of your input for the
transformation, and the Customers File complex type is displayed
along with its Customer element in the Inputs section of the MAIN tab.

5. In the Inputs section, click the (Global Input) icon.

6. In the Select New Input Data Model dialog:

i. Navigate to My ADS Projects/Getting Started/Samples/C -
Creating Transformations.

ii. Select Accounts.dod and click OK.

7. In the Select New Input Type dialog:

i. Expand Local.

ii. Select the Accounts File complex type, and click OK.

Note: Before you continue, ensure that you have created all data models
as instructured in chapter 2 of this guide.
90

Making Your Transformation More Complex
The Accounts data model is added as part of your input for the
transformation, and the Accounts File complex type is displayed
along with its Account element in the Inputs section of the MAIN tab.

8. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the transformation.

You now have three input models and one output model in your
transformation. As it stands, however, the transformation is not very
functional. The next step is to add a new local transformation to it.
91

CHAPTER 3 | Creating Transformations
Adding Local Transformations

Overview The simple demonstration has already shown you how to create a local
transformation called Record to StmtLine. For the purposes of this more
complex demonstration, you now need to create another local
transformation called AccountTxns to Statement.

Automatically adding the new
local transformation

Complete the following steps to add a local transformation within your main
transformation:

1. Click the MAIN tab.

2. Connect Account (under Accounts File) in the Inputs section to
Statement in the Outputs section.

A Warning dialog displays the following text:

3. Click OK to create the local transformation.

This creates an Account To Statement local transformation which is
automatically opened in a new tab (with a icon beside its name)
within the StatGen.tfd tab. The local transformation has Account as its
input parameter and Statement as its output parameter.

The translation requires a mapping between two different complex
types. Would you like to create a local transform and proceed with
the mapping?

Note: For the purposes of this example, rename the local transformation
to AccountTxns to Statement. To do this, click the MAIN tab, right-click
the Account To Statement local transformation in the ALL section, select
Rename, type "AccountTxns to Statement" and click OK. The new name is
automatically reflected in the local transformation and its corresponding
tab.
92

Making Your Transformation More Complex
Adding more input models to the
new local transformation

Add two more input models to the AccountTxns to Statement local
transformation as follows:

1. Click the AccountTxns to Statement tab to open it.

2. In the Inputs section, click the (Local Input) icon (Alternatively,
right-click in the ALL section and select New > Local Input.)

3. In the Add input dialog, select Transactions and click OK.

4. In the Select New Input Path dialog, select Transactions and click OK.
This displays the Transactions complex type along with its Header,
Customer Details and Row Count elements in the Inputs section of the
AccountTxns to Statement tab.

5. In the Inputs section, click the (Local Input) icon.

6. In the Add input dialog, select Customers File and click OK.

7. In the Select New Input Path dialog, select Customers File and click
OK. This displays the Customers File complex type along with its
Customer element in the Inputs section of the AccountTxns to
Statement tab.

Setting up main mappings to the
new local transformation

When a local transformation contains only one input and output model, the
ADS Designer automatically handles the mapping between inputs and
outputs for you in the MAIN tab. However, when you add additional input or
output models to a local transformation, you must manually set up the
additional mappings. For the purposes of this example:

1. Click the MAIN tab.

2. Connect Transactions in the Inputs section to Transactions in the
AccountTxns to Statement local transformation. This displays a second
arrow going from the Inputs section to the new local transformation,
and Transactions in the local transformation is displayed in black.

Note: Function parameters are displayed in red to warn you that
they have no associated mapping. When you establish a mapping for
a function parameter, it is then displayed in black.
93

CHAPTER 3 | Creating Transformations
3. Connect Customers File in the Inputs section to Customers File in the
AccountTxns to Statement local transformation. This displays a third
arrow going from the Inputs section to the local transformation, and
Customers File in the local transformation is now displayed in black.

4. Select File > Save > Save Tab As.

5. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder and double-click 2 - Adding
Local Transformations.

iii. Click Save.

This saves the updated transformation into the 2 - Adding Local
Transformations folder.

At this point, your transformation is not very functional. You need to add
some functions to it. See “Adding Functions” on page 95 for more details.
94

Making Your Transformation More Complex
Adding Functions

Overview Transformations are built up from functions that are chained together to
convert one or more values from the input model to a node in the output
model. The elements in an input model are translated to that of the output
model. These elements are not always compatible and must therefore be
cast or modified by the use of functions to ensure compatibility.

The purpose of this demonstration is to show how you can use NOW and
CONVERTDATE functions to determine the statement date node in the output
model. In this demonstration, the CONVERTDATE function is used to translate
the generic date that is derived from the NOW function to the ISO8601
statement date node in the output model.

Starting to create functions Complete the following steps to start creating functions within your existing
transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to My ADS Projects/Getting Started/Samples/C -
Creating Transformations/2 - Adding Local Transformations

ii. Right-click the StatGen.tfd file and select Open Selected.

This opens the StatGen.tfd transformation in the main view of the
workbench.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid. However, you
should look out for the stmtDate node, which uses the function at this
stage.

Note: Before you continue, ensure that you have completed the
instructions in “Adding Local Transformations” on page 92.
95

CHAPTER 3 | Creating Transformations
Mapping input "OpeningBalance"
to output "StartBalance"

In this case, you want the opening balance in each Account record to be
displayed as a start balance in your output statements. You therefore need
to map OpeningBalance in your Account input model to StartBalance in
your output model. To do this:

1. Click the AccountTxns to Statement tab.

2. Try to connect OpeningBalance (under Account) in the Inputs section
to StartBalance (under Hdr) in the Outputs section. In this case, you
receive the following message:

This message indicates that you cannot set up a straightforward
mapping between OpeningBalance and StartBalance because they
are not of the same type—one is a decimal and the other is a float.

3. Click OK to indicate that you want a CAST function to be created to
force a compatible mapping between OpeningBalance and
StartBalance.

The CAST function is automatically displayed in the ALL section of the
AccountTxns to Statement tab, with OpeningBalance in the Inputs
section connected to Arg1 in the CAST function, and Result in the CAST
function connected to StartBalance in the Outputs section.

Mapping input "ClosingBalance"
to output "EndBalance"

You also want the closing balance in each Account record to be displayed as
an end balance in your output statements. You therefore need to map
ClosingBalance in your Account input model to EndBalance in your output
model. To do this:

1. Click the AccountTxns to Statement tab.

2. Try to connect ClosingBalance (under Account) in the Inputs section to
EndBalance (under Tlr) in the Outputs section. In this case, you
receive the following message:

The translation requires a narrowing of the valid range of numbers.
Would you like to create a CAST function and proceed with the
mapping?

The translation requires a narrowing of the valid range of numbers.
Would you like to create a CAST function and proceed with the
mapping?
96

Making Your Transformation More Complex
This message indicates that you cannot set up a straightforward
mapping between ClosingBalance and EndBalance because they are
not of the same type—one is a decimal and the other is a float.

3. Click OK.

The CAST function is displayed in the ALL section of the AccountTxns
to Statement tab, with ClosingBalance in the Inputs section
connected to Arg1 in the CAST function, and Result in the CAST
function connected to EndBalance in the Outputs section.

Creating NOW and
CONVERTDATE functions

Next create an operation to assign the current date to the statement date.
Start by creating a date function called NOW as follows:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Function.

3. In the New Function dialog:

i. Expand Date & Time.

ii. Select NOW.

iii. Click OK.

The NOW function is displayed in the ALL section.

4. Try to connect Result in the NOW function to StmtDate in the Outputs
section. The following message is displayed:

This message indicates that the NOW function returns a Generic date
that is incompatible with the StmtDate type.

5. Click OK to indicate that you want the CONVERTDATE function to be
automatically created.

The CONVERTDATE function is created and displays in the ALL section of
the AccountTxns to Statement tab, with Result in the NOW function
connected to Arg1 in the CONVERTDATE function, and Result in the
CONVERTDATE function connected to StmtDate in the Outputs section.

The translation requires a change to the type of date. Would you like
to create a CONVERTDATE function and proceed with the mapping?

Note: In this case, the StmtDate is an ISO8601 type of date.
97

CHAPTER 3 | Creating Transformations
This ensures that the correct ISO8601 type is returned as the statement
date.

Creating the ADD function Next create an operation that maps the LastStatementNo in the Account
input model to the StmtNo in the Statement output model, and increments it
by 1 in the process. Start by creating a mathematical function called ADD,
which has the LastStatementNo as its first argument and a constant value
of 1 as its second argument:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Function.

3. In the New Function dialog:

i. Expand Math.

ii. Expand Arithmetic

iii. Select ADD and click OK.

The ADD function is displayed in the ALL section.

4. Connect LastStatementNo in the Account input model to Arg1 in the
ADD function.

5. Right-click Arg2 in the ADD function and select Set Constant Value.

6. In the Set Constant Value dialog, type "1" as the constant value and
click OK. This sets Arg2 to a value of 1.

7. Try to connect Result in the ADD function to StmtNo in the Statement
output model. This raises the following error:

This message indicates that the ADD function returns a number type
that is incompatible with the StmtNo, and is prompting you to
automatically create a CAST function that converts the number derived
from the ADD function to the correct type.

8. Click OK.

The translation requires a narrowing of the valid range of numbers.
Would you like to create a CAST function and proceed with the
mapping?

Note: In this case, the StmtNo is an integer type.
98

Making Your Transformation More Complex
A CAST function is created and displayed it in the ALL section of the
AccountTxns to Statement tab, with Result in the ADD function
connected to Arg1 in the CAST function, and Result in the CAST
function connected to StmtNo in the Outputs section.

This ensures that the correct integer type is returned as the statement
number.

9. Select File > Save > Save Tab As.

10. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder.

iii. Double-click 3 - Adding Functions.

iv. Click Save.

This saves the updated transformation into the 3 - Adding Functions
folder.

