
Security Guide
Version 1.3, December 2003

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.
IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA
e-Business Platform, and Total Business Integration are trademarks or registered trade-
marks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001�2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 19-Dec-2003

M 3 1 8 4

Contents

List of Tables vii

List of Figures ix

Preface xi

Chapter 1 Introduction to Security 1
Security for SOAP Bindings 2

Secure Hello World Example 3
HTTPS Connection 6
IIOP/TLS Connection 11
Security Layer 18

Chapter 2 Configuring the iS2 Server 25
Configuring the File Adapter 26
Configuring the LDAP Adapter 28
Configuring the SiteMinder Adapter 34
Configuring the Kerberos Adapter 36
Additional iS2 Configuration 39

Configuring the Log4J Logging 40

Chapter 3 Managing Users, Roles and Domains 43
Introduction to Domains and Realms 44

iSF Security Domains 45
iSF Authorization Realms 47

Managing a File Security Domain 52
Managing an LDAP Security Domain 54
Managing a SiteMinder Security Domain 55

Chapter 4 Managing Access Control Lists 57
Overview of Artix ACL Files 58
Artix Action-Role Mapping ACL 59
iii

CONTENTS
Chapter 5 Managing Certificates 63
What are X.509 Certificates? 64
Certification Authorities 66

Commercial Certification Authorities 67
Private Certification Authorities 68

Certificate Chaining 69
PKCS#12 Files 71
Creating Your Own Certificates 73

Set Up Your Own CA 74
Use the CA to Create Signed Certificates 77

Deploying Certificates 80
Overview of Certificate Deployment 81
Deploying Trusted Certificate Authority Certificates 82
Deploying Application Certificates 86

Chapter 6 Configuring HTTPS and IIOP/TLS Authentication 89
Requiring Authentication 90

Target-Only Authentication 91
Mutual Authentication 94

Specifying Trusted CA Certificates 97
Specifying an Application�s Own Certificate 98
Providing a Certificate Pass Phrase 99

Certificate Pass Phrase for HTTPS 100
Certificate Pass Phrase for IIOP/TLS 102

Advanced IIOP/TLS Configuration Options 104
Setting a Maximum Certificate Chain Length 105
Applying Constraints to Certificates 106

Chapter 7 Configuring IIOP/TLS Secure Associations 109
Overview of Secure Associations 110
Setting IIOP/TLS Association Options 112

Secure Invocation Policies 113
Association Options 114
Choosing Client Behavior 116
Choosing Target Behavior 118

Specifying IIOP/TLS Cipher Suites 120
Supported Cipher Suites 121
Setting the Mechanism Policy 124
 iv

CONTENTS
Constraints Imposed on Cipher Suites 126
Caching IIOP/TLS Sessions 129

Chapter 8 Principal Propagation 131
Introduction to Principal Propagation 132
Configuring 133
Programming 136
Interoperating with .NET 139

Explicitly Declaring the Principal Header 140
Modifying the SOAP Header 142

Chapter 9 Propagating Security Tokens Using SOAP Message Headers 145
Propagating a Username/Password Token 146
Propagating a Kerberos Token 148

Chapter 10 Setting Security Properties in Artix Contracts 151

Appendix A Security Configuration 155
plugins Namespace 156
policies Namespace 161
principal_sponsor Namespace 170
principal_sponsor:csi Namespace 172

Appendix B iS2 Configuration 175
Properties File Syntax 176
iS2 Properties File 178
Cluster Properties File 200
log4j Properties File 202

Appendix C ASN.1 and Distinguished Names 205
ASN.1 206
Distinguished Names 207
v

CONTENTS
Appendix D Action-Role Mapping DTD 211

Appendix E OpenSSL Utilities 215
Using OpenSSL Utilities 216

The x509 Utility 217
The req Utility 219
The rsa Utility 221
The ca Utility 223

The OpenSSL Configuration File 225
[req] Variables 226
[ca] Variables 227
[policy] Variables 228
Example openssl.cnf File 229

Appendix F License Issues 231
OpenSSL License 232

Index 235
 vi

List of Tables

Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope 32

Table 2: Cipher Suite Definitions 122

Table 3: Association Options Supported by Cipher Suites 127

Table 4: Contract Security Attributes 152

Table 5: Mechanism Policy Cipher Suites 167

Table 6: Commonly Used Attribute Types 208
vii

LIST OF TABLES
 viii

List of Figures

Figure 1: Overview of the Secure HelloWorld Example 3

Figure 2: A HTTPS Connection in the HelloWorld Example 6

Figure 3: An IIOP/TLS Connection in the HelloWorld Example 11

Figure 4: The Security Layer in the HelloWorld Example 18

Figure 5: Architecture of an iSF Security Domain 45

Figure 6: Server View of iSF Authorization Realms 48

Figure 7: Role View of iSF Authorization Realms 49

Figure 8: Assignment of Realms and Roles to Users Janet and John 50

Figure 9: A Certificate Chain of Depth 2 69

Figure 10: A Certificate Chain of Depth 3 70

Figure 11: Elements in a PKCS#12 File 71

Figure 12: Target Authentication Only 91

Figure 13: Mutual Authentication 94

Figure 14: Configuration of a Secure Association 111

Figure 15: Constraining the List of Cipher Suites 126
ix

LIST OF FIGURES
 x

Preface
Audience This guide is aimed at C++ developers who are developing Artix client and

server applications. The C++ API described in this guide can be used with
any Artix binding or transport (CORBA, SOAP and so on). It is assumed that
the reader has a good knowledge of C++ and an elementary understanding
of WSDL and XML concepts.

Related documentation The document set for Artix includes the following related documents:

� Artix Tutorial.

� Getting Started with Artix Encompass.

� Getting Started with Artix Relay.

� Artix User's Guide.

� Artix C++ Programmer's Guide.

� Artix Thread Library Reference.

The latest updates to the Artix documentation can be found at http://
iona.com/docs.
xi

http://iona.com/docs
http://iona.com/docs

PREFACE
Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Artix
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 xii

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xiii

PREFACE
 xiv

CHAPTER 1

Introduction to
Security
This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

In this chapter This chapter discusses the following topics:

Security for SOAP Bindings page 2
1

CHAPTER 1 | Introduction to Security
Security for SOAP Bindings

Overview This section provides a brief overview of how the IONA Security Framework
(iSF) provides security for SOAP bindings between Artix applications. The
iSF is a comprehensive security framework that supports authentication and
authorization using data stored in a central security service (the iS2 server).
This discussion is illustrated by reference to the secure HelloWorld
demonstration.

In this section This section contains the following subsections:

Secure Hello World Example page 3

HTTPS Connection page 6

IIOP/TLS Connection page 11

Security Layer page 18
 2

Security for SOAP Bindings
Secure Hello World Example

Overview This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the IONA Security Framework. In
particular, this demonstration shows you how to configure a typical Artix
client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

Figure 1: Overview of the Secure HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

HTTPS

Security layer

IIOP/TLS

WSDL X.509 ARMWSDL

iS2 Server

IIOP/TLS

X.509

File
Adapter

Props

User Data

HTTPS

HTTP Basic Authentication

Cert for HTTPSServer copyClient copy hello_world_action_role_mapping.xml

is2.propertiesCert for iS2 server

is2_user_password_file.txt
3

CHAPTER 1 | Introduction to Security
Location The secure HelloWorld demonstration is located in the following directory:

ArtixInstallDir/artix/1.3/demos/secure_hello_world/http_soap

Main elements of the example The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

� HelloWorld client.

� HelloWorld server.

� iS2 server.

� File adapter.

HelloWorld client The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

HelloWorld server The HelloWorld server employs two different kinds of secure transport,
depending on which part of the system it is talking to:

� HTTPS�to receive SOAP invocations securely from the HelloWorld
client.

� IIOP/TLS�to communicate securely with the iS2 server, which
contains the central store of user data.

iS2 server The iS2 server manages a central repository of security-related user data.
The iS2 server can be accessed remotely by Artix servers and offers the
service of authenticating users and retrieving authorization data.

File adapter The iS2 server supports a number of adapters that can be used to integrate
with third-party security products (for example, an LDAP adapter and a
SiteMinder adapter are available for iS2). This example uses the iS2 file
adapter, which is a simple adapter provided for demonstration purposes.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.
 4

Security for SOAP Bindings
Security layers To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

� HTTPS layer.

� IIOP/TLS layer.

� Security layer.

HTTPS layer The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the WSDL contract (both
the client copy and the server copy).

For more details, see �HTTPS Connection� on page 6.

IIOP/TLS layer The IIOP/TLS layer consists of the OMG�s Internet Inter-ORB Protocol (IIOP)
combined with the SSL/TLS protocol. The IIOP/TLS transport can be used
either with CORBA bindings or with the Artix Tunnel plug-in. In Artix, the
IIOP/TLS is configured by editing the artix.cfg (or artix-secure.cfg) file.

For more details, see �IIOP/TLS Connection� on page 11.

Security layer The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see �Security Layer� on page 18.
5

CHAPTER 1 | Introduction to Security
HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

OpenSSL toolkit HTTPS transport security is provided by the OpenSSL toolkit, which is a
publicly available implementation of the SSL protocol.

The OpenSSL libraries (libeay.dll and ssleay.dll on Windows) are
provided with Artix. The version of the OpenSSL libraries provided with Artix
are, however, subject to certain restrictions as follows:

� IDEA is not supported.

� Certain encryption suites are not supported.

Figure 2: A HTTPS Connection in the HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

Security layer

IIOP/TLS

WSDL X.509WSDL

HTTPS

Cert for HTTPSServer copyClient copy

HTTPS
 6

Security for SOAP Bindings
HTTPS cipher suites The OpenSSL libraries provided with Artix support the following cipher
suites, which can be used by the HTTPS protocol:

� Null encryption, integrity-only ciphers:
NULL-MD5
NULL-SHA

� Standard ciphers:
RC4-SHA
RC4-MD5
DES-CBC3-SHA
DES-CBC-SHA
EXP-DES-CBC-SHA
EXP-RC2-CBC-MD5
EXP-RC4-MD5
EDH-RSA-DES-CBC-SHA
EDH-DSS-DES-CBC-SHA
EXP-EDH-RSA-DES-CBC
EXP-EDH-DSS-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA

Target-only authentication The HelloWorld example is configured to use target-only authentication on
the HTTPS connection. That is, during the TLS handshake, the server
authenticates itself to the client (using an X.509 certificate), but the client
does not authenticate itself to the server. Hence, there is no X.509
certificate associated with the client.

Client HTTPS configuration Example 1 shows how to configure the client side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 1: WSDL Contract with Client HTTPS Configuration

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">

1 <soap:address location="https://localhost:55012"/>
2 <http-conf:client
7

CHAPTER 1 | Introduction to Security
The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled here by using
https: instead of http: in the location URL attribute.

2. The <http-conf:client> tag contains all the attributes for configuring
the client side of the HTTPS connection.

3. If the UseSecureSockets attribute is true, the client will try to open a
secure connection to the server.

4. The file specified by the TrustedRootCertificates contains a
concatenated list of CA certificates in PEM format. The client uses this
CA list during the TLS handshake to verify that the server�s certificate
has been signed by a trusted CA.

Server HTTPS configuration Example 2 shows how to configure the server side of a HTTPS connection in
Artix, in the case of target-only authentication.

3 UseSecureSockets="true"
4 TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

pem"
 UserName="user_test"
 Password="user_password"
 />
 </port>
 </service>
</definitions>

Example 1: WSDL Contract with Client HTTPS Configuration

Note: If UseSecureSockets is false and the <soap:address>
location URL begins with https:, however, the client will
nevertheless attempt to open a secure connection.

Example 2: WSDL Contract with Server HTTPS Configuration

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 <service name="HelloWorldService">
 8

Security for SOAP Bindings
The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled by using https:
instead of http: in the location URL attribute.

2. The <http-conf:server tag contains all the attributes for configuring
the server side of the HTTPS connection.

3. If the UseSecureSockets attribute is true, the server will open a port to
listen for secure connections.

4. The ServerCertificate attribute specifies the server�s own certificate
in PEM format. For more background details about X.509 certificates,
see �Managing Certificates� on page 63.

5. The ServerPrivateKey attribute specifies a PEM file containing the
server certificate�s encrypted private key.

 <port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">

1 <soap:address location="https://localhost:55012"/>
2 <http-conf:server
3 UseSecureSockets="true"
4

ServerCertificate="../certificates/openssl/x509/certs/key.cer
t.pem"

5
ServerPrivateKey="../certificates/openssl/x509/certs/privkey.
pem"

6 ServerPrivateKeyPassword="testaspen"
7

TrustedRootCertificates="../certificates/openssl/x509/ca/cace
rt.pem"

 />
 </port>
 </service>
</definitions>

Example 2: WSDL Contract with Server HTTPS Configuration

Note: If UseSecureSockets is false and the <soap:address>
location URL begins with https:, however, the server will listen for
secure connections.
9

CHAPTER 1 | Introduction to Security
6. The ServerPrivateKeyPassword attribute specifies the password to
decrypt the server certificate�s private key.

7. The file specified by the TrustedRootCertificates contains a
concatenated list of CA certificates in PEM format. This attribute value
is not used in the case of target-only authentication.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<http-conf:server> tag from the copy of the WSDL contract that is
distributed to clients.
 10

Security for SOAP Bindings
IIOP/TLS Connection

Overview Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TLS connection between the Artix server and
the iS2 server. In general, the iS2 server is accessible only through the
IIOP/TLS transport.

Baltimore toolkit IIOP/TLS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites�see
�Supported Cipher Suites� on page 121.

Figure 3: An IIOP/TLS Connection in the HelloWorld Example

iS2 Server

IIOP/TLS

X.509

File
AdapterUser Data

Cert for iS2 server

is2_user_password_file.txt

Artix Server

HTTPS

Security layer

IIOP/TLS
11

CHAPTER 1 | Introduction to Security
Target-only authentication The HelloWorld example is configured to use target-only authentication on
the IIOP/TLS connection between the Artix server and the iS2 server. That
is, during the TLS handshake, the iS2 server authenticates itself to the Artix
server (using an X.509 certificate), but the Artix server does not authenticate
itself to the iS2 server. Hence, in this example there is no X.509 certificate
associated with the IIOP/TLS transport in the Artix server.

Artix server IIOP/TLS
configuration

The Artix server�s IIOP/TLS transport is configured by the settings in the
ArtixInstallDir/artix/1.3/etc/domains/artix-secure.cfg file. Example 3
shows an extract from the artix-secure.cfg file, highlighting some of the
settings that are important for the HelloWorld Artix server.

WARNING: For a real deployment, you must modify the configuration of
the iS2 server so that it requires mutual authentication. Otherwise, your
system will be insecure.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix
{
 ...

1 policies:trusted_ca_list_policy =
"C:\artix/artix/1.2/demos/secure_hello_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_list1.pem";

 ...
2 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:55020,it_iiops:1.2@localhost:55
020/IT_SecurityService";

 ...
 demos
 {
 hello_world
 {
 # IIOP/TLS Settings

3 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "http", "tunnel", "mq", "ws_orb",
"fixed"];

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

4 principal_sponsor:use_principal_sponsor = "false";
 12

Security for SOAP Bindings
The preceding extract from the artix.cfg file can be explained as follows:

1. The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the Artix server.

For more details, see �Specifying Trusted CA Certificates� on page 97.

2. This IT_SecurityService initial reference gives the location of the iS2
server. When login security is enabled, the Artix server uses this
information to open an IIOP/TLS connection to the iS2 server. In this
example, the iS2 server is presumed to be running on localhost and
listening on the 55020 IP port.

5
policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

6 # Security Layer Settings
 ...
 };
 };
};

Example 3: Extract from the Artix Server IIOP/TLS Configuration

Note: If you want to change the location of the iS2 server, you
should replace both instances of localhost:55020 on this line. It
would also be necessary to change the listening details on the iS2
server (see �iS2 server IIOP/TLS configuration� on page 15).
13

CHAPTER 1 | Introduction to Security
3. The ORB plugins list specifies which of the Artix plug-ins should be
loaded into the Artix server. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the iiop plug-in is excluded (thus disabling
plain IIOP connections).

4. The principal_sponsor settings can be used to attach a certificate to
the Artix server, which would be used to identify the server to its peers
during an IIOP/TLS handshake. In this example, however, the principal
sponsor is disabled (that is,
principal_sponsor:use_principal_sponsor="false").

5. The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix server can open when it acts in a client
role. In particular, these client invocation policies impose conditions on
the IIOP/TLS connection to the iS2 server.

For more details about the client secure invocation policy, see �Setting
IIOP/TLS Association Options� on page 112.

6. Independently of the IIOP/TLS settings, you also configure the security
layer using settings in the artix-secure.cfg file. These settings are
described in �Security Layer� on page 18.

Note: In a realistic deployment, you should enable the principal
sponsor and attach a certificate to the Artix server so that the Artix
server can identify itself to the iS2 server.

Note: In a realistic deployment, you should add the
EstablishTrustInClient association option to the list of supported
client invocation policies. This is needed for mutual authentication.
 14

Security for SOAP Bindings
iS2 server IIOP/TLS configuration Example 4 shows an extract from the artix-secure.cfg file, highlighting
the IIOP/TLS settings that are important for the iS2 server.

Example 4: Extract from the iS2 Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix
{
 ...

1 policies:trusted_ca_list_policy =
"C:\artix/artix/1.2/demos/secure_hello_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_list1.pem";

 ...
 initial_references:IT_SecurityService:reference =

"corbaloc:iiops:1.2@localhost:55020,it_iiops:1.2@localhost:55
020/IT_SecurityService";

 ...
 security
 {
 # IIOP/TLS Settings
 ...

2 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix/artix/1.2/demos/secure_hello_world/http_s
oap/certificates/tls/x509/certs/services/administrator.p12",
"password_file=C:\artix/artix/1.2/demos/secure_hello_world/ht
tp_soap/certificates/tls/x509/certs/services/administrator.pw
f"];

 ...
3 policies:target_secure_invocation_policy:requires =

["NoProtection"];
 policies:target_secure_invocation_policy:supports =

["NoProtection", "Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

4 policies:client_secure_invocation_policy:requires =
["NoProtection"];

 policies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:allow_unauthenticated_clients_policy = "true";
15

CHAPTER 1 | Introduction to Security
The preceding extract from the artix.cfg file can be explained as follows:

1. The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
iS2 server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the iS2 server.

2. The principal_sponsor settings are used to attach an X.509
certificate to the iS2 server. The certificate is used to identify the iS2
server to its peers during an IIOP/TLS handshake.

In this example, the iS2 server�s certificate is stored in a PKCS#12 file,
administrator.p12, and the certificate�s private key password is
stored in another file, administrator.pwf.

For more details about configuring the IIOP/TLS principal sponsor, see
�principal_sponsor Namespace� on page 170 and �Providing a
Certificate Pass Phrase� on page 99.

5 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];

 ...
6 plugins:security:iiop_tls:port = "55020";

 plugins:security:iiop_tls:host = "localhost";
 ...
 };
 ...
};

Example 4: Extract from the iS2 Server IIOP/TLS Configuration

Note: The certificate format used by the IIOP/TLS transport
(PKCS#12) differs from the format used by the HTTPS transport
(PEM).
 16

Security for SOAP Bindings
3. The target secure invocation policies specify what sort of secure
IIOP/TLS connections the iS2 server can accept when it acts in a server
role. For more details about the target secure invocation policy, see
�Setting IIOP/TLS Association Options� on page 112.

4. The client secure invocation policies specify what sort of secure
IIOP/TLS connections the iS2 server can open when it acts in a client
role.

