Artix
Version 5.6.4

iguration Reference, C++ Runtime



Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-03-07



Contents

P aCe .. Vil
Contacting MICIO FOCUS .. ...t et viii
ANTIX RUNTIMIE Lot ettt e et e e e aanneeeeeann 1
L0 12 {2 = 11T [T 1 1
2T T T T 1 £ 7
LAY 7T o | A 1o T 12
INTtIAl CONTIACTS .. ..ot ettt et e ae e aneeas 16
INItiAl RETEIENCES ... e 18
BN LY O o T o - P 22
LY L=ES1ST= T T o T o P 22
O W o T =T =T 1] 0T P 24
0 103 =L 27
QN AME AlBSES ..ottt et e 34
Reference Compatibility ... e 35
ANTIX PlUG-TNS Lo 39
2N 8] 0 Y= =0 11 o 1 40
BIUS et e aeaaas 40
(07 AN A ST B 1Y I @] o 1=Y=T V=] 42
Client-Side High Availability ..........coieiiii e 44
L0 01 = 1 1= 45
Database ENVIrONMENt. ... ..o 45
1 52
T S e e 54
P 57
(o Tor= N 1o To ] o /== o o 59
[0 2 B e T Y 1 1= o 61
[IoTor= 1 (o] S T=T o ol S PP 61
[oTor=Y o] gl = glo o To] [ | M \Y/ =g = Vo =T S 63
1Y/ o a1 e ] o o 64
ST ST Y =T = T T N 65
(=T o] g =T aTe =30 o To T ]| o o A 66
[2L=T 0 0] (=3 o T T 1 T P 67
Remote Method INVOCAtION ... .. e 68
L0 T 1 o o 69
SErVICe LIFECYCIE ... e 72
ST 1S3S] [0 T 1Y = T = T = 73
SeSSIoN ENAPOINT MaNAQET ... ...ttt et e eaannes 74
Session Manager SIMPIe POLICY ... e 74
SO A P . et e e 75
SO AP L2 L e e 77
TraNSTOINEE SEIVICE ...t ettt et et e eees 77
I D= Lo P 80
Web Services AdAreSSiNg ... e 80
Web Services Chain SerVIiCe. ... o e 82
Web Services Reliable MeSSaging - .....coiiiiiiii i 84
WSDL PUbliShing SerViCe ... ... e 90
XML File LOQg Stream ... e e e e eas 91
L0153 o 0 T = 16 o o 93

Artix Configuration Reference, C++ Runtime iii



ANTIX SECUNILY i e nnnnnnas 95

Applying Constraints to Certificates.........ccoioiiii i 96
bus:initial_CoNtract. ... ..o e 97
DUS S CUNItY ... e 98
L T = U =1 (== 1= 99
password_retrieval_mechaniSm ... ... ..cooiiiiiiii i i e 99
0 18 T [T 0 F=3uE= T o 100
018 T [T E=3u= X A 11 o 102
018 T [T E=3a= X L2 o £ 105
0118 T [T 0 =3 o] [ 105
6118 T 1 153 1] o J P 106
PIUGINS I DS ..o e 108
6118 T 1 1S3 T o J o 109
PIUQINS JAVA SEIVEN . ...t e e aae e 111
PlUgINS:10gin_CHeNt. . ... 114
PIUGINS:IOQIN_SEIVICE ... e 114
018 Lo [T FSTa Y=o U] g Y 114
PIUGINS:SECUNITY CIUSTET ...ttt et eeaneeans 116
Plugins:wsdl_publish..... ..o e 116
0118 T T RS T 1= 117
010 LT = 118
0101 LT =S T T o 123
[0 TToa =13 o To L1 o T 1= 126
6 103 =T e o] P 127
policies:external_toOKEN _ISSUEK ...t e eaaeens 129
POl CIES T DS - - e e 130
POlCIES IO IS e e 134
POlICIESISECUIILY SNV ...t e aae 141
010  Te =TSR =T o T= T o =T <o U | o 1 Y/ 141
0 1 Te o T= 1IR3 o Yo o 1= ] o 142
[0 g [T o T= L IE=] o Yo 1= g 2= [ 145
PrinCipal_SPONSOr I NtED .o 147
(o] g [ Ted] o T= L ES] T g I<To ] gl o 11 1 o 1S3 148
principal_SpPONSOr:iiop_ IS ... e 149
PrINCIPAI_SPONSOFIWSSE ...ttt et et et e et et e e et e e et e e e ee e aan e eaeenn 151
GO R B A e 153
18 T 1 £ 3 oo o [ = 153
018 T 110 £ | o o 155
018 Te [T F=3a o | (o o J=1 1 Lo 1o o o 156
018 Te [0 F=3=l o) 11 o = Tia Lo I ) 1= 158
0118 T 110 =31 T o 160
018 T [T £=3a 0 F= U a1 T 164
018 T [T 0 =3 01 165
PIUGINS 0TS _lIte .o e e e e e 167
(0118 T 1 8 1S3 0 X & T =7 o T | o = 168
6118 T 1 1S3 0T = P 172
POA I F QPN . e 172
€O POICIES ... eee et e 174
CORBA Timeout POIICIES ... e 175
Artix TIMeOUt POICIES. ... 176
0101 1T T= =3 o [ o o 176
Policies:giop:iNteroP_POIICY ..t e 177
010117 =S T ) 1 o 179
0701 LT === o 180
[0 To] [T =TT g\ V7o Tot= U [o] o T = 1 /2 S 183

iv Artix Configuration Reference, C++ Runtime



Artix Configuration Reference, C++ Runtime

\



Vvi Artix Configuration Reference, C++ Runtime



Preface

What is Covered in this Book

The Artix Configuration Reference, C++ Runtime provides a
comprehensive reference of Artix configuration variables in a C++
runtime environment. These variables are stored in an Artix .cfg
configuration file.

Who Should Read this Book

This book is intended for use by system administrators, in
conjunction with Configuring and Deploying Artix Solutions,
C++ Runtime. It assumes that the reader is familiar with Artix
administration. Anyone involved in designing a large scale Artix
solution will also find this book useful.

Knowledge of middleware or messaging transports is not required
to understand the general topics discussed in this book. However,
if you are using this book as a guide to deploying runtime
systems, you should have a working knowledge of the middleware
transports that you intend to use in your Artix solutions.

Note: When deploying Artix in a distributed architecture with
other middleware, please see the documentation for that
middleware product. You may require access to an administrator.
For example, a Tuxedo administrator is required to complete a
Tuxedo distributed architecture.

How to Use this Book

This book is organized as follows:

*  “Artix Runtime” describes the configuration variables for the
core Artix runtime (for example, logging and multi-threading).

*  “Artix Plug-ins” describes the configuration variables for
specific Artix plug-ins (for example, Artix locator, SOAP, or
JMS).

*  “Artix Security” describes the variables used to configure Artix
security features (for example, passwords and certificates).

* “CORBA” describes the variables used to configure CORBA
plug-ins (for example, I1OP and OTS).

The Artix Documentation Library

For information on the organization of the Artix library, the
document conventions used, and finding additional resources, see
Using the Artix Library.

Artix Configuration Reference, C++ Runtime vii



Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information

below, if you have it. The more information you can give, the

better Micro Focus SupportLine can help you. But if you don't

know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

®*  Your computer make and model.

* Your operating system version number and details of any
networking software you are using.

®* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

®* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

viii Artix Configuration Reference, C++ Runtime


http://www.microfocus.com
http://www.microfocus.com

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

®  http://www.microfocus.com/products/corba/artix.aspx (trial software
download and Micro Focus Community files)

®  https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://lwww.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

Artix Configuration Reference, C++ Runtime ix


http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

x Artix Configuration Reference, C++ Runtime



ORB Plug-ins

Artix Runtime

Artix is based on the highly configurable Adaptive Runtime (ART)
infrastructure. This provides a high-speed, robust, and scalable backbone
for deploying integration solutions. This chapter explains the
configuration settings for the core Artix runtime.

This chapter describes the following topics:
* ORB Plug-ins

* Binding Lists

° Event Log

* Initial Contracts

. Initial References

* JVM Options

° Message Snoop

*  Multi-threading

* Policies

* QName Aliases

¢ Reference Compatibility

The orb_plugins variable specifies the list of plug-ins that Artix
processes load during initialization. A plug-in is a DLL or shared
library that can be loaded into an Artix application at runtime.
These plug-ins enable you to load network transports, payload
format mappers, error logging streams, and other features on the
fly.

The default orb_plugins entry includes the following:

orb_plugins = ["'xmIfile_log_stream",

All other plug-ins that implement bindings and transports load
transparently when the WSDL file is loaded into an application.
These plug-ins do not need to be explicitly listed in orb_plugins.
Artix determines what plug-ins are required from the content of
the WSDL file.

However, plug-ins for other services (for example, for security,
locator, session manager, routing, XSLT transformation, logging,
and so on) must all be included in the orb_plugins entry.

Artix Configuration Reference, C++ Runtime 1



Java plug-ins

Artix plug-ins

Each network transport and payload format that Artix
interoperates with uses its own plug-in. Many of the Artix services
features also use plug-ins. Artix plug-ins include the following:

e “Java plug-ins”.

* “Transport plug-ins”.

e “Payload format plug-ins”.
* “Service plug-ins”.

* “Internal ORB plug-ins”

Java plug-ins are configured differently from C++ plug-ins. For
example, the JMS transport plug-in is also written in Java and
requires that you configure it appropriately.

Java plug-in loader

When using a Java plug-in, you must include an entry for the java
plug-in loader in the orb_plugins list, as shown in Example 1.