You have now added various functions and mappings to successfully output
the starting balance, ending balance, statement date and statement
number. However, the transformation still needs further updating. Two more
local transformations need to be created, this time within the AccountTxns
to Statement local transformation. See “Adding Nested Local
Transformations” on page 100 for more details.
99

CHAPTER 3 | Creating Transformations
Adding Nested Local Transformations

Overview You can nest components within other components. For example, you can
nest one or more local transformations within another local transformation.
In this demonstration, you need to add two more local transformations
called Populate NameAndAddress and Record to StmtLine to the existing
AccountTxns to Statement local transformation.

Moving the "Record to StmtLine"
local transformation

Complete the following steps to move the Record to StmtLine local
transformation under AccountTxns to Statement.

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations/3 - Adding Functions folder.

ii. Right-click the StatGen.tfd file and selected Open Selected.

The StatGen.tfd transformation in the main view of the workbench.

3. Click the MAIN tab.

4. In the ALL section, right-click the Record to StmtLine local
transformation and select Delete.

5. In the Confirm Delete dialog, click OK.

6. In the Confirm Component Delete dialog, click No.

7. Click the AccountTxns to Statement tab to open it.

8. Right-click in the ALL section and select New > Transform Reference.

Note: Remember, you have already created a Record to StmtLine local
transformation as part of the simple demonstration. This now needs to be
moved, so that it becomes a nested local transformation under
AccountTxns to Statement.

Note: Before you continue, ensure that you have completed the
instructions in “Adding Functions” on page 95.
100

Making Your Transformation More Complex
9. In the New Transform Reference dialog:

i. Expand My ADS Projects/Getting Started/Samples/C -
Creating Transformations/3 - Adding Functions

ii. Click StatGen.tfd.

iii. Click OK.

10. In the Select Component dialog, select Record to StmtLine and click
OK.

This adds the Record to StmtLine local transformation to the
AccountTxns to Statement tab.

Adding SIZE and DIVIDE
functions within "AccountTxns to
Statement"

Now that the Record to StmtLine local transformation has been moved, add
functions that will allow the output from Record to StmtLine to be mapped
to the StmtPage in the Statement output model. This means that we can
take a series of individual records and use them as a collection to determine
an overall count of the records.

In this case, a SIZE function is used to take the output from Record to
StmtLine and return the size of the input list. Then a DIVIDE function takes
the size of the input list and divides it by 10, to output the correct value for
Statement Page (that is, there is 10 statement records per page). To achieve
this, complete the following steps:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Function.

3. In the New Function dialog:

i. Expand Collections.

ii. Select SIZE.

iii. Click OK.

The SIZE function is displayed in the ALL section.

4. In the ALL section, right-click and select New > Function.

5. In the New Function dialog:

i. Expand Math.

ii. Expand Arithmetic.

iii. Select DIVIDE and click OK.

The DIVIDE function is displayed in the ALL section.
101

CHAPTER 3 | Creating Transformations
6. Connect StatementLine in the Record to StmtLine local transformation
to Arg1 in the SIZE function.

7. Connect Result in the SIZE function to Arg1 in the DIVIDE function.

8. Right-click Arg2 in the DIVIDE function and select Set Constant Value
from the context menu.

9. In the Set Constant Value dialog, type "10" in the text box and click
OK.

10 is now displayed in the ALL section as a constant value for Arg2 in
DIVIDE.

10. Expand Hdr in the Statement output model.

11. Try to connect Result in the DIVIDE function to StmtPage in the
Statement output model. This raises the following error:

This message indicates that the DIVIDE function returns a number type
that is incompatible with the StmtPage, and is prompting you to create
a CAST function that will convert the number derived from the DIVIDE
function to the correct type.

12. Click OK to indicate that you want the CAST function to be
automatically created.

The CAST function is created and displayed in the ALL section of the
AccountTxns to Statement tab, with Result in the DIVIDE function
connected to Arg1 in the CAST function, and Result in the CAST
function connected to StmtPage in the Outputs section.

This ensures that the correct integer type is returned as the statement
page.

The translation requires a narrowing of the valid range of numbers.
Would you like to create a CAST function and proceed with the
mapping?

Note: In this case, the StmtPage is an integer type.
102

Making Your Transformation More Complex
Adding functions within "Record
to StmtLine"

Complete the following steps to add functions within the Record to
StmtLine local transformation:

1. Click the Record to StmtLine tab to open it.

2. In the ALL section, right-click and select New > Function.

3. In the New Function dialog:

i. Expand Date & Time.

ii. Select CONVERTDATE

iii. Click OK.

4. In the Select Return Type dialog:

i. Expand Date & Time.

ii. Select ISO8601 date.

iii. Click OK.

The CONVERTDATE function is displayed in the ALL section of the
Record to StmtLine tab.

5. Connect Transaction Date in the Inputs section to Arg1 in the
CONVERTDATE function. This displays an arrow going from Transaction
Date to Arg1, and Arg1 is displayed in black.

6. Connect Result in the CONVERTDATE function to both PostingDate and
ValueDate in the Outputs section. This displays arrows going from
Result to both PostingDate and ValueDate, and Result is now
displayed in black.

7. In the ALL section of the Record to StmtLine tab, right-click and select
New > Function.

8. In the New Function dialog:

i. Expand Logic.

ii. Select GREATERTHAN

iii. Click OK.

The GREATERTHAN function is now displayed in the ALL section of the
Record to StmtLine tab.

9. Connect Amount in the Inputs section to Arg1 in the GREATERTHAN
function. This displays an arrow going from Amount to Arg1, and Arg1
is now displayed in black.
103

CHAPTER 3 | Creating Transformations
10. Right-click Arg2 in the GREATERTHAN function and select Set Constant
Value from the context menu.

11. In the Set Constant Value dialog, type "0" in the text box and click OK.
0 is now displayed in the ALL section as a constant value for Arg2.

12. In the ALL section of the Record to StmtLine tab, right-click and select
New > Function.

13. In the New Function dialog, expand Logic, select IF and click OK.

14. In the Select Return Type dialog, you can choose the type you want
the IF function to return, expand Text, select String and click OK.

The IF function is now displayed in the ALL section of the Record to
StmtLine tab and is set to return a string type.

15. Connect Result in the GREATERTHAN function to Condition in the IF
function. This displays an arrow going from Result to Condition, and
Condition is now displayed in black.

16. Right-click WhenTrue in the IF function and select Set Constant Value
from the context menu.

17. In the Set Constant Value dialog, type "DR" in the text box and click
OK. DR is now displayed in the ALL section as a constant value for
WhenTrue.

18. Right-click WhenFalse in the IF function and select Set Constant
Value from the context menu.

19. In the Set Constant Value dialog, type "CR" in the text box and click
OK. CR is now displayed in the ALL section as a constant value for
WhenFalse.

20. Connect Result in the IF function to DrCr in the Outputs section. This
displays an arrow going from Result to DrCr, and Result is now
displayed in black.

21. Connect Amount in the Inputs section to TxAmount in the Outputs
section. This automatically prompts you to set up a CAST function
between the two types. Click OK to add the CAST function.

22. Connect Currency in the Inputs section to the Ccy attribute of
TxAmount in the Outputs section. This displays an arrow going from
Currency to Ccy.

23. Click the AccountTxns to Statement tab to open it.
104

Making Your Transformation More Complex
24. Connect Customer Details (under Transactions) in the Inputs section to
Customer Details in the Record to StmtLine local transformation.

25. Connect StatementLine in the Record to StmtLine local transformation
to StmtLine in the Outputs section.

Creating a "Populate
NameAndAddress" local
transformation

Complete the following steps to create a Populate NameAndAddress local
transformation under AccountTxns to Statement:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Local Transform.

3. In the New Local Transform dialog, type "Populate NameAndAddress"
in the text box and click OK. A Populate NameAndAddress tab (with a

 icon beside its name) opens within the StatGen.tfd tab.

4. In the Inputs section of the Populate NameAndAddress tab, click the
 (Local Input) icon.

5. In the Add Input dialog, select Customers File and click OK.

6. In the Select New Input Path dialog, select Customer and click OK.
This displays the Customer complex type and its elements in the Inputs
section of the Populate NameAndAddress tab.

7. In the Outputs section of the Populate NameAndAddress tab, click the
 (Local Output) icon.

8. In the Select New Output Path dialog:

i. Expand Hdr.

ii. Select NameAddress.

iii. Click OK.

This displays the PostalAddress1 complex type and its elements in the
Outputs section of the Populate NameAndAddress tab.

Adding functions within "Populate
NameAndAddress"

Complete the following steps to add functions to the "Populate
NameAndAddress" local transformation:

1. Click the Populate NameAndAddress tab.

2. In the ALL section, right-click and select New > Function.
105

CHAPTER 3 | Creating Transformations
3. In the New Function dialog:

i. Expand Collections.

ii. Select UNION.

iii. Click OK.

The UNION function is displayed in the ALL section of the Populate
NameAndAddress tab.

4. Connect Customer Acronym in the Inputs section to Arg1 in the UNION
function. This displays an arrow going from Customer Acronym to Arg1,
and Arg1 is displayed in black.

5. Expand Address in the Inputs section and connect its constituent
AddressLine to Arg2 in the UNION function.

6. In the ALL section of the Populate NameAndAddress tab, right-click
and select New > Function.

7. In the New Function dialog:

i. Expand Collections.

ii. Select SUBLIST.

iii. Click OK.

The SUBLIST function is now displayed in the ALL section of the
Populate NameAndAddress tab.

8. Connect Result in the UNION function to List in the SUBLIST function.
This displays an arrow going from Result to List, and both
parameters are now displayed in black.

9. Right-click BeginIndex in the SUBLIST function and select Set Constant
Value from the context menu.

10. In the Set Constant Value dialog, type "0" in the text box and click OK.
0 is now displayed in the ALL section as a constant value for
BeginIndex.

11. Right-click EndIndex in the SUBLIST function and select Set Constant
Value from the context menu.

12. In the Set Constant Value dialog, type "5" in the text box and click OK.
5 is now displayed in the ALL section as a constant value for EndIndex.