5. The ORB plugins list specifies which plug-ins should be loaded into
the iS2 server. Of particular relevance is the fact that the iiop_tls
plug-in is included in the list (thus enabling IIOP/TLS connections),
whereas the iiop plug-in is excluded (thus disabling plain IIOP
connections).

6. If you want to relocate the iS2 server, you must modify the
plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings to specify, respectively, the
host where the server is running and the IP port on which the server
listens for secure IIOP/TLS connections.

WARNING: The target secure invocation policies shown here are too weak
for a realistic deployment of the iS2 server. In particular, you should at
least remove support for NoProtection and require
EstablishTrustInClient. For example, see �Mutual Authentication� on
page 94.
17

CHAPTER 1 | Introduction to Security
Security Layer

Overview Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes
care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Figure 4: The Security Layer in the HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

HTTPS IIOP/TLS

WSDL ARMWSDL

IIOP/TLS

File
Adapter

Props

User Data

HTTP Basic Authentication

Server copyClient copy hello_world_action_role_mapping.xml

is2.properties

is2_user_password_file.txt

Security layer

iS2 Server
 18

Security for SOAP Bindings
The security layer normally uses a simple username/password combination
for authentication, because clients usually do not have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

HTTP BASIC login The mechanism that the Artix client uses to transmit a username and
password over a SOAP binding is HTTP BASIC login. This is a standard login
mechanism commonly used by Web browsers and Web services. On its
own, HTTP BASIC login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

The following extract from the client copy of the WSDL contract shows how
the UserName and Password attributes in the <http-conf:client> tag set
the HTTP BASIC login parameters for the Artix SOAP client.

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">
 <soap:address location="https://localhost:55012"/>
 <http-conf:client
 ...
 UserName="user_test"
 Password="user_password"
 />
 </port>
 </service>
</definitions>
19

CHAPTER 1 | Introduction to Security
Authentication through the iS2 file
adapter

On the server side, the Artix server delegates authentication to the iS2
server, which acts as a central repository for user data. The iS2 server is
configured by the is2.properties file, whose location is specified in the
artix-secure.cfg file as follows:

In this example, the is2.properties file specifies that the iS2 server should
use a file adapter. The file adapter is configured as follows:

artix-secure.cfg File
secure_artix {
 ...
 security {
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=C:\artix/artix/1.2/demos/secure_hello_world/h
ttp_soap/bin/is2.properties.FILE",
"java.endorsed.dirs=C:\artix/artix/1.2/lib/endorsed"];

 ...
 };
 ...
};

is2.properties File
...
##
##
File Adapter Properties
##
##
com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil

e.FileAuthAdapter
com.iona.isp.adapter.file.params=filename
com.iona.isp.adapter.file.param.filename=../config/is2_user_pass

word_file.txt
 20

Security for SOAP Bindings
The com.iona.isp.adapter.file.param.filename property is used to
specify the location of a file, is2_user_password_file.txt, which contains
the user data for the iS2 file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iS2 file adapter, see �Managing a File Security
Domain� on page 52.

Applying access control On the server side, authentication and authorization must be enabled by the
appropriate settings in the artix-secure.cfg file. Example 6 explains the
security layer settings that appear in the artix-secure.cfg file.

Example 5: User Data from the is2_user_password_file.txt File

<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
 <users>
 <user name="user_test" password="user_password">
 <realm name="IONAGlobalRealm">
 <role name="IONAUserRole"/>
 <role name="PaulOnlyRole"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Example 6: Security Layer Settings from the artix-secure.cfg File

artix-secure.cfg File
secure_artix
{
 ...
 demos
 {
21

CHAPTER 1 | Introduction to Security
The security layer settings from the artix-secure.cfg file can be explained
as follows:

1. The policies:asp:enable_security variable is set to true to enable
login security (enables authentication support and is a prerequisite for
authorization support).

2. The policies:asp:enable_authorization variable is set to true to
enable authorization.

3. This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

4. The iSF authorization realm determines which of the user�s roles will
be considered during an access control decision. iSF authorization
realms provide a way of grouping user roles together. The
IONAGlobalRealm (the default) includes all user roles.

5. The plugins:asp:security_type variable specifies which kind of user
data is used for the purposes of authentication and authorization on
the server side (in this case, USERNAME_PASSWORD indicates that HTTP
Basic Login is supported). This configuration setting is necessary,
because the iSF supports different mechanisms for propagating user
identities and some of these mechanisms can be activated
simultaneously.

 hello_world
 {
 # IIOP/TLS Settings
 ...

 # Security Layer Settings
1 policies:asp:enable_security = "true";
2 policies:asp:enable_authorization = "true";
3 plugins:is2_authorization:action_role_mapping =

"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role_mapping.xml";

4 plugins:asp:authorization_realm = "IONAGlobalRealm";
5 plugins:asp:security_type = "USERNAME_PASSWORD";

 };
 };
};

Example 6: Security Layer Settings from the artix-secure.cfg File
 22

Security for SOAP Bindings
Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

For a detailed discussion of how to define access control using action-role
mapping files, see �Managing Users, Roles and Domains� on page 43.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
 <action-role-mapping>

 <server-name>secure_artix.demos.hello_world</server-name>

 <interface>

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>
 <action-role>
 <action-name>sayHi</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 </interface>

 </action-role-mapping>
</secure-system>
23

CHAPTER 1 | Introduction to Security
 24

CHAPTER 2

Configuring the
iS2 Server
This chapter describes how to configure the properties of the
iS2 security server and, in particular, how to configure a variety
of adapters that can integrate the iS2 server with third-party
enterprise security back-ends (for example, LDAP and
SiteMinder).

In this chapter This chapter discusses the following topics:

Configuring the File Adapter page 26

Configuring the LDAP Adapter page 28

Configuring the SiteMinder Adapter page 34

Configuring the Kerberos Adapter page 36

Additional iS2 Configuration page 39
25

CHAPTER 2 | Configuring the iS2 Server
Configuring the File Adapter

Overview The iS2 file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iS2 file adapter.

File locations The following files configure the iS2 file adapter:

� is2.properties file�the default location of the iS2 properties file is as
follows:

See �iS2 Properties File� on page 178 for details of how to customize
the default iS2 properties file location.

� Security information file�this file�s location is specified by the
com.iona.isp.adapter.file.param.filename property in the
is2.properties file.

File adapter properties Example 8 shows the properties to set for a file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

ArtixInstallDir/artix/1.3/bin/is2.properties

Example 8: Sample File Adapter Properties

1 com.iona.isp.adapters=file

##
##
Demo File Adapter Properties
##
##

2 com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter
 26

Configuring the File Adapter
The necessary properties for a file adapter are described as follows:

1. Set com.iona.isp.adapters=file to instruct the iS2 server to load the
file adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the iS2 file adapter.

3. The com.iona.isp.adapter.file.param.filename property specifies
the location of the security information file, which contains information
about users and roles.

4. (Optionally) You might also want to edit the general iS2 server
properties.

See �Additional iS2 Configuration� on page 39 for details.

3 com.iona.isp.adapter.file.param.filename=ArtixInstallDir/artix/1.3/
bin/is2_user_password_role_file.txt

##
General iS2 Server Properties
##

4 # ... Generic properties not shown here ...

Example 8: Sample File Adapter Properties
27

CHAPTER 2 | Configuring the iS2 Server
Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

� Prerequisites

� File location.

� Minimal LDAP configuration.

� Basic LDAP properties.

� LDAP.param properties.

� LDAP server replicas.

� Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Artix, but you can use the iS2 server�s LDAP adapter with any LDAP v.3
compatible system.

File location The following file configures the LDAP adapter:

� is2.properties file�the default location of the iS2 properties file is as
follows:

See �iS2 Properties File� on page 178 for details of how to customize
the default iS2 properties file location.

ArtixInstallDir/artix/1.3/is2.properties
 28

Configuring the LDAP Adapter
Minimal LDAP configuration Example 9 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

The necessary properties for an LDAP adapter are described as follows:

1. Set com.iona.isp.adapters=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

Example 9: A Sample LDAP Adapter Configuration File

1 com.iona.isp.adapters=LDAP
##

LDAP Adapter Properties
##
##

2 com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda
p.LdapAdapter

3 com.iona.isp.adapter.LDAP.param.host.1=10.81.1.400
com.iona.isp.adapter.LDAP.param.port.1=389

4 com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPe

rson
com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

5 com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn
com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

6 com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquena

mes
com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB
com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

7 com.iona.isp.adapter.LDAP.param.version=3
29

CHAPTER 2 | Configuring the iS2 Server
3. For each LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host.1 and port.1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as
follows:

See �iS2 Properties File� on page 178 for more details.

5. The following properties specify how the adapter extracts a user�s role
from the LDAP directory schema:

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as
follows:

UserNameAttr The attribute type whose corresponding value
uniquely identifies the user.

UserBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

UserObjectClass The attribute type for the object class that
stores users.

UserSearchScope The user search scope specifies the search
depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

UserRoleDNAttr The attribute type that stores a user�s role DN.

RoleNameAttr The attribute type that the LDAP server uses
to store the role name.

GroupNameAttr The attribute type whose corresponding
attribute value gives the name of the user
group.

GroupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

GroupObjectClass The object class that applies to user group
entries in the LDAP directory structure.
 30

Configuring the LDAP Adapter
See �iS2 Properties File� on page 178 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

Basic LDAP properties The following properties must always be set as part of the LDAP adapter
configuration:

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com.iona.isp.adapter.LDAP.param.

GroupSearchScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

MemberDNAttr The attribute type that is used to retrieve
LDAP group members.

com.iona.isp.adapters=LDAP
com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

p.LdapAdapter
31

CHAPTER 2 | Configuring the iS2 Server
LDAP.param properties Table 1 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param scope. Required properties are shown
in bold:

LDAP server replicas The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host.<Index> and
port.<Index> include a replica index as part of the parameter name.

For example, host.1 and port.1 refer to the host and port of the primary
LDAP server, while host.2 and port.2 would refer to the host and port of an
LDAP backup server.

Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope

LDAP Server Properties LDAP User/Role Configuration
Properties

host.<Index>
port.<Index>
SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>
PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchScope
UserSearchFilter
UserRoleDNAttr
RoleNameAttr
UserCertAttrName

LDAP Group/Member
Configuration Properties

Other LDAP Properties

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr
MemberFilter

MaxConnectionPoolSize
version
UseGroupAsRole
RetrieveAuthInfo
CacheSize
CacheTimeToLive
 32

Configuring the LDAP Adapter
Logging on to an LDAP server The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

Secure connection to an LDAP
server

The following properties can be used to configure SSL/TLS security for the
connection between the iS2 server and the <Index> LDAP server replica:

SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

iS2 properties reference For more details about the iS2 server properties, see �iS2 Configuration� on
page 175.
33

CHAPTER 2 | Configuring the iS2 Server
Configuring the SiteMinder Adapter

Overview The SiteMinder adapter enables you to integrate the iS2 server with
SiteMinder, which is an enterprise security product from Netegrity. By
configuring the SiteMinder adapter, you ensure that any authentication
requests within the IONA Security Framework are delegated to SiteMinder.
This section describes how to set up and configure the SiteMinder adapter.

Prerequisites Ensure that the SiteMinder product is installed and configured on your
system. SiteMinder is not a standard part of Artix, but is available from
Netegrity at http://www.netegrity.com.

File location The following file configures the SiteMinder adapter:

� is2.properties file�the default location of the iS2 properties file is as
follows:

See �iS2 Properties File� on page 178 for details of how to customize
the default iS2 properties file location.

SiteMinder adapter properties Example 10 shows the properties to set for the SiteMinder adapter.

ArtixInstallDir/artix/1.3/bin/is2.properties

Example 10:SiteMinder Adapter Properties

1 com.iona.isp.adapters=SiteMinder
##
##
SiteMinder Adapter Properties
##
##

2 com.iona.isp.adapter.SiteMinder.class=com.iona.security.is2adapt
er.smadapter.SiteMinderAgent

3 com.iona.isp.adapter.SiteMinder.param.ServerAddress=localhost
com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort=400
com.iona.isp.adapter.SiteMinder.param.AgentSecret=secret
com.iona.isp.adapter.SiteMinder.param.AgentName=web
 34

http://www.netegrity.com

Configuring the SiteMinder Adapter
The necessary properties for a SiteMinder adapter are described as follows:

1. Set com.iona.isp.adapters=SiteMinder to instruct the iS2 server to
load the SiteMinder adapter.

2. The com.iona.isp.adapter.SiteMinder.class property specifies the
class that implements the SiteMinder adapter.

3. A SiteMinder adapter requires the following parameters:

4. (Optionally) You might also want to edit the general iS2 server
properties.

See �Additional iS2 Configuration� on page 39 for details.

##
General iS2 Server Properties
##

4 # ... Generic properties not shown here ...

Example 10:SiteMinder Adapter Properties

ServerAddress Host address where SiteMinder is running.

ServerAuthnPort SiteMinder�s IP port number.

AgentName SiteMinder agent's name.

AgentSecret SiteMinder agent's password.
35

CHAPTER 2 | Configuring the iS2 Server
Configuring the Kerberos Adapter

Overview The Kerberos adapter enables you to use the Kerberos Authentication
Service. By configuring the Kerberos adapter, you ensure that any
authentication requests within the IONA Security Framework are delegated
to Kerberos. This section describes how to set up and configure the Kerberos
adapter.

File location The following file configures the Kerberos adapter:

� is2.properties file�the default location of the iS2 properties file is as
follows:

See �iS2 Properties File� on page 178 for details of how to customize the
default iS2 properties file location.

Kerberos adapter properties Example 11 shows the properties to set for the Kerberos adapter.

ArtixInstallDir/artix/1.3/bin/is2.properties

Example 11:Kerberos Adapter Properties

1 com.iona.isp.adapters=kbr5
##
##
Kerberos Adapter Properties
##
##

2 com.iona.isp.adapter.kbr5.class=com.iona.security.is2adapter.kbr
5.IS2KerberosAdapter

3 com.iona.isp.adapter.krb5.param.java.security.krb5.realm=MYREALM
.COMPANY.COM

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc=10.65.3.7
4

com.iona.isp.adapter.krb5.param.java.security.auth.login.config=
jaas.conf

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCr
edsOnly=false
 36

Configuring the Kerberos Adapter
The necessary properties for a Kerberos adapter are described as follows:

1. Set com.iona.isp.adapters=kbr5 to instruct the iS2 server to load the
Kerberos adapter.

2. The com.iona.isp.adapter.kbr5.class property specifies the class
that implements the Kerberos adapter.

3. A Kerberos adapter requires the following parameters:

4. (Optionally) You might also want to edit the general iS2 server
properties.

See �Additional iS2 Configuration� on page 39 for details.

Retrieving the user�s group
information

Once the Kerberos token has been authenticated, the Kerberos adapter can
be configured to retreive the user�s group information and save it for future
authorization purposes.

Example 12 shows a sample iS2 configuraiton for the Kerberos adapter that
retirieve the user�s group information.

##
General iS2 Server Properties
##

4 # ... Generic properties not shown here ...

Example 11:Kerberos Adapter Properties

java.security.kbr5.realm The Kerberos Realm Name.

java.security.kbr5kdc The server name or IP address
of the Kerberos KDC server.

java.security.auth.login.config The configuration file for the
JAAS Login Module.

javax.security.auth.useSubjectCredsOnlyA required JAAS Login Module
property. Always set to false.

Example 12:Kerberos Configuraiton to Retreive User Group Information

1 com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=true
37

CHAPTER 2 | Configuring the iS2 Server
The properties to configure the Kerberos adapter to retrieve a user�s group
information are explained as follows:

1. RetrieveAuthInfo=true activates this feature.

2. Set the connection information needed to open an LDAP connection to
the Active Directory Server.

3. Tell the adapter how to contruct a filter to search the Active Directory
Server.

2 com.iona.isp.adapter.krb5.param.host.1=$ACTIVE_DIRECTORY_SERVER_
NAME$

com.iona.isp.adapter.krb5.param.port.1=389
com.iona.isp.adapter.krb5.param.SSLEnabled.1=no
com.iona.isp.adapter.krb5.param.SSLCACertDir.1=d:/certs/test
com.iona.isp.adapter.krb5.param.SSLClientCertFile.1=d:/certs/ver

isign.p12
com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1=netfish
com.iona.isp.adapter.krb5.param.PrincipalUserDN.1=cn=administrat

or,cn=users,dc=boston,dc=amer,dc=iona,dc=com
com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1=orbix
com.iona.isp.adapter.krb5.param.ConnectTimeout.1=15

3 com.iona.isp.adapter.krb5.param.UserNameAttr=CN
com.iona.isp.adapter.krb5.param.UserBaseDN=dc=boston,dc=amer,dc=

iona,dc=com
com.iona.isp.adapter.krb5.param.version=3
com.iona.isp.adapter.krb5.param.UserObjectClass=Person
com.iona.isp.adapter.krb5.param.GroupObjectClass=group
com.iona.isp.adapter.krb5.param.GroupSearchScope=SUB
com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=boston,dc=amer,dc

=iona,dc=com
com.iona.isp.adapter.krb5.param.GroupNameAttr=CN
com.iona.isp.adapter.krb5.param.MemberDNAttr=memberOf
com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=1
com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=1

Example 12:Kerberos Configuraiton to Retreive User Group Information

Note: If SSL needs to be enabled set
com.iona.isp.adapter.krb5.param.SSLEnabled.1=yes.
 38

Additional iS2 Configuration
Additional iS2 Configuration

Overview This section describes how to configure optional features of the iS2 server,
such as single sign-on and the authorization manager. These features can
be combined with any iS2 adapter type.

In this section This section contains the following subsections:

Configuring the Log4J Logging page 40
39

CHAPTER 2 | Configuring the iS2 Server
Configuring the Log4J Logging

Overview log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the iS2
server�s logging is based on log4j, it is possible to configure the output of iS2
logging using a standard log4j properties file.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

Enabling log4j logging To enable log4j logging, you can specify the location of the log4j properties
file in either of the following ways:

� In the CLASSPATH.

� In the is2.properties file.

In the CLASSPATH You can specify the location of the log4j properties file by adding the file to
your CLASSPATH. For example, you could add an
/is2_config/log4j.properties file to your CLASSPATH as follows:

Windows
set CLASSPATH=C:\is2_config\log4j.properties;%CLASSPATH%

UNIX (Bourne shell)
export CLASSPATH=/is2_config/log4j.properties:$CLASSPATH;

In the is2.properties file You can specify the location of the log4j properties file in the
is2.properties file as follows:

iS2 Properties File, for Server ID=1
...
###
log4j Logging
###
log4j.configuration=C:/is2_config/log4j.properties
...
 40

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

Additional iS2 Configuration
Configuring the log4j properties
file

The following example shows how to configure the log4j properties to
perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

log4j Properties File
log4j.rootCategory=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x

- %m%n
41

CHAPTER 2 | Configuring the iS2 Server
 42

CHAPTER 3

Managing Users,
Roles and
Domains
The iS2 server provides a variety of adapters that enable you
to integrate the IONA Security Framework with third-party
enterprise security products. This allows you to manage users
and roles using a third-party enterprise security product.

In this chapter This chapter discusses the following topics:

Introduction to Domains and Realms page 44

Managing a File Security Domain page 52

Managing an LDAP Security Domain page 54

Managing a SiteMinder Security Domain page 55
43

CHAPTER 3 | Managing Users, Roles and Domains
Introduction to Domains and Realms

Overview This section introduces the concepts of an iSF security domain and an iSF
authorization realm, which are fundamental to the administration of the
IONA security framework. Within an iSF security domain, you can create
user accounts and within an iSF authorization realm you can assign roles to
users.

