
Developing Artix Applications
in Java

Version 1.3, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 12-Dec-2003

M 3 1 8 3

Contents

Preface v

Chapter 1 Developing Artix Enabled Clients and Servers 1
Generating Stub and Skeleton Code 2
Java Package Names 4
Developing a Server 5
Developing a Client 9
Building an Artix Application 12

Index 13
iii

CONTENTS
 iv

Preface
Audience This guide is intended for Artix Java programmers. In addition to a

knowledge of Java, this guide assumes that the reader is familiar with
WSDL and XML schemas.

Online help Artix Designer includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A description of each screen.

� A comprehensive index and glossary.

� A full search feature.

� Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Related documentation The library for Artix includes the following:

� Getting Started with Artix

� Artix Tutorial

� Deploying & Managing Artix Solutions

� Designing Artix Solutions

� Artix C++ Programmer�s Guide

� Developing Artix Applications with Java

� Artix Security Guide

� Artix Thread Library Reference

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.
v

http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE
Reading path If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix

The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Artix Tutorial

The tutorial guides you through programming Artix applications against
all of the supported transports.

3. Deploying & Managing Artix Solutions

This guide provides details about the services and capabilities of Artix
and how to deploy them into your software environment.

Help resources If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about the Orbix and other products. You can access the knowledge
base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Typographical conventions This guide uses the following typographical conventions:
 vi

http://www.iona.com/support/kb/
http://www.iona.com/support/update/
mailto:support@iona.com
mailto:doc-feedback@iona.com

PREFACE
Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
vii

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.
 viii

CHAPTER 1

Developing Artix
Enabled Clients
and Servers
Artix generates stub and skeleton code that provides a
developer with a simple model to develop transport
independent applications.

In this chapter This chapter discusses the following topics:

Generating Stub and Skeleton Code page 2

Java Package Names page 4

Developing a Server page 5

Developing a Client page 9

Building an Artix Application page 12
1

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code

Overview The Artix development tools include a utility to generate server skeleton and
client stub code from an Artix contract. The generated code is similar to
code generated by a CORBA IDL compiler. There are two major differences
between CORBA generated code and Artix generated code:

� Artix generated code is not restricted to using IIOP and therefore
contains generic code that is compatible with a multitude of transports.

� Artix maps WSDL types to Java using the mapping described in the
JAX-RPC specification. The resulting types are very different from those
generated by an IDL-to-Java compiler.

Generated files The Artix code generator produces a number of files from the Artix contract.
They are named according to the port name from which the code was
generated. The files include:

PortName.java defines the Java interface that the client and server
implement.

PortNameImpl.java defines the class used to implement the server.

PortNameServer.java is a simple main class for the server.

In addition to these files, the code generator also creates a class for each
schema type or complex/simple type defined in the contract. These files are
named according to the type name they are given in the contract and
contain the helper functions needed to use the data types. The naming
convention for the nelper type functions conforms to the JAX-RPC
specification.

Generating code from the
command line

You can generate code at the command line using the command:

wsdltojava [-e service] [-t port] [-b binding] [-d output_dir]
[-p package] [-impl] [-server] [-types] [-interface]
[-sample] [-client] [-v] [-?] artix-contract
 2

Generating Stub and Skeleton Code
You must specify the location of a valid Artix contract for the code generator
to work. The default behavior of wsdltojava is to generate all of the needed
java code. You can also supply the following optional parameters to control
the portions of the code generated:

-e service Specifies the name of the service for which the tool will
generate code. The default is to use the first service listed
in the contract.

-t port Specifies the name of the port for which code is
generated. The default is to used the first port listed in
the service.

-b binding Specifies the name of the binding to use when generating
code. The default is the first binding listed in the
contract.

-d output_dir Specifies the directory to which the generated code is
written. The default is the current working directory.

-p package Specifies the name of the Java package to use for the
generated code.

-impl Generates the skeleton class for implementing the server
defined by the contract.

-server Generates a simple main class for the server.

-types Generates the code to implement the complex types
defined by the contract.

-interface Generates the Java interface for the service.

-sample Generates a sample client that can be used to test your
Java server.