Example 1: Including the Java Plug-in Loader
orb plugins=[..., "java", ...]1;

The java plug-in automatically loads the JMS transport plug-in.

java_plugins variable

In addition to including the java plug-in loader in the orb_plugin
list, you must specify the java plugins configuration variable,
which lists the names of the Java plug-ins that are to be loaded.
jJava plugins is a list like orb_plugins. A plug-in cannot be listed in
both variables. Only Java plug-ins should be listed in java plugins;
and Java plug-ins should not be listed in orb_plugins.

For example, if you are using a custom Java plug-in called
my_java_handler in your application you would use the
configuration similar to the fragment shown in Example 2 to load
the plug-ins.

Example 2: Loading a Java Plug-in

orb_plugins=["xml_log_stream"”, ... "java", ...1;
jJava_plugins=["'my_java_ handler'];

In addition, you must also specify a plug-in factory class, for
example:

plugins:my_java_handler:classname="myJavaHandlerFactory"

2 Artix Configuration Reference, C++ Runtime



Artix Java plug-ins

The following Java plug-ins are also supplied by Artix, and can be
included in your java plugins list:

Java_uddi_proxy Dynamically locates existing Web services

Transport plug-ins

endpoints using the UDDI service.

The Artix transport plug-ins are listed in Table 1.

Table 1:

Artix Transport Plug-ins

Plug-in

Transport

at_http

Provides support for HTTP.

https

Provides support for HTTPS.

iiop

Provides support for CORBA 110P.

iiop_profile

Provides support for CORBA 110P profile.

giop

Provides support for CORBA GIOP.

tunnel

Provides support for the 1IOP transport
using non-CORBA payloads.

tuxedo

Provides support for Tuxedo
interoperability.

mq

Provides support for IBM WebSphere MQ
interoperability, and MQ transactions.

Java

Provides support for Java Message Service
(JMS) interoperability (and also for other
Java plug-ins).

Payload format plug-ins

The Artix payload format plug-ins are listed in Table 2.

Table 2:

Artix Payload Format Plug-ins

Plug-in

Payload Format

soap

Decodes and encodes messages using the
SOAP format. See also “SOAP”.

G2

Decodes and encodes messages packaged
using the G2++ format.

fml

Decodes and encodes messages packaged
in FML format.

tagged

Decodes and encodes messages packed in
variable record length messages or another
self-describing message format.

Fixed

Decodes and encodes fixed record length
messages.

Artix Configuration Reference, C++ Runtime 3




Table 2: Artix Payload Format Plug-ins (Continued)

Plug-in

Payload Format

ws_orb Decodes and encodes CORBA messages.

Service plug-ins

Artix service feature plug-ins are listed in Table 3.

Table 3: Artix Service Plug-ins

Plug-in

Artix Feature

bus_loader

In a pure CORBA application, add
a bus_loader at the end of your
plug-in list to start the bus and
initialize all BusPlugins. Not
needed if your application uses
IT Bus::init.

bus_response_monitor

Enables performance logging.
Monitors response times of Artix
client/server requests. See also
“Performance Logging” on

page 66.

locator_client

Queries the locator and returns a
reference to a target service. See
also the Artix Locator Guide,
C++.

locator_endpoint

Enables endpoints to use the
Artix locator service. See also
“Locator Endpoint Manager” on
page 63.

ots

Enables the CORBA OTS
transaction system. See also
“Bus” on page 40.

ots lite

Enables the OTS Lite transaction
system, which supports
one-phase commit transactions.
See also “Bus” on page 40.

request_forwarder

Enables forwarding of write
requests from slave replicas to
master replicas. See also
“Database Environment” on
page 45.

routing

Enables Artix routing. See
“Routing” on page 69.

service_locator

Enables the Artix locator. An
Artix server acting as the locator
service must load this plug-in.
See also “Locator Service” on
page 61.

4 Artix Configuration Reference, C++ Runtime




Table 3: Artix Service Plug-ins (Continued)

Plug-in Artix Feature

session_manager_service Enables the Artix session
manager. An Artix server acting
as the session manager must
load this plug-in. See also
“Session Manager” on page 73.

session_endpoint_manager Enables the Artix session
manager. Endpoints wishing to
be managed by the session
manager must load this plug-in.
See also “Session Endpoint
Manager” on page 74.

sm_simple_policy Enables the policy mechanism for
the Artix session manager.
Endpoints wishing to be
managed by the session
manager must load this plug-in.
See also “Session Manager
Simple Policy” on page 74.

service_lifecycle Enables service lifecycle for the
Artix router. This optimizes
performance of the router by
cleaning up proxies/routes that
are no longer in use. See also
“Service Lifecycle” on page 72.

uddi_proxy Dynamically locates existing Web
services endpoints using the
UDDI service. See also
“java_plugins variable” on

page 2.

wsat_protocol Enables the WS-Atomic
Transaction (WS-AT) system.
See also “Bus” on page 40.

ws_chain Enables you to link together a
series of services into a
multi-part process. See also
“Web Services Chain Service” on
page 82.

ws_coordination_service Enables the WS-Coordination
service, which coordinates
two-phase commit transactions.
See also “Bus” on page 40.

Artix Configuration Reference, C++ Runtime 5



Table 3:

Artix Service Plug-ins (Continued)

Plug-in

Artix Feature

ws_coloc

Enables colocation for
applications that share a
common binding. For example,
using the Artix transformer with
an Artix server, you can colocate
both processes. Instead of
passing through the messaging
stack, messages are passed
directly, which improves
performance. See also
“Colocation request-level
interceptors” on page 11.

wsdl_publish

Enables Artix endpoints to
publish and download Artix
WSDL files. See also “WSDL
Publishing Service” on page 90.

wsrm

Enables Web Services Reliable
Messaging. See also “Web
Services Reliable Messaging” on
page 84.

wsrm_db

Enables Web Services Reliable
Messaging persistence.
Automatically loads the wsrm
plug-in. See also “Web Services
Reliable Messaging” on page 84.

xmlfile_log_stream

Enables you to view Artix logging
output in a file. See also “XML
File Log Stream” on page 91.

xslt

Enables Artix to process XSLT
scripts. See also “Transformer
Service” on page 77.

6 Artix Configuration Reference, C++ Runtime




Internal ORB plug-ins

Binding Lists

client_binding_list

This applies to CORBA integrations only. It is possible to specify
whether the default ORB shares settings with an internal ORB. In
certain circumstances such as initialization, Orbix creates an
internal ORB instance. The share_variables_with_internal_orb
setting is used to prevent an internal CORBA ORB from loading
Artix plug-ins.

For example, if you set an indirect persistence mode policy on an
Artix CORBA server, and also use the Artix locator_endpoint
plug-in. Essentially, in this case, the Artix CORBA endpoint is
talking to both Artix and Orbix locators.

Setting share_variables_with_internal_orb to false prevents the
internal ORB (IT_POAInternalORB) from sharing the default ORB
plug-ins. The default setting is as follows:

share_variables with_internal_orb = "false";

IT_POAInternalORB
{

}

orb_plugins = ["iiop_profile™, "giop”, "iiop'];

The list of plug-ins available for the internal ORB is specified using
the IT_POAInternalORB configuration scope.

When using Artix’s CORBA functionality you need to configure how
Artix binds itself to message interceptors. The Artix binding

namespace contains variables that specify interceptor settings. An
interceptor acts on a message as it flows from sender to receiver.

Computing concepts that fit the interceptor abstraction include
transports, marshaling streams, transaction identifiers,
encryption, session managers, message loggers, containers, and
data transformers. Interceptors are based on the “chain of
responsibility” design pattern. Artix creates and manages chains
of interceptors between senders and receivers, and the interceptor
metaphor is a means of creating a virtual connection between a
sender and a receiver.

The binding namespace includes the following variables:

e client_binding_list
®* server_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and
POA colocation (where server and client are collocated in the same
process). Artix also provides message-level interceptors used in
client-side bindings for 11OP, SHMIOP and GIOP.

Artix Configuration Reference, C++ Runtime 7



The binding:client_binding_list specifies a list of potential
client-side bindings. Each item is a string that describes one
potential interceptor binding. The default value is:

binding:client binding_list =
[**OTS+POA_Coloc™, "POA _Coloc™, "OTS+GIOP+110P™,""GIOP+110P*"] ;

server_binding_list

Interceptor names are separated by a plus (+) character.
Interceptors to the right are “closer to the wire” than those on the
left. The syntax is as follows:

* Request-level interceptors, such as GIOP, must precede
message-level interceptors, such as 110P.

®*  GIOP or POA_coloc must be included as the last request-level
interceptor.

* Message-level interceptors must follow the GIOP interceptor,
which requires at least one message-level interceptor.

* The last message-level interceptor must be a message-level
transport interceptor, such as 110P or SHMIOP.

When a client-side binding is needed, the potential binding strings
in the list are tried in order, until one successfully establishes a
binding. Any binding string specifying an interceptor that is not
loaded, or not initialized through the orb_plugins variable, is
rejected.

For example, if the ots plug-in is not configured, bindings that
contain the OTS request-level interceptor are rejected, leaving
['POA_Coloc™, "GIOP+110P", ""GIOP+SHMIOP']. This specifies that POA
colocations should be tried first; if that fails, (the server and client
are not collocated), the GIOP request-level interceptor and the 110P
message-level interceptor should be used. If the ots plug-in is
configured, bindings that contain the OTS request interceptor are
preferred to those without it.

binding:server_binding_list specifies interceptors included in
request-level binding on the server side. The POA request-level
interceptor is implicitly included in the binding.