In this section This section contains the following subsections:

iSF Security Domains page 45

iSF Authorization Realms page 47
 44

Introduction to Domains and Realms
iSF Security Domains

Overview This subsection introduces the concept of an iSF security domain.

Domain architecture Figure 5 shows the architecture of an iSF security domain. The iSF security
domain is identified with an enterprise security service that plugs into the
iS2 server through an iS2 adapter. User data needed for authentication,
such as username and password, are stored within the enterprise security
service. The iS2 server provides a central access point to enable
authentication within the iSF security domain.

Figure 5: Architecture of an iSF Security Domain

Artix
Server

Artix
Server

Artix
Server

Enterprise Security Service

iS2 Server

iS2 Security Domain

authenticate authenticate authenticate

User Data Store

Janet

John
45

CHAPTER 3 | Managing Users, Roles and Domains
iSF security domain An iSF security domain is a particular security system, or namespace within
a security system, designated to authenticate a user.

Here are some specific examples of iSF security domains:

� LDAP security domain�authentication provided by an LDAP security
backend, accessed through the iS2 server.

� SiteMinder security domain�authentication provided by a SiteMinder
security backend, accessed through the iS2 server.

Creating an iSF security domain Effectively, you create an iSF security domain by configuring the iS2 server
to link to an enterprise security service through an iS2 adapter (such as a
SiteMinder adapter or an LDAP adapter). The enterprise security service is
the implementation of the iSF security domain.

Creating a user account User account data is stored in a third-party enterprise security service.
Hence, you should use the standard tools from the third-party enterprise
security product to create a user account.

For a simple example, see �Managing a File Security Domain� on page 52.
 46

Introduction to Domains and Realms
iSF Authorization Realms

Overview This subsection introduces the concept of an iSF authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

iSF authorization realm An iSF authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

Role-based access control The IONA security framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1. User-to-role mapping�every user is associated with a set of roles in
each realm (for example, guest, administrator, and so on, in a realm,
Engineering). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the iS2 server,
which returns the set of realms and roles assigned to a user when
required.

2. Role-to-permission mapping (or action-role mapping)�in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, Artix
servers in the iSF use an XML action-role mapping file to control access
to WSDL port types and operations.
47

CHAPTER 3 | Managing Users, Roles and Domains
Servers and realms From a server�s perspective, an iSF authorization realm is a way of grouping
servers with similar authorization requirements. Figure 6 shows two iSF
authorization realms, Engineering and Finance, each containing a
collection of server applications.

Adding a server to a realm To add an Artix server to a realm, add or modify the
plugins:asp:authorization_realm configuration variable within the
server�s configuration scope (in the artix.cfg file).

For example, if your server�s configuration is defined in the my_server_scope
scope, you can set the iSF authorization realm to Engineering as follows:

Figure 6: Server View of iSF Authorization Realms

IONAGlobalRealm

Srv1 Srv2

Srv3 Srv4

Engineering

Srv5 Srv6

Srv7 Srv8

Finance

Artix configuration file
...
my_server_scope {
 plugins:asp:authorization_realm = "Engineering";
 ...
};
 48

Introduction to Domains and Realms
Roles and realms From the perspective of role-based authorization, an iSF authorization realm
acts as a namespace for roles. For example, Figure 7 shows two iSF
authorization realms, Engineering and Finance, each associated with a set
of roles.

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the iS2 server through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user�s realms or roles.

Figure 7: Role View of iSF Authorization Realms

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO
49

CHAPTER 3 | Managing Users, Roles and Domains
Assigning realms and roles to
users

The assignment of realms and roles to users is administered from within the
enterprise security system that is plugged into the iS2 server. For example,
Figure 8 shows how two users, Janet and John, are assigned roles within
the Engineering and Finance realms.

� Janet works in the engineering department as a developer, but
occasionally logs on to the Finance realm with guest permissions.

� John works as an accountant in finance, but also has guest
permissions with the Engineering realm.

Figure 8: Assignment of Realms and Roles to Users Janet and John

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO

iSF Security Domain (users)

Janet John
 50

Introduction to Domains and Realms
Special realms and roles The following special realms and roles are supported by the IONA security
framework:

� IONAGlobalRealm realm�a special realm that encompasses every iSF
authorization realm. Roles defined within the IONAGlobalRealm are
valid within every iSF authorization realm.

� UnauthenticatedUserRole�a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the UnauthenticatedUserRole role are also
accessible to authenticated users.

The UnauthenticatedUserRole can be used only in action-role
mapping files.
51

CHAPTER 3 | Managing Users, Roles and Domains
Managing a File Security Domain

Overview The file security domain is active if the iS2 server has been configured to use
the iS2 file adapter (see �Configuring the File Adapter� on page 26). The
main purpose of the iS2 file adapter is to provide a lightweight security
domain for demonstration purposes. A realistic deployed system, however,
would use one of the other adapters (LDAP, SiteMinder, or custom) instead.

Location of file The location of the security information file is specified by the
com.iona.isp.adapter.file.param.filename property in the iS2 server�s
is2.properties file.

Example Example 13 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Example 13:Sample Security Information File for an iS2 File Domain

<?xml version="1.0" encoding="utf-8" ?>

1 <ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
2 <users>
3 <user name="IONAAdmin" password="admin"

 description="Default IONA admin user">
4 <realm name="IONA" description="All IONA applications"/>

 </user>
 <user name="admin" password="admin" description="Old admin

user; will not have the same default privileges as
IONAAdmin.">

 <realm name="Corporate">
 <role name="Administrator"/>
 </realm>
 </user>
 <user name="alice" password="dost1234">

5 <realm name="Financials"
 description="Financial Department">
 52

Managing a File Security Domain
1. The <ns:securityInfo> tag can contain a nested <users> tag.

2. The <users> tag contains a sequence of <user> tags.

3. Each <user> tag defines a single user. The <user> tag�s name and
password attributes specify the user�s username and password. Within
the scope of the <user> tag, you can list the realms and roles with
which the user is associated.

4. When a <realm> tag appears within the scope of a <user> tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <realm> must have a name and can optionally have a
description attribute.

5. A realm can optionally be associated with one or more roles by
including <role> elements within the <realm> scope.

 <role name="Manager" description="Department Manager" />
 <role name="Clerk"/>
 </realm>
 </user>
 <user name="bob" password="dost1234">
 <realm name="Financials">
 <role name="Clerk"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

Example 13:Sample Security Information File for an iS2 File Domain
53

CHAPTER 3 | Managing Users, Roles and Domains
Managing an LDAP Security Domain

Overview The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and any of them can be integrated with the iS2
server by configuring the iS2 server�s LDAP adapter.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

Configuring the LDAP adapter A prerequisite for using LDAP within the IONA Security Framework is that
the iS2 server be configured to use the LDAP adapter.

See �Configuring the LDAP Adapter� on page 28.
 54

Managing a SiteMinder Security Domain
Managing a SiteMinder Security Domain

Overview SiteMinder is an enterprise security product from Netegrity, which allows
you to manage user data stored in a central database. The iS2 server can
communicate with the SiteMinder agent, using it to perform authentication
and mapping users to roles. Using Netegrity tools you can administer users,
roles, and realms.

Please consult the Netegrity SiteMinder documentation for detailed
instructions on how to administer users and roles within the SiteMinder
product.

Configuring the SiteMinder
adapter

A prerequisite for using SiteMinder within the IONA Security Framework is
that the iS2 server be configured to use the SiteMinder adapter.

See �Configuring the SiteMinder Adapter� on page 34.

References For more information on Netegrity SiteMinder, see the Netegrity Web site:

http://www.netegrity.com/
55

http://www.netegrity.com/

CHAPTER 3 | Managing Users, Roles and Domains
 56

CHAPTER 4

Managing
Access Control
Lists
The IONA Security Framework defines access control lists
(ACLs) for mapping roles to resources.

In this chapter This chapter discusses the following topics:

Overview of Artix ACL Files page 58

Artix Action-Role Mapping ACL page 59
57

CHAPTER 4 | Managing Access Control Lists
Overview of Artix ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).
 58

Artix Action-Role Mapping ACL
Artix Action-Role Mapping ACL

Overview This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

File location In your artix.cfg configuration file (located in the
ArtixInstallDir/artix/1.3/etc/domains directory), the
plugins:is2_authorization:action_role_mapping configuration variable
specifies the location URL of the action-role mapping file,
action_role_mapping.xml, for an Artix server. For example:

artix.cfg Configuration File
...
my_server_scope {
 plugins:is2_authorization:action_role_mapping =
 "file:///security_admin/action_role_mapping.xml";
};
59

CHAPTER 4 | Managing Access Control Lists
Example WSDL For example, consider how to set the operation permissions for the WSDL
port type shown in Example 14.

Example action-role mapping Example 15 shows how you might configure an action-role mapping file for
the HelloWorldPortType port type given in the preceding Example 14 on
page 60.

Example 14:Sample WSDL for the ACL Example

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld" ... >

 ...
 <portType name="HelloWorldPortType">
 <operation name="greetMe">
 <input message="tns:greetMe" name="greetMe"/>
 <output message="tns:greetMeResponse"
 name="greetMeResponse"/>
 </operation>
 <operation name="sayHi">
 <input message="tns:sayHi" name="sayHi"/>
 <output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 15:Artix Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>

1 <action-role-mapping>
2 <server-name>secure_artix.demos.hello_world</server-name>
3 <interface>
4

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>
 <action-role>

5 <action-name>sayHi</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>IONAUserRole</role-name>
 60

Artix Action-Role Mapping ACL
The preceding action-role mapping example can be explained as follows:

1. The <action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

2. The <server-name> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly. The ORB name is usually passed to an Artix server as the
value of the -ORBname command-line parameter.

3. The <interface> tag contains all of the access permissions for one
particular WSDL port type.

4. The <name> tag identifies a WSDL port type in the format
NamespaceURI:PortTypeName. That is, the PortTypeName comes
from a tag, <portType name="PortTypeName">, defined in the
NamespaceURI namespace.

For example, in Example 14 on page 60 the <definitions> tag
specifies the NamespaceURI as http://xmlbus.com/HelloWorld and
the PortTypeName is HelloWorldPortType. Hence, the port type name
is identified as:

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>

5. The sayHi action name corresponds to the sayHi WSDL operation
name in the HelloWorldPortType port type (from the <operation
name="sayHi"> tag).

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See �Action-Role Mapping DTD� on page 211 for details.

 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>

Example 15:Artix Action-Role Mapping Example

Note: The ORB name also determines which configuration scopes
are read by the server.
61

CHAPTER 4 | Managing Access Control Lists
 62

CHAPTER 5

Managing
Certificates
TLS authentication uses X.509 certificates�a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

In this chapter This chapter contains the following sections:

What are X.509 Certificates? page 64

Certification Authorities page 66

Certificate Chaining page 69

PKCS#12 Files page 71

Creating Your Own Certificates page 73

Deploying Certificates page 80
63

CHAPTER 5 | Managing Certificates
What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application�s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA�s private key. The CA�s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA�s digital signature with the CA�s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert.pem. This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.
 64

What are X.509 Certificates?
The contents of an X.509
certificate

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

� X.509 version information.

� A serial number that uniquely identifies the certificate.

� A subject DN that identifies the certificate owner.

� The public key associated with the subject.

� An issuer DN that identifies the CA that issued the certificate.

� The digital signature of the issuer.

� Information about the algorithm used to sign the certificate.

� Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

Distinguished names A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See �ASN.1 and Distinguished Names� on page 205 for more details about
DNs.
65

CHAPTER 5 | Managing Certificates
Certification Authorities

Choice of CAs A CA must be trusted to keep its private key secure. When setting up an
Artix system, it is important to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

� A commercial CA is a company that signs certificates for many
systems.

� A private CA is a trusted node that you set up and use to sign
certificates for your system only.

In this section This section contains the following subsections:

Commercial Certification Authorities page 67

Private Certification Authorities page 68
 66

Certification Authorities
Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

� What are the certificate-signing policies of the commercial CAs?

� Are your applications designed to be available on an internal network
only?

� What are the potential costs of setting up a private CA?
67

CHAPTER 5 | Managing Certificates
Private Certification Authorities

Choosing a CA software package If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

OpenSSL software package One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in �License Issues� on page 231.
The OpenSSL package includes basic command line utilities for generating
and signing certificates and these utilities are available with every
installation of Artix. Complete documentation for the OpenSSL command
line utilities is available from http://www.openssl.org/docs.

Setting up a private CA using
OpenSSL

For instructions on how to set up a private CA, see �Creating Your Own
Certificates� on page 73.

Choosing a host for a private
certification authority

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

Security precautions If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

� Do not connect the CA to a network.

� Restrict all access to the CA to a limited set of trusted users.

� Protect the CA from radio-frequency surveillance using an RF-shield.
 68

Certificate Chaining
Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate�a
certificate that signs itself.

Example Figure 9 shows an example of a simple certificate chain.

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Figure 9: A Certificate Chain of Depth 2

CA
Certificate

Peer
Certificate

signs signs
69

CHAPTER 5 | Managing Certificates
Certificates signed by multiple
CAs

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 10 shows what this certificate chain looks like.

Trusted CAs An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See �Deploying Trusted Certificate Authority Certificates� on page 82.

Maximum chain length policy You can limit the length of certificate chains accepted by your CORBA
applications, with the maximum chain length policy. You can set a value for
the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy configuration variable for
IIOP/TLS.

Figure 10: A Certificate Chain of Depth 3

Finance
CA

Certificate

Peer
Certificate

signs signs Commercial
CA

Certificate

signs
 70

PKCS#12 Files
PKCS#12 Files

Overview Figure 11 shows the typical elements in a PKCS#12 file.

Contents of a PKCS#12 file A PKCS#12 file contains the following:

� An X.509 peer certificate (first in a chain).

� All the CA certificates in the certificate chain.

� A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Figure 11: Elements in a PKCS#12 File

X.509

PKCS#12 File

Private Key

Certificate Chain

X.509
CA

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by Artix.
71

CHAPTER 5 | Managing Certificates
Creating a PKCS#12 file To create a PKCS#12 file, see �Use the CA to Create Signed Certificates� on
page 77.

Viewing a PKCS#12 file To view a PKCS#12 file, CertName.p12:

Importing and exporting
PKCS#12 files

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Artix.

openssl pkcs12 -in CertName.p12

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.
 72

Creating Your Own Certificates
Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.

OpenSSL utilities The steps described in this section are based on the OpenSSL
command-line utilities from the OpenSSL project,
http://www.openssl.org�see �OpenSSL Utilities� on page 215. Further
documentation of the OpenSSL command-line utilities can be obtained from
http://www.openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Set Up Your Own CA page 74

Use the CA to Create Signed Certificates page 77
73

CHAPTER 5 | Managing Certificates
Set Up Your Own CA

Substeps to perform This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in �Choosing a host for
a private certification authority� on page 68.

To set up your own CA, perform the following substeps:

� Step 1�Add the bin directory to your PATH

� Step 2�Create the CA directory hierarchy

� Step 3�Copy and edit the openssl.cnf file

� Step 4�Initialize the CA database

� Step 5�Create a self-signed CA certificate and private key

Step 1�Add the bin directory to
your PATH

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2�Create the CA directory
hierarchy

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

Step 3�Copy and edit the
openssl.cnf file

Copy the sample openssl.cnf from your OpenSSL installation to the
X509CA directory.

Edit the openssl.cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl
 74

Creating Your Own Certificates
Edit the [CA_default] section of the openssl.cnf file to make it look like
the following:

You might like to edit other details of the OpenSSL configuration at this
point�for more details, see �The OpenSSL Configuration File� on page 225.

Step 4�Initialize the CA database In the X509CA directory, initialize two files, serial and index.txt.

Windows

> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.

UNIX

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

Note: The index.txt file must initially be completely empty, not even
containing white space.
75

CHAPTER 5 | Managing Certificates
Step 5�Create a self-signed CA
certificate and private key

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem
-keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@iona.com

You should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.
 76

Creating Your Own Certificates
Use the CA to Create Signed Certificates

Substeps to perform If you have set up a private CA, as described in �Set Up Your Own CA� on
page 74, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12,
perform the following substeps:

� Step 1�Add the bin directory to your PATH

� Step 2�Create a certificate signing request

� Step 3�Sign the CSR

� Step 4�Concatenate the files

� Step 5�Create a PKCS#12 file

� Step 6�Repeat steps as required

Step 1�Add the bin directory to
your PATH

If you have not already done so, add the OpenSSL bin directory to your
path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2�Create a certificate
signing request

Create a new certificate signing request (CSR) for the CertName.p12
certificate:

openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate�s private key
and information about the certificate�s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl.cnf
file). The default openssl.cnf file requires the following entries to match:

� Country Name

� State or Province Name

� Organization Name
77

CHAPTER 5 | Managing Certificates
The Common Name must be distinct for every certificate generated by
OpenSSL.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:IONA

Step 3�Sign the CSR Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out
X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
 78

Creating Your Own Certificates
organizationName :PRINTABLE:'IONA Technologies PLC'
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@iona.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT (365

days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase�see �Set Up Your Own CA� on page 74.

Step 4�Concatenate the files Concatenate the CA certificate file, CertName certificate file, and
CertName_pk.pem private key file as follows:

Windows

copy X509CA\ca\new_ca.pem +
X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem
X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Step 5�Create a PKCS#12 file Create a PKCS#12 file from the CertName_list.pem file as follows:

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.p12 -name "New cert"

Step 6�Repeat steps as required Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Artix certificates must include a set of certificates for the
secure Artix services.
79

CHAPTER 5 | Managing Certificates
Deploying Certificates

Overview This section provides an overview of deploying X.509 certificates in a typical
secure Artix system, with detailed instructions on how to deploy certificates
for different parts of the Artix system.

In this section This section contains the following subsections:

Overview of Certificate Deployment page 81

Deploying Trusted Certificate Authority Certificates page 82

Deploying Application Certificates page 86
 80

Deploying Certificates
Overview of Certificate Deployment

Overview Because the HTTPS and IIOP/TLS transports use different security
mechanisms, it is necessary to deploy certificates for each of these
transports independently, as follows:

� Certificate deployment for HTTPS.

� Certificate deployment for IIOP/TLS.

Certificate deployment for HTTPS Certificates used by the HTTPS transport must be in Privacy Enhanced Mail
(PEM) format. To specify certificates for the HTTPS transport, you must edit
your application�s WSDL contract.

Certificate deployment for
IIOP/TLS

Certificates used by the IIOP/TLS transport must be in PKCS#12 format. To
specify certificates for the IIOP/TLS transport, you must edit the Artix
configuration file, ArtixInstallDir/artix/1.3/etc/domains/artix.cfg.

Sample deployment directory
structure

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

Where X509Deploy is the parent directory for the deployed certificates.

X509Deploy/trusted_ca_lists

X509Deploy/certs
81

CHAPTER 5 | Managing Certificates
Deploying Trusted Certificate Authority Certificates

Overview This section how to deploy trusted root CA certificates for Artix applications.
In the current version of Artix, the procedure for deploying trusted CA
certificates depends on the type of transport, as follows:

� Deploying for the HTTPS transport.

� Deploying for the IIOP/TLS transport.

Deploying for the HTTPS transport To deploy one or more trusted root CAs for the HTTPS transport in Artix,
perform the following steps:

1. Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see �Set Up Your Own CA� on page 74). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves�the private keys and passwords are not required.