13. Connect Result in the SUBLIST function to AdrLine in the Outputs
section. This displays an arrow going from Result to AdrLine, and
Result is now displayed in black.
106

Making Your Transformation More Complex
14. Connect Country Of Residence in the Inputs section to Ctry in the
Outputs section.

15. Click the AccountTxns to Statement tab to open it.

16. Connect Customer (under Customers File) in the Inputs section to
Customer in the Populate NameAndAddress local transformation.

17. Connect PostalAddress1 in the Populate NameAndAddress local
transformation to NameAddress in the Outputs section.

18. Select File > Save > Save Tab As.

19. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder.

iii. Double-click 4 - Adding Nested Local Transformations.

iv. Click Save.

This saves the updated transformation into the 4 - Adding Nested
Local Transformations folder.

Next, let’s look at adding a hash table to the transformation. See “Adding
Hash Tables” on page 108 for more details.
107

CHAPTER 3 | Creating Transformations
Adding Hash Tables

Overview The hashtable function allows you to create a hash table of values that can
be referenced by the transformation code. This is useful in cases where you
want an input string value (for example, "USD") to act as key to an output
string (for example, "US Dollar"). The hash table operates as a simple set of
one-to-one mappings. At deployment time, this structure is created as
java.util.hashtable.

This demonstration shows how you can use a currency hash table to assign
names and values to different currencies. After you create the
transformation, you deploy it and test its validity using the Run Wizard.

Creating a hash table in a
transformation

Complete the following steps to create a hash table in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations/4 - Adding Nested Local

Transformations folder

ii. Right-click the StatGen.tfd file and select Open Selected.

The StatGen.tfd transformation opens in the main view of the
workbench.

3. Click the AccountTxns to Statement tab.

4. In the ALL section, right-click and select New > Hashtable.

5. In the Hashtable dialog:

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid. However, you
should look out for the currency node which uses the hash table at this
stage.

Note: Before you continue, ensure that you have completed the
instructions in “Adding Nested Local Transformations” on page 100.
108

Making Your Transformation More Complex
6. Type "Currencies" in the Name field.

7. Add the four currencies codes and their names as shown in the table
below by clicking to add each row:

The hash table now contains four rows of data.

8. Click OK.

The Currencies hash table is displayed in the ALL section with an
invalid Arg 1 and Result.

9. Specify the mappings between the input and output models as follows:

i. Connect Currency in the Account input model to Arg 1 of the
Currencies hash table.

ii. Connect Result in the Currencies hash table to Ccy of
Startbalance (under the Hdr element) and Ccy of EndBalance
(under the Tlr element) in the Statement output model. This
displays arrows going from Result to Ccy of both StartBalance
and EndBalance.

10. Select File > Save > Save Tab As.

11. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder.

iii. Double-click 5 - Adding Hash Tables.

iv. Click Save.

This saves the updated transformation into the 5 - Adding Hash
Tables folder.

Input Output

EUR Euro

GBP British Pound

JPY Japenese Yen

USD US Dollar
109

CHAPTER 3 | Creating Transformations
Running the transformation Now try running your transformation to see the effect of the hash table on
the results produced. To do this:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component.

2. In the Run Wizard dialog:

i. The Name field automatically defaults to the name of the selected
component; in this case, StatGen.

ii. The Target field defaults to the path location of the selected
transformation.

iii. The Build Before Running check box is checked by default.

iv. Accept all of the default values and click Run.

3. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

4. A StatGen tab opens within the StatGen.tfd tab. This tab will show
the results of running your transformation. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run StatGen tab has been
created.

5. In the Transactions input tab, click the (Load) icon.

6. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/C - Creating
Transformations folder.

ii. Select Transactions.txt.

iii. Click Open.

iv. In the Confirm dialog, click Yes.

This loads the relevant data records into your input model.

7. Repeat steps 5 and 6 for the CustomersFile and AccountsFile tabs,
and load the Customers.txt file and Accounts.txt file respectively.

8. For the first record listed in the Outputs section, expand Statement,
then expand Hdr, StartBalance, and click Ccy. For the same record,
also expand Tlr, EndBalance, and click Ccy.
110

Making Your Transformation More Complex
9. Select the AccountsFile tab in the Inputs section and expand the first
Account. In this case, notice how the GBP in the Inputs section maps
to two instances of British Pound in the Outputs section.

10. For the second record listed in the Outputs section, expand Statement,
then expand Hdr, StartBalance, and click Ccy. For the same record,
also expand Tlr, EndBalance, and click Ccy.

11. Select the AccountsFile tab in the Inputs section and expand the
second Account. In this case, notice how the USD in the Inputs
section maps to two instances of US Dollar in the Outputs section.

12. Click the Design tab to reopen it.

13. Select File > Save > Save Tab As.

14. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder.

iii. Double-click 5 - Adding Hash Tables.

iv. Click Save.

This saves the updated transformation into the 5 - Adding Hash
Tables folder.

You have now added a hash table to successfully output the currency name
of input currency codes. However, the transformation still needs further
updating. Next, let’s add a filter that will allow records to be extracted in the
transaction file, using the credit card numbers that match the credit card
numbers in the accounts file. See “Adding Filters” on page 112 for more
details.
111

CHAPTER 3 | Creating Transformations
Adding Filters

Overview Filters are used to create mappings for recurring elements, so that only a
subset of a group of recurring elements is returned as part of the
transformation. A filter first examines the two fields on which a comparison
is based, discard the differences between them, perform the comparison,
and return a subset that contains the matching records. The filter does this
recursively. In Artix Data Services filters, the Inputs section expects a data
model on which the filter logic can operate. The Outputs section is divided
in two—the top section is the boolean logic, which must be true, and the
bottom section specifies what the output should be.

This section describes how you create two different filters within the
AccountTxns to Statement local transformation. First you create a
SameAccount filter to get the records in the transaction file that match the
credit card numbers in the accounts file. (The credit card format is different
between the accounts file and the transaction file, so it needs to be modified
before a comparison is made.) Then you create FindCustomerRecord filter to
find the records.

Creating the SameAccount filter Complete the following steps to create the SameAccount filter:

Complete the following steps to create a hash table in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations/5 - Adding Hash Tables folder

ii. Right-click the StatGen.tfd file and select Open Selected.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid.

Note: Before you continue, ensure that you have completed the
instructions in “Adding Hash Tables” on page 108.
112

Making Your Transformation More Complex
The StatGen.tfd transformation opens in the main view of the
workbench.

3. Click the AccountTxns to Statement tab.

4. Click the arrow that is between Customer Details (under Transactions)
in the Inputs section and Customer Details in the Record to StmtLine
local transformation. This highlights the arrow.

5. Right-click the highlighted arrow and select Add Filter from the context
menu. This opens a Filter Customer Details tab for the filter (with a

 icon beside its name) within the AccountTxns to Statement tab.

Notice how the Inputs section of the filter tab is automatically
populated with the Customer Details input type. Notice also how it is
automatically mapped to the Value pane in the Outputs section.

6. Rename the filter to SameAccount as follows:

i. Click the AcountTxns to Statement tab.

ii. Right-click the Filter Customer Details filter in the ALL section,
select Rename.

iii. Type "SameAccount".

iv. Click OK.

The new name is automatically reflected in the filter and its
corresponding tab.

7. Select the Accounts input model. It contains the second element to be
involved in the comparison.

i. Open the SameAccount tab.

ii. Click the (Local Input) icon.

iii. In the Add input dialog, select Account and click OK.

The Account complex type displays in the Inputs section of the
SameAccount filter.

Adding a REPLACEALL function
to the SameAccount filter

In the Transactions model, the card numbers include hyphens between the
numbers. In the Accounts model, the card numbers do not include any
hyphens or spaces. Because the card numbers are represented differently

Note: Customer Details will be the first input element to be involved
in the comparison.
113

CHAPTER 3 | Creating Transformations
between the two models, the elements need to be stripped of anything but
numbers so that it is possible to successfully compare them and continue
filtering records. To do this, use a text function called REPLACEALL. Complete
the following steps to create the REPLACEALL function:

1. Click the SameAccount tab.

2. In the ALL section, right-click and select New > Function.

3. In the New Function dialog, expand Text, select REPLACEALL and
click OK.

4. Connect Card Number in the Customer Details input model to String
in the REPLACEALL function. This displays an arrow going from Card
Number to String.

5. The next step is to set as a constant value what it is you want to be
replaced, which in this case is a hyphen. Right-click Regex of
REPLACEALL and select Set Constant Value.

6. In the Set Constant Value dialog, type " "-" " and click OK. This causes
"-" to be dispayed for Regex.

7. The next step is to set as a constant value what it is you want to
replace the hyphen with, which in this case is an empty string.
Right-click Replacement of REPLACEALL and select Set Constant Value.

8. In the Set Constant Value dialog, type " "" " and click OK. This causes
"" to be displayed for Replacement.

Adding an EQUALS function to the
SameAccount filter

Now that the format of the comparable elements has been made to match,
you can proceed with enabling the comparison. To do this, use a logic
function called EQUALS. Complete the following steps to create the EQUALS
function:

1. In the ALL section, right-click and select New > Function.

2. In the New Function dialog, expand Logic, select EQUALS and click
OK. The EQUALS function is displayed in the ALL section.

3. Connect Result in the REPLACEALL function to Arg1 in the EQUALS
function.

4. Connect CardNumber in the Account input model to Arg2 in the
EQUALS function.
114

Making Your Transformation More Complex
5. The result of the EQUALS function is the condition on which the filter is
based. Connect Result in the EQUALS function to the boolean element
in the Condition output pane.

If the condition is met, that transaction record will be stored in the any
element of Value Output. Notice how Customer Details in the Inputs
section is already automatically mapped to the any element in the
Value output pane. Do not adjust this.

Completing mappings for the
SameAccount filter

You are almost finished creating the filter. In the AccountTxns to Statement
local transformation, Customer Details (under Transactions) in the Inputs
section is already automatically mapped to Customer Details in the
SameAccount filter. Similarly, Value in the SameAccount filter is already
automatically mapped to Customer Details in the Record to StmtLine local
transformation.