The syntax is similar to client_binding_list. However, in contrast
to the client _binding_list, the left-most interceptors in the
server_binding_list are “closer to the wire”, and no
message-level interceptors can be included (for example, 110P).
For example:

binding:server_binding_list = ["OTS","™"];

An empty string (*"") is a valid server-side binding string. This
specifies that no request-level interceptors are needed. A binding
string is rejected if any named interceptor is not loaded and
initialized.

The default server_binding_list is ['0TS", "1]. If the ots plug-in is
not configured, the first potential binding is rejected, and the
second potential binding (*"*) is used, with no explicit interceptors
added.

8 Artix Configuration Reference, C++ Runtime



Binding Lists for Custom Interceptors

The binding:artix namespace includes variables that configure
Artix applications to use custom interceptors.

Artix interceptors are listed in the order that they are invoked on a
message when it passes through a messaging chain. For example,
if a server request interceptor list is specified as
"interceptor_1+interceptor_2", the message is passed into
interceptor_1 as it leaves the binding. When interceptor_1 processes
the message, it is passed into interceptor_2 for more processing.
interceptor_2 then passes the message along to the application
code.

The interceptor chain is specified as a single string, and each
interceptor name must be separated by a + character (for
example, "interceptor_l+interceptor_2+interceptor_3").

The variables in the binding:artix namespace are as follows:
° client_message_interceptor_list
e client_request_interceptor_list
. server_message_interceptor_list
®* server_request_interceptor_list

These settings apply to all services activated in a single Artix bus.
See also “Port level interceptor chains” on page 10.

client_message_interceptor_list
binding:artix:client_message_interceptor_list is a string that
specifies an ordered list of message-level interceptors for a client
application. Each interceptor is separated using a + character, for

example:

binding:artix:client_message_interceptor_list =
"interceptor_l+interceptor_2";

There is no default value.
client_request_interceptor_list

binding:artix:client_request_interceptor_list is a string that

specifies an ordered list of request-level interceptors for a client

application. Each interceptor is separated using a + character, for

example:

binding:artix:client_request_interceptor_list =
“interceptor_l+interceptor_2";

There is no default value.

Artix Configuration Reference, C++ Runtime 9



server_message_interceptor_list

binding:artix:server_message_interceptor_list is a string that
specifies an ordered list of message-level interceptors for a server
application. Each interceptor is separated using a + character, for
example:

binding:artix:server_message_interceptor_list =
"interceptor_l+interceptor_2";

There is no default value.
server_request_interceptor_list

binding:artix:server_request_interceptor_list is a string that

specifies an ordered list of request-level interceptors for a server

application. Each interceptor is separated using a + character, for

example:

binding:artix:server_request_interceptor_list =
"interceptor_1+interceptor_2";

There is no default value.

Port level interceptor chains

Each of the variables in the binding:artix namespace can also be
specified at the level of a service port. This more fine-grained
approach enables you to configure different interceptor chains for
different endpoints in the same application. For example:

binding:artix:client _request_interceptor_list:ServiceQname:Por
thame=""Interceptor_l+interceptor_2";

binding:artix:server_request_interceptor_list:ServiceQname:Por
tName=""interceptor_1+interceptor_2";

binding:artix:client_message_interceptor_list:ServiceQname:Por
thame=""Interceptor_1l+interceptor_2";

binding:artix:server_message_interceptor_list:ServiceQnane:Por
tName=""interceptor_1+interceptor_2";

The syntax of a ServiceQname is NamespaceURI:LocalPart. The following
example shows a service defined as FooService with a target
namespace of http://wmw.myco.com/myservice:

binding:artix:client_request_interceptor_list:http://ww.myco.com/myservice:FooServic
e:FooPort="interceptor_1l+interceptor_2';

10 Artix Configuration Reference, C++ Runtime



Colocation request-level interceptors

The Artix support for colocation enables an Artix client proxy to
talk directly to a collocated Artix service, without incurring any
marshalling or transport overhead. Collocated means that the
client proxy and the service belong to the same Artix bus. Instead
of passing messages through the messaging stack, messages are
passed directly between the two, thereby improving performance.

colocation request-level configuration

Because the collocated layer bypasses the binding and transport
layer, you can specify colocation request-level interceptors
directly along the invocation path. For example:

binding:artix:client_request_interceptor_list:http://ww.myco.com/myservice:FooServic
e:FooPort= "A+B+C+ws_coloc™;

binding:artix:server_request_interceptor_list:http://ww.myco.com/myservice:FooServic
e:FooPort= "ws_coloc+C+B+A";

When configuring colocation, you must ensure the following:

* The service must be collocated with the client proxy,
otherwise, the ws_coloc interceptors have no effect, and the
invocation is treated as remote.

* ws_coloc must be specified as the last client request-level
interceptor and the first server request-level interceptor. This
enables other request-level interceptors to be used with
colocation, and also enables the use of Artix contexts. Any
interceptors specified after the ws_coloc interceptor in the
client chain, or before the ws_coloc interceptor in the server
chain, will be ignored.

Using this approach, an existing Artix messaging port-based
service (for example, a SOAP/HTTP or CORBA service) can be
configured to add colocation quality-of-service without any change
to the WSDL contracts.

Note: You do not need to specify the ws_coloc plug-in on
your orb_plugins list. When ws_coloc is specified in the
request-level interceptor chain, the ws_coloc plug-in is
loaded automatically.

Interceptor Factory Plug-in

An Artix plug-in that implements an interceptor is dynamically
loaded when the interceptor name is specified in the binding list
(see “Binding Lists for Custom Interceptors” on page 9).

You must either include the interceptor plug-in name in your
orb_plugins list, or specify an interceptor factory plug-in.

Artix Configuration Reference, C++ Runtime 11



interceptor_factory:InterceptorFactoryName:plugin

Event Log

interceptor_factory: InterceptorFactoryName:plugin specifies the
name of the plug-in used by a custom interceptor. The format of
this variable is as follows:

interceptor_factory: InterceptorFactoryName:plugin="PluginName";
For example,
interceptor_factory:Testinterceptor:plugin= "test_interceptor';

You do not need to add such configuration for the interceptors that
are implemented internally by the various Artix plug-ins (for
example, security, service_lifecycle, and
artix_response_time_interceptor). These are all hard coded
already.

The following names are used in this syntax:
* The name of the interceptor factory: InterceptorFactoryName

* If the interceptor is implemented as a plug-in, the name of the
plug-in: (PluginName)

* The name of the shared library that hosts the plug-in:
SharedLibName

You must always specify the mapping between the plug-in name
and the shared library name, using the following configuration
syntax:

plugins:PluginName:shlib_name = *‘SharedLibName;

There are two ways in which a plug-in can be loaded:

* Specify the plug-in name in the ORB plug-ins list, for
example:

orb plugins = [ ..., "PluginName™, ... ];
Using this approach, the plug-in is loaded during ORB
initialization.

* Configure a mapping between an interceptor factory name
and the plug-in name as follows:

interceptor_factory: InterceptorfFactoryName:plugin=""PluginNam

S

Using this approach, the plug-in is loaded when the
interceptor list is parsed.

The event_log namespace controls logging levels in Artix. It
includes the following variables:

e event log:filters
e event_log:filters:bus:pre_filter
° event_log:filter_sensitive_info

* event_log:log_service_names:active

12 Artix Configuration Reference, C++ Runtime



event_log:filters

e event log:log_service _names:services

For details on HTTP trace logging, see
policies:http:trace_requests:enabled

The event_log:filters variable can be set to provide a wide range
of logging levels. The default event_log:filters setting displays
errors only:

event log:filters = ['"*=FATAL+ERROR'"];
The following setting displays errors and warnings only:
event_log:filters = ["*=FATAL+ERROR+WARNING'];

Adding INFO_MED causes all of request/reply messages to be logged
(for all transport buffers):

event_log:Ffilters = ['"*=FATAL+ERROR+WARNING+INFO_MED"];

The following setting displays typical trace statement output
(without the raw transport buffers being printed):

event_log:filters = ['"*=FATAL+ERROR+WARNING+INFO_HI'"];
The following setting displays all logging:
event_log:filters = ["*=*""];

The default configuration settings enable logging of only serious
errors and warnings. For more exhaustive output, select a
different filter list at the default scope, or include a more
expansive event_log:filters setting in your configuration scope.

Table 4 shows the full syntax used by the event_log:filters
variable to specify Artix logging severity levels.

Table 4:  Artix Logging Severity Levels

Severity Level Description
INFO_LO[W] Low verbosity informational messages.
INFO_MED[1UM] Medium verbosity informational
messages.
INFO_HI[GH] High verbosity informational messages.
INFO[_ALL] All informational messages.
WARNLING] Warning messages.
ERR[OR] Error messages.
FATAL[ _ERROR] Fatal error messages.
* All messages.

Artix Configuration Reference, C++ Runtime 13



event_log:filters:bus:pre_filter

event_log:filters:bus:pre_filter provides filtering of log
messages that are sent to the EventlLog before they are output to
the LogStream. This enables you to minimize the time spent
generating log messages that will be ignored. For example:

event_log:filters:bus:pre_filter = "WARN+ERROR+FATAL";
event_log:filters = ["'IT_BUS=FATAL+ERROR', "IT_BUS.BINDING=*"];

In this example, only WARNING, ERROR and FATAL priority log
messages are sent to the EventlLog. This means that no processing
time is wasted generating strings for INFO log messages. The
EventLog then only sends FATAL and ERROR log messages to the
LogStream for the 1T_BUS subsystem.

Note: event log:filters:bus:pre_filter defaults to * (all
messages). Setting this variable to WARN+ERROR+FATAL improves
performance significantly.

event_log:filter_sensitive_info

event_log:filter_sensitive_info specifies whether sensitive
information such as plain-text passwords are printed in the log.