2. Concatenate the CA certificates into a single CA list file. A CA list file
can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert01.pem and
ca_cert02.pem, you could combine them into a single CA list file,
ca_list01.pem, with the following command:

Windows
copy X509CA\ca\ca_cert01.pem +

X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01.pem

UNIX
cat X509CA/ca/ca_cert01.pem X509CA/ca/ca_cert02.pem >>

X509Deploy/trusted_ca_lists/ca_list01.pem
3. Edit the WSDL contract to specify the location of the CA list file. The

details of this step depend on whether you are deploying a trusted CA
list on the client side or on the server side:

Client side

Edit the client�s copy of the WSDL contract by adding (or modifying)
the TrustedRootCertificates attribute in the <http-conf:client>
 82

Deploying Certificates
tag. For example, to specify X509CA/ca/ca_list01.pem as the client�s
trusted CA certificate, modify the client�s WSDL contract as follows:

Server side

Edit the server�s copy of the WSDL contract by adding (or modifying)
the TrustedRootCertificates attribute in the <http-conf:server>
tag. For example, to specify X509CA/ca/ca_list01.pem as the
server�s trusted CA certificate, modify the server�s WSDL contract as
follows:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/co

nfiguration" ... >
...
<service name="...">
 <port binding="...">
 <http-conf:client ...

TrustedRootCertificates="X509CA/ca/ca_list01.pem"
 ... />
 ...
 </port>
</service>

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/co

nfiguration" ... >
...
<service name="...">
 <port binding="...">
 ...
 <http-conf:server ...

TrustedRootCertificates="X509CA/ca/ca_list01.pem"
 ... />
 </port>
</service>
83

CHAPTER 5 | Managing Certificates
Deploying for the IIOP/TLS
transport

To deploy one or more trusted root CAs for the IIOP/TLS transport, perform
the following steps (the procedure for client and server applications is the
same):

1. Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see �Set Up Your Own CA� on page 74). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves�the private keys and passwords are not required.

2. Organize the CA certificates into a collection of CA list files. For
example, you might create three CA list files as follows:

X509Deploy/trusted_ca_lists/ca_list01.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem
Each CA list file consists of a concatenated list of CA certificates. A CA
list file can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert01.pem and
ca_cert02.pem, you could combine them into a single CA list file,
ca_list01.pem, with the following command:

Windows
copy X509CA\ca\ca_cert01.pem +

X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01.pem

UNIX
cat X509CA/ca/ca_cert01.pem X509CA/ca/ca_cert02.pem >>

X509Deploy/trusted_ca_lists/ca_list01.pem
The CA certificates are organized as lists as a convenient way of
grouping related CA certificates together.

3. Edit the artix.cfg file to specify which of the CA list files is used by
your application. The artix.cfg file is located in the following
directory:

ArtixInstallDir/artix/1.3/etc/domains
To specify the CA list files, edit the value of the
policies:iiop_tls:trusted_ca_list_policy variable in your
application�s configuration scope in the artix.cfg file.
 84

Deploying Certificates
For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_list01.pem and ca_list02.pem files, edit the
artix.cfg file as follows:

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted_ca_lists/) should be a secure directory.

Artix configuration file.
...
SecureAppScope {
 ...
 policies:iiop_tls:trusted_ca_list_policy =

["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

 ...
;

Note: If an application supports authentication of a peer, that is a client
supports EstablishTrustInTarget, then a file containing trusted CA
certificates must be provided. If not, a NO_RESOURCES exception is raised.
85

CHAPTER 5 | Managing Certificates
Deploying Application Certificates

Overview This section describes how to deploy an Artix application�s own certificate.
In the current version of Artix, the procedure for deploying application
certificates depends on the type of transport, as follows:

� Deploying for the HTTPS transport.

� Deploying for the IIOP/TLS transport

Certificate formats The format used for application certificates depends on the type of
transport, as follows:

� HTTPS transport�uses the PEM format. This format consists of a
certificate file, CertName.pem, containing an encrypted X.509
certificate chain, and a private key file, CertPrivKey.pem, containing an
encrypted private key. Both PEM files are encrypted by the same
password (the private key password).

� IIOP/TLS transport�uses the PKCS#12 format. This format consists
of a single encrypted file, CertName.p12, that contains an X.509
certificate chain and a private key.

Deploying for the HTTPS transport To deploy an Artix application�s own certificate, CertName.pem, with private
key, CertPrivKey.pem, for the HTTPS transport, perform the following steps:

1. Copy the application certificate, CertName.pem, and private key file,
CertPrivKey.pem, to the certificates directory�for example,
X509Deploy/certs/applications�on the deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the WSDL contract to specify the location of the application
certificate file and private key file. The details of this step depend on
whether you are deploying an application certificate on the client side
or the server side:

Note: Because Artix uses an IIOP/TLS connection to communicate with
the iS2 security server, Artix applications that use HTTPS generally require
you to configure both HTTPS and IIOP/TLS.
 86

Deploying Certificates
Client side

Edit the client�s copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <http-conf:client> tag:

Server side

Edit the server�s copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <http-conf:server> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:client UseSecureSockets="true"
 ClientCertificate="X509Deploy/certs/applications/CertName.pem"
 ClientCertificateChain="X509Deploy/certs/applications/CertName.pem"
 ClientPrivateKey="X509Deploy/certs/applications/CertPrivKey.pem"
 ClientPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:server UseSecureSockets="true"
 ServerCertificate="X509Deploy/certs/applications/CertName.pem"
 ServerCertificateChain="X509Deploy/certs/applications/CertName.pem"
 ServerPrivateKey="X509Deploy/certs/applications/CertPrivKey.pem"
 ServerPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>
87

CHAPTER 5 | Managing Certificates
3. Protect the private key passwords.

Because the private key passwords in the WSDL contracts appear in
plaintext form, you must ensure that the WSDL contract files
themselves are not readable/writable by every user. Use the operating
system to restrict read/write access to trusted users only.

Additionally, to avoid revealing the server�s security configuration to
clients, you should remove the <http-conf:server> tag from the client
copy of the WSDL contract.

Deploying for the IIOP/TLS
transport

To deploy an Artix application�s own certificate, CertName.p12, for the
IIOP/TLS transport, perform the following steps:

1. Copy the application certificate, CertName.p12, to the certificates
directory�for example, X509Deploy/certs/applications�on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the artix.cfg configuration file (usually
ArtixInstallDir/artix/1.3/etc/domains/artix.cfg). Given that your
application picks up its configuration from the SecureAppScope scope,
change the principal sponsor configuration to specify the
CertName.p12 certificate, as follows:

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. To choose another option for providing the pass
phrase, see �Providing a Certificate Pass Phrase� on page 99.

Artix configuration file
...
SecureAppScope {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.
p12"];

};
 88

CHAPTER 6

Configuring
HTTPS and
IIOP/TLS
Authentication
This chapter describes how to configure HTTPS and IIOP/TLS
authentication requirements for Artix applications.

In this chapter This chapter discusses the following topics:

Requiring Authentication page 90

Specifying Trusted CA Certificates page 97

Specifying an Application�s Own Certificate page 98

Providing a Certificate Pass Phrase page 99

Advanced IIOP/TLS Configuration Options page 104
89

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Requiring Authentication

Overview This section discusses how to specify the kind of authentication required,
whether mutual or target-only.

In this section There are two possible arrangements for a TLS secure association:

Target-Only Authentication page 91

Mutual Authentication page 94
 90

Requiring Authentication
Target-Only Authentication

Overview When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object�see Figure 12.

Security handshake Prior to running the application, the client and server should be set up as
follows:

� A certificate chain is associated with the server�the certificate chain is
provided in the form of a PEM file (for HTTPS) or a PKCS#12 file (for
IIOP/TLS). See �Specifying an Application�s Own Certificate� on
page 98.

� One or more lists of trusted certification authorities (CA) are made
available to the client�see �Deploying Trusted Certificate Authority
Certificates� on page 82.

During the security handshake, the server sends its certificate chain to the
client�see Figure 12. The client then searches its trusted CA lists to find a
CA certificate that matches one of the CA certificates in the server�s
certificate chain.

Figure 12: Target Authentication Only

Secure Association
Client Server

Cert file

Trusted CA Lists
Authenticate
CertificateCA Cert List 1

CA Cert List 2
91

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
HTTPS example You configure target-only authentication for the HTTPS transport by omitting
a certificate on the client side. That is, the ClientCertificate attribute is
not set in the <http-conf:client> tag. For example, you could configure
the client side and the server side as follows:

Client side

Edit the client�s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <http-conf:client> tag:

Server side

Edit the server�s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <http-conf:server> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:client UseSecureSockets="true"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:server UseSecureSockets="true"
 ServerCertificate="X509Deploy/certs/applications/CertName.pem"
 ServerPrivateKey="X509Deploy/certs/applications/CertPrivKey.pem"
 ServerPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>
 92

Requiring Authentication
IIOP/TLS example The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
93

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the
target. This scenario is illustrated in Figure 13. In this case, the server and
the client each require an X.509 certificate for the security handshake.

Figure 13: Mutual Authentication

Secure Association
Client Server

Trusted CA Lists
Authenticate

Target

Trusted CA Lists

Authenticate
Client

Cert file

CA Cert List 1

CA Cert List 2

Cert file
CA Cert List 1

CA Cert List 2
 94

Requiring Authentication
Security handshake Prior to running the application, the client and server should be set up as
follows:

� Both client and server have an associated certificate chain (PEM file or
PKCS#12 file)�see �Specifying an Application�s Own Certificate� on
page 98.

� Both client and server are configured with lists of trusted certification
authorities (CA)�see �Deploying Trusted Certificate Authority
Certificates� on page 82.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server�see Figure 12.

HTTPS example To configure mutual authentication for the HTTPS transport, you should
deploy an application certificate both on the client side and on the server
side. For a detailed example, see the following reference:

� �Deploying for the HTTPS transport� on page 86.

IIOP/TLS example The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is
IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];
 policies:iiop_tls:target_secure_invocation_policy:supports =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};
95

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
secure_client_with_cert
{
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
 96

Specifying Trusted CA Certificates
Specifying Trusted CA Certificates

Overview When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application�s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Which applications need to
specify trusted CA certificates?

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

� All IIOP/TLS or HTTPS clients.

� Any IIOP/TLS or HTTPS servers that support mutual authentication.

How to deploy trusted CA
certificates

For more details about how to deploy trusted CA certificates, see the
following references:

� �Deploying for the HTTPS transport� on page 82.

� �Deploying for the IIOP/TLS transport� on page 84.
97

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Specifying an Application�s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an
X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

� Security unaware�configuration only,

This section discusses how to specify a certificate by configuration only.

How to deploy an application
certificate

For details about how to deploy an application�s own certificate, see the
following reference:

� �Deploying Application Certificates� on page 86.
 98

Providing a Certificate Pass Phrase
Providing a Certificate Pass Phrase

Overview If an application is configured to have an X.509 certificate, it is necessary to
provide a pass phrase as the application starts up. There are various ways of
providing the certificate pass phrase, depending on the particular type of
transport used.

In this section This section contains the following subsections:

Certificate Pass Phrase for HTTPS page 100

Certificate Pass Phrase for IIOP/TLS page 102
99

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Certificate Pass Phrase for HTTPS

Overview For the HTTPS transport, there is just one option for specifying a certificate�s
pass phrase, as follows:

� Directly in the WSDL contract.

Directly in the WSDL contract For the HTTPS protocol, the same pass phrase is used to encrypt both the
certificate and the private key. You can specify the certificate pass phrase by
editing the WSDL contract as follows:

Client side

Edit the client�s copy of the WSDL contract by adding (or modifying) the
ClientPrivateKeyPassword attribute in the <http-conf:client> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:client ...
 ClientPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>
 100

Providing a Certificate Pass Phrase
Server side

Edit the server�s copy of the WSDL contract by adding (or modifying) the
ServerPrivateKeyPassword attribute in the <http-conf:server> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:server ...
 ServerPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>
101

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Certificate Pass Phrase for IIOP/TLS

Overview Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate�s private
key (which is used during the TLS security handshake to prove the
certificate�s authenticity).

For the IIOP/TLS transport, the pass phrase can be provided in one of the
following ways:

� From a dialog prompt.

� In a password file.

� Directly in configuration.

From a dialog prompt If the pass phrase is not specified in any other way, Artix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C++ Applications

When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the ORB
Enter password :

In a password file The pass phrase is stored in a password file whose location is specified in
the principal_sponsor:auth_method_data configuration variable using the
password_file option. In the following example, the SecureApp scope
configures the principal sponsor as follows:

Artix Configuration File
SecureApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/administrator.p12",
"password_file=X509Deploy/certs/administrator.pwf"];

 ...
};
 102

Providing a Certificate Pass Phrase
In this example, the pass phrase for the bank_server.p12 certificate is
stored in the administrator.pwf file, which contains the following pass
phrase:

administratorpass

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
principal_sponsor:auth_method_data configuration variable using the
password option. For example, the bank_server demonstration configures
the principal sponsor as follows:

In this example, the pass phrase for the bank_server.p12 certificate is
bankserverpass.

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

Artix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\bank
_server.p12", "password=bankserverpass"];

};

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.
103

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Advanced IIOP/TLS Configuration Options

Overview For added security, the IIOP/TLS transport allows you to apply extra
conditions on certificates. Before reading this section you might find it
helpful to consult �Managing Certificates� on page 63, which provides some
background information on the structure of certificates.

In this section This section discusses the following advanced IIOP/TLS configuration
options:

Setting a Maximum Certificate Chain Length page 105

Applying Constraints to Certificates page 106
 104

Advanced IIOP/TLS Configuration Options
Setting a Maximum Certificate Chain Length

Max chain length policy You can use the maximum chain length policy to enforce the maximum
length of certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the
TrustedCAListPolicy).

Example For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

Configuration variable You can specify the maximum length of certificate chains used in maximum
chain length policy with the policies:iiop_tls:max_chain_length_policy
configuration variable. For example:

policies:iiop_tls:max_chain_length_policy = "4";

Default value The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA�s.
105

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
Applying Constraints to Certificates

Certificate constraints policy You can use the certificate constraints policy to apply constraints to peer
X.509 certificates. These conditions are applied to the owner�s distinguished
name (DN) on the first certificate (peer certificate) of the received certificate
chain. Distinguished names are made up of a number of distinct fields, the
most common being Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by the certificate constraints
policy through the policies:iiop_tls:certificate_constraints_policy
configuration variable. For example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 106

Advanced IIOP/TLS Configuration Options
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see �ASN.1 and
Distinguished Names� on page 205.
107

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication
 108

CHAPTER 7

Configuring
IIOP/TLS Secure
Associations
The Artix IIOP/TLS transport layer offers additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and
security mechanism policies.

In this chapter This chapter discusses the following topics:

Overview of Secure Associations page 110

Setting IIOP/TLS Association Options page 112

Specifying IIOP/TLS Cipher Suites page 120

Caching IIOP/TLS Sessions page 129
109

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Overview of Secure Associations

Secure association A secure association is a term that has its origins in the CORBA Security
Service and refers to any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association is an IIOP/TLS connection augmented by a collection of security
policies that govern the behavior of the connection.

TLS session A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Artix.

Colocation For colocated invocations, that is where the calling code and called code
share the same address space, Artix supports the establishment of colocated
secure associations. A special interceptor, TLS_Coloc, is provided by the
security plug-in to optimize the transmission of secure, colocated
invocations.

Configuration overview The security characteristics of an association can be configured through the
following CORBA policy types:

� Client secure invocation policy�enables you to specify the security
requirements on the client side by setting association options. See
�Choosing Client Behavior� on page 116 for details.

� Target secure invocation policy�enables you to specify the security
requirements on the server side by setting association options. See
�Choosing Target Behavior� on page 118 for details.

� Mechanism policy�enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See �Specifying
IIOP/TLS Cipher Suites� on page 120 for details.
 110

Overview of Secure Associations
Figure 14 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

Figure 14: Configuration of a Secure Association

Client

Client Invocation
Policy

Client Configuration

Association Options

Specified Cipher SuitesMechanism Policy

Secure Association
Server

Server Configuration

Target Invocation
Policy

Association Options

Specified Cipher SuitesMechanism Policy
111

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Setting IIOP/TLS Association Options

Overview This section explains the meaning of the various IIOP/TLS association
options and describes how you can use the IIOP/TLS association options to
set client and server secure invocation policies for IIOP/TLS connections.

In this section The following subsections discuss the meaning of the settings and flags:

Secure Invocation Policies page 113

Association Options page 114

Choosing Client Behavior page 116

Choosing Target Behavior page 118
 112

Setting IIOP/TLS Association Options
Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements for the applications in your
system with two types of security policy:

� Client secure invocation policy�specifies the client association
options.

� Target secure invocation policy�specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

Configuration example For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 // Other settings (not shown)...
};
113

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Association Options

Available options You can use association options to configure IIOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the
available options:

� NoProtection

� Integrity

� Confidentiality

� DetectReplay

� DetectMisordering

� EstablishTrustInTarget

� EstablishTrustInClient

NoProtection Use the NoProtection flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoProtection) the target can accept secure and insecure
invocations.

Integrity Use the Integrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Confidentiality Use the Confidentiality flag if your application requires or supports at
least confidentiality-protected invocations. The object can support this
feature if the cipher suites specified by the MechanismPolicy support
confidentiality-protected invocations.

DetectReplay Use the DetectReplay flag to indicate that your application supports or
requires replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

DetectMisordering Use the DetectMisordering flag to indicate that your application supports
or requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.
 114

Setting IIOP/TLS Association Options
EstablishTrustInTarget The EstablishTrustInTarget flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client supports
and requires unless anonymous cipher suites are supported.

EstablishTrustInClient Use the EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client�s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.
115

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Choosing Client Behavior

Client secure invocation policy The client secure invocation policy type determines how a client handles
security issues.

IIOP/TLS configuration You can set this policy for IIOP/TLS connections through the following
configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
IIOP/TLS connections.

Association options In both cases, you provide the details of the security levels in the form of
AssociationOption flags�see �Association Options� on page 114.

Default value The default value for the client secure invocation policy is:

Example The following example shows some sample settings for the client secure
invocation policy:

supports Integrity, Confidentiality, DetectReplay,

DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,

DetectMisordering, EstablishTrustInTarget
 116

Setting IIOP/TLS Association Options
Artix Configuration File
 bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =
 ["Confidentiality", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 };
 ...
};
117

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Choosing Target Behavior

Target secure invocation policy The target secure invocation policy type operates in a similar way to the
client secure invocation policy type. It determines how a target handles
security issues.

IIOP/TLS configuration You can set the target secure invocation policy for IIOP/TLS connections
through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
IIOP/TLS connections.

Association options In both cases, you can provide the details of the security levels in the form of
AssociationOption flags�see �Association Options� on page 114.

Default value The default value for the target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,

DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,

DetectMisordering
 118

Setting IIOP/TLS Association Options
Example The following example shows some sample settings for the target secure
invocation policy:

Artix Configuration File
 ...
 bank_server {
 ...
 policies:iiop_tls:target_secure_invocation_policy:requires =
 ["Confidentiality"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 ...
 };
 ...
119

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Specifying IIOP/TLS Cipher Suites

Overview This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
IIOP/TLS secure associations. During a security handshake, the client
chooses a cipher suite that matches one of the cipher suites available to the
server. The cipher suite then determines the security algorithms that are
used for the secure association.