To complete the filter mappings:

1. Connect Account in the Inputs section to Account in the SameAccount
filter.

Creating the FindCustomerRecord
filter

Follow these steps to create the FindCustomerRecord filter:

1. Click the AccountTxns to Statement tab.

2. Click the arrow that is between Customer (under Customers File) in the
Inputs section and Customer in the Populate NameAndAddress local
transformation. This highlights the arrow.

3. Right-click the highlighted arrow and select Add Filter from the context
menu. This opens a Filter Customer tab for the filter (with a icon
beside its name) within the AccountTxns to Statement tab.

Notice how the Inputs section of the filter tab is automatically
populated with the Customer input type. Notice also how it is
automatically mapped to the Value pane in the Outputs section.

Note: The SameAccount filter represents an individual statement line in
the statement model.

Note: Customer is the first input element to be involved in the
comparison.
115

CHAPTER 3 | Creating Transformations
4. Rename the filter to FindCustomerRecord as follows:

i. Click the AcountTxns to Statement tab.

ii. Rght-click the Filter Customer filter in the ALL section and select
Rename.

iii. Type "FindCustomerRecord" and click OK.

The new name is automatically reflected in the filter and its
corresponding tab.

5. Now select the Accounts input model. It contains the second element
to be involved in the comparison.

i. Open the FindCustomerRecord tab.

ii. Click the (Local Input) icon.

iii. In the Add input dialog, select Account and click OK.

The Account complex type is displayed in the Inputs section of the
FindCustomerRecord filter.

Adding an EQUALS function to the
FindCustomerRecord filter

To enable the comparison between the two input models, use a logic
function called EQUALS. Complete the following steps to create the EQUALS
function:

1. In the ALL section, right-click and select New > Function.

2. In the New Function dialog, expand Logic, select EQUALS and click
OK. The EQUALS function is displayed in the ALL section.

3. Connect Customer Number in the Customer input model to Arg1 in the
EQUALS function.

4. Connect Customer in the Account input model to Arg2 in the EQUALS
function.

5. The result of the EQUALS function is the condition on which the filter is
based. Connect Result in the EQUALS function to the boolean element
in the Condition output pane.

If the condition is met, that customer record will be stored in the any
element of Value output. Notice how Customer in the Inputs section is
already automatically mapped to the any element in the Value output
pane. Do not adjust this.
116

Making Your Transformation More Complex
Completing mappings for the
FindCustomerRecord filter

You are almost finished creating the filter. In the AccountTxns to Statement
local transformation, Customer (under Customers File) in the Inputs section
is already automatically mapped to Customer in the FindCustomerRecord
filter. Similarly, Value in the FindCustomerRecord filter is already
automatically mapped to Customer in the Populate NameAndAddress local
transformation.

To complete the filter mappings:

1. Connect Account in the Inputs section to Account in the
FindCustomerRecord filter.

2. Select File > Save > Save Tab As.

3. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder.

iii. Double-click 6 - Adding Filters.

iv. Click Save.

This saves the updated transformation into the 6 - Adding Filters
folder.
117

CHAPTER 3 | Creating Transformations
Adding Java Methods

Overview Java methods can be used to write new methods that will be embedded in
the class representing the transformation in deployment time.

The purpose of this demonstration is to show you how to use a Java method
to look up a transaction from a vendor and assign it to a vendorID. The
input parameter type is defined as long, because the vendor ID that is
passed in is of type long. The return type is a string, so that it can be
displayed as such in the output model.

Steps Complete the following steps to use Java methods in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations/6 - Adding Filters folder.

ii. Right-click the StatGen.tfd file and select Open Selected.

This opens the StatGen.tfd transformation in the main view of the
workbench.

3. Click the Record to StmtLine tab.

4. Right-click in the ALL section of the Record to StmtLine local
transformation and select New > Java Method.

5. In the Java Method dialog:

i. Click the Signature tab.

ii. Type "CreateNarrative" in the Method Name field.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid.

Note: Before you continue, ensure that you have completed the
instructions in “Adding Filters” on page 112.
118

Making Your Transformation More Complex
iii. In the Parameters section, click the icon to add a new
parameter row.

iv. Type "vendorID" in the Name column.

v. Click anyType in the Type column.

6. In the Select Argument Type dialog:

i. Expand Numeric.

ii. Select long.

iii. Click OK.

iv. In the Return Type section, click Select.

7. In the Select Return Type dialog:

i. Expand Text, select String and click OK.

8. In the Java Method dialog, click the Code tab.

9. In the Code tab, the method declaration is displayed. Complete it as
follows:

i. In the main text box area, beside 1, type return "Transaction
from vendor:"+vendorID;

ii. Click OK.

The CreateNarrative method is displayed in the ALL section of the
Record to StmtLine tab.

10. Connect Vendor ID in the Customer Details input model to vendorID in
the CreateNarrative method.

11. Connect Result in the CreateNarrative method to PostingNarrative
under the StatementLine element in the Statement output model.

12. Select File > Save> Save Tab As.

13. In the Save dialog:

i. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations/7 - Adding Java Methods folder.

ii. Click Save to save your changes to the StatGen.tfd file.
119

CHAPTER 3 | Creating Transformations
Running the transformation Now run your transformation to see the effect of the Java method on the
results:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component.

2. In the Run Wizard dialog:

i. The Name field defaults to the name of the slected component; in
this case, StatGen.

ii. The Target field defaults to the path location of the selected
transformation.

iii. The Build Before Running check box is checked by default.

iv. Accept all the default values and click Run.

3. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

4. A StatGen tab opens within the StatGen.tfd tab. This tab will show
the results of running your transformation. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run StatGen tab has been
created.

5. In the Transactions input tab, click the (Load) icon.

6. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/C - Creating
Transformations folder.

ii. Select Transactions.txt.

iii. Click Open.

iv. In the Confirm dialog, click Yes.

This loads the relevant data records into your input model.

7. Repeat steps 5 and 6 for the CustomersFile and AccountsFile tabs,
and load the Customers.txt file and Accounts.txt file respectively.

An invalid StatementFile is displayed in the output section. (It is
invalid because some of the mandatory elements have not been
mapped at this stage.)
120

Making Your Transformation More Complex
8. Expand Statement and then expand StmtLine for one or all records
available. PostingNarrative should be displayed for that record.
121

CHAPTER 3 | Creating Transformations
Adding Introspect Functions

Overview This section describes how to use introspect functions in transformations.
Introspect functions return a value of the part of a complex type value that
you can then map to an output data model.

The purpose of this demonstration is to show you how you can use an
introspect function to extract country of residence from the Customer model,
and concatenate it with an account number to identify the location of a
customers account.

Steps Complete the following steps to use introspect functions in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, select File > Open Project from the
menu bar.

2. In the project tree:

i. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations/7 - Adding Java Methods folder.

ii. Right-click the StatGen.tfd file and select Open Selected.

This opens the StatGen.tfd transformation in the main view of the
workbench.

3. Click the AccountTxns to Statement tab. (Click the Design tab first if
you cannot see the AccountTxns to Statement tab.)

Note: The transformation created in this section is complete, so the
transformed statement will be valid. Look out for the Account node which
uses the introspect function at this stage.

Note: Before you continue, ensure that you have completed the
instructions in “Adding Java Methods” on page 118.
122

Making Your Transformation More Complex
4. Right-click in the ALL section and select New > Introspector.

The Introspect function is displayed in the ALL section, with Arg1 as
its input and Result as its output.

5. Connect Value in the FindCustomerRecord filter to Arg 1 in the
Introspect function.

6. Double-click on Arg 1 of Introspect.

7. In the Select Path dialog, select the Customer complex type and click
OK. This displays Customer as Arg 1 of the Introspect function.

8. Double-click on Result of Introspect.

9. In the Select Path dialog, select the Country Of Residence element
and click OK. Country Of Residence is now displayed as Result of
the Introspect function.

10. Right-click in the ALL section and select New > Function.

11. In the New Function dialog, expand Text, select CONCAT, and click
OK. The CONCAT function is displayed in the ALL section.

12. Connect Country Of Residence in the Introspect function to Arg 1 in
the CONCAT function.

13. Connect AccountNumber in the Account input model to Arg 2 in the
CONCAT function.

14. Connect Result in the CONCAT function to Account (under Hdr) in the
Statement output model.

15. Select File > Save > Save Tab As.

16. In the Save dialog:

i. Click StatGen.tfd to populate it in the File name field.

ii. Navigate to the My ADS Projects/Getting Started/Samples/C -
Creating Transformations folder.

iii. Double-click 8 - Adding Introspect Functions.

iv. Click Save.

Note: If you have not disabled tool tips, a tool tip is displayed at this
point. It will prompt you to first map the input type of the introspect
function and then double-click on it to specify the return type, which
will enable you to map its output.
123

CHAPTER 3 | Creating Transformations
This saves the updated transformation into the 8 - Adding
Introspect Functions folder.

Running the transformation Now try running your transformation to see the effect of the introspect
function on the results:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component.

2. In the Run Wizard dialog, accept all the default values and click Run.

3. In the resulting dialog box, which prompts you to load the data you
want to parse, click the icon.

4. A StatGen tab opens within the StatGen.tfd tab. This tab will show
the results of running your transformation. Notice:

i. That because you have not yet loaded any data into the object, it
is displayed in its empty state with a red X.

ii. In the Messages window, an empty Run StatGen tab has been
created.

5. In the Transactions input tab, click the (Load) icon.

6. In the Select Input File/Directory dialog:

i. Navigate to the Getting Started/Samples/C - Creating
Transformations folder.

ii. Select Transactions.txt.

iii. Click Open.

iv. In the Confirm dialog, click Yes.

This loads the relevant data records into your input model.

7. Repeat steps 5 and 6 for the CustomersFile and AccountsFile tabs,
and load the Customers.txt file and Accounts.txt file respectively.