For example, to enable filtering of WS-S plain-text passwords,
specify the following configuration setting:

event_log:filter_sensitive_info =
['event _log:filter_sensitive_info:wss_password'];
event_log:filter_sensitive_info:wss password =
['#PasswordText$%" "$%>"", "</, "*'];

This setting changes the characters in the log of a WS-S plain-text
password to * characters.

This variable can also be used to filter other types of sensitive
logging information, and multiple filters can be enabled in a single
setting. The general format for this configuration setting is as
follows:

event_log:filter_sensitive_info = [""foo'];
foo = [ "Start”, "End”, "#'];

In this general format, the first line provides the list of pattern
names to consider for replacement, and the second line provides
the actual pattern in the following syntax:

['Start_Pattern™, "End_Pattern', "‘Replacement_Character''];

This replaces anything in the log between Start pattern and
End_pattern with the # character.

Because Artix configuration files do not support the escaped **
character in configuration, any pattern that has the ** character
should instead replace this character with the following:

%" "%

14 Artix Configuration Reference, C++ Runtime



You must specify two single quotes and not a double quote. These
are then treated as the " character during the filtering of logging
information.

event_log:log_service_names:active

event_log: log_service_names:active specifies whether to enable
logging for specific services. You can use Artix service subsystems
to log for Artix services, such as the locator, and also for services
that you have developed. This can be useful if you are running
many services, and need to filter services that are particularly
noisy.

Using service-based logging involves extra configuration and
performance overhead, and is disabled by default. To enable
logging for specific services, set this variable as follows:

event_log: log_service_names:active = "true';
For more details, see event_log: log_service _names:services.
event_log:log_service_names:services

event_log: log_service_names:services specifies the specific service
names that you wish to enable logging for. This variable is
specified as follows:

event _log:log_service_names:services = [''ServiceNamel,
"'ServiceName2", ... ];

Each service name must be specified in the following format:

""{NamespaceURI }LocalPart"
For example:

"{http://ww.my-company -.com/bus/tests}SOAPHTTPService™

To enable logging for specific services, perform the following
steps:

1. Set the following variables:
event_log:log_service_names:active = '‘true'’;

event _log: log_service_names:services = [ServiceNamel',
“'ServiceName2'"] ;

2. Set your event log filters as appropriate, for example:
event_log:filters = ["I1T_BUS=FATAL+ERROR",
"'ServiceName1l=WARN+ERROR+FATAL"',
"'ServiceName2=ERROR+FATAL"",
*'ServiceName2. 1T_BUS.BINDING.CORBA=INFO+WARN+ERROR+FATA
L
1;

For more details, see event_log:log_service_names:active

Artix Configuration Reference, C++ Runtime 15



Further information

For more detailed information on logging, see Configuring and
Deploying Artix Solutions.

Initial Contracts

Initial contracts specify the location of the WSDL contracts for
Artix services. This provides a uniform mechanism for finding Artix
service contracts, and enables user code to be written in a location
transparent way.

Because variables in the bus:initial_contract namespace are in the
global scope of artix.cfg, every application can access
them.Contracts for Artix services specify a localhost:0 port, which
means that the operating system assigns a TCP/IP port on startup.
To explicitly set a port, copy the relevant WSDL contract to
another location, and edit to include the port. In the application
scope, add a bus:initial_contract:url entry that points to the
edited WSDL file.

The bus:initial_contract:url namespace includes the following
variables:

® container

o locator

®*  peermanager

®*  sessionmanager

®* sessionendpointmanager
® uddi_inquire

® uddi_publish

° login_service

In addition, the following variable enables you to specify a
well-known directory where contracts are stored:

. initial_contract dir

16 Artix Configuration Reference, C++ Runtime



container

locator

peermanager

sessionmanager

bus:initial_contract:url:container specifies the location of the
WSDL contract for the Artix container serivice. For example:

bus:initial_contract:url:container =
"Instal IDir/artix/Version/wsdl/container.wsdl";

bus:initial_contract:url:locator specifies the location of the
WSDL contract for the Artix locator service. For example:

bus:initial_contract:url:locator =
"Instal IDir/artix/Version/wsdl/locator .wsdl";

bus:initial_contract:url:peermanager specifies the location of the
WSDL contract for the Artix peer manager. For example:

bus:initial_contract:url:peermanager =
""Instal IDir/artix/Version/wsdl/peer-manager .wsdl";

bus:initial_contract:url:sessionmanager specifies the location of
the WSDL contract for the Artix session manager. For example:

bus:initial_contract:url:sessionmanager =
"Instal IDir/artix/Version/wsdl/session-manager .wsdl'";

sessionendpointmanager

uddi_inquire

uddi_publish

bus:initial_contract:url:sessionendpointmanager specifies the
location of the WSDL contract for the Artix session endpoint
manager. For example:

bus:initial_contract:url:sessionendpointmanager =
"Instal IDir/artix/Version/wsdl/session-manager .wsdl"";

bus:initial_contract:url:uddi_inquire specifies the location of the
WSDL contract for the Artix UDDI inquire service. For example:

bus:initial_contract:url:uddi_inquire =
“Instal IDir/artix/Version/wsdl/uddi/uddi_v2.wsdl*;

bus:initial_contract:url:uddi_publish specifies the location of the
WSDL contract for the Artix UDDI publish service. For example:

bus:initial_contract:url:uddi_publish =
“Instal IDir/artix/Version/wsdl/uddi/uddi_v2.wsdl*;

Artix Configuration Reference, C++ Runtime 17



login_service

initial_contract_dir

bus:initial_contract:url:login_service specifies the location of
the WSDL contract for the Artix peer manager. For example:

bus:initial_contract:url:login_service =
“Instal IDir/artix/Version/wsdl/login_service.wsdl";

bus:initial_contract_dir specifies a well-known directory for
accessing service contracts. This enables you to configure multiple
documents without explicitly setting every document in
configuration. If you specify a well-known directory, you only need
to copy the WSDL documents to this directory before the
application uses them. For example:

bus:initial_contract dir=["."];

The value . means use the directory from where the application
was started. You can specify multiple directories as follows:

bus:initial_contract dir = [".", "../../etc'"];

Further information

For more information on finding WSDL contracts, see Configuring
and Deploying Artix Solutions.

Initial References

locator

Initial references provide a uniform mechanism for enabling
servers and clients to communicate with services deployed in the
Artix container. This enables user code to be written in a location
transparent way. The bus:initial_references namespace includes
the following variables:

° locator

®*  peermanager

®* sessionmanager

®*  sessionendpointmanager
® uddi_inquire

® uddi_publish

. login_service

. container

bus:initial_references:url:locator specifies the location of an
initial endpoint reference for the Artix locator service. For
example:

bus:initial_references:url:locator = ""./locator.ref";

18 Artix Configuration Reference, C++ Runtime



peermanager

sessionmanager

For example, the locator.ref initial reference file can be
generated using the following command:

it container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/locator}LocatorService -file
locator.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a locator service. The same command can be used when a server
or a client obtains an endpoint reference.

bus:initial_references:url:peermanager specifies the location of an
initial endpoint reference for the Artix peer manager service. For
example:

bus:initial_references:url:peermanager =
**_/peermanager.ref’;

For example, the peermanager.ref initial reference file can be
generated using the following command:

it _container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/peer_manager }PeerManagerService
-file peermanager.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a peer manager service. The same command can be used when a
server or a client obtains an endpoint reference.

bus:initial_references:url:sessionmanager specifies the location of
an initial endpoint reference for the Artix session manager service.
For example:

bus:initial_references:url:sessionmanager =
"' _/sessionmanager .ref";

For example, the sessionmanager .ref initial reference file can be
generated using the following command:

it _container_admin -container ContainerService.url
-publishreference -service
{http://ws. iona.com/sessionmanager}SessionManagerServi
ce -file sessionmanager.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a session manager service. The same command can be used when
a server or a client obtains an endpoint reference.

Artix Configuration Reference, C++ Runtime 19



sessionendpointmanager

uddi_inquire

uddi__publish

bus:initial_references:url:sessionendpointmanager specifies the
location of an initial endpoint reference for the Artix session
endpoint manager service. For example:

bus:initial_references:url:sessionendpointmanager =
' _/sessionendpointmanager .ref";

For example, the sessionendpointmanager.ref initial reference file
can be generated using the following command:

it container_admin -container ContainerService.url
—-publishreference -service
{http://ws. iona.com/sessionmanager }SessionEndpointManager
Service -file sessionendpointmanager.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a session endpoint manager service. The same command can be
used when a server or a client obtains an endpoint reference.

bus:initial_references:url:uddi_inquire specifies the location of
an initial endpoint reference for the Artix UDDI inquire service. For
example:

bus:initial_references:url:uddi_inquire =
"*_/uddi_inquire.ref";

For example, the uddi_inquire.ref initial reference file can be
generated using the following command:

it _container_admin -container ContainerService.url
-publishreference -service
{http://ww. iona.com/uddi_over_artix}UDDI_InquireServi
ce -file uddi_inquire.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a UDDI inquire service. The same command can be used when a
server or a client obtains an endpoint reference.

bus:initial_references:url:uddi_publish specifies the location of
an initial endpoint reference for the Artix UDDI publish service. For
example:

bus:initial_references:url:uddi_publish =
"_/uddi_publish.ref";

20 Artix Configuration Reference, C++ Runtime



login_service

container

For example, the uddi_publish.ref initial reference file can be
generated using the following command:

it container_admin -container ContainerService.url
-publishreference -service
{http://ww. iona.com/uddi_over_artix}UDDI_PublishServi
ce -file uddi_publish.ref

In this example, it_container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a UDDI publish service. The same command can be used when a
server or a client obtains an endpoint reference.

bus:initial_references:url:login_service specifies the location of
an initial endpoint reference for the Artix login service. For
example:

bus:initial_references:url:login_service =
*_/login_service.ref";

For example, the login_service.ref initial reference file can be
generated using the following command:

it _container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/login_service}LoginService -file
locator.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a login service. The same command can be used when a server or
a client obtains an endpoint reference.

bus:initial_references:url:container specifies the location of an
initial endpoint reference for the Artix container service. For
example:

bus:initial_references:url:container = "_/container.ref";

For example, the container.ref initial reference file can be
generated using the following command:

it _container_admin -container ContainerService.url
-publishreference -service
{http://ws. iona.com/container}ContainerService -file
container.ref

In this example, it _container_admin asks the Artix container
service in ContainerService.url to publish an endpoint reference to
a container service. The same command can be used when a
server or a client obtains an endpoint reference.