In this section This section contains the following subsections:

Supported Cipher Suites page 121

Setting the Mechanism Policy page 124

Constraints Imposed on Cipher Suites page 126
 120

Specifying IIOP/TLS Cipher Suites
Supported Cipher Suites

Artix cipher suites The following cipher suites are supported by Artix IIOP/TLS:

� Null encryption, integrity-only ciphers:
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

� Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA

Security algorithms Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

� Key exchange algorithm�used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.

� Encryption algorithm�used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

� Secure hash algorithm�used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

Key exchange algorithms The following key exchange algorithms are supported by Artix IIOP/TLS:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.

RSA_EXPORT RSA public key encryption using X.509v3 certificates.
Key size restricted to 512 bits.
121

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Encryption algorithms The following encryption algorithms are supported by Artix IIOP/TLS:

Secure hash algorithms The following secure hash algorithms are supported by Artix IIOP/TLS:

Cipher suite definitions The Artix IIOP/TLS cipher suites are defined as follows:

RC4_40 A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4_128 RC4 with a 128-bit key.

DES40_CBC Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES_CBC DES with a 56-bit key.

3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

SHA Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

Table 2: Cipher Suite Definitions

Cipher Suite Key Exchange
Algorithm

Encryption
Algorithm

Secure Hash
Algorithm

Exportable?

RSA_WITH_NULL_MD5 RSA NULL MD5 yes

RSA_WITH_NULL_SHA RSA NULL SHA yes

RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes

RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5 no

RSA_WITH_RC4_128_SHA RSA RC4_128 SHA no

RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes

RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA no

RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no
 122

Specifying IIOP/TLS Cipher Suites
Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.
123

http://www.ietf.org

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Setting the Mechanism Policy

Mechanism policy To specify IIOP/TLS cipher suites, use the mechanism policy. The
mechanism policy is a client and server side security policy that determines

� Whether SSL or TLS is used, and

� Which specific cipher suites are to be used.

The protocol_version
configuration variable

You can specify whether SSL or TLS is used with a transport protocol by
setting the policies:iiop_tls:mechanism_policy:protocol_version
configuration variable for IIOP/TLS. For example:

You can set the protocol_version configuration variable to one of the
following alternatives:

TLS_V1
SSL_V3

And a special setting for interoperating with an application deployed on the
OS/390 platform (to work around a bug in IBM�s System/SSL toolkit):

SSL_V2V3

The cipher suites configuration
variable

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechanism_policy:ciphersuites configuration
variable for IIOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";

Artix Configuration File
policies:iiop_tls:mechanism_policy:ciphersuites =
 ["RSA_WITH_NULL_MD5",
 "RSA_WITH_NULL_SHA",
 "RSA_EXPORT_WITH_RC4_40_MD5",
 "RSA_WITH_RC4_128_MD5"];
 124

Specifying IIOP/TLS Cipher Suites
Cipher suite order The order of the entries in the mechanism policy�s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ciphersuites list.

Valid cipher suites You can specify any of the following cipher suites:

� Null encryption, integrity only ciphers:
RSA_WITH_NULL_MD5,
RSA_WITH_NULL_SHA

� Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5,
RSA_WITH_RC4_128_MD5,
RSA_WITH_RC4_128_SHA,
RSA_EXPORT_WITH_DES40_CBC_SHA,
RSA_WITH_DES_CBC_SHA,
RSA_WITH_3DES_EDE_CBC_SHA

Default values If no cipher suites are specified through configuration or application code,
the following apply:

RSA_WITH_RC4_128_SHA,
RSA_WITH_RC4_128_MD5,
RSA_WITH_3DES_EDE_CBC_SHA,
RSA_WITH_DES_CBC_SHA
125

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
Constraints Imposed on Cipher Suites

Effective cipher suites Figure 15 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Artix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Required and supported
association options

For example, in the context of the IIOP/TLS protocol the list of cipher suites
is affected by the following configuration options:

� Required association options�as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

� Supported association options�as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports on
the server side.

Figure 15: Constraining the List of Cipher Suites

Association
Options

Specified
Cipher Suites

constrain

Effective
Cipher Suites

yields
 126

Specifying IIOP/TLS Cipher Suites
Cipher suite compatibility table Use Table 3 to determine whether or not a particular cipher suite is
compatible with your association options.

Determining compatibility The following algorithm is applied to the initial list of cipher suites:

1. For the purposes of the algorithm, ignore the EstablishTrustInClient
and EstablishTrustInTarget association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 3) do not satisfy the configured required
association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 3) not included in the configured supported
association options.

Table 3: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA_WITH_NULL_MD5 Integrity, DetectReplay,

DetectMisordering

RSA_WITH_NULL_SHA Integrity, DetectReplay,

DetectMisordering

RSA_EXPORT_WITH_RC4_40_MD5 Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_RC4_128_MD5 Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_RC4_128_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_EXPORT_WITH_DES40_CBC_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_DES_CBC_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality

RSA_WITH_3DES_EDE_CBC_SHA Integrity, DetectReplay,

DetectMisordering, Confidentiality
127

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
No suitable cipher suites available If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

Example For example, specifying a cipher suite such as RSA_WITH_RC4_128_MD5 that
supports Confidentiality, Integrity, DetectReplay, DetectMisordering,
EstablishTrustInTarget (and optionally EstablishTrustInClient) but
specifying a secure_invocation_policy that supports only a subset of
those features results in that cipher suite being ignored.
 128

Caching IIOP/TLS Sessions
Caching IIOP/TLS Sessions

Session caching policy You can use the IIOP/TLS session caching policy to control TLS session
caching and reuse for both the client side and the server side.

Configuration variable You can set the session caching policy with the
policies:iiop_tls:session_caching_policy or
policies:https:session_caching_policy configuration variables. For
example:

policies:iiop_tls:session_caching_policy = "CACHE_CLIENT";

Valid values You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

Default value The default value is CACHE_NONE.

Configuration variable plugins:atli_tls_tcp:session_cache_validity_period

This allows control over the period of time that SSL/TLS session caches
are valid for.

Valid values session_cache_validity_period is specified in seconds.

Default value The default value is 1 day.

Configuration variable plugins:atli_tls_tcp:session_cache_size

session_cache_size is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

Default value This defaults to no limit specified for C++.

This defaults to 100 for Java.
129

CHAPTER 7 | Configuring IIOP/TLS Secure Associations
 130

CHAPTER 8

Principal
Propagation
Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

In this chapter This chapter discusses the following topics:

Introduction to Principal Propagation page 132

Configuring page 133

Programming page 136

Interoperating with .NET page 139
131

CHAPTER 8 | Principal Propagation
Introduction to Principal Propagation

Overview Artix principal propagation is a transport-neutral mechanism that can be
used to transmit a secure identity from a client to a server. It is not
recommended that you use this feature in new applications. Principal
propagation is provided primarily in order to facilitate interoperability with
legacy Orbix applications.

Supported bindings/transports Support for principal propagation is limited to the following bindings and
transports:

� CORBA binding�the principal is sent in a GIOP service context.

� SOAP over HTTP�the principal is sent in a SOAP header.

Interoperability The primary purpose of Artix principal propagation is to facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this
feature ought to be compatible with third-party products as well.

WARNING: By default, the principal is propagated across the wire in
plaintext. Hence, the principal is vulnerable to snooping. To protect
against this possibility, you should enable SSL for your application.

Note: If a CORBA call is colocated, the principal is not propagated unless
you remove the POA_Coloc interceptor from the binding lists in the
artix.cfg file. This has the effect of disabling the CORBA colocated
binding optimization.
 132

Configuring
Configuring

Overview This section describes how to configure Artix to use principal propagation.
The following aspects of configuration are described:

� CORBA.

� SOAP over HTTP.

� Routing.

CORBA To use principal propagation with a CORBA binding, you must set the
following configuration variables in your artix.cfg file (located in the
ArtixInstallDir/artix/1.3/etc/domains directory):

You can either add these settings to the global scope or to a specific
sub-scope (in which case you must specify the sub-scope to the -ORBname
command line switch when running the Artix application).

SOAP over HTTP SOAP over HTTP requires no special configuration to support principal
propagation. The Artix SOAP binding will always add a principal header, if
you switch on message attributes in your code. The following cases arise:

� Message attributes enabled and principal set explicitly�the specified
principal is sent in the principal header.

� Message attributes enabled and principal not set�Artix reads the
username from the operating system and sends this username in the
principal header.

� Message attributes not enabled�no principal header appears in the
request message.

Note: Principal configuration is not supported for any other bindings,
apart from CORBA and SOAP over HTTP.

Example 16:Configuring Principal Propagation for a CORBA Binding

policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =

"true";
133

CHAPTER 8 | Principal Propagation
If you want a SOAP server to authenticate a propagated principal using the
iS2 security service, however, you do need to add some settings to the
server�s configuration scope in your artix.cfg file, as shown in
Example 17.

Setting plugins:asp:security_type equal to PRINCIPAL specifies that the
received principal serves as the username for the purpose of authentication.
The plugins:asp:default_password value serves as the password for the
purpose of authentication. This latter setting is necessary because, although
the iS2 service requires a password, there is no password propagated with
the principal.

The net effect of the configuration shown in Example 17 is that the SOAP
server performs authentication by contacting the central iS2 security service.

See also �Security Layer� on page 18 and �Configuring the iS2 Server� on
page 25 for more details about configuring the iS2 service.

Routing If you are using the Artix routing feature, you need to modify the WSDL by
adding a <routing:propagateInputAttribute> tag, as shown in
Example 18.

Example 17:Configuring Principal Authentication for SOAP

Security Layer Settings
policies:asp:enable_security = "true";
policies:asp:enable_authorization = "true";
plugins:is2_authorization:action_role_mapping =

"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role_mapping.xml";

plugins:asp:authorization_realm = "IONAGlobalRealm";

plugins:asp:security_type = "PRINCIPAL";
plugins:asp:default_password = "default_password";

WARNING: The procedure of supplying a default password for the
principal enables you to integrate principals with the iS2 service. Users
identified in this way, however, do not have the same status as properly
authenticated users. For security purposes, such users should enjoy lesser
privileges and be treated in the same way as unauthenticated users.
 134

Configuring
Example 18:Configuring a Router to Support Principal Propagation

<definitions ... >
 ...
 <routing:route name="route_from_corba_to_soap">
 <routing:source service="tns:client"

port="CorbaClient"/>
 <routing:destination service="tns:server"
 port="SoapServer"/>
 <routing:propagateInputAttribute name="Principal"/>
 </routing:route>
<definitions>
135

CHAPTER 8 | Principal Propagation
Programming

Overview This section describes how to program an Artix client and server to set
(client side) and get (server side) a principal value. The code examples are
written using the transport-neutral message attributes API.

Client example Example 19 shows how to set the principal prior to invoking an operation,
echoString(), on a proxy object, of MyProxy type.

The preceding client example can be explained as follows:

1. You must call use_message_attributes() on the proxy�s port object to
enable message attributes (which are responsible for propagating the
principal). Because message attributes add a performance penalty,
they are disabled by default.

2. This line gets a reference to the proxy�s input message attributes
object.

3. This line uses a transport-neutral API to set the Principal message
attribute.

Example 19:Setting a Principal on the Client Side

// C++
...
MyProxy proxy;

// Switch message attributes on.
1 proxy.get_port().use_input_message_attributes(true);

// Set the "Principal" attribute.
2 MessageAttributes& input_attributes =

proxy.get_port().get_input_message_attributes();
3 input_attributes.set_string("Principal", "theprincipal");

// Now use the proxy as normal.
4 proxy.echoString();
 136

Programming
4. This line invokes a remote WSDL operation, echoString(), which
includes the Principal attribute in the input message. The precise
mechanism used for propagating the principal value is transport
specific.

Server example Example 20 shows how to read the principal on the server side, when the
servant is invoked by a client that uses principal propagation.

The preceding server example can be explained as follows:

1. By overiding the port�s virtual activation method, you ensure that each
port created for this servant will have its attributes set properly.

2. You must call use_message_attributes() on the servant base class to
enable message attributes. Because message attributes add a
performance penalty, they are disabled by default.

Example 20:Reading the Principal on the Server Side

// C++
1 // Overide the base Port activation method.

void MyImpl::activate(IT_Bus::Port& port)
{

2 port.use_input_message_attributes(true);
}

3 // in operation..
void MyImpl::echoString(const IT_Bus::String& inputString,
 IT_Bus::String& Response)
IT_THROW_DECL((IT_Bus::Exception))
{
 Response = inputString;

 try
 {

4 Current& current=get_bus()->get_current();
5 Port& port=current.get_operation().get_port();
6 const String& the_principal =

 port().get_input_message_attributes().get_string(
 "Principal");

7 }
 catch (IT_Bus::NoSuchAttributeException) { }
}

137

CHAPTER 8 | Principal Propagation
3. This is the implementation of the echoString() operation that was
called in Example 19.

4. Get the Current object from the Bus. The Current object holds
references to the port.

5. Get a reference to the port from the Current object.

6. This line uses the transport-neutral message attribute API to read the
Principal value received from the client.

7. If the client has not sent a Principal attribute, the
IT_Bus::NoSuchAttributeException exception is thrown.
 138

Interoperating with .NET
Interoperating with .NET

Overview If your Artix applications must interoperate with other Web service products,
for example .NET, you need to modify your WSDL contract in order to make
the principal header interoperable. This section describes the changes you
can make to a WSDL contract to facilitate interoperability with other Web
services platforms.

In this section This section contains the following subsections:

Explicitly Declaring the Principal Header page 140

Modifying the SOAP Header page 142
139

CHAPTER 8 | Principal Propagation
Explicitly Declaring the Principal Header

Overview Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. Whenever input message attributes are
enabled (set by programming), an Artix service expects to receive the user�s
principal in a SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require
the principal header to be declared explicitly in the WSDL contract.
Otherwise, the non-Artix services would be unable to access the principal.

Declaring the principal header in
WSDL

Example 21 shows the typical modifications you must make to a WSDL
contract in order to make the principal value accessible to non-Artix
applications.

Example 21:WSDL Declaration of the Principal Header

<definitions ... >
 <types>
 <schema targetNamespace="TypeSchema" ... >
 ...

1 <element name="principal" type="xsd:string"/>
 ...
 </schema>
 </type>
 ...

2 <message targetNamespace="http://schemas.iona.com/security"
 name="principal">

3 <part element="TypePrefix:principal" name="principal"/>
 </message>
 ...

4 <binding ... xmlns:sec="http://schemas.iona.com/security">
 ...

5 <operation ...>
 ...
 <input>
 <soap:body ...>

6 <soap:header message="sec:principal"
 part="principal" use="literal">
 </input>
 </operation>
 </binding>
 140

Interoperating with .NET
The preceding WSDL extract can be explained as follows:

1. Declare a <principal> element in the type schema, which must be
declared to be of type, xsd:string. In this example, the <principal>
element belongs to the TypeSchema namespace.

2. Add a new <message> element.

3. The <part> tag�s element attribute is set equal to the QName of the
preceding principal element. Hence, in this example the TypePrefix
appearing in element="TypePrefix:principal" must be a prefix
associated with the TypeSchema namespace.

4. Edit the binding, or bindings, for which you might need to access the
principal header. You should define a prefix for the
http://schemas.iona.com/security namespace within the <binding>
tag, which in this example is sec.

5. Edit each operation for which you might need to access the principal
header.

6. Add a <soap:header> tag to the operation�s input part, as shown.

 ...
</definitions>

Example 21:WSDL Declaration of the Principal Header
141

CHAPTER 8 | Principal Propagation
Modifying the SOAP Header

Overview It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary
to modify the header format in this way, but in some cases it could facilitate
interoperability.

Default SOAP header By default, when a client uses principal propagation with SOAP over HTTP,
the input message sent over the wire includes the following form of header:

Custom SOAP header You can change the form of the SOAP header that is sent over the wire to
have the following custom format (replacing <sec:principal> by a custom
tag, <sec:PrincipalTag>):

WSDL modifications To change the tag that is sent in the SOAP header to be PrincipalTag, you
can modify your WSDL contract as shown in Example 22.

<SOAP-ENV:Header>
 <sec:principal xmlns:sec="http://schemas.iona.com/security"
 xsi:type="xsd:string">my_principal</sec:principal>
</SOAP-ENV:Header>

<SOAP-ENV:Header>
 <sec:PrincipalTag xmlns:sec="http://schemas.iona.com/security"
 xsi:type="xsd:string">my_principal</sec:PrincipalTag>
</SOAP-ENV:Header>

Example 22:Customizing the Form of the Principal Header

<definitions ... >
 <types>
 <schema targetNamespace="TypeSchema" ... >
 ...

1 <element name="PrincipalTag" type="xsd:string"/>
 ...
 </schema>
 </type>
 ...
 <message targetNamespace="http://schemas.iona.com/security"
 142

Interoperating with .NET
The preceding WSDL extract can be explained as follows:

1. Modify the <principal> element in the type schema to give it an
arbitrary QName. In this example, the <PrincipalTag> element belongs
to the TypeSchema namespace.

2. The <part> tag�s element attribute is set equal to the QName of the
preceding principal element. Hence, in this example the TypePrefix
appearing in element="TypePrefix:PrincipalTag" must be a prefix
associated with the TypeSchema namespace.

3. The <soap:header> tag must be defined precisely as shown here. That
is, when writing or reading a principal header, Artix looks for the
principal part of the message with QName, principal, in the
namespace, http://schemas.iona.com/security.

 name="principal">
2 <part element="TypePrefix:PrincipalTag" name="principal"/>

 </message>
 ...
 <binding ... xmlns:sec="http://schemas.iona.com/security">
 ...
 <operation ...>
 ...
 <input>
 <soap:body ...>

3 <soap:header message="sec:principal"
 part="principal" use="literal">
 </input>
 </operation>
 </binding>
 ...
</definitions>

Example 22:Customizing the Form of the Principal Header
143

CHAPTER 8 | Principal Propagation
 144

CHAPTER 9

Propagating
Security Tokens
Using SOAP
Message Headers
Artix uses Web Services Security compliant security tokens to
ensure maximum interoperability with other Web services.

Overview To ensure that Web services and Web service clients developed using Artix
can interoperate with the widest possible array of Web services, Artix
supports the WS Security specification for propagating Kerberos security
tokens and username/password security tokens in SOAP message headers.
The security tokens are placed into the SOAP message header using Artix
APIs that format the tokens and place them in the header correctly.

In this chapter This chapter discusses the following topics:

Propagating a Username/Password Token page 146

Propagating a Kerberos Token page 148
145

CHAPTER 9 | Propagating Security Tokens Using SOAP Message Headers
Propagating a Username/Password Token

Overview Many Web services use simple username/password authentication to ensure
that only preapproved clients an access them. Artix provides a simple client
side API for embedding the username and password into the SOAP message
header of requests in a WS Security compliant manner.

Procedure Embedding a username and password token into the SOAP header of a
request using the Artix APIs requires you to do the following:

1. Instruct the proxy�s port object to use the message attributes. The
message attributes are responsible for propagating the token. Because
the use of message attributes results in a performance hit, they are not
used by default.

2. Get a reference to the input message�s message attributes.

3. Set the WSSEUsernameToken property on the message attributes using
the set_string() method to specify the username.

4. Set the WSSEPasswordToken property on the message attributes using
the set_string() method to specify the password.

Example Example 23 shows how to set the username/password token prior to
invoking an operation on a proxy object of MyProxy type.