8. Expand Statement and then expand Hdr for one or all records
available. Notice how Account is now different from what it was
before. It now has a 2-character country of residence code at the start.
124

CHAPTER 4

Creating a Simple
Java Application
This chapter demonstrates how to use Artix Data Services to
generate Java code from the sample data models and
transformations you have created in earlier chapters. It then
shows how to create and subsequently run a simple Java
application that uses the generated code to perform various
tasks.

In this chapter This chapter discusses the following topics:

Generating Java Code page 126

Writing the Application page 142

Compiling and Running the Application page 149
125

CHAPTER 4 | Creating a Simple Java Application
Generating Java Code

Overview This section describes how to use Artix Data Services to generate Java code
from the sample data models and transformations you have set up. You
have already generated Java code for these sample models and
transformations without possibly realizing it. This section takes a closer look
at how code is generated in Artix Data Services.

In this section This section discusses the following topics:

Setting Compile Options page 127

Building the Code page 131

Finding the Generated Code page 134

Sample Generated Code page 136
126

Generating Java Code
Setting Compile Options

Overview Each Artix Data Services project has at least one (default) profile. Profile
settings (that is, compile options) are sets of parameters that are used to
control various aspects of the code that Artix Data Services generates from
the data models and transformations relating to a particular project.

Setting up multiple profiles for a
project

You can set up multiple different profiles for the same project. In this case,
each profile can contain a different range of settings.

If you want to set up multiple profiles for a project:

1. Ensure that project (.iop) is open in the Project window.

2. Open the Project Properties dialog in any of the following ways:

♦ Select Edit > Project Properties from the menu bar.

♦ Right-click the project (.iop) file in the Project window and select
Project Properties from the context menu.

3. Click the Profiles icon.

4. In the Profiles panel:

i. Click the icon

ii. Specify the new profile name.

iii. Click OK.

Repeat these steps to set up as many profiles as you want for a
particular project.

Editing a particular profile To edit the settings for a particular profile:

1. Ensure the relevant project is open in the Project window.

2. Open the Profile Settings panel in any of the following ways:

♦ If the Project Properties wizard is currently open, click the Profiles
icon, click the relevant profile in the list, and then click Open.

♦ Select Edit> Profile Settings from the menu bar and select the
profile that you want to edit from the drop-down menu.
127

CHAPTER 4 | Creating a Simple Java Application
♦ Right-click the project (.iop) file in the Project window, select
Profile Settings from the context menu and select the profile that
you want to edit from the drop-down list.

3. Edit the profile settings as appropriate. See “Profile settings” for more
details.

Profile settings The Artix Data Services user guide (online help) provides full details of all of
the available profile settings. The main profile settings that relate to code
generation are:

Profile Setting Details

Directory This allows you to specify the path to the
default deployment directory where you want
generated code to be stored. The default path
is
your_default_projects_folder/Deployments.
(Your default projects folder is determined
during the installation process.) For example:

Windows
C:\Documents and Settings\username\
My Documents\My ADS Projects\Deployments

UNIX
$HOME/MyADSProjects/Deployments

You can specify an alternative directory path if
you want. For more details see “Finding the
Generated Code” on page 134.

Deploy Referenced
Files

This indicates whether the data models
associated with a transformation should
automatically be deployed with it.

This setting is enabled by default.

Clean This indicates whether the directory for your
generated source code should be automatically
cleaned before code generation starts.

This setting is disabled by default.
128

Generating Java Code
Deploy Environment This indicates the extent of the environment to
be created when generating code. If this is
disabled, only a partial deployment
environment is created consisting of Java
source files only. If this is enabled, a complete
deployment environment is created consisting
of Java source files, compiled classes, and JAR
files. An Ant build file is created per
deployment to enable Java source files to be
compiled into class files.

This setting is enabled by default.

Generate Main
Methods

This indicates whether to generate main
methods in deploy element classes for test and
demonstration purposes.

This setting is enabled by default.

Generate Deep Clone
Methods

This indicates whether to generate deep clone
methods in bean classes.

This setting is enabled by default.

See the FAQ > API section of the Artix Data
Services User Guide (online help) for more
details about bean classes.

Use Custom
Serialization

This indicates whether Artix Data Services
generates class-specific readObject() and
writeObject() methods, to provide better
serialization performance.

This setting is enabled by default.

Use Lazy Initialization This indicates whether Artix Data Services will
deploy code that will only initialize the
singleton type hierarchy as and when it is
required, rather than at the point of
instantiating the root.

This setting is enabled by default.

Profile Setting Details
129

http://www.iona.com/support/docs/artix/data_services/3.9/user_guide/user_guide.pdf

CHAPTER 4 | Creating a Simple Java Application
Generate Bean Class This indicates whether to generate specialized
subclasses of the API class
ComplexDataObject. These subclasses provide
type-safe get and set methods with return
values and arguments respectively,
corresponding to the appropriate child element
types.

This setting is enabled by default.

See the FAQ > API section of the Artix Data
Services User Guide (online help) for more
details about bean classes.

Maximum Memory
Size

This specifies the maximum size of the memory
used for the underlying virtual machine (VM) in
Ant build files.

The default is set to 512 MB.

Profile Setting Details
130

http://www.iona.com/support/docs/artix/data_services/3.9/user_guide/user_guide.pdf

Generating Java Code
Building the Code

Overview After you have set up the profile settings you want to work with, you can use
Artix Data Services to build (generate) the Java code for your data models
and transformations. You can choose to build code for a data model while
parsing the model or without parsing it. Similarly, you can choose to build
code for a transformation while running the transformation or without
running it.

Generating code for a model while
parsing the model

To build code for a data model while parsing the model:

1. Ensure the relevant model is open (displayed) in the Explorer window.

2. Open the Run Wizard dialog in either of the following ways:

♦ Right-click the model component (element) that you want to
parse in the Explorer window and select Run Component from
the context menu.

♦ Click the model component (element) that you want to parse in
the Explorer window and select Deploy > Run Component from
the menu bar.

3. In the Run Wizard dialog:

i. The selected component (element) name is automatically
displayed in the Name field.

ii. If you have more than one profile set up for the project, select the
profile you want to use in the Profile field.

iii. Ensure the Build Before Running check box is checked.

Note: This subsection is included for the purposes of illustration. If you
have followed the instructions in the earlier chapters of this guide, you
have already built Java code while parsing the sample models and running
the sample transformation.

Note: It is very important that you right-click the element (marked
with the symbol) rather than the complex type. Otherwise Artix
Data Services will not be able to generate a complextypeElement
class, which is necessary to allow your model to be used in code.
131

CHAPTER 4 | Creating a Simple Java Application
iv. Click Run.

The progress of the build is shown at the bottom of the screen.

Generating code for a model
without parsing the model

To build code for a data model without parsing the model:

1. Ensure the relevant model is open (displayed) in the Explorer window.

2. Do either of the following:

♦ Right-click the model (.dod) file that you want to build and select
Build Component(s) from the context menu.

♦ Click the model (.dod) file that you want to build and select
Deploy > Build Component(s) from the menu bar.

3. If you have more than one profile set up for the project, a dialog
prompts you to select the profile you want to use. Select the relevant
profile and click OK.

A Building tab is created in the Messages window and displays details of
the build.

Generating code for a transform
while running the transform

To build code for a transformation while running the transformation:

1. Ensure the relevant transformation is open (displayed) in the Explorer
window.

2. Open the Run Wizard dialog in either of the following ways:

♦ Right-click the transformation (.tfd) file in the Explorer window
and select Run Component from the context menu.

♦ Click the transformation (.tfd) file in the Explorer window and
select Deploy > Run Component from the menu bar.

3. In the Run Wizard dialog:

i. The selected transformation name is automatically displayed in
the Name field.

ii. If you have more than one profile set up for the project, select the
profile you want to use in the Profile field.

iii. Ensure the Build Before Running check box is checked

iv. Click Run.

The progress of the build is shown at the bottom of the screen.
132

Generating Java Code
Generating code for a transform
without running the transform

To build code for a transformation without running the transformation:

1. Ensure the relevant transformation is open (displayed) in the Explorer
window.

2. Do either of the following:

♦ Right-click the transformation (.tfd) file in the Explorer window
and select Build Component(s) from the context menu.

♦ Click the transformation (.tfd) file in the Explorer window and
select Deploy > Build Component(s) from the menu bar.

3. If you have more than one profile set up for the project, a dialog
prompts you to select the profile you want to use. Select the relevant
profile.

4. Click OK.

A Building tab opens in the Messages window and shows details of the
build.

Build files and the Ant Build
window

When you build code for a data model or transformation, a corresponding
XML-based build file is generated and stored in your default deployment
directory. The Ant Build window in the ADS Designer contains details of
each generated build file, to allow you to perform various build tasks (that
is, to run various Ant targets). See the Artix Data Services User Guide (online
help) for more details on the Ant Build window.

Building partial versus full
deployments

For the purposes of the demonstrations in this guide, a full deployment
environment (that is, Java source files, compiled classes and JAR file) is
built for each sample model and transformation. The Deploy Environment
profile setting determines whether only a partial (Java source files only) or
full deployment environment is built. The Deploy Environment setting is
enabled by default, to build a full deployment environment.

Note: Enabling the Deploy Environment setting does not automatically
build Javadoc. If you want to use the ADS Designer to build Javadoc, you
must do so via the Ant Build window.
133

http://www.iona.com/support/docs/artix/data_services/3.9/user_guide/user_guide.pdf

CHAPTER 4 | Creating a Simple Java Application
Finding the Generated Code

Overview This subsection describes how to find the generated code for your data
models and transformations. The full path to the generated code for a
particular model or transformation can be broken down as follows:

• Default deployment directory

• Source and build subfolders

• Model or transformation-specific subfolders

Default deployment directory As discussed in “Profile settings” on page 128, the default deployment
directory for your generated code is determined by the Directory profile
setting. The default path is your_default_projects_folder/Deployments.
(Your default projects folder is determined during the installation process.)
For example:

Windows
C:\Documents and Settings\username\My Documents\My ADS Projects\

Deployments

UNIX
$HOME/MyADSProjects/Deployments

Source and build subfolders The Java source files, compiled classes and JAR files for all your models and
transformations can be found in the following subdirectories of your default
deployment directory:

Model or transformation-specific
subfolders

The Java source files and compiled classes for a particular model or
transformation are stored under further subdirectories that are derived from
the namespace for that model or transformation.