Artix Configuration Reference, C++ Runtime 21



JVM Options

jvm_options

Message Snoop

You can use the jvm options configuration variable to pass
parameters into a Java Virtual Machine (JVM) that is started in an
Artix process.

Jvm_options specifies parameters that are passed to a JVM that is
started in an Artix process. This configuration variable takes the
following syntax:

Jjvm_options=[""-Dname=Value,-Dname=Value, ...", "..." ];
For example:

Jjvm_options = [""-Xdebug",
""-Xrunjdwp:transport=dt_socket,address=8787,server=y,sus
pend=y"*, "-verbose:class'];

This example passes in parameters to debug an Artix Java service
that is deployed in an Artix container. These JVM options enable
Java Platform Debugging Architecture (JPDA) on port 8787.

Further information

For details on using JPDA, see
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/.

Artix message snoop is a message interceptor that sends
input/output messages to the Artix log to enable viewing of the
message content. This is a useful debugging tool when developing
and testing an Artix system. The artix: interceptors:message_snoop
namespace includes the following configuration variables:

®* artix:interceptors:message_snoop:enabled
®* artix:interceptors:message_snoop:log_level

® artix:interceptors:message_snoop: log_subsystem

artix:interceptors:message_snoop:enabled

artix: interceptors:message_snoop:enabled specifies whether message
snoop is enabled. Message snoop is enabled by default. It is
automatically added as the last interceptor before the binding to
detect any changes that other interceptors might make to the
message. By default, message snoop logs at INFO_MED in the
MESSAGE_SNOOP subsystem.

22 Artix Configuration Reference, C++ Runtime


http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

Message snoop is invoked on every message call, twice in the
client and twice in the server (assuming Artix is on both sides).
This means that it can impact on performance. More importantly,
message snoop involves risks to confidentiality. You can disable
message snoop using the following setting:

artix: interceptors:message_snoop:enabled = "false'';

WARNING: For security reasons, it is strongly
recommended that message snoop is disabled in
production deployments.

artix:interceptors:message_snoop:log_level

artix: interceptors:message_snoop: log_level specifies a message
snoop log level globally or for a service port. The following
example sets the level globally:

artix: interceptors:message_snoop: log_level = "WARNING";
event_log:filters = [""*=WARNING",
"IT_BUS=INFO_HI+WARN+ERROR'", "'MESSAGE_SNOOP=WARNING ] ;

The following example sets the level for a service port:

artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort:log_level = "INFO_MED";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
""MESSAGE_SNOOP=INFO_MED'"] ;

artix:interceptors:message_snoop:log_subsystem

artix:interceptors:message_snoop: log_subsystem specifies a
specific subsystem globally or for a service port. The following
example sets the subsystem globally:

artix: interceptors:message_snoop: log_subsystem =
""MY_SUBSYSTEM"';

event log:filters = ['"*=INFO_MED", *"IT_BUS=",
""MY_SUBSYSTEM=INFO_MED'"] ;

The following example sets the subsystem for a service port:
artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort: log_subsystem = ""MESSAGE SNOOP'‘;

event_log:filters = ['*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED""] ;

Artix Configuration Reference, C++ Runtime 23



If message snoop is disabled globally, but configured for a
service/port, it is enabled for that service/port with the specified
configuration only. For example:

artix: interceptors:message_snoop:enabled = *“false';

artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort:log_level = "WARNING";

artix: interceptors:message_snoop:http://ww.acme.com/test
s:myService:myPort: log_subsystem = *"MY_SUBSYSTEM';

event_log:filters = ["*=WARNING",
"IT_BUS=INFO_HI+WARN+ERROR", "'MY_SUBSYSTEM=WARNING'T];

Setting message snoop in conjunction with log filters is useful
when you wish to trace only messages that are relevant to a
particular service, and you do not wish to see logging for others
(for example, the container, locator, and so on).

Multi-threading

Variables in the thread pool namespace control multi-threading.
Thread pools can be configured globally for Artix instances in a
configuration scope, or configured on a per-service basis.

The thread_pool namespace includes following variables:
e thread pool:initial_threads

* thread_pool:high water_mark

®*  thread _pool:low water_mark

®* thread_pool:max_queue_size

®* thread_pool:stack size

The following variable applies to automatic work queues:
®*  service:owns_workgueue

The following variables configure threading for custom transports
and transports such as HTTP, JMS, and MQ:

e policy:messaging_transport:client_concurrency
* policy:messaging_transport:concurrency
* policy:messaging_transport:max_threads

* policy:messaging_transport:min_threads
thread_pool:initial_threads

thread pool:initial_threads specifies the number of initial threads
in each service’s thread pool. Defaults to 5.

This variable can be set at different levels in your configuration.
The following is a global setting:

thread pool:initial_threads = "'3";

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

service:http://my.tnsl/:SessionManager:thread_pool:initial_threads = 73”;

24 Artix Configuration Reference, C++ Runtime



thread_pool:high_water_mark

thread pool :high water_mark specifies the maximum number of
threads allowed in each service’s thread pool. Defaults to 25.

This variable can be set at different levels in your configuration.
The following is a global setting:

thread_pool :high water_mark = ""10";

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

service:http://my.tnsl/:SessionManager:thread pool :high water_mark =
*'10";

thread_pool:low_water_ mark

thread_pool: low_water_mark sets the minimum number of threads
in each service’s thread pool. Artix will terminate unused threads
until only this number exists. Defaults to 5.

This variable can be set at different levels in your configuration.
The following is a global setting:

thread_pool : low_water_mark = "5";

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

service:http://my.tnsl/:SessionManager:thread_pool:low _water_mark = "'5";
thread_pool:max_queue_size

thread pool :max_queue_size specifies the maximum number of
request items that can be queued on the internal work queue. If
this limit is exceeded, Artix considers the server to be overloaded,
and gracefully closes down connections to reduce the load. Artix
rejects subsequent requests until there is free space in the work
queue.

Defaults to -1, which means that there is no upper limit on the size
of the request queue. In this case, the maximum work queue size
is limited by how much memory is available to the process. The
following is a global setting:

thread pool :max_queue_size = "10";

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

service:http://my.tnsl/:SessionManager :thread pool :max_queue_size =
"10";

Artix Configuration Reference, C++ Runtime 25



thread_pool:stack_size

thread pool:stack_size specifies the stack size for each thread.
The stack size is specified in bytes. The default is the following
global setting:

thread pool:stack size = '1048576";

The following setting is at the level of a fully-qualified service
name, which overrides the global setting:

service:http://my.tnsl/:SessionManager:thread pool:stack_size =
''1048576";

service:owns_workqueue

service:owns_workqueue specifies whether a services can own an
automatic work queue. If this variable is set to true, the service
can own a work queue, if needed. For example, if your application
calls Service: :get _workqueue(), this creates and returns a work
queue specific to that service.

If this variable is set to is false, the service never owns a work
queue, and uses the bus work queue instead. The default value is
true.

This variable can be set at different levels in your configuration.
The following is a global setting, which means that all services in a
bus have their own work queue:

service:owns_workqueue = '‘true;

The following setting is at the level of a fully-qualified service
name, which overrides the global setting, and means that only the
specified service has its own work queue:

service:http://my.tnsl/:SessionManager:owns_workqueue = '‘true'';

policy:messaging_transport:client_concurrency

policy:messaging_transport:client_concurrency specifies the
number of ClientTransport instances created per WSDLPort
instance. This controls multi-threading on the client side. The
default value is 1.

This variable applies to Artix transports that use a MULTI_THREADED
client policy (see Developing Advanced Artix Plug-ins in
C++).

In general, requests from transports such as HTTP must block
until the previous reply has been received. If there are multiple
invocations blocking on a proxy, these must be queued and
effectively serialized. This variable enables the transport
mechanism to use a pool of underlying connections, and thereby
scale it up.

For example, the Artix HTTP and JMS transports implement this
threading model. You can specify this variable to the configuration
scope where you start your client with these transports.

26 Artix Configuration Reference, C++ Runtime



policy:messaging_transport:concurrency

policy:messaging_transport:concurrency specifies the number of
threads in the messaging port's thread pool, when the
multi-threaded policy is in effect. The default is 1.

This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_THREADED
policies (see Developing Advanced Artix Plug-ins in C++).

For example, the Artix HTTP and JMS transports implement this
threading model. You can specify this variable to the scope where
you start your server with these transports.

policy:messaging_transport:max_threads

policy:messaging_transport:max_threads specifies the maximum
number of threads in the messaging port's thread pool, when the
multi-instance policy is in effect. The default is 1.

This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
policies (see Developing Advanced Artix Plug-ins in C++).