Example 23:Setting a Username/Password Token on the Client Side

// C++
...
MyProxy proxy;

// Switch message attributes on.
proxy.get_port().use_input_message_attributes(true);

// Get the message attributes.
MessageAttributes& input_attributes =

proxy.get_port().get_input_message_attributes();
 146

Propagating a Username/Password Token
//Set the username message attribute.
input_attributes.set_string("WSSEUsernameToken",
 "artix_user");

//Set the username message attribute.
input_attributes.set_string("WSSEPasswordToken",
 "artix");

Example 23:Setting a Username/Password Token on the Client Side
147

CHAPTER 9 | Propagating Security Tokens Using SOAP Message Headers
Propagating a Kerberos Token

Overview Using the Kerberos Authentication Service requires you to make a few
changes to your client code. First you need to acquire a valid Kerberos
token. Then you need to embed it into the SOAP message header of all the
request being made on the secure server.

Acquiring a Kerberos Token To get a security token from the Kerberos Authentication Service is you must
use platform specific APIs and then base64 encode the returned binary
token so that it can be placed into the SOAP header.

On UNIX platforms use the GSS APIs to contact Kerberos and get a token for
the service you wish to make requests upon. On Windows platforms use the
Microsoft Security Framework APIs to contact Kerberos and get a token for
the service you wish to contact.

Embedding the token in the SOAP
header

Embedding a Kerberos token into the SOAP header of a request using the
Artix APIs requires you to do the following:

1. Instruct the proxy�s port object to use the message attributes. The
message attributes are responsible for propagating the token. Because
the use of message attributes results in a performance hit, they are not
used by default.

2. Get a reference to the input message�s message attributes.

3. Set the Kerberos token property in the message headers using the
message attributes� set_string() method. The Kerberos token
property is named WSSEKerberosv5SToken. The property�s value is the
base64 encoded string generated from the token obtained from the
Kerberos Authentication Service.
 148

Propagating a Kerberos Token
Example 24 shows how to set the Kerberos token prior to invoking an
operation on a proxy object of MyProxy type.

Example 24:Setting a Kerberos Token on the Client Side

// C++
...
MyProxy proxy;

// The value of the token string placed in the SOAP header is a
// base64 encoded string created from the token recieved from
// Kerberos
String token_string = base64EncodedKerberosToken;

// Switch message attributes on.
proxy.get_port().use_input_message_attributes(true);

// Set the Kerberos token attribute.
MessageAttributes& input_attributes =

proxy.get_port().get_input_message_attributes();
input_attributes.set_string("WSSEKerberosv5SToken",
 token_string);
149

CHAPTER 9 | Propagating Security Tokens Using SOAP Message Headers
 150

CHAPTER 10

Setting Security
Properties in Artix
Contracts
Artix allows you to configure a number of security features
directly from the Artix contract describing your system.

Overview Ocassionally you will need finer grained control of your systems security
than is provided through the standard Artix and security configuration. Artix
provides the ability to control security on a per-port basis by describing the
service�s security settings in the Artix contract that describes it. This is done
by using the <bus:security> extenstion in the <port> element describing
the service�s address and transport details.

Namespace The XML namespace defining <bus:security> is
http://schemas/iona.com/bus. You will need to add the following line to
the definitions element of any contracts that use the <bus:security>
element:

xmlns:bus="http://schemas.iona.com/bus"
151

CHAPTER 10 | Setting Security Properties in Artix Contracts
<bus:security> attributes All of the attributes to <bus:security> map directly to Artix configuration
variables controling security. The settings specified in the contract overide
the settings specified in the Artix configuraiton file, artix.cfg. They are all
optional and are listed in Table 4.

For a description of security configuration see �Security Configuration� on
page 155.

Table 4: Contract Security Attributes

Configuration Variable Contract Attribute

plugins:is2_authorization:action_role_mapping is2AuthorizationActionRoleMapping

policies:asp:enable_security enableSecurity

policies:asp:enable_authorization enableAuthorization

plugins:asp:authentication_cache_size authenticationCacheSize

plugins:asp:authentication_cache_timeout authenticationCacheTimeout

plugins:asp:security_type securityType

plugins:asp:security_level securityLevel

plugins:asp:authorization_realm authorizationRealm

plugins:asp:default_password defaultPassword
 152

Examples Disabling security for a service

Example 25 shows how to disable security for the service widgetService.

Enabling security for a service

Example 26 shows how to enable security for the service
personalInfoService. For this example, it is assumed that no security
configuration was specified in the Artix configuration.

Example 25:Disabling Security in an Artix Contract

<definitions
 xmlns:bus="http:/schemas.iona.com/bus"
 ...>
...
<service name="widgetService">
 <port name="widgetServicePort" binding="tns:widgetSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus:security enableSecurity="false" />
 </port>
</service>
</definitions>

Example 26:Enabling Security in an Artix Contract

<definitions
 xmlns:bus="http:/schemas.iona.com/bus"
 ...>
...
<service name="personalInfoService">
 <port name="personalInfoServicePort" binding="tns:infoSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus:security enableSecurity="true"
 is2AuthorizationActionRoleMapping="file://c:/iona/artix/1.3/bin/action_role.xml"
 enableAuthorization="true"
 securityLevel="REQUEST_LEVEL"
 securityType="USERNAME_PASSWORD"
 authenticationChacheSize="5"
 authenticationChaceTimeout="10" />
 </port>
</service>
</definitions>
153

CHAPTER 10 | Setting Security Properties in Artix Contracts
The <bus:security> element in Example 26 fully configures
personalInfoService to use WS Security compliant username/password
authentication.

Overiding specific security properties for a service

Example 27 shows how to specify that a particular service,
kerberosWidgetService, is to use WS Security compliant Kerberos token for
authentication while the remaining services in the domain are using HTTPS
authentication.

Example 27:Changing Security Configuration in an Artix Contract

<definitions
 xmlns:bus="http:/schemas.iona.com/bus"
 ...>
...
<service name="kerberosWidgetService">
 <port name="kerberosWidgetServicePort" binding="tns:widgetSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus:security securityLevel="REQUEST_LEVEL"
 securityType="KERBEROS" />
 </port>
</service>
</definitions>
 154

APPENDIX A

Security
Configuration
This appendix provides details of Artix security configuration
variables.

In this appendix This appendix contains the following sections:

plugins Namespace page 156

policies Namespace page 161

principal_sponsor Namespace page 170

principal_sponsor:csi Namespace page 172
155

CHAPTER A | Security Configuration
plugins Namespace

List of configuration variables The plugins namespace contains the following configuration variables:

plugins:asp:authentication_cache_size

For SOAP bindings, the maximum number of credentials stored in the
authentication cache. If this size is exceeded the oldest credential in the
cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

plugins:asp:authentication_cache_timeout

For SOAP bindings, the time (in seconds) after which a credential is
considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with iS2 on the next call from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

plugins:asp:authorization_realm

Specifies the iSF authorization realm to which an Artix server belongs. The
value of this variable determines which of a user�s roles are considered
when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:asp:authorization_realm
to Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

The default is IONAGlobalRealm.
 156

plugins Namespace
plugins:asp:default_password

When the plugins:asp:security_type variable is set to PRINCIPAL, this
variable specifies the password to use on the server side. The
plugins:asp:default_password variable is used to get around the
limitation that a PRINCIPAL identity is propagated without an accompanying
password.

When the PRINCIPAL security type is selected, the asp plug-in uses the
received client principal together with the password specified by
plugins:asp:default_password to authenticate the user through the iS2
security service.

The default value is the string, default_password.

plugins:asp:security_type

Specifies the source of the user identity that is sent to the iS2 server for
authentication. Because the IONA Security Framework supports several
different security mechanisms for propagating user identities, it is necessary
to specify which of the propagated identities is actually used for the
authentication step. The following options are currently supported by the
asp plug-in:

USERNAME_PASSWORD Authenticate the username and password
propagated as WSDL message attributes. For
example, you can configure these values on the
client side using the UserName and Password
attributes in the <http-conf:client> tag in the
WSDL contract.

CERT_SUBJECT Authenticate the Common Name (CN) from the
client certificate�s subject DN.

ENCODED_TOKEN Reserved for future use.

KERBEROS_TOKEN Authenticate the Kerberos token. You must have
the Kerberos adapter configured to use this option.
For more information see �Configuring the Kerberos
Adapter� on page 36.
157

CHAPTER A | Security Configuration
plugins:asp:security_level

Specifies where iS2 server will look for the security information to use for
authentication. The following options are supported by the asp plug-in:

plugins:gsp:authentication_cache_size

For CORBA bindings, specifies the maximum number of credentials stored
in the authentication cache. If this size is exceeded the oldest credential in
the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

plugins:gsp:authentication_cache_timeout

For CORBA bindings, specifies the time (in seconds) after which a credential
is considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with iS2 on the next call from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

plugins:gsp:authorization_realm

For CORBA bindings, specifies the iSF authorization realm to which a server
belongs. The value of this variable determines which of a user�s roles are
considered when making an access control decision.

PRINCIPAL Authenticate the CORBA principal. This is needed
to support interoperability with legacy CORBA
applications. This options can be used in
combination with the
plugins:asp:default_password setting.

MESSAGE_LEVEL Get security information from the transport header. This
is the default.

REQUEST_LEVEL Get the security information from the message header.
 158

plugins Namespace
For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:gsp:authorization_realm
to Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

plugins:iiop_tls:buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable�s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable�s
value.

plugins:iiop_tls:buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable�s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable�s
value.

plugins:iiop_tls:enable_iiop_1_0_client_support

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:enable_iiop_1_0_client_support variable�s
value.

plugins:iiop_tls:incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:incoming_connections:hard_limit variable�s
value.
159

CHAPTER A | Security Configuration
plugins:iiop_tls:incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:incoming_connections:soft_limit variable�s
value.

plugins:iiop_tls:outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:outgoing_connections:hard_limit variable�s
value.

plugins:iiop_tls:outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable�s
value.

plugins:is2_authorization:action_role_mapping

Specifies the action-role mapping file URL. For example:

plugins:is2_authorization:action_role_mapping =
"file:///my/action/role/mapping";
 160

policies Namespace
policies Namespace

List of configuration variables The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application.

policies:allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

policies:asp:enable_authorization

A boolean variable that specifies whether Artix should enable authorization
using the IONA Security Framework. Default is false.

policies:asp:enable_security

A boolean variable that specifies whether Artix should enable authentication
using the IONA Security Framework. Default is false.

policies:certificate_constraints_policy

A list of constraints applied to peer certificates�see �Applying Constraints
to Certificates� on page 106 for the syntax of the pattern constraint
language.

Note: This feature requires that the policies:asp:enable_security
variable is also set to true.
161

CHAPTER A | Security Configuration
policies:client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options. For defaults, see
�Choosing Client Behavior� on page 116.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies:client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options. For
defaults, see �Choosing Client Behavior� on page 116.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

policies:csi:attribute_service:client_supports

A client-side policy that specifies the association options supported by the
CSIv2 attribute service (principal propagation). The only association option
that can be specified is IdentityAssertion. This policy is normally
specified in an intermediate server so that it propagates CSIv2 identity
tokens to a target server. For example:

policies:csi:attribute_service:target_supports

A server-side policy that specifies the association options supported by the
CSIv2 attribute service (principal propagation). The only association option
that can be specified is IdentityAssertion. For example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];
 162

policies Namespace
policies:csi:auth_over_transport:client_supports

A client-side policy that specifies the association options supported by
CSIv2 authorization over transport. The only association option that can be
specified is EstablishTrustInClient. For example:

policies:csi:auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

policies:csi:auth_over_transport:target_requires

A server-side policy that specifies the association options required for CSIv2
authorization over transport. The only association option that can be
specified is EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_supports

A server-side policy that specifies the association options supported by
CSIv2 authorization over transport. The only association option that can be
specified is EstablishTrustInClient. For example:

policies:gsp:enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
163

CHAPTER A | Security Configuration
Default is true.

policies:gsp:enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
using the iS2 server.

Default is false.

policies:iiop_tls:allow_unauthenticated_clients_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:allow_unauthenticated_clients_policy policy�s
value.

policies:iiop_tls:buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:buffer_sizes_policy:default_buffer_size
policy�s value.

policies:iiop_tls:buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:buffer_sizes_policy:max_buffer_size
policy�s value.

policies:iiop_tls:certificate_constraints_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:certificate_constraints_policy policy�s value.
 164

policies Namespace
policies:iiop_tls:client_secure_invocation_policy:requires

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:client_secure_invocation_policy:requires
policy�s value.

policies:iiop_tls:client_secure_invocation_policy:supports

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:client_secure_invocation_policy:supports
policy�s value.

policies:iiop_tls:client_version_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:client_version_policy policy�s value.

policies:iiop_tls:max_chain_length_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:max_chain_length_policy policy�s value.

policies:iiop_tls:mechanism_policy:ciphersuites

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:mechanism_policy:ciphersuites policy�s value.

policies:iiop_tls:mechanism_policy:protocol_version

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:mechanism_policy:protocol_version policy�s
value.
165

CHAPTER A | Security Configuration
policies:iiop_tls:server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the
policies:iiop:server_address_mode_policy:publish_hostname policy�s
value.

policies:iiop_tls:server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:server_version_policy policy�s value.

policies:iiop_tls:session_caching_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:session_caching policy�s value (C++) .

policies:iiop_tls:target_secure_invocation_policy:requires

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:target_secure_invocation_policy:requires
policy�s value.

policies:iiop_tls:target_secure_invocation_policy:supports

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:target_secure_invocation_policy:supports
policy�s value.

policies:iiop_tls:tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:tcp_options_policy:no_delay policy�s
value.
 166

policies Namespace
policies:iiop_tls:tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:tcp_options_policy:send_buffer_size
policy�s value.

policies:iiop_tls:tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy�s value.

policies:iiop_tls:trusted_ca_list_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:trusted_ca_list_policy policy�s value.

policies:max_chain_length_policy

The maximum certificate chain length that an ORB will accept (see
�Certificate Chaining� on page 69).

policies:mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Table 5: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA
167

CHAPTER A | Security Configuration
policies:mechanism_policy:protocol_version

Specifies the protocol version used by a security capsule (ORB instance).
Can be set to one of the following values:

TLS_V1
SSL_V3
SSL_V2V3

The SSL_V2V3 value is a special setting that facilitates interoperability with
an Orbix application deployed on the OS/390 platform. Orbix security on the
OS/390 platform is based on IBM�s System/SSL toolkit, which implements
SSL version 3, but does so by using SSL version 2 hellos as part of the
handshake. This form of handshake causes interoperability problems,
because applications on other platforms identify the handshake as an SSL
version 2 handshake. The misidentification of the SSL protocol version can
be avoided by setting the protocol version to be SSL_V2V3 in the non-OS/390
application.

For example:

policies:session_caching

(C++ only) Same effect as the policies:session_caching_policy
variable, except it affects C++ applications instead of Java applications.

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

Table 5: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

policies:mechanism_policy:protocol_version = "TLS_V1";
 168

policies Namespace
policies:target_secure_invocation_policy:requires

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options. For defaults, see
�Choosing Target Behavior� on page 118.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies:target_secure_invocation_policy:supports

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options. For defaults, see
�Choosing Target Behavior� on page 118.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

policies:trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

See also �Certificate Chaining� on page 69.

policies:trusted_ca_list_policy =
["InstallDir/artix/x509/ca/ca_list1.pem",
"InstallDir/artix/x509/ca/ca_list_extra.pem"];
169

CHAPTER A | Security Configuration
principal_sponsor Namespace

List of configuration variables The principal_sponsor namespace stores configuration information to be
used when obtaining credentials. Artix provides an implementation of a
principal sponsor that creates credentials for applications automatically. The
principal sponsor automatically calls the authenticate() operation on the
PrincipalAuthenticator object after determining the data to supply.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
may be activated and authenticate the user, before any application specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

principal_sponsor:use_principal_sponsor

A boolean value that determines whether an attempt is made to obtain
Credentials automatically. Defaults to false. If set to true, the following
principal_sponsor variables must contain data in order for anything to
actually happen.

principal_sponsor:auth_method_id

A string that selects the authentication method to be used. The following
authentication methods are available:

pkcs12_file The authentication method uses a PKCS#12 file.

pkcs11 Java only. The authentication data is provided by a
smart card.

security_label Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate�s subject DN.
 170

principal_sponsor Namespace
For example, you can select the pkcs12_file authentication method as
follows:

principal_sponsor:auth_method_data

A string array containing information to be interpreted by the authentication
method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key�required.

password A password for the private key�optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password
is not supplied, the user is prompted for it.

password_file The name of a file containing the password for the
private key�optional.

This option is not recommended for deployed
systems.

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
171

CHAPTER A | Security Configuration
principal_sponsor:csi Namespace

List of configuration variables The principal_sponsor:csi namespace stores configuration information to
be used when obtaining credentials. Artix provides an implementation of a
principal sponsor that creates credentials for applications automatically. The
principal sponsor automatically calls the authenticate() operation on the
PrincipalAuthenticator object after determining the data to supply.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
may be activated and authenticate the user, before any application specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

principal_sponsor:csi:use_principal_sponsor

A boolean value that switches the CSI principal sponsor on or off. If true,
the CSI principal sponsor is enabled; if false, the CSI principal sponsor is
disabled and the remaining principal_sponsor:csi variables are ignored.
Defaults to false.

principal_sponsor:csi:auth_method_id

A string that selects the authentication method to be used by the CSI
application. The following authentication methods are available:

For example, you can select the GSSUPMech authentication method as
follows:

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

principal_sponsor:csi:auth_method_id = "GSSUPMech";
 172

principal_sponsor:csi Namespace
principal_sponsor:csi:auth_method_data

A string array containing information to be interpreted by the authentication
method represented by the auth_method_id.

For the GSSUPMech authentication method, the following authentication data
can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in
the US-SantaClara domain:

When the application is started, the user is prompted for the administrator
password.

username The username for CSIv2 authorization over
transport.

Note that authentication of CSIv2 usernames and
passwords is performed on the server side.

password The password associated with username.

It is not recommended to supply the password from
configuration for deployed systems.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

principal_sponsor:auth_method_data = ["username=administrator",
"domain=US-SantaClara"];

Note: It is currently not possible to customize the login prompt
associated with the CSIv2 principal sponsor. As an alternative, you
could implement your own login GUI by programming and pass the
user input directly to the principal authenticator.
173

CHAPTER A | Security Configuration
 174

APPENDIX B

iS2 Configuration
This appendix provides details of how to configure the
iS2 server.

In this appendix This appendix contains the following sections:

Properties File Syntax page 176

iS2 Properties File page 178

Cluster Properties File page 200

log4j Properties File page 202
175

CHAPTER B | iS2 Configuration
Properties File Syntax

Overview The iS2 server uses standard Java property files for its configuration. Some
aspects of the Java properties file syntax are summarized here for your
convenience.

Property definitions A property is defined with the following syntax:

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,
is2.current.server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

Specifying full pathnames When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

Specifying relative pathnames If you specify a relative pathname when setting a property, the root directory
for this path must be added to the iS2 server�s classpath. For example, if
you specify a relative pathname as follows:

UNIX
securityInfo.xml

The iS2 server�s classpath must include the file�s parent directory. For
example:

<PropertyName>=<PropertyValue>

D:\\iona\\securityInfo.xml
 176

Properties File Syntax
CLASSPATH = /home/data/:<rest_of_classpath>
177

CHAPTER B | iS2 Configuration
iS2 Properties File

Overview An iS2 properties file is used to store the properties that configure a specific
iS2 server instance. Generally, every iS2 server instance should have its own
iS2 properties file. This section provides descriptions of all the properties
that can be specified in an iS2 properties file.