/src/java This contains generated Java source files.

/build/classes This contains compiled classes.

/build/libs This contains JAR files.

Note: The namespace for a model or transformation is specified via the
Target Namespace property in the Properties window.
134

Generating Java Code
For example, the following is the namespace and corresponding subfolder
path for each of the sample models and transformations in this guide:

So, for example, the Java source files for the Accounts data model can be
found under your
default_deployment_directory/src/java/com/progress/artixdataservi

ces/gettingstarted/account. Similarly, the compiled classes for the
Statements data model can be found under your
default_deployment_directory/build/classes/com/progress/artixdata

services/training/statements.

JAR and build filenames All JAR and build filenames are also derived from the namespace for the
corresponding model or transformation. For example, the JAR filename for
the Accounts data model is under your
default_deployment_directory/build/libs and is called
com.progress.artixdataservices.gettingstarted.account.jar.
Similarly, the build file for the Accounts data model is in your default
deployment directory and is called
build-com.progress.artixdataservices.gettingstarted.account.xml.

Model/
Transformation

Namespace Subfolder Path

Accounts.dod http://www.progress.com/ArtixDataServ
ices/GettingStarted/Account

/com/progress/artixdataservices/
gettingstarted/account

Transactions.dod http://www.progress.com/ArtixDataServ
ices/GettingStarted/Transaction

/com/progress/artixdataservices/
gettingstarted/transaction

Customers.dod http://www.progress.com/ArtixDataServ
ices/GettingStarted/Customer

/com/progress/artixdataservices/
gettingstarted/customer

Statements.dod http://www.progress.com/ArtixDataServ
ices/Training/Statements

/com/progress/artixdataservices/
training/statements

StatGen.tfd http://www.progress.com/ArtixDataServ
ices/GettingStarted/Transform

/com/progress/artixdataservices/
gettingstarted/transform
135

CHAPTER 4 | Creating a Simple Java Application
Sample Generated Code

Overview This subsection provides a listing of the compiled Java classes that are built
for the sample models and transformation in this demonstration.

Compiled classes for Accounts
data model

The compiled classes for the sample Accounts data model can be found in
default_deployment_directory/build/classes/com/progress/artixdata

services/gettingstarted/account. The compiled classes can be described
as follows:

• The AccountsFile class contains constructors for creating objects of
the AccountsFile complex type. It also contains methods for adding
and removing Account child elements.

• The AccountsFileClass class gets an instance of an AccountsFile
object and initializes it.

• The AccountsFileElement class contains constructors for creating
instances of AccountsFile objects. It also contains a method for
reading in a file, parsing and validating it, and printing the results to
standard output.

• The Account class contains constructors for creating objects of the
Account complex type. It also contains methods for adding and
removing its various child elements.

• The AccountClass class gets an instance of an Account object and
initializes it.

• The AccountsDataModel class gets an instance of the Accounts data
model and initializes it.

• Each of the remaining classes represent a particular simple type and
gets an instance of an object of that type and initializes it.
136

Generating Java Code
Compiled classes for Customers
data model

The compiled classes for the sample Customers data model can be found
under
default_deployment_directory/build/classes/com/progress/artixdata

services/

gettingstarted/customer. The compiled classes can be described as
follows:

• The CustomersFile class contains constructors for creating objects of
the CustomersFile complex type. It also contains methods for adding
and removing Customer child elements.

• The CustomersFileClass class gets an instance of a CustomersFile
object and initializes it.

• The CustomersFileElement class contains constructors for creating
instances of CustomersFile objects. It also contains a method for
reading in a file, parsing and validating it, and printing the results to
standard output.

• The Customer class contains constructors for creating objects of the
Customer complex type. It also contains methods for adding and
removing its various child elements.

• The CustomerClass class gets an instance of a Customer object and
initializes it.

• The Address class contains constructors for creating objects of the
Address complex type. It also contains methods for adding and
removing its various child elements.

• The AddressClass class gets an instance of an Address object and
initializes it.

• The CustomersDataModel class gets an instance of the Customers data
model and initializes it.

• Each of the remaining classes pertains to a particular simple type and
gets an instance of an object of that type and initializes it.
137

CHAPTER 4 | Creating a Simple Java Application
Compiled classes for Transactions
data model

The compiled classes for the sample Transactions data model can be found
under
default_deployment_directory/build/classes/com/progress/artixdata

services/gettingstarted/transaction. The compiled classes can be
described as follows:

• The Transactions class contains constructors for creating objects of
the Transactions complex type. It also contains methods for adding
and removing header, customer details, and row count child elements.

• The TransactionsClass class gets an instance of a Transactions
object and initializes it.

• The TransactionsElement class contains constructors for creating
instances of Transactions objects. It also contains a method for
reading in a file, parsing and validating it, and printing the results to
standard output.

• The Header class contains constructors for creating objects of the
Header complex type. It also contains methods for adding and
removing its various child elements.

• The HeaderClass class gets an instance of a Header object and
initializes it.

• The CustomerDetails class contains constructors for creating objects
of the CustomerDetails complex type. It also contains methods for
adding and removing its various child elements.

• The CustomerDetailsClass class gets an instance of a
CustomerDetails object and initializes it.

• The RowCount class contains constructors for creating objects of the
RowCount complex type. It also contains methods for adding and
removing its various child elements.

• The RowCountClass class gets an instance of a RowCount object and
initializes it.

• The TransactionsDataModel class gets an instance of the
Transactions data model and initializes it.

• Each of the remaining classes represents a particular simple type and
gets an instance of an object of that type and initializes it.
138

Generating Java Code
Compiled classes for Statements
data model

The compiled classes for the sample Statements data model can be found
under
default_deployment_directory/build/classes/com/progress/artixdata

services/training/statements. The compiled classes can be described as
follows:

• The StatementFile class contains constructors for creating objects of
the StatementFile complex type. It also contains methods for adding
and removing Statement child elements.

• The StatementFileClass class gets an instance of a StatementFile
object and initializes it.

• The StatementFileElement class contains constructors for creating
instances of StatementFile objects. It also contains a method for
reading in a file, parsing and validating it, and printing the results to
standard output.

• The Statement class contains constructors for creating objects of the
Statement complex type. It also contains methods for adding and
removing header, statement line, and trailer child elements.

• The StatementClass class gets an instance of a Statement object and
initializes it.

• The StatementElement class contains constructors for creating
instances of Statement objects. It also contains a method for reading in
a file, parsing and validating it, and printing the results to standard
output.

• The Header class contains constructors for creating objects of the
Header complex type. It also contains methods for adding and
removing its various child elements.

• The HeaderClass class gets an instance of a Header object and
initializes it.

• The StatementLine class contains constructors for creating objects of
the StatementLine complex type. It also contains methods for adding
and removing its various child elements.

• The StatementLineClass class gets an instance of a StatementLine
object and initializes it.
139

CHAPTER 4 | Creating a Simple Java Application
• The Trailer class contains constructors for creating objects of the
Trailer complex type. It also contains methods for adding and
removing its various child elements.

• The TrailerClass class gets an instance of a Trailer object and
initializes it.

• The PostalAddress1 class contains constructors for creating objects of
the PostalAddress1 complex type. It also contains methods for adding
and removing its various child elements.

• The PostalAddress1Class class gets an instance of a PostalAddress1
object and initializes it.

• The CurrencyAndAmount class contains constructors for creating
objects of the CurrencyAndAmount complex type. It also contains
methods for adding and removing its currency child attribute.

• The CurrencyAndAmountClass class gets an instance of a
CurrencyAndAmount object and initializes it.

• The StatementsDataModel class gets an instance of the Statements
data model and initializes it.

• Each of the remaining classes represents a particular simple type and
gets an instance of an object of that type and initializes it.

Compiled classes for StatGen
transformation

The compiled classes for the sample StatGen transformation can be found
under
default_deployment_directory/build/classes/com/progress/artixdata

services/gettingstarted/transform. The compiled classes can be
described as follows:

• The StatGenTransform class contains constructors for creating
StatGen transformation objects.

• The StatGenTransform$RecordToStmtLine class contains constructors
for creating RecordToStmtLine transformation objects.

• The StatGenTransform$AccountTxnsToStatementTransform class
contains constructors for creating AccountTxnsToStatement
transformation objects.

• The StatGenTransform$AccountTxnsToStatementTransform$
SameAccountFilter class contains constructors for creating
SameAccount filter objects.
140

Generating Java Code
• The StatGenTransform$AccountTxnsToStatementTransform$
FindCustomerRecordFilter class contains constructors for creating
FindCustomerRecord filter objects.

• The StatGenTransform$AccountTxnsToStatementTransform$
PopulateNameAndAddresTransform class contains constructors for
creating PopulateNameAndAddress transformation objects.
141

CHAPTER 4 | Creating a Simple Java Application
Writing the Application

Overview This section shows how to create a simple Java application that uses the
sample code generated in the preceding section.

The simple application The simple application created in this section does the following:

• It reads data from various input files and parses that data into complex
data objects based on the Transactions, Customers and Accounts
input models respectively.

• It validates the data loaded into the complex data objects against the
validation rules set up for the corresponding input models.

• It transforms the data from the structure based on the Accounts,
Customers and Transactions input models to the structure based on
the Statements output model, using the StatGen transformation.

• It converts the presentation of data from the input (textual) format into
TagValuePair format.

• It uses an XPath query to retrieve transaction amount data from
complex data objects based on the Statements output model.

• It uses Camel to take a text file as input and marshal the data back out
to the file system in XML format.

Prerequisities to writing the code Before you write the application:

1. Copy the sample Transactions.txt from Getting Started\Samples\B
- Creating Data Models\1 - From a Text File to your
default_deployment_directory/build/classes folder.