For example, the Artix MQ transport implements this threading
model. You can specify this variable to the scope where you start
your server with the MQ transport.

policy:messaging_transport:min_threads

Policies

policy:messaging_transport:min_threads specifies the mininum
number of threads in the messaging port's thread pool, when the
multi-instance policy is in effect. The default is 1.

This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE
policies (see Developing Advanced Artix Plug-ins in C++).

For example, the Artix MQ transport implements this threading
model. You can specify this variable to the scope where you start
your server with the MQ transport.

The policies namespace contain variables that control a range of
runtime settings. For example, publishing host names, HTTP
buffers, and trace logging.

Transport policies

These include the following:

* policies:at_http:client:proxy_server

® policies:at_http:server_address_mode_policy:publish_hostname
e policies:at _http:server_address_mode_policy:local_hostname

* policies:http:buffer:prealloc_shared

e policies:http:buffer:prealloc_size

e policies:http:client _address _mode_policy:local_hostname

e policies:http:server_address _mode_policy: local_hostname

* policies:http:server_address _mode_policy:port_range

Artix Configuration Reference, C++ Runtime 27



* policies:http:trace requests:enabled

®* policies:iiop:client_address_mode_policy:local_hostname

* policies:iiop:server_address_mode_policy:local_hostname

* policies:iiop:server_address_mode_policy:port_range

¢ policies:iiop:server_address_mode_policy:publish_hostname
* policies:soap:server_address_mode_policy:local_hostname

®* policies:soap:server_address_mode_policy:publish_hostname
Bus policies

These include the following:

e policies:bus:resolved_endpoint:max_retries

Other policies

For information on policy:messaging_port variables, see
“Multi-threading” on page 24.

policies:at_http:client:proxy_server

policies:at_http:client:proxy_server specifies the URL of the
HTTP proxy server (if one exists) along a request/response chain.

Note: Artix does not support the existence of more than
one proxy server along a request/response chain.

For example:

policies:at_http:client:proxy_server =
"http://1ocalhost:0/SOAPHTTPProxy";

You can specify the HTTP proxy server in different ways. The order
of priority is as follows:

1. Context API.

2. WSDL file.

3. Command line configuration, for example:

client
-BUSCONFIG_policies:at_http:client:proxy_server="http://localhost:0/SOAPHTTPP

roxy

4. This configuration variable.
policies:at_http:server_address_mode_policy:publish_hostname

policies:at _http:server_address mode_policy:publish_hostname
specifies how the server’s address is published in dynamically
generated Artix service contracts when using the HTTP transport.
The possible values are as follows:

canonical Publishes the fully qualified hostname of the
machine in the http:address element of the dynamic
WSDL (for example, http://myhost.mydomain.com).

28 Artix Configuration Reference, C++ Runtime



unqualified Publishes the unqualified local hostname of the
machine in the http:address element of the dynamic
WSDL. This does not include the domain name with
the hostname (for example, http://myhost).

ipaddress Publishes the IP address associated with the
machine in the http:address element of the dynamic
WSDL (for example, http://10.1.2_3). This is the
default behavior.

For example:

policies:at_http:server_address _mode_policy:publish_hostname="can
onical";

The following values are deprecated:

false Publishes the IP address of the running server in
the http:address element.

true Publishes the hostname of the machine hosting
the running server in the http:address element
of the WSDL contract.

Note:Setting the service URL programmatically overrides
this configuration variable. For more details, see
Developing Artix Applications with C++.

policies:at_http:server_address_mode_policy:local _hostname

policies:at_http:server_address_mode_policy:local_hostname
specifies the server hostname that is published in dynamically
generated Artix contracts. For example:

policies:at_http:server_address mode_policy:local_hostname="207.4
5.52.34";

This variable accepts any valid string value. The specified
hostname is published in the http:address element, which
describes the server’s location. If no hostname is specified,
policies:at_http:server_address_mode_policy:publish_hostname is
used instead.

Note: See also
policies:http:server_address _mode_policy: local_hostname,
which specifies the host name that the server listens on.

Artix Configuration Reference, C++ Runtime 29



policies:http:buffer:prealloc_shared

policies:http:buffer:prealloc_shared specifies whether the HTTP
pre-allocation buffer is shared among threads. Defaults to false.
This means that each thread pre-allocates its own buffer on the
first invocation for that thread.

If this variable is set to true, the buffer is shared among threads:
policies:http:buffer:prealloc_shared = "true";

This means that the same buffer pre-allocation is shared among
all threads. Therefore, your application must ensure that multiple
invocations are not active at the same time.

See also policies:http:buffer:prealloc_size.
policies:http:buffer:prealloc_size

policies:http:buffer:prealloc_size specifies the pre-allocated size
of the HTTP buffer in bytes. The default value is 0, which means
there is no pre-allocation.

When this variable is set, Artix pre-allocates chunks of the
specified buffer size to avoid repeated allocations and
deallocations. Each thread (dispatcher or reply consumer)
performs this pre-allocation on the first message. Then repeated
invocations on the same thread reuse this buffer. For example, the
following setting specifies a 2 MB buffer:

policies:http:buffer:prealloc_size = ''2097152";

User applications should work out their worst case load in
advance, and set this variable to an appropriate value. This
allocation can be reused by each subsequent request/reply on the
dispatcher/consumer thread. When the Artix bus is shut down, the
buffer allocation is freed.

policies:http:client_address_mode_policy:local _hostname

policies:http:client_address_mode_policy:local_hostname specifies
the outgoing client hostname. This enables you to explicitly
specify the hostname that the client binds on, when initiating a
TCP connection.

This provides support for multi-homed client host machines with
multiple hostnames or IP addresses (for example, those using
multiple DNS aliases or multiple network interface cards).

For example, if you have a client machine with two network
addresses (207.45.52.34 and 207.45.52.35), you can explicitly set
this variable to either address:

policies:http:client_address_mode_policy: local_hostname =
""207.45.52.34";

This variable accepts any valid string value. It is unspecified by
default, and the client uses the 0.0.0.0 wildcard address. In this
case, the network interface card used is determined by the
operating system.

30 Artix Configuration Reference, C++ Runtime



policies:http:server_address_mode_policy:local _hostname

policies:http:server_address mode policy:local_hostname enables
you to explicitly specify the host name that the server listens on
when using the HTTP transport. This is unspecified by default.

For example, if you have a multi-homed server host machine with
two network addresses (207.45.52.34 and 207.45.52.35), you can
explicitly set this variable to either address:

policies:http:server_address_mode_policy: local_hostname =
"'207.45.52.34";

Note: See also

policies:at_http:server_address mode_policy: local_hostnam
e, which specifies the hostname published in dynamically
generated Artix contracts.

policies:http:server_address_mode_policy:port_range

policies:http:server_address_mode_policy:port_range specifies a
range of HTTP ports in the following format: FromPort:ToPort
For example:

policies:http:server_address_mode_policy:port_range="4003
:4008";

Note: The specified port_range has no effect when a fixed
TCP port is specified for the SOAP address in the WSDL
contract. The WSDL setting takes precedence over this
-cfg file setting.

policies:http:trace_requests:enabled

policies:http:trace requests:enabled specifies whether to enable

HTTP-specific trace logging. The default is false. To enable HTTP
tracing, set this variable as follows:

policies:http:trace_requests:enabled=""true";

This setting outputs INFO level messages that show full HTTP
buffers (headers and body) as they go to and from the wire.

You should also set your log filter as follows to pick up the HTTP
additional messages, and then resend the logs:

event_log:filters = ["IT_HTTP=*""];

For example, you could enable HTTP trace logging to verify that
basic authentication headers are written to the wire correctly.

Similarly, to enable HTTPS-specific trace logging, use the following
setting:

policies:https:trace_requests:enabled=""true";

Artix Configuration Reference, C++ Runtime 31



policies:iiop:client_address_mode_policy:local _hostname

policies:iiop:client _address mode policy:local_hostname enables
you to explicitly specify the host name that the client binds on.
This is unspecified by default.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

policies:iiop:client_address_mode policy:local_hostname =
"'207.45.52.34";

policies:iiop:server_address_mode_policy:local _hostname

policies:iiop:server_address mode_policy:local_hostname enables
you to explicitly specify the host name that the server listens on
and publishes in its IORs. This is unspecified by default.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this
variable to either address:

policies:iiop:server_address _mode policy:local_hostname =
"'207.45.52.34";

policies:iiop:server_address _mode_policy:port_range

policies:iiop:server_address_mode policy:port range specifies the
range of ports that a server uses when there is no well-known
addressing policy specified for the port. Specified values take the
format of FromPort:ToPort, for example:

policies:iiop:server_address_mode policy:port_range="4003
14008

policies:iiop:server_address_mode_policy:publish_hostname

policies:iiop:server_address _mode-policy:publish_hostname
specifes whether 11OP exports hostnames or IP addresses in
published profiles. Defaults to false (exports IP addresses, and
does not export hostnames). To use hostnames in object
references, set this variable to true:

policies:iiop:server_address_mode policy:publish_hostname
=true

policies:soap:server_address_mode_policy:local _hostname
policies:soap:server_address_mode_policy:local_hostname specifies
the server hostname that is published in dynamically generated
Artix contracts when using SOAP as a transport.For example:

policies:soap:server_address_mode_policy: local_hostname="207.45.
52.34";

32 Artix Configuration Reference, C++ Runtime



This variable accepts any valid string value. The specified
hostname is published in the soap:address element, which
describes the server’s location. If no hostname is specified,
policies:soap:server_address_mode_policy:publish_hostname is
used instead.

policies:soap:server_address_mode_policy:publish_hostname

policies:soap:server_address_mode_policy:publish_hostname
specifies how the server’s address is published in dynamically
generated Artix contracts when using SOAP as a transport. The
possible values are as follows:

canonical  Publishes the fully qualified hostname of the
machine in the soap:address element of the
dynamic WSDL (for example,
http://myhost.mydomain.com).

unqualified Publishes the unqualified local hostname of the
machine in the soap:address element of the
dynamic WSDL. This does not include the
domain name with the hostname (for example,
http://myhost).

ipaddress Publishes the IP address associated with the
machine in the soap:address element of the
dynamic WSDL (for example, http://10.1.2_3).