File location The default location of the iS2 properties file is the following:

In general, the iS2 properties file location is specified in the Artix
configuration by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server�s property list is normally
initialized in the iona_services.security configuration scope as follows:

ArtixInstallDir/artix/1.3/bin/is2.properties

Artix configuration file
...
iona_services {
 ...
 security {
 ...
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ArtixInstallDir/artix/1.3/bin/is2.properties"];

 ...
 };
};
 178

iS2 Properties File
List of properties The following properties can be specified in the iS2 properties file:

com.iona.isp.adapters

Specifies the iS2 adapter type to be loaded by the iS2 server at runtime.
Choosing a particular adapter type is equivalent to choosing an iSF security
domain. Currently, you can specify one of the following adapter types:

� file

� LDAP

� SiteMinder

� krb5

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C:/is2_config/security_info.xml,
as follows:

com.iona.isp.adapters=LDAP

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

com.iona.isp.adapter.file.param.filename=C:/is2_config/security_info.xml
179

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the iS2 server, but
is now ignored.

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections
opened by this iS2 server instance.

Internally, the iS2 server uses a third-party toolkit (currently the iPlanet
SDK) to communicate with an LDAP server. The cache referred to here is
one that is maintained by the LDAP third-party toolkit. Data retrieved from
the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter

com.iona.isp.adapter.LDAP.param.CacheSize=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60
 180

iS2 Properties File
com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group�s name by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com.iona.isp.adapter.LDAP.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be
based on the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn

com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames
181

CHAPTER B | iS2 Configuration
� BASE�Search a single entry (the base object).

� ONE�Search all entries immediately below the base DN.

� SUB�Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.host.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10.81.1.100 as follows:

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the iS2 server (a
strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the iS2 server. The default is 1.

For example, to limit the iS2 server to open a maximum of 50 LDAP
connections at a time:

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the MemberDNAttr property to construct a query to find
out which groups a user belongs to.

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.LDAP.param.host.1=10.81.1.100

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50
 182

iS2 Properties File
The list of the user�s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the iS2 server. The
minimum connection pool size specifies the number of LDAP connections
that are opened during initialization of the iS2 server. The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.port.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter.LDAP.param.port.1=636
183

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo

Specifies whether or not the iS2 server retrieves authorization information
from the LDAP server. This property selects one of the following alternatives:

� yes�the iS2 server retrieves authorization information from the LDAP
server.

� no�the iS2 server retrieves authorization information from the iS2
authorization manager..

Default is no.

For example, to use the LDAP server�s authorization information:

com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the role name.
The default is CN.

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes
 184

iS2 Properties File
For example, you can specify the common name, CN, attribute type as
follows:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>

Specifies the client certificate file that is used to identify the iS2 server to the
<cluster_index> LDAP server replica. This property is needed only if the
LDAP server requires SSL/TLS mutual authentication. The certificate must
be in PKCS#12 format.

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>

Specifies the password for the client certificate that identifies the iS2 server
to the <cluster_index> LDAP server replica. This property is needed only if
the LDAP server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

com.iona.isp.adapter.LDAP.param.SSLCACertDir.1=d:/certs/test

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
185

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>

Enables SSL/TLS security for the connection between the iS2 server and the
<cluster_index> LDAP server replica. The possible values are yes or no.
The default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user�s groups should be treated as roles. The following
alternatives are available:

� yes�each group name is interpreted as a role name.

� no�for each of the user�s groups, retrieve all roles assigned to the
group.

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.SSLEnabled.1=yes

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com
 186

iS2 Properties File
com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user�s login ID. The default is uid.

For example:

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example:

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user�s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertificate

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn
187

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of the
following values:

� BASE�Search a single entry (the base object).

� ONE�Search all entries immediately below the base DN.

� SUB�Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the iS2 server uses to communicate
with LDAP servers. The possible values are 2 (for LDAP v2,
http://www.ietf.org/rfc/rfc1777.txt) or 3 (for LDAP v3,
http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

&(uid=$USER_NAME$)(objectclass=organizationalPerson)

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

com.iona.isp.adapter.LDAP.param.version=3
 188

http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc2251.txt

iS2 Properties File
com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the iS2 server, but
is now ignored.

com.iona.isp.adapter.krb5.class

Specifies the Java class that implents the Kerberos adapter.

For example, the default implementation of the Kerberos adapter provided
with Artix is selected as follows:

com.iona.isp.adapter.krb5.param.ConnectTimeout.1

Specifies the timeout interval for the connection to the Active Directory
Server.

com.iona.isp.adapter.krb5.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

com.iona.isp.adapter.kbr5.class=com.iona.security.is2adapter.kbr5.IS2KerberosAdapter

com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be
based on the LDAP schema configuration.
189

CHAPTER B | iS2 Configuration
For example, you can use the common name, CN, attribute type to store the
user group�s name by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfWriters object class:

com.iona.isp.adapter.krb5.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

� BASE�Search a single entry (the base object).

� ONE�Search all entries immediately below the base DN.

� SUB�Search all entries from a whole subtree of entries.

Default is SUB.

For example, to search just the entries imediately bellow the base DN you
would use the following:

com.iona.isp.adapter.krb5.param.host.1

Specifies the server name or IP address of the Active Directory Server used
to retrieve a user�s group information.

com.iona.isp.adapter.krb5.param.GroupNameAttr=cn

com.iona.isp.adapter.krb5.param.GroupObjectClass=groupOfWriters

com.iona.isp.adapter.krb5.param.GroupSearchScope=ONE
 190

iS2 Properties File
com.iona.isp.adapter.krb5.param.java.security.auth.login.config

Specifies the JAAS login module configuration file. For example, if your
JAAS login module configuration file is jaas.config, your iS2 configuration
would contain the following:

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc

Specifies the server name or IP address of the Kerberos KDC server.

com.iona.isp.adapter.krb5.param.java.security.krb5.realm

Specifies the Kerberos Realm name.

For example, to specify that the Kerberos Realm is is2.iona.com would
require an entry similar to:

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly

This is a JAAS login module property that must be set to false when using
Artix.

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Kerberos adapter
(a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Kerberos adapter. The default is 1.

For example, to limit the Kerberos adapter to open a maximum of 50 LDAP
connections at a time:

com.iona.isp.adapter.krb5.param.java.security.auth.login.config=jaas.conf

com.iona.isp.adapter.krb5.param.java.security.krb5.realm=is2.iona.com

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=50
191

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.krb5.params.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
Kerberos adapter uses the MemberDNAttr property to construct a query to
find out which groups a user belongs to.

The list of the user�s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Kerberos adapter.
The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Kerberos adapter.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.krb5.param.port.1

Specifies the port on which the Active Directory Server can be contacted.

com.iona.adapter.krb5.param.PrincipleUserDN.1

Specifies the username that is used to login to the Active Directory Server (in
distinguished name format). This property need only be set if the Active
Directory Server is configured to require username/password authentication.

com.iona.isp.adapter.krb5.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=10
 192

iS2 Properties File
com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1

Specifies the password that is used to login to the Active Directory Server.
This property need only be set if the Active Directory Server is configured to
require username/password authentication.

com.iona.isp.adapter.kbr5.param.RetrieveAuthInfo

Specifies if the user�s group information needs to be retrieved from the
Active Directory Server. Default is false.

To insrtuct the Kerberos adapter to retrieve the user�s group information, use
the following:

com.iona.isp.adapter.krb5.param.SSLCACertDir.1

Specifies the directory name for trusted CA certificates. All certificate files in
this directory are loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the Active Directory Server. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify that the Kerberos adapter uses the d:/certs/test
directory to store CA certificates:

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=true

com.iona.isp.adapter.kbr5.param.SSLCACertDir.1=d:/certs/test
193

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.krb5.param.SSLClientCertFile.1

Specifies the client certificate file that is used to identify the iS2 server to the
Active Directory Server. This property is needed only if the Active Directory
Server requires SSL/TLS mutual authentication. The certificate must be in
PKCS#12 format.

com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1

Specifies the password for the client certificate that identifies the iS2 server
to the Active Directory Server. This property is needed only if the Active
Directory Server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.krb5.param.SSLEnabled.1

Specifies if SSL is needed to connect with the Active Directory Server. The
default is no.

To use SSL when contacting the Active Directory Server use the following:

com.iona.isp.adapter.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
active directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.krb5.param.SSLEnabled.1=yes

com.iona.isp.adapter.krb5.param.UserBaseDN=dc=iona,dc=com
 194

iS2 Properties File
com.iona.isp.adapter.krb5.param.UserNameAttr

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user�s login ID. The default is uid.

For example:

com.iona.isp.adapter.krb5.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example to set the class to Person you would use the following:

com.iona.isp.adapter.krb5.param.version

Specifies the LDAP protocol version that the Kerberos adapter uses to
communicate with the Active Directory Server. The possible values are 2 (for
LDAP v2, http://www.ietf.org/rfc/rfc1777.txt) or 3 (for LDAP v3,
http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.SiteMinder.class

Specifies the Java class that implements the SiteMinder adapter.

For example, the default implementation of the SiteMinder adapter provided
with Artix is selected as follows:

com.iona.isp.adapter.krb5.param.UserNameAttr=uid

com.iona.isp.adapter.krb5.param.UserObjectClass=Person

com.iona.isp.adapter.krb5.param.version=3

com.iona.isp.adapter.SiteMinder.class=com.iona.security.is2adapter.smadapter.SiteMinderAgent
195

http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc2251.txt

CHAPTER B | iS2 Configuration
com.iona.isp.adapter.SiteMinder.param.AgentName

Specifies the SiteMinder agent�s name.

For example:

com.iona.isp.adapter.SiteMinder.param.AgentSecret

Specifies the SiteMinder agent�s password.

For example:

com.iona.isp.adapter.SiteMinder.param.ServerAddress

Specifies the IP hostname where the SiteMinder server is running.

For example:

com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort

Specifies the IP port where the SiteMinder server is listening.

For example:

com.iona.isp.adapter.SiteMinder.params

Obsolete. This property was needed by earlier versions of the iS2 server, but
is now ignored.

com.iona.isp.adapter.SiteMinder.param.AgentName=web

com.iona.isp.adapter.SiteMinder.param.AgentSecret=secret

com.iona.isp.adapter.SiteMinder.param.ServerAddress=localhost

com.iona.isp.adapter.SiteMinder.param.ServerAuthnPort=44442
 196

iS2 Properties File
is2.current.server.id

Specifies the current iS2 server�s ID (required for clustering). When a secure
application obtains a single sign-on (SSO) token from this iS2 server, the
server ID is embedded into the SSO token. Subsequently, if the SSO token is
passed to a second iS2 server instance, the second iS2 server recognizes
that the SSO token originates from the first iS2 server and delegates security
operations to the first iS2 server.

For example, to assign a server ID of 1 to the current iS2 server:

is2.cluster.properties.filename

Specifies the file that stores the configuration properties for clustering. For
example:

is2.sso.cache.size

Specifies the maximum cache size (number of user sessions) associated
with single sign-on (SSO) feature. The SSO caches user information,
including the user�s group and role information. If the maximum cache size
is reached, the oldest sessions are deleted from the session cache.

For example:

is2.sso.enabled

Enables the single sign-on (SSO) feature of the iS2 server. The possible
values are yes (enabled) and no (disabled). The default is yes.

For example:

is2.current.server.id=1

is2.cluster.properties.filename=C:/is2_config/cluster.properties

is2.sso.cache.size=1000

is2.sso.enabled=yes
197

CHAPTER B | iS2 Configuration
is2.sso.session.idle.timeout

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the iS2 server. A zero value implies no time-out.

If a user logs on to the IONA Security Framework (supplying username and
password) with SSO enabled, the iS2 server returns an SSO token for the
user. The next time the user needs to access a resource, there is no need to
log on again because the SSO token can be used instead. However, if no
secure operations are performed using the SSO token for the length of time
specified in the idle time-out, the SSO token expires and the user must log
on again.

Default is 0 (no time-out).

For example:

is2.sso.session.timeout

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the iS2 server. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

log4j.configuration

Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the iS2 server. See also
�log4j Properties File� on page 202.

For example:

is2.sso.session.idle.timeout=0

is2.sso.session.timeout=0
 198

iS2 Properties File
log4j.configuration=d:/temp/myconfig.txt
199

CHAPTER B | iS2 Configuration
Cluster Properties File

Overview The cluster properties file is used to store properties common to a group of
iS2 server instances that operate as a cluster. This section provides
descriptions of all the properties that can be specified in a cluster file.

File location The location of the cluster properties file is specified by the
is2.cluster.properties.filename property in the iS2 properties file. All of
the iS2 server instances in a specific cluster must share the same cluster
properties file.

List of properties The following properties can be specified in the cluster properties file:

com.iona.security.common.securityInstanceURL.<server_ID>

For the <server_ID> iS2 server instance, specifies the server�s URL.

When single sign-on (SSO) and clustering are both enabled, the iS2 server
instances use the specified instance URLs to communicate with each other.
By specifying the URL for a particular iS2 server instance, you are
instructing the instance to listen for messages at that URL. Because the iS2
server instances share the same cluster file, they can read each other�s
URLs and open connections to each other.

The connections between iS2 server instances can either be insecure (HTTP
cluster) or secure (HTTPS cluster). To enable SSL/TLS security, use the
https: prefix in each of the instance URLs.

For example, to configure two iS2 server instances to operate in a cluster
using insecure communications (HTTP):

com.iona.security.common.securityInstanceURL.1=http://localhost:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=http://localhost:8081/isp/AuthService
 200

Cluster Properties File
Alternatively, to configure two iS2 server instances to operate in a cluster
using secure communications (HTTPS):

In the secure case, you must also configure the certificate-related cluster
properties for each iS2 server instance.

com.iona.security.common.cACertDir.<server_ID>

For the <server_ID> iS2 server instance in a HTTPS cluster, specifies the
directory containing trusted CA certificates. The CA certificates can either be
in DER-encoded X.509 format or in PEM-encoded X.509 format.

For example, to specify d:/temp/cert as the CA certificate directory for the
primary iS2 server instance:

com.iona.security.common.clientCertFileName.<server_ID>

For the <server_ID> iS2 server instance in a HTTPS cluster, specifies the
client certificate file that identifies the iS2 server to its peers within a
cluster. The certificate must be in PKCS#12 format.

com.iona.security.common.clientCertPassword.<server_ID>

For the <server_ID> iS2 server instance in a HTTPS cluster, specifies the
password for the client certificate that identifies the iS2 server to its peers
within a cluster.

com.iona.security.common.securityInstanceURL.1=https://localhost:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=https://localhost:8081/isp/AuthService

com.iona.security.common.cACertDir.1=d:/temp/cert

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
201

CHAPTER B | iS2 Configuration
log4j Properties File

Overview The log4j properties file configures log4j logging for your iS2 server. This
section describes a minimal set of log4j properties that can be used to
configure basic logging.

log4j version The iS2 server is built with log4j version.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

File location The location of the log4j properties file is specified by the
log4j.configuration property in the iS2 properties file. For ease of
administration, different iS2 server instances can optionally share a
common log4j properties file.

List of properties To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender.<AppenderHandle>

This property specifies a log4j appender class that directs
<AppenderHandle> logging messages to a particular destination. For
example, one of the following standard log4j appender classes could be
specified:

� org.apache.log4j.ConsoleAppender

� org.apache.log4j.FileAppender

� org.apache.log4j.RollingFileAppender

� org.apache.log4j.DailyRollingFileAppender

� org.apache.log4j.AsynchAppender

� org.apache.log4j.WriterAppender
 202

http://jakarta.apache.org/log4j/docs/documentation.html

log4j Properties File
For example, to log messages to the console screen for the A1 appender
handle:

log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

� org.apache.log4j.PatternLayout

� org.apache.log4j.HTMLLayout

� org.apache.log4j.SimpleLayout

� org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

log4j.appender.<AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the
org.apache.log4j.PatternLayout class (when specified by the
log4j.appender.<AppenderHandle>.layout property) to define the
format of a log message.

For example, you can specify a basic conversion pattern for the A1 appender
as follows:

log4j.rootCategory

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

log4j.appender.A1=org.apache.log4j.ConsoleAppender

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

<LogLevel>, <AppenderHandle01>, <AppenderHandle02>, ...
203

CHAPTER B | iS2 Configuration
The logging level, <LogLevel>, can have one of the following values:

� DEBUG

� INFO

� WARN

� ERORR

� FATAL

An appender handle is an arbitrary identifier that associates a logger with a
particular logging destination.

For example, to select all messages at the DEBUG level and direct them to the
A1 appender, you can set the property as follows:

log4j.rootCategory=DEBUG, A1
 204

APPENDIX C

ASN.1 and
Distinguished
Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 206

Distinguished Names page 207
205

CHAPTER C | ASN.1 and Distinguished Names
ASN.1

Overview The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG�s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards�the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

BER The OSI�s Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

DER The OSI�s Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

References You can read more about ASN.1 in the following standards documents:

� ASN.1 is defined in X.208.

� BER is defined in X.209.
 206

Distinguished Names
Distinguished Names

Overview Historically, distinguished names (DN) were defined as the primary keys in
an X.500 directory structure. In the meantime, however, DNs have come to
be used in many other contexts as general purpose identifiers. In the IONA
Security Framework, DNs occur in the following contexts:

� X.509 certificates�for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

� LDAP�DNs are used to locate objects in an LDAP directory tree.

String representation of DN Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

DN string example The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string A DN string is built up from the following basic elements:

� OID.

� Attribute types.

� AVA.

� RDN.

OID An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.
207

CHAPTER C | ASN.1 and Distinguished Names
Attribute types The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 6 shows a selection of the attribute types that you are most likely to
encounter:

AVA An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table 6). For example:

2.5.4.3=A. N. Other

Table 6: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid
 208

Distinguished Names
RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering
209

CHAPTER C | ASN.1 and Distinguished Names
 210

APPENDIX D

Action-Role
Mapping DTD
This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

DTD file The action-role mapping DTD is shown in Example 28.

Example 28:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT action-role (action-name, role-name+)>
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,

action-role-mapping+)>
211

CHAPTER D | Action-Role Mapping DTD
Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:

<!ELEMENT action-name (#PCDATA)>

Specifies the action name to which permissions are assigned. In Artix,
the action name is equivalent to a WSDL operation name. That is, the
OperationName from a tag <operation name="OperationName">.

You can also use the wildcard, *, to match all action names (WSDL
operation names) in an interface (WSDL port type). Use the wildcard to
assign roles to all actions in an interface.

<!ELEMENT action-role (action-name, role-name+)>

Groups together a particular action and all of the roles permitted to
perform that action.

<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular server
application.

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>

Specifies the default access permissions that apply to interfaces
(WSDL port types) not explicitly listed in the action-role mapping file.
The element contents can have the following values:

♦ true�for any interfaces not listed, access to all of the interfaces�
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

♦ false�for any interfaces not listed, access to all of the interfaces�
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is false.

<!ELEMENT interface (name, action-role+)>

In the case of an Artix server, the <interface> element contains all of
the access permissions for one particular WSDL port type.

Note: However, if <allow-unlisted-interfaces> is true and a
particular interface is listed, then only the actions explicitly listed
within that interface�s <interface> element are accessible. Unlisted
actions from the listed interface are not accessible.
 212

<!ELEMENT name (#PCDATA)>

Within the scope of an <interface> element, identifies the interface
(WSDL port type) with which permissions are being associated. In
Artix, the interface name is a WSDL port type name specified in the
format NamespaceURI:PortTypeName. That is, the PortTypeName
comes from a tag, <portType name="PortTypeName">, defined in the
NamespaceURI namespace. The NamespaceURI is usually defined in
the <definitions targetNamespace="NamespaceURI" ...> tag of
the WSDL contract.