2. Create a folder called D - Creating Simple Application in the
following directory of your Artix Data Services installation:

your_default_projects_folder/Getting Started/Samples/
142

Writing the Application
Writing the application Use the following code to write an application called ADSDemo.java and save
it in the D - Creating Simple Application folder that you just created.
Note that in the Camel code block you must ensure that the code is pointing
to the directory into which you just saved the Transactions.txt file.

package com.progress.artixdataservices.gettingstarted;

// Start of Artix Data Services API library (artix-ds-api-3.9.0.jar) import statements
import biz.c24.io.api.presentation.*;
import biz.c24.io.api.data.ComplexDataObject;
import biz.c24.io.api.data.ValidationManager;
import biz.c24.io.api.data.IOContext;
import biz.c24.io.api.data.IOXPathFactory;
import biz.c24.io.api.transform.Transform;
// End of Artix Data Services API library import statements

// Start of standard Java class import statements
import java.io.FileReader;
import java.util.Iterator;
import java.util.List;
// End of standard Java class import statements

// Start of generated classes import statements
import com.progress.artixdataservices.gettingstarted.transform.StatGenTransform;
import com.progress.artixdataservices.gettingstarted.transaction.TransactionsElement;
import com.progress.artixdataservices.gettingstarted.transaction.Transactions;
import com.progress.artixdataservices.gettingstarted.transaction.CustomerDetails;
import com.progress.artixdataservices.gettingstarted.account.AccountsFileElement;
import com.progress.artixdataservices.gettingstarted.account.AccountsFile;
import com.progress.artixdataservices.gettingstarted.customer.CustomersFileElement;
import com.progress.artixdataservices.gettingstarted.customer.CustomersFile;
import com.progress.artixdataservices.training.statements.StatementFile;
// End of generated classes import statements

// Start of Camel core (camel-core-1.4.2.0-fuse.jar) import statements
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.impl.DefaultCamelContext;
import org.apache.camel.CamelContext;
import org.apache.camel.Processor;
import org.apache.camel.Exchange;
import org.apache.camel.model.dataformat.ArtixDSContentType;
// End of Camel core import statements

public class ADSDemo {
 public static void main(String[] args) throws Exception {
143

CHAPTER 4 | Creating a Simple Java Application
 // PARSING
 FileReader r1 = new FileReader("Transactions.txt");
 TextualSource src1 = new TextualSource(r1);
 Transactions transactionsObject =
 (Transactions) src1.readObject(TransactionsElement.getInstance());
 r1.close();
 for (CustomerDetails customer : transactionsObject.getCustomerDetails())
 System.out.println("Processing transaction against: "+customer.getNameElement());

 FileReader r2 = new FileReader("Customers.txt");
 TextualSource src2 = new TextualSource(r2);
 CustomersFile customersObject =
 (CustomersFile) src2.readObject(CustomersFileElement.getInstance());
 r2.close();

 FileReader r3 = new FileReader("Accounts.txt");
 TextualSource src3 = new TextualSource(r3);
 AccountsFile accountsObject =
 (AccountsFile) src3.readObject(AccountsFileElement.getInstance());
 r3.close();

 // VALIDATION
 ValidationManager vm = new ValidationManager();
 vm.validateByException(transactionsObject);
 vm.validateByException(customersObject);
 vm.validateByException(accountsObject);

 // TRANSFORMATION
 Transform transform = new StatGenTransform();

 Object[][] input = new Object[][] {
 {transactionsObject},
 {customersObject},
 {accountsObject}};
 Object[][] output = transform.transform(input);

 StatementFile statementsObject = (StatementFile) output[0][0];
 System.out.println("Produced "+statementsObject.getStatement().length+" statements");

 // WRITE OUT
 Sink snk = new TagValuePairSink(System.out);
 snk.writeObject(statementsObject);

 // XPATH
 List l = IOXPathFactory.getInstance
 ("/Statement/StmtLine/TxAmount").getList(statementsObject);
144

Writing the Application
Explaining the PARSING code For the purposes of parsing the input Transactions.txt file the code does
the following:

1. Creates a FileReader object, r1, that is initialized with the input
Transactions.txt file.

2. Creates an Artix Data Services TextualSource object, src1, that is
initialized with the r1 object.

3. Declares a transactionsobject variable of the Transactions class
type. Initialize it with a Transactions type object that is created by
casting the result of a call to the getInstance() method of the
TransactionsElement class via a call to the readObject() method on

 for (Iterator it = l.iterator(); it.hasNext();) {
 IOContext ioc = (IOContext) it.next();
 System.out.println("CREDIT: "+ioc.getInstance().toString());
 }

 // CAMEL
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder(){
 public void configure() throws Exception {
 from("file://C:/Documents and Settings/username/My Documents/My ADS

Projects/Deployments/build/classes/Transactions.txt?noop=true").
 unmarshal().artixDS(TransactionsElement.class, ArtixDSContentType.Text).
 process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Transactions txs = (Transactions) exchange.getIn().getBody();
 System.out.println("Camel is processing: "+
 txs.getCustomerDetails().length+
 " customer details!");
 //Stop the Camel route so it doesn't wait for the file to be changed
 exchange.getContext().stop();
 }
 }).
 marshal().artixDS(ArtixDSContentType.Xml).
 to("file://C:/MyOutputFile.xml?autoCreate=false");
 }
 });
 context.start();
 }
}

145

CHAPTER 4 | Creating a Simple Java Application
the src1 object. In other words, declares a variable that can hold
object instances of the records in the Transactions.txt file that is
being read in.

4. Declares a customer variable of the CustomerDetails class type, and
call the getCustomerDetails() method on the transactionsObject
variable, to retrieve each record in the transactions file. Then for each
record, call System.out.println to print out the name of the customer
pertaining to that record, which is determined by calling the
getNameElement() method on the customer variable.

Explaining the VALIDATION code For the purposes of validating the input data the code does the following:

1. Creates an Artix Data Services ValidationManager object, vm.

2. Calls the validateByException() method on the vm object repeatedly,
passing it the transactions file, customers file and accounts file objects
respectively.

Explaining the
TRANSFORMATION code

For the purposes of transforming the data from the structure based on the
input models to the structure based on the Statements output model, the
code does the following:

1. Creates a transformation object, transform, based on the sample
StatGen transformation.

2. Creates an array of arrays type object, input, that is initialized with the
transactions file, customers file and accounts file objects respectively.

3. Declares an array of arrays type variable, output. Initializes it with the
result of a call to the transform() method on the transform object.
The transform() method takes the input object as its input. In other
words, declares a variable that can hold the result of the
transformation.

4. Declares a statementsObject variable of the StatementFile class
type. Initializes it with a StatementFile type object that is created by
casting the output variable. In other words, declares a variable that
can hold object instances of the transformation results.

Note: Steps 1–3 are repeated in a similar manner for the Customers and
Accounts models.
146

Writing the Application
5. Calls System.out.println to print out the number of statement
records in the statements file, which is determined by calling
getStatement().length on the statementsObject object.

Explaining the WRITE OUT code For the purposes of converting the presentation of data from the input
(textual) format into TagValuePair format, the code does the following:

1. Creates an Artix Data Services TagValuePairSink object, snk, and
initialize it with the PrintStream object System.out.

2. Calls the writeObject() method on the snk object and passes it the
statementsObject object.

Explaining the XPATH code For the purposes of using an XPath query to retrieve transaction amount
data from complex data objects based on the Statements output model, the
code does the following:

1. Declares a List type variable, 1. Initializes it with the result of a call to
the getList() method which takes the result of a call to the
getInstance() method of the IOXPathFactory class. The
getinstance() method takes the XPath query syntax as its input and
the getList() method takes the statementsObject variable as its
input. In other words, declares a variable that can hold the list of
results from applying the specified XPath query to each statements
record.

2. Declares an Iterator type variable, it, and initializes it with a call to
the iterator() method on the 1 variable. Then calls the hasNext()
method on the it variable. In other words, declares a variable that can
hold the results of iterating through the items in the list of XPath query
results.

3. Declares an IOContext type variable, ioc. Initializes it with an
IOContext type object that is created by casting the result of a call to
the next() function on the it variable. In other words, declares a
variable that can hold the next item in the list of XPath query results.

4. Then for each item in the list of XPath query results, calls
System.out.println to print out its details, which are determined by
calling the toString() method on the result of a call to the
getInstance() method on the ioc variable.
147

CHAPTER 4 | Creating a Simple Java Application
Explaining the CAMEL code The Camel code takes a text file as input and marshals the data back out to
the file system in XML format as follows:

1. Reads from the Transactions.txt file.

2. Unmarshals that data to create a TransactionElement object.

3. Runs some code on that object using the process() method, passing a
Processor object created inline.

4. The Processor object prints out the number of CustomerDetails
contained in the Transactions object.

5. Marshals the data to create a MyOutputFile.xml file that represents
the customer details in XML format.

Note: You must specify in the code where you have stored the
Transactions.txt file.
148

Compiling and Running the Application
Compiling and Running the Application

Overview This section describes how to compile and run the simple Java application.
It also provides an overview of the sample output it produces.