For example:

policies:soap:server_address_mode_policy:publish_hostname="ipa
ddress'';

The following values are deprecated:

false Publishes the IP address of the running server
in the soap:address element. This is the default
behavior.

true Publishes the hostname of the machine hosting

the running server in the soap:address element
of the WSDL contract.

Note:Setting the service URL programmatically overrides
this configuration variable. For more details, see
Developing Artix Applications with C++.

policies:bus:resolved _endpoint:max_retries

policies:bus:resolved endpoint:max_retries applies to service
proxies whose address details are obtained using
resolve_initial_references(). This variable specifies the number
of transparent rebinds for transient connection errors. Values can
be in the range of zero to infinity. The default value is 0.

Resolved proxies are initialized using the ClientProxyBase(QName

ServiceName) constructor.This tells the Artix bus the name of the
initialized service, but does not supply its WSDL or address. The
bus obtains the address by calling resolve_initial_references().

Artix Configuration Reference, C++ Runtime 33



QName Aliases

container

locator

peermanager

Resolved proxies are fault tolerant and can rebind if errors occur.
By default, they do not rebind, and throw an exception if the
connection is lost. However, if you set

policies:bus:resolved _endpoint:max_retries to a value greater
than zero, the proxy tries to rebind using
resolve_initial_references(). For example, if you use the
locator_client plug-in to resolve initial references, the service
proxy can perform dynamic failover.

QName aliases are shorthand names for services in Artix .cfg
configuration files. QNames are specified in the following format:

{NamespaceURI }LocalPart

For example: {http://ws.iona.com/locator}LocatorService. In this
case, the bus:initial_references:url:locator variable is used as a
shorthand instead of a more verbose format, such as
bus:initial_references:url:LocatorService:http://ws.iona.com/loc
ator.

The bus:gname_alias namespace includes the following variables:
. container

° locator

*  peermanager

* sessionmanager

®* sessionendpointmanager

® uddi_inquire

® uddi_publish

. login_service

bus:gname_al ias:container specifies the QName alias for the Artix
container service. For example:

bus:gname_alias:container =
"{http://ws.iona.com/container}ContainerService';

bus:gname_alias: locator specifies the QName alias for the Artix
locator service. For example:

bus:gname_alias: locator =
"*{http://ws.iona.com/locator}LocatorService';

bus:gname_alias:peermanager specifies the QName alias for the
Artix peer manager service. For example:

bus:gname_alias:peermanager =
"{http://ws. iona.com/peer_manager }PeerManagerService";

34 Artix Configuration Reference, C++ Runtime



sessionmanager

bus:gname_al ias:sessionmanager specifies the QName alias for the
Artix session manager service. For example:

bus:gname_al ias:sessionmanager =
"“{http://ws. iona.com/sessionmanager }SessionManagerServ
ice";

sessionendpointmanager

uddi_inquire

uddi__publish

login_service

bus:gname_al ias:sessionendpointmanager specifies the QName alias
for the Artix session endpoint manager service. For example:

bus:gname_alias:sessionendpointmanager =
"“{http://ws. iona.com/sessionmanager }SessionEndpointManagersS
ervice"';

bus:gname_alias:uddi_inquire specifies the QName alias for the
Artix UDDI inquire service. For example:

bus:gname_alias:uddi_inquire =
"“{http://ww. iona.com/uddi_over_artix}UDDI_InquireServ
ice";

bus:gname_alias:uddi_publish specifies the QName alias for the
Artix UDDI publish service. For example:

bus:gname_alias:uddi_publish =
“{http://ww. iona.com/uddi_over_artix}UDDI_PublishServ
ice";

bus:gname_alias:login_service specifies the QName alias for the
Artix login service. For example:

bus:gname_alias:login_service =
"{http://ws.iona.com/login_service}LoginService";

Reference Compatibility

The bus namespace includes configuration variables that specify
backward compatibility with proprietary Artix reference and
endpoint reference formats. It includes the following:

. bus:non_compliant_epr_format

®* bus:reference 2.1 compat

Artix Configuration Reference, C++ Runtime 35



bus:non_compliant_epr_format

bus:non_compliant_epr_format specifies backward compatibility
with the Artix 4.0 proprietary endpoint reference format. The
endpoint references published by Artix 4.1 or higher are compliant
with the W3C WS-Addressing specification.

The default value of this variable in artix.cfg is false, which
means to use WS-A compliant endpoint references. To use the
proprietary Artix 4.0 endpoint reference format, set this variable
as follows:

bus:non_compliant_epr_format=""true";

Artix 4.0 endpoint reference format

Artix 4.0 does not support the wsaw:ServiceName element and
EndpointName attribute specified by the WS-Addressing WSDL
binding. This defines a WSDLBindingSchema for embedding WSDL
information in the endpoint reference (EPR) metadata.

The proprietary format of an Artix 4.0 EPR can cause
interoperability issues because it serializes the WSDL service as a
wsdl:service element in EPR metadata. Other vendors cannot
deserialize the wsdl:service element when processing EPR
metadata. Artix 4.0 also does not support deserializing a
ServiceName element, if present, in the inbound EPR.

Artix 4.1 or higher endpoint reference format

Artix 4.1 or higher supports the wsaw:ServiceName element and
EndpointName attribute. The on-the-wire format of an Artix 4.1 or
higher EPR containing metadata is different from an Artix 4.0 EPR.
Artix 4.1 or higher serializes WSDL metadata in the EPR metadata
as a wsaw:ServiceName element, and deserializes the
wsaw:ServiceName element, and its EndpointName attribute, if
present in the inbound EPR.

Artix 4.1 or higher does not publish the optional EndpointName
attribute if the WSDL service has only one port, but does if the
service has multiple endpoints. The EPR format introduced in Artix
4.1 is slightly different from the Artix 4.0 format, but complies
with W3C specifications and facilitates interoperability between
vendors.

Migrating from Artix 4.0
The following applies when migrating from Artix 4.0:

Zero impact scenarios There is no impact if deployed Artix 4.0
applications still use deprecated Artix references, and do not use
WS-Addressing EPRs. Perform one-step migration to Artix 4.1 or
higher, both on the client and server sides.

Mixed deployments The format of the WS-Addressing EPR that
Artix 4.0 clients receive from Artix services (for example, the
locator), depends on the value of the bus:non_compliant_epr_format
variable set on the Artix service side. Some Artix 4.0 applications
must be reconfigured if they use WS-A EPRs and decide to migrate
to Artix 4.1 or higher in phases. For example, upgrade to Artix 4.1
or higher on server side, and Artix 4.0 on client side.

36 Artix Configuration Reference, C++ Runtime



Possible failing scenarios In some cases of mixed deployment,
Artix 4.0 client applications can fail while deserializing the EPR
coming on the wire. For example, clients of Artix 4.1 or higher
transient servants and default servants. Normal servants and
multi-port services will still work.

Solution to failing cases If Artix 4.0 clients get an IT_Bus
exception while creating a proxy using the EPR, the
bus:non_compliant_epr_format configuration value on the Artix 4.1
or higher server side must be set to true to get the Artix 4.0
(non-compliant) format. There is no need to change any source
code. The trace logs on the server side contain an entry for the
bus:non_compliant_epr_format configuration variable.

bus:reference_2.1 compat

bus:reference_2.1 compat specifies backward compatability with
pre-Artix 3.0.1 versions of an Artix reference. For example:

bus:reference_2.1_compat = "‘true"';

If this variable is set to true, the Artix reference is generated in
the pre-Artix 3.0.1 format. If this is not set or set to false, Artix
references are generated in the Artix 3.0.1 format.

Artix 3.0.1 reference format

From Artix 3.0.1, the proprietary references produced by Artix no
longer use a hard coded reference_properties element name.
Instead, Artix references use extension element names that are
described in the port definition.

For example, when using SOAP, an Artix 3.0.1 stringified
reference has the following format:

<?xml version="1.0" encoding="utf-8"?>
<ml:reference service=""m2:AccountService"
wsdlLocation=""fFile: ./bank.wsdl"

xmlns:xs="http://ww.w3.0rg/2001/XMLSchema™
xmIns:m1=""http://ww. iona.com/bus"

xmIns:m2=""http://ww. iona.com/bus/tests"

xmlns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance'>
<port name="AccountPort" binding="m2:AccountBinding'>
<m3:address xsi:type="m3:tAddress"

location=""http://localhost:999/AccountService/AccountPor
oy

xmIns:m3=""http://schemas.xmlsoap.org/wsdl/soap/"">
</m3:address>
</port>
</ml:reference>

Artix Configuration Reference, C++ Runtime 37



Pre-Artix 3.0.1 reference format
In earlier versions, stringified references had the following format:

<?xml version="1.0" encoding="utf-8"?>

<ml:reference service="m2:AccountService"
wsdlLocation=""file: ./bank.wsdl"
xmlIns:xs="http://ww_._w3.org/2001/XMLSchema"*
xmIns:m1="http://ww. iona.com/bus"
xmIns:m2=""http://ww. iona.com/bus/tests"

xmIns:xsi="http://ww.w3.0org/2001/XMLSchema-instance'>

<port name="‘AccountPort” binding="m2:AccountBinding'>
<reference_properties xsi:type="m3:tAddress"

location="http://localhost:999/AccountService/AccountPort/""
xmlns:m3=""http://schemas.xmlsoap.org/wsdl/soap/*">
</reference_properties>
</port>
</ml:reference>

Note: This change is wire incompatible with previous
versions of Artix.