<!ELEMENT role-name (#PCDATA)>

Specifies a role to which permission is granted. The role name can be
any role that belongs to the server�s iSF authorization realm (for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable in the
server�s configuration scope) or to the IONAGlobalRealm realm. The
roles themselves are defined in the iS2 server backend; for example, in
a file adapter file or in an LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups together a
collection of <action-role-mapping> elements.

<!ELEMENT server-name (#PCDATA)>

The <server-name> element specifies the configuration scope (that is,
the ORB name) used by the server in question. This is normally the
value of the -ORBname parameter passed to the server executable on
the command line.
213

CHAPTER D | Action-Role Mapping DTD
 214

APPENDIX E

OpenSSL Utilities
The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Orbix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:

Using OpenSSL Utilities page 216

The OpenSSL Configuration File page 225
215

CHAPTER E | OpenSSL Utilities
Using OpenSSL Utilities

The OpenSSL package Orbix ships a version of the OpenSSL program that is available with Eric
Young�s openssl package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult �License Issues� on page 193 for information
about the copyright terms of OpenSSL.

Command syntax An openssl command line takes the following form:

openssl utility arguments

For example:

openssl x509 -in OrbixCA -text

The openssl utilities This appendix describes four openssl utilities:

The -help option To get a list of the arguments associated with a particular command, use
the -help option as follows:

openssl utility -help

For example:

openssl x509 -help

Examples A number of examples using openssl commands are described in
�Managing Certificates� on page 63.

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http://www.openssl.org/docs.

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.

ca Implements a Certification Authority (CA).
 216

Using OpenSSL Utilities
The x509 Utility

Purpose of the x509 utility In Orbix the x509 utility is mainly used for:

� Printing text details of certificates you wish to examine.

� Converting certificates to different formats.

Options The options supported by the openssl x509 utility are as follows:

-inform arg - input format - default PEM

(one of DER, NET or PEM)

-outform arg - output format - default PEM

(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate

- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object
217

CHAPTER E | OpenSSL Utilities
Using the x509 utility To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert.der

-req - input is a certificate request, sign and

output

-CA arg - set the CA certificate, must be PEM format

-CAkey arg - set the CA key, must be PEM format. If missing

it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/

-mdc2

- digest to do an RSA sign with
 218

Using OpenSSL Utilities
The req Utility

Purpose of the x509 utility The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted
for a pass phrase which will be used to protect the private key.

Options The options supported by the openssl req utility are as follows:

Note: It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken from

CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2, mdc2)
219

CHAPTER E | OpenSSL Utilities
Using the req Utility To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA_cert.pem and
the corresponding encrypted private key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem and the
corresponding encrypted private key file MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-config file request template file

-new new request

-x509 output an x509 structure instead of a

certificate req. (Used for creating self signed

certificates)

-days number of days an x509 generated by -x509 is

valid for

-asn1-kludge Output the ‘request’ in a format that is wrong

but some CA’s have been reported as requiring

[It is now always turned on but can be turned

off with -no-asn1-kludge]
 220

Using OpenSSL Utilities
The rsa Utility

Purpose of the rsa utility The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The rsa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

Options The options supported by the openssl rsa utility are as follows:

Using the rsa Utility Converting a private key to PEM format from DER format involves using the
rsa utility as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using

168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus
221

CHAPTER E | OpenSSL Utilities
openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey2.pem

Note: Do not specify the same file for the -in and -out parameters,
because this can corrupt the file.
 222

Using OpenSSL Utilities
The ca Utility

Purpose of the ca utility You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates. Before implementing CAs, refer to �Managing
Certificates� on page 63 for more information.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca -policy and -name options, refer to �The OpenSSL Configuration
File� on page 225.

Creating a new CA To create a new CA using the openssl ca utility, two files (serial and
index.txt) need to be created in the location specified by the openssl
configuration file that you are using. See also �Set Up Your Own CA� on
page 74.

Options The options supported by the openssl ca utility are as follows:

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is

encrypted

-cert - The CA certificate

-in file - The input PEM encoded certificate request(s)
223

CHAPTER E | OpenSSL Utilities
Note: Most of the above parameters have default values as defined in
openssl.cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
MyReq.pem to be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key and

challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos
universal strings
 224

The OpenSSL Configuration File
The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the openssl configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl.cnf The openssl.cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:

[req] Variables page 226

[ca] Variables page 227

[policy] Variables page 228

Example openssl.cnf File page 229
225

CHAPTER E | OpenSSL Utilities
[req] Variables

Overview of the variables The req section contains the following variables:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

default_bits configuration
variable

The default_bits variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

default_keyfile configuration
variable

The default_keyfile variable is the default name for the private key file
created by req.

distinguished_name
configuration variable

The distinguished_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attributes variable specifies the section in the configuration
file that defines defaults for certificate request attributes.
 226

The OpenSSL Configuration File
[ca] Variables

Choosing the CA section You can configure the file openssl.cnf to support a number of CAs that
have different policies for signing CSRs. The -name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not supplied to
the ca command, the CA section used is the one indicated by the
default_ca variable. In the �Example openssl.cnf File� on page 229, this is
set to CA_default (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Overview of the variables Possible [ca] variables include the following

dir: The location for the CA database
The database is a simple text database containing the

following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept
227

CHAPTER E | OpenSSL Utilities
[policy] Variables

Choosing the policy section The policy variable specifies the default policy section to be used if the
-policy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the �Example openssl.cnf File� on
page 229: policy_match and policy_anything.

Example policy section The policy_match section of the example openssl.cnf file specifies the
order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

The match policy value Consider the following value:

countryName = match

This means that the country name must match the CA certificate.

The optional policy value Consider the following value:

organisationalUnitName = optional

This means that the organisationalUnitName does not have to be present.

The supplied policy value Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate request.
 228

The OpenSSL Configuration File
Example openssl.cnf File

Listing The following listing shows the contents of an example openssl.cnf
configuration file:

##
openssl example configuration file.
This is mostly used for generation of certificate requests.
###
[ca]
default_ca= CA_default # The default ca section
###

[CA_default]

dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should

conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
229

CHAPTER E | OpenSSL Utilities
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name
 230

APPENDIX F

License Issues
This appendix contains the text of licenses relevant to Artix.

In this appendix This appendix contains the following section:

OpenSSL License page 232
231

CHAPTER F | License Issues
OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Artix SSL/TLS is as follows:

LICENSE ISSUES
==============
 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
 232

OpenSSL License
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
233

CHAPTER F | License Issues
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
 234

Index

Symbols
.NET

and principal propagation 139
<action-role-mapping> tag 61
<interface> tag 61
<name> tag 61
<realm> tag 53
<role> tag 53
<server-name> tag 61
<users> tag 53

A
ACL

<action-role-mapping> tag 61
<interface> tag 61
<name> tag 61
<server-name> tag 61
action_role_mapping configuration variable 59
action-role mapping file 59
action-role mapping file, example 60

action-role mapping
and role-based access control 47

action_role_mapping configuration variable 59
action-role mapping file

<action-role-mapping> tag 61
<interface> tag 61
<name> tag 61
<server-name> tag 61
CORBA

configuring 59
example 60

administration
OpenSSL command-line utilities 73

AgentSecret property 35
ASN.1 65
asp plug-in

default_password configuration value 134
security_type configuration variable 134

association options
and cipher suite constraints 126
client secure invocation policy, default 116
compatibility with cipher suites 127
SSL/TLS
Confidentiality 114
DetectMisordering 114
DetectReplay 114
EstablishTrustInClient 115
EstablishTrustInTarget 115
Integrity 114
NoProtection 114
setting 112

target secure invocation policy, default 118
authentication

own certificate, specifying 98
pass phrase

dialog prompt, C++ 102
in configuration 103
password file, from 102

SSL/TLS
mutual 94
target only 91
trusted CA list 97

authorization
role-based access control 47
roles

creating 49
special 51

authorization realm
adding a server 48
IONAGlobalRealm realm 51
iSF 47
roles in 49
servers in 48
special 51

authorization realms
creating 49

B
bus:security 151

C
CA 64

choosing a host 68
commercial CAs 67
index file 75
235

INDEX
list of trusted 70
multiple CAs 70
private CAs 68
private key, creating 76
security precautions 68
See Alsocertificate authority
self-signed 76
serial file 75
trusted list 82, 97

227
CA, setting up 74
CACHE_CLIENT session caching value 129
CACHE_NONE session caching value 129
CACHE_SERVER_AND_CLIENT session caching

value 129
CACHE_SERVER session caching value 129
caching

CACHE_CLIENT session caching value 129
CACHE_NONE session caching value 129
CACHE_SERVER_AND_CLIENT session caching

value 129
CACHE_SERVER session caching value 129
SSL/TLS

cache size 129
validity period 129

Caching sessions 129
CAs 74
ca utility 223
certificate authority

and certificate signing 64
certificate_constraints_policy variable 106
Certificates

chain length 105
constraints 106

certificates
chaining 69
constraint language 106
contents of 65
creating and signing 77
deployment, 81
importing and exporting 72
length limit 70
own, specifying 98
pass phrase 102
peer 69
PKCS#12 file 71
public key 65
public key encryption 121
security handshake 91, 95
 236
self-signed 69, 76
serial number 65
signing 64, 78
signing request 77
trusted CA list 82, 97
X.509 64

certificate signing request 77
common name 78
signing 78

chaining of certificates 69
ciper suites

order of 125
cipher suites

ciphersuites configuration variable 124
compatibility algorithm 127
compatibility with association options 127
default list 125
definitions 122
effective 126
encryption algorithm 121
exportable 122
integrity-only ciphers 121
key exchange algorithm 121
mechanism policy 124
secure hash algorithm 121
secure hash algorithms 122
security algorithms 121
specifying 120
standard ciphers 121

ciphersuites configuration variable 124
client secure invocation policy 126

IIOP/TLS 116
ClientSecureInvocationPolicy policy 113
colocated invocations

and secure associations 110
colocation

incompatibility with principal propagation 132
common names

uniqueness 78
Confidentiality association option 114
Confidentiality option 114
Configuration file 225
constraint language 106
Constraints

for certificates 106
CORBA

action-role mapping file 59
action-role mapping file, example 60
configuring principal propagation 133

INDEX
principal propagation 132
CSR 77

D
data encryption standard

see DES
default_password configuration value 134
DES

symmetric encryption 122
DetectMisordering association option 114
DetectMisordering option 114
DetectReplay association option 114
DetectReplay option 114

E
effective cipher suites

definition 126
enable_principal_service_context configuration

variable 133
encryption algorithm

RC4 122
encryption algorithms 121

DES 122
symmetric 122
triple DES 122

enterprise security service
and iSF security domains 45

EstablishTrustInClient association option 115
EstablishTrustInClient option 115
EstablishTrustInTarget association option 115
EstablishTrustInTarget option 115
exportable cipher suites 122

F
file adapter 26

properties 26
file domain

<realm> tag 53
<users> tag 53
example 52
file location 52
managing 52

G
GroupBaseDN property 30
GroupNameAttr property 30
GroupObjectClass property 30
GroupSearchScope property 31

H
HTTPS

ciphersuites configuration variable 124

I
IIOP/TLS

ciphersuites configuration variable 124
index file 75
Integrity association option 114
integrity-only ciphers 121
Integrity option 114
interoperability

explicit principal header 140
OS/390, SSL/TLS 124
with .NET 139
with Orbix applications 132

IONAGlobalRealm realm 51
is2.properties file 26
iS2 adapters

enterprise security service 45
file domain

managing 52
LDAP domain

managing 54
SiteMinder domain

managing 55
iS2 server

configuring 25
file adapter 26
is2.properties file 26
LDAP adapter 28
LDAP adapter, properties 29
log4j logging 40
security infomation file 26
SiteMinder adapter, configuring 34

iSF
security domain

creating 46
user account

creating 46

K
kdc property 37
Kerberos 36
Kerberos adapter

Kerberos KDC server 37
237

INDEX
properties 36
Kerberos property

RetrieveAuthInfo 38
Kerberos Realm Name property 37
Kerberos token

setting 149
key exchange algorithms 121

L
LDAP adapter 28

basic properties 31
GroupBaseDN property 30
GroupNameAttr property 30
GroupObjectClass property 30, 31
LDAP server replicas 32
MemberDNAttr property 31
PrincipalUserDN property 33
PrincipalUserPassword property 33
properties 29
replica index 32
RoleNameAttr property 30
SSLCACertDir property 33
SSLClientCertFile property 33
SSLClientCertPassword property 33
SSLEnabled property 33
UserBaseDN property 30
UserNameAttr property 30
UserObjectClass property 30
UserRoleDNAttr property 30

LDAP domain
managing 54

Lightweight Directory Access Protocol
see LDAP

log4j 40
documentation 40
properties file 40

logging
log4j 40

M
max_chain_length_policy configuration variable 105
MD5 114, 122
MechanismPolicy 114
mechanism policy 124
MemberDNAttr property 31
message attributes

and routing 134
message digest 5
 238
see MD5
message digests 114
message fragments 114
multiple CAs 70
mutual authentication 94

N
NoProtection association option 114
NoProtection option 114
NoSuchAttributeException exception 138

O
OpenSSL 68, 215
openSSL

configuration file 225
utilities 216

openSSL.cnf example file 229
OpenSSL command-line utilities 73
OS/390

interoperability with 124

P
pass phrase 102

dialog prompt, C++ 102
in configuration 103
password file, from 102

peer certificate 69
PKCS#12 files

creating 72, 77
definition 71
importing and exporting 72
pass phrase 102
viewing 72

plugins:asp:security_level 158
POA_Coloc interceptor 132
policies

client secure invocation 126
ClientSecureInvocationPolicy 113
IIOP/TLS

client secure invocation 116
target secure invocation 118

target secure invocation 126
TargetSecureInvocationPolicy 113

228
principals

and colocation 132
configuring propagation 133
explicit principal header 140

INDEX
from O/S username 133
interoperability 132
interoperating with .NET 139
NoSuchAttributeException exception 138
overview 132
reading on the server side 137
routing configuration 134
setting on the client side 136

principal_sponsor
auth_method_data 171, 173
use_principal_sponsor 170, 172

principal_sponsor Namespace Variables 170, 172
PrincipalUserDN property 33
PrincipalUserPassword property 33
private key 76
propagateInputAttribute WSDL tag 134
protocol version

interoperability with OS/390 124
protocol_version configuration variable 124
public key encryption 121
public keys 65

R
RC4 encryption 122
realm

see authorization realm
realm property 37
Replay detection 114
226

req utility 219
req Utility command 219
Rivest Shamir Adleman

see RSA
role-based access control 47

example 50
RoleNameAttr property 30
roles

creating 49
special 51

root certificate directory 70
routing

and principal propagation 134
RSA 121

symmetric encryption algorithm 122
RSA_EXPORT_WITH_DES40_CBC_SHA cipher

suite 121, 127
RSA_EXPORT_WITH_RC4_40_MD5 cipher

suite 121, 127
rsa utility 221
rsa Utility command 221
RSA_WITH_3DES_EDE_CBC_SHA cipher

suite 121, 127
RSA_WITH_DES_CBC_SHA cipher suite 121, 127
RSA_WITH_NULL_MD5 cipher suite 121, 127
RSA_WITH_NULL_SHA cipher suite 121, 127
RSA_WITH_RC4_128_MD5 cipher suite 121, 127
RSA_WITH_RC4_128_SHA cipher suite 121, 127

S
secure associations

client behavior 116
definition 110
TLS_Coloc interceptor 110

secure hash algorithms 121, 122
security algorithms

and cipher suites 121
security domain

creating 46
security domains

architecture 45
iSF 46

security handshake
cipher suites 120
SSL/TLS 91, 95

security infomation file 26
security_type configuration variable 134
self-signed CA 76
self-signed certificate 69
send_principal configuration variable 133
serial file 75
serial number 65
ServerAddress property 35
ServerAuthnPort property 35
session_cache_size configuration variable 129
session_cache_validity_period configuration

variable 129
session_caching_policy configuraion variable 129
session_caching_policy variable 129
SHA 122
SHA1 114
signing certificates 64
SiteMinder adapter

AgentSecret property 35
configuring 34
properties 34
ServerAddress property 35
ServerAuthnPort property 35

SiteMinder domain
239

INDEX
managing 55
SOAP

principal propagation 132
SOAP binding

configuring principal propagation 133
Specifying ciphersuites 120
SSL/TLS

association options
setting 112

caching validity period 129
cipher suites 120
colocated invocations 110
encryption algorithm 121
key exchange algorithm 121
mechanism policy 124
protocol_version configuration variable 124
secure associations 110
secure hash algorithm 121
secure hash algorithms 122
security handshake 91, 95
session cache size 129
TLS session 110

SSLCACertDir property 33
SSLClientCertFile property 33
SSLClientCertPassword property 33
SSLeay 68
SSLEnabled property 33
standard ciphers 121
symmetric encryption algorithms 122

T
Target

choosing behavior 118
target authentication 91
target secure invocation policy 126

IIOP/TLS 118
TargetSecureInvocationPolicy policy 113
TLS

session caching 129
TLS_Coloc interceptor 110
TLS session

definition 110
triple DES 122
trusted CA list 82
trusted CA list policy 97
trusted CAs 70
 240
U
use_message_attributes() function 136, 137
user account

creating 46
UserBaseDN property 30
UserNameAttr property 30
UserObjectClass property 30
UserRoleDNAttr property 30
UserSearchScope property

LDAP adapter
UserObjectClass property 30

V
Variables 226, 227, 228

W
WSSEKerberosv5SToken property 149
WSSEPasswordToken property 146
WSSEUsernameToken property 146

X
X.509

public key encryption 121
X.509 certificate

definition 64
X.509 certificates 63
x509 utility 217

INDEX
241

INDEX
 242

INDEX
243

INDEX
 244

	List of Tables
	List of Figures
	Preface
	Introduction to Security
	Security for SOAP Bindings
	Secure Hello World Example
	HTTPS Connection
	IIOP/TLS Connection
	Security Layer

	Configuring the iS2 Server
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the SiteMinder Adapter
	Configuring the Kerberos Adapter
	Additional iS2 Configuration
	Configuring the Log4J Logging

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	iSF Security Domains
	iSF Authorization Realms

	Managing a File Security Domain
	Managing an LDAP Security Domain
	Managing a SiteMinder Security Domain

	Managing Access�Control Lists
	Overview of Artix ACL Files
	Artix Action-Role Mapping ACL

	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Deploying Trusted Certificate Authority Certificates
	Deploying Application Certificates

	Configuring HTTPS and IIOP/TLS Authentication
	Requiring Authentication
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Certificate Pass Phrase
	Certificate Pass Phrase for HTTPS
	Certificate Pass Phrase for IIOP/TLS

	Advanced IIOP/TLS Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	Configuring IIOP/TLS Secure Associations
	Overview of Secure Associations
	Setting IIOP/TLS Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior

	Specifying IIOP/TLS Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching IIOP/TLS Sessions

	Principal Propagation
	Introduction to Principal Propagation
	Configuring
	Programming
	Interoperating with .NET
	Explicitly Declaring the Principal Header
	Modifying the SOAP Header

	Propagating Security Tokens Using SOAP Message Headers
	Propagating a Username/Password Token
	Propagating a Kerberos Token

	Setting Security Properties in Artix Contracts
	Security Configuration
	plugins Namespace
	policies Namespace
	principal_sponsor Namespace
	principal_sponsor:csi Namespace

	iS2 Configuration
	Properties File Syntax
	iS2 Properties File
	Cluster Properties File
	log4j Properties File

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Action-Role Mapping DTD
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	License Issues
	OpenSSL License

	Index