Prerequisites to compiling Before you compile the application, ensure that all of the following are
included on your CLASSPATH:

• product_installation_directory/lib/artix-ds-api-3.9.0.jar
• product_installation_directory/lib/log4j-1.2.14.jar
• product_installation_directory/lib/saxon-9.0.jar
• product_installation_directory/lib/xercesImpl-2.9.1.jar
• product_installation_directory/lib/camel/

camel-core-1.4.2.0-fuse.jar
• product_installation_directory/lib/camel/

camel-artixds-1.4.2.0-fuse.jar
• product_installation_directory/lib/commons-logging-1.1.1.jar
• default_deployment_directory/build/libs/

com.progress.artixdataservices.gettingstarted.account.jar
• default_deployment_directory/build/libs/

com.progress.artixdataservices.gettingstarted.customer.jar
• default_deployment_directory/build/libs/

com.progress.artixdataservices.gettingstarted.transaction.jar
• default_deployment_directory/build/libs/

com.progress.artixdataservices.training.statements.jar

Note: default_deployment_directory represents the default deployment
directory in which the code for your sample models and transformations is
stored. The default path is your_default_projects_folder/Deployments.
If you selected the default project location you installed Artix Data
Services, then default_deployment_directory is:

Windows
C:\Documents and Settings\username\My Documents\My ADS
Projects\Deployments

UNIX
$HOME/MyADSProjects/Deployments
149

CHAPTER 4 | Creating a Simple Java Application
• default_deployment_directory/build/libs/
com.progress.artixdataservices.gettingstarted.transform.jar

Compiling the application To compile the application:

1. Open a command prompt.

2. Navigate to the directory where you saved the ADSDemo.java file. If you
used the default location, it is located in:

3. Set JAVA_HOME to point to the JDK that ships with Artix Data Services
as follows:

4. Set PATH to ensure the correct JDK is being used:

5. Run the following command:

Prerequisites to running the
application

Before you run the simple application ensure that:

• The ADSDemo.class, ADSDemo$1.class, and ADSDemo$1$1.class files
are all located in your
default_deployment_directory/build/classes/com/progress/

artixdataservices/gettingstarted folder.

• You copy the sample Customers.txt and Accounts.txt files to your
default_deployment_directory/build/classes folder.

♦ Customers.txt can be found in the following directory: Getting
Started\Samples\B - Creating Data Models\1 - From a Text

File

♦ Accounts.txt can be found in the following directory: Getting
Started\Samples\B - Creating Data Models\4 - Manually

your_default_projects_folder/Getting Started/Samples/
D - Creating Simple Application

set JAVA_HOME=%ADS_HOME%\jdk

set PATH=%JAVA_HOME%\bin;%PATH%

javac -d "default_deployment_directory\build\classes" ADSDemo.java
150

Compiling and Running the Application
Running the application To run the application:

1. Open a command prompt.

2. Navigate to the default_deployment_directory/build/classes
directory.

3. Run the following command:

Sample output The following is an overview of the sample output from the application:

java -classpath ".;%CLASSPATH%" com.progress.artixdataservices.gettingstarted.ADSDemo

Processing transaction against: Oliver Twist
Processing transaction against: Uriah Heep
Processing transaction against: Mr Scrooge
Processing transaction against: Charles Dickens
Processing transaction against: Uriah Heep
Processing transaction against: Mr Scrooge
Processing transaction against: Oliver Twist
Produced 4 statements
StatementFile:
 Statement:
 Hdr:
 NameAddress:
 AdrLine: OTWIST
 AdrLine: Flat 135A
 AdrLine: Wapping High Street
 AdrLine: London
 AdrLine: E1 4TY
 Ctry: GB
 StmtDate: 2009-05-15+01:00
 StmtNo: 48
 StmtPage: 0
 Account: GB002023785892
 StartBalance:
 @Ccy: British Pound1200.78
 StmtLine:
 PostingDate: 2006-09-26+01:00
 ValueDate: 2006-09-26+01:00
 DrCr: DR
 TxAmount:
 @Ccy: GBP100.0
 PostingNarrative: Transaction from vendor:14988603
 StmtLine:
 PostingDate: 2006-02-23Z
151

CHAPTER 4 | Creating a Simple Java Application
 ValueDate: 2006-02-23Z
 DrCr: DR
 TxAmount:
 @Ccy: GBP50.0
 PostingNarrative: Transaction from vendor:14119663
 Tlr:
 EndBalance:
 @Ccy: British Pound570.78
 Statement:
 Hdr:
 NameAddress:
 AdrLine: UHEEP
 AdrLine: 30
 AdrLine: Borough High Street
 AdrLine: London
 AdrLine: SE1 1XU
 Ctry: US
 StmtDate: 2009-05-15+01:00
 StmtNo: 23
 StmtPage: 0
 Account: US230023744892
 StartBalance:
 @Ccy: US Dollar2187.5
 StmtLine:
 PostingDate: 2006-12-21Z
 ValueDate: 2006-12-21Z
 DrCr: DR
 TxAmount:
 @Ccy: USD258.0
 PostingNarrative: Transaction from vendor:15688632
 StmtLine:
 PostingDate: 2006-02-22Z
 ValueDate: 2006-02-22Z
 DrCr: DR
 TxAmount:
 @Ccy: USD250.0
 PostingNarrative: Transaction from vendor:14988103
 Tlr:
 EndBalance:
 @Ccy: US Dollar2670.26
 Statement:
 Hdr:
 NameAddress:
 AdrLine: MRSCRROGE
 AdrLine: 325
 AdrLine: Kennington Park Lane
 AdrLine: London
152

Compiling and Running the Application
 AdrLine: SE1 8GF
 Ctry: US
 StmtDate: 2009-05-15+01:00
 StmtNo: 12
 StmtPage: 0
 Account: US007823742892
 StartBalance:
 @Ccy: British Pound201812.69
 StmtLine:
 PostingDate: 2006-09-13+01:00
 ValueDate: 2006-09-13+01:00
 DrCr: DR
 TxAmount:
 @Ccy: USD1250.6
 PostingNarrative: Transaction from vendor:66846035
 StmtLine:
 PostingDate: 2006-09-16+01:00
 ValueDate: 2006-09-16+01:00
 DrCr: DR
 TxAmount:
 @Ccy: USD12250.0
 PostingNarrative: Transaction from vendor:67434435
 Tlr:
 EndBalance:
 @Ccy: British Pound301772.12
 Statement:
 Hdr:
 NameAddress:
 AdrLine: CDICKENS
 AdrLine: 69
 AdrLine: Westferry Road
 AdrLine: London
 AdrLine: E14 9PP
 Ctry: DE
 StmtDate: 2009-05-15+01:00
 StmtNo: 7
 StmtPage: 0
 Account: DE000023788892
 StartBalance:
 @Ccy: Euro31705.23
 Tlr:
 EndBalance:
 @Ccy: Euro41570.75
CREDIT: <TxAmount Ccy="GBP">100</TxAmount>

CREDIT: <TxAmount Ccy="GBP">50</TxAmount>
153

CHAPTER 4 | Creating a Simple Java Application
CREDIT: <TxAmount Ccy="USD">258</TxAmount>

CREDIT: <TxAmount Ccy="USD">250</TxAmount>

CREDIT: <TxAmount Ccy="USD">1250.6</TxAmount>

CREDIT: <TxAmount Ccy="USD">12250</TxAmount>

Camel is processing: 7 customer details!
154

CHAPTER 5

Overview of Ant
Tasks
A number of Apache Ant (http://ant.apache.org/) tasks specific
to Artix Data Services are packaged within the
artix-ds-designerXXX.jar file. These enable deployment and
exports to be automated with an Ant script. This is useful where
the building of Artix Data Services generated components is
included within overall project builds, without any requirement
to manually deploy the components from within the ADS
Designer.

In this chapter This chapter discusses the following topics:

Using the supplied Ant tasks page 156

Deployment page 156

Deployments directory page 156
155

CHAPTER 5 | Overview of Ant Tasks
Using the supplied Ant tasks To use these tasks, you need to include task definitions such as the
following at the top of your Ant file (where the classpath reference includes
the artix-ds-designerXXX.jar and artix-commonX.jar files):

Deployment An Ant build file is used to construct individual build files for each
deployment. The build-template.xml file is delivered with the toolkit. At
deployment time, namespace-specific build files are constructed by
replacing various placeholders with the specific values for the deployment.
The following replacements occur at deployment time:

• @namespace@ is replaced by the namespace.

• @package@ is replaced by the deployment package.

• @directory@ is replaced by the deployment directory (the deployment
package with '.' replaced by '/').

• @date@ is replaced by the deployment date in the format yy/MM/dd.

• @time@ is replaced by the deployment time in the format hh/mm/ss.

• @javadoc.link@ is replaced by the build.javadoc.link property taken
from the system.properties file.

• @cvsheader@ is replaced by the default CVS header.

Deployments directory The directory named "Deployments" is the directory where data models and
transformations are deployed to. Under this directory you will find all Ant
build files, Java source code, compiled Java classes, and .jar files created
at deployment time. You can specify the location of this deployment
directory by altering the profile settings of the ADS Designer.

<taskdef name="deploy" classname="biz.c24.io.ant.DeployTask"
classpathref="classpath" loaderref="java.lang.ClassLoader"/>

Note: The loaderref attribute is required for full compatibility with
versions of Ant prior to 1.6.0.
156

	Preface
	What This Book Covers
	Who Should Read This Book
	Prerequisites
	How This Book Is Structured
	The Artix Data Services Documentation Library

	Creating Projects
	Before You Begin
	Starting ADS Designer
	Downloading Sample Getting Started Data

	Creating a Project

	Creating Data Models
	Creating a Data Model from a Text File
	Creating a Transactions Data Model from Transactions.txt
	Creating a Customers Data Model from Customers.txt

	Creating a Data Model from an XML Schema
	Creating a Data Model from a Set of XML Documents
	Creating a Data Model from a Database
	Creating a Data Model Manually
	Creating an Accounts Data Model Manually
	Creating a Customers Data Model Manually

	Adding Validation Rules
	Adding Validation Rules for Accounts Data Model
	Adding Validation Rules for Transactions Data Model

	Creating Transformations
	Creating a Simple Transformation
	Starting to Create a Transformation
	Creating a Local Transformation
	Testing the Local Transformation in Your Main Transformation
	Creating a Filter
	Testing the Filter in Your Main Transformation

	Making Your Transformation More Complex
	Before You Continue
	Adding More Input Models to Your Main Transformation
	Adding Local Transformations
	Adding Functions
	Adding Nested Local Transformations
	Adding Hash Tables
	Adding Filters
	Adding Java Methods
	Adding Introspect Functions

	Creating a Simple Java Application
	Generating Java Code
	Setting Compile Options
	Building the Code
	Finding the Generated Code
	Sample Generated Code

	Writing the Application
	Compiling and Running the Application

	Overview of Ant Tasks