38 Artix Configuration Reference, C++ Runtime



Artix Plug-ins

Artix is built on Adaptive Runtime architecture (ART), which enables
users to configure services as plug-ins to the core product. This chapter
explains the configuration settings for Artix-specific plug-ins.

Each Artix transport, payload format, and service has properties
that are configurable as plug-ins to the Artix runtime. The
variables used to configure plug-in behavior are specified in the
configuration scopes of each Artix runtime instance, and follow the
same order of precedence. A plug-in setting specified in the global
configuration scope is overridden by a value set in a narrower
scope.

For example, if you set plugins:routing:use_pass_through to true in
the global scope, and set it to false in the my_app scope, all Artix
runtimes, except for those running in the my_app scope, use true
for this value. Any Artix instance using the my_app scope uses false
for this value.

This chapter describes the following subjects:
* AmberPoint

* Bus

e CA WSDM Observer

* Client-Side High Availability

* Container

¢ Database Environment

 FTP
s IMS
o IMX

* Local Log Stream

* Log4J Log Stream

* Locator Service

* Locator Endpoint Manager
*  Monitoring

®* Peer Manager

* Performance Logging

* Remote Logging

* Remote Method Invocation
* Routing

* Service Lifecycle

®* Session Manager

* Session Endpoint Manager
* Session Manager Simple Policy
* SOAP

. SOAP 1.2

* Transformer Service

Artix Configuration Reference, C++ Runtime 39



AmberPoint

* Tuxedo

* Web Services Addressing

* Web Services Chain Service

®* Web Services Reliable Messaging
* WSDL Publishing Service

* XML File Log Stream

*  Custom Plug-ins

The plugins:ap_nano_agent namespace configures integration with
the AmberPoint SOA management system. It includes the
following variables:

®* plugins:ap_nano_agent:hostname_address:local_hostname

* plugins:ap_nano_agent:hostname_address:publish_hostname

plugins:ap_nano_agent:hostname_address:local _hostname

plugins:ap_nano_agent:hostname_address: local_hostname is an
arbitrary string used as the client hostname instead of trying to
resolve it using the underlying IP runtime. This is undefined by
default.

plugins:ap_nano_agent:hostname__address:publish_hostname

Bus

plugins:ap_nano_agent:hostname_address:publish_hostname specifies
the form in which the Artix AmberPoint Agent resolves the host
address that an Artix service consumer (Artix proxy) runs on. This
variable takes the following values:

ungualified The host name in short form, without the domain
name (hostname).

ipaddress The host name in the form of an IP address (for
example, 123.4.56.789). This is the default.

canonical The host name takes a fully qualified form
(hostname .domainname).

true same as unqualified
false same as ipaddress

The plugins:bus namespace includes the following variables:
¢ plugins:bus:register_client context

* plugins:bus:default_tx_provider:plugin

plugins:bus:register_client_context

plugins:bus:register_client_context specifies whether to register
a client context. You can enable registration of client contexts as
follows:

plugins:bus:register_client_context = '‘true';

40 Artix Configuration Reference, C++ Runtime



The client context provides information about the origin of the
incoming request (for example, its original IP address). By default,
the context is not registered. This avoids any extra overhead
associated with obtaining this information and populating the
context.

plugins:bus:default_tx_provider:plugin

plugins:bus:default_tx_provider:plugin specifies the default
transaction system used by Artix when a new transaction is
started by bus.transactions() .begin_transaction(). The specified
value is the plug-in name of the transaction system provider
plug-in. The available values are:

ots_tx provider Uses OTS as the transaction provider. Creates
either an OTS Lite (single-resource) or OTS
Encina (multi-resource) transaction. This is the
default setting. For details of the additional
configuration used to specify whether OTS Lite
or OTS Encina is used, see the chapter “CORBA”.

wsat_tx_provider Uses a WS-Coordination/WS-AtomicTransaction
provider. The coordination service can either be
run in-process or inside the Artix container.

Selecting a transaction provider

The choice of which transaction provider to use depends on the
type of Artix binding your application uses. If most of your
communication is over a CORBA binding, use ots_tx_provider. If
most of your communication uses a SOAP binding, use
wsat_tx_provider.

In both cases, Artix automatically interposes a transaction context
of the correct type when a call is made over a particular binding.
For example, if the default provider is OTS, and the application
makes an outbound SOAP call, Artix includes a
WS-AtomicTransaction SOAP header in the SOAP call. In this case,
the transaction is still coordinated by OTS.

Similarly, if the default provider is WSAT, and a CORBA call is
made, Artix automatically includes an OTS CORBA service context
in the I1OP call. In this case, the transaction is coordinated by a
WS-Coordination service.

orb_plugin configuration

The appropriate plug-in for your transaction system must also be
loaded. For example, to load the OTS plug-in, include the ots
plug-in name in the orb_plugins list:

# artix.cfg

ots _lite _client or_server {
plugins:bus:default tx provider:plugin = "ots_tx provider";
orb_plugins = [ ..., "ots"];

3

For full details of using transaction systems in Artix, see
Developing Artix Applications in C++.

Artix Configuration Reference, C++ Runtime 41



CA WSDM Observer

The plugins:ca wsdm observer namespace configures integration
with the CA WSDM management system. It includes the following
variables:

® plugins:ca_wsdm observer:auto_register

®* plugins:ca wsdm observer:config_poll_time
®* plugins:ca wsdm_observer:handler_type

. plugins:ca_wsdm observer:max_queue_size

* plugins:ca_wsdm_observer:min_queue_size

. plugins:ca_wsdm_observer:report wait_time
plugins:ca_wsdm_observer:auto_register

plugins:ca_wsdm observer:auto_register specifies whether the Artix
CA WSDM observer automatically registers observed services with
a WSDM service. The default is:

plugins:ca wsdm observer:auto_register = "“true’;

If you have a large number of observed services, the runtime
performance may be decreased because of equally large register
service requests sent to a WSDM service.

You can set this variable to false and manually import service
details from WSDL definitions into a WSDM console. However, this
only works for SOAP-HTTP non-transient services. This is because
WSDM can not import non-SOAP services described in WSDL,
while Artix does not publish WSDL for transient services.

plugins:ca_wsdm_observer:config poll_time

plugins:ca_wsdm _observer:config_poll_time specifies how often, in
seconds, the observer should poll a WSDM service for
configuration updates, use the following variable:

plugins:ca wsdm_observer:config_poll_time

The default is 180 seconds (3 minutes). Configuration updates tell
the observer whether transaction monitors have been enabled. If
so, the observer copies input/output raw messages, and reports
them to a WSDM service if duration or request/response size
thresholds have been exceeded.

plugins:ca_wsdm_observer:handler_type
plugins:ca_wsdm_observer:handler_type specifies a value that
identifies an Artix observer to a WSDM service. It should be above

200. The default is:

plugins:ca wsdm observer:handler_type = "'217";

42 Artix Configuration Reference, C++ Runtime



In addition, if you change the default, you must also update the
following file with the new handler type:

WSDM-Instal 1-Dir/server/defaul t/conf/WsdmSOMMA_Basic.proper
ties

Entries in this file take a format of observertype . X=Artix0Observer,
where X is the handler type value. The default entry is:

observertype.217=ArtixObserver
plugins:ca_wsdm_observer:max_queue_size

plugins:ca_wsdm_observer:max_queue_size specifies the maximum
number of service request records that the observer queue can
hold. For example:

plugins:ca_wsdm _observer:max_queue_size = "600";

The default is 500. New records are dropped when the queue size
reaches this value. If report wait_time is not set, this variable is
ignored. In this case, reports are sent as soon as the queue size is
equal to max_queue_size.

plugins:ca_wsdm_observer:min_queue_size
plugins:ca_wsdm_observer:min_gqueue_size specifies how many
service request records must be available in a queue before a
report is sent to a WSDM service. For example:

plugins:ca wsdm_observer:min_gueue_size = "'6";

The default is 5. Set this variable if your load is expected to be
large. If this variable is too low, the observer may send reports
too frequently, and if it is too high, the memory footprint may
increase significantly.

plugins:ca_wsdm_observer:report_wait_time

plugins:ca_wsdm_observer:report_wait_time specifies how often
reports should be sent in seconds. For example:

plugins:ca_wsdm _observer:report wait_time = 10;
This variable is an alternative to min_queue_size, which instead

specifies the frequency of reports on a time basis. This variable
should be used with max_queue_size.

Artix Configuration Reference, C++ Runtime 43



Client-Side High Availability

The variables in the plugins:ha_conf namespace configure
client-side high availability settings:

®* plugins:ha_conf:strategy

®* plugins:ha_conf:random:selection
plugins:ha_conf:strategy

plugins:ha_conf:strategy specifies whether the client uses random
or sequential endpoint selection. Defaults to sequential.
Specifying random enables client applications to select a random
server each time they connect. The following example applies
globally:

plugins:ha_conf:strategy=""random';
The following example applies at the level of a service:

plugins:ha_conf:strategy:http://ww. iona.com/test:SOAPHTTPService="
random';

plugins:ha_conf:random:selection

plugins:ha_conf:random:selection specifies whether the client
always selects a random server or only after the client loses
connectivity with the first server in the list. Possible values are
always or subsequent. Defaults to always.

Specify always if you want your clients to be uniformly
load-balanced across different servers. The following example
applies globally:

plugins:ha_conf:strategy=""random';
plugins:ha_co