-client Generates only the Java interface and code needed to
implement the complex types defined by the contract.
This flag is equivalent to specifying -interface -types.

-v Displays the version of the tool.

-? Displays help on using the command line tool.
3

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Java Package Names

Artix packages The Artix Bus object which provides the transport and payload format
independence in Artix is defined in the com.iona.jbus package. You will
need to import this package and all of its subpackages for all Artix Java
applications.

Java packages Artix applications require a number of standard Java packages. These
include:

javax.xml.namespace.QName provides the functionality to work with the
XML QNames used to specifies services.

javax.xml.rpc.*. provides the APIs used to implement Artix Java clients.
This package is not needed by server code.

java.io.* provides system input and output through data streams,
serialization and the file system.

java.net.* provides the classes need to for communicating over a network.
These classes are key to Artix applications that act as Web services.
 4

Developing a Server
Developing a Server

Overview The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing a server
that uses Artix. This skeleton code hides the transport details from the
application developer, allowing them to focus on business logic.

Generating the server
implementation class

The Artix code generator utility, wsdltojava, will generate an
implementation class for your server when passed the -impl command flag.

Generated code The implementation class code consists of two files:

PortName.java contains the interfaces that the server implements.

PortNameImpl.java contains the class definition for the server�s
implementation class. It also contains empty shells for the methods that
implement the operations defined in the contract.

Completing the server
implementation

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in
PortNameImpl.java. A generated impl class for a contract defining a service
with two operations, sayHi and greetMe, would resemble Example 1. Only
the code portions highlighted in bold (in the bodies of the greetMe() and
sayHi() methods) must be inserted by the programmer. Writing the server

Note: If your contract specifies any derived types or complex types you
will also need to generate the code for supporting those types by specifying
the -types flag.

Example 1: Implementation of the HelloWorld PortType in the Server

// Java
import java.net.*;
import java.rmi.*;
5

CHAPTER 1 | Developing Artix Enabled Clients and Servers
main()

The server main() of an Artix Java server must do three things before it can
service requests:

1. Initialize the Artix bus.

2. Register a factory for the server implementation with the Artix bus.

3. Start the Artix bus.

You can use wsdltojava to generate a server main() with the code to
perform these steps by using the -server flag. The main() shown in
Example 4 on page 8 was generated using wsdltojava.

Initializing the bus

The Artix bus is initialized using com.iona.jbus.Bus.init(). The method
has the following signature:

public class HelloWorldImpl {

 /**
 * greetMe
 *
 * @param: stringParam0 (String)
 * @return: String
 */
 public String greetMe(String stringParam0) {
 System.out.println("HelloWorldSkel::greetMe called with

message: "+stringParam0);
 return "Hello Artix User: "+stringParam0;
 }

 /**
 * sayHi
 *
 * @return: String
 */
 public String sayHi() {
 System.out.println("HelloWorldSkel::sayHi called");
 return "Greetings from the Artix HelloWorld Server";
 }

Example 1: Implementation of the HelloWorld PortType in the Server

static Bus init(String args[]);
 6

Developing a Server
This will create a bus instance to host your services, load the Artix
configuration information for your application, and load the required
plug-ins.

Registering a factory for the server implementation

Before the bus can begin processing requests made on your server, you
must register a factory for the object that implements the server�s business
logic with the bus. Registering a factory for the implementation object with
the bus allows the bus to create instances of the implementation object to
service requests.

To register a factory for your implementation object you create a
com.iona.jbus.ServerFactoryBase using the path of the WSDL file
describing the service interface and an instance of your implementation
object. Example 2 shows the code to create a server factory for the
HelloWorld service.

After creating the server factory, you register it with the bus using the bus�
registerServerFactory() method. The signature for
registerServerFactory() is shown in Example 3.

In addition to the server factory, registerServerFactory() takes the
service�s QName as specified in the contract defining the service and the
name of the WSDL port the service is instantiating.

Example 2: Creating a ServerFactoryBase

//Java
ServerFactoryBase factory =
 new SingleInstanceFactory("./HelloWorld.wsdl",
 new HelloWorldImpl());

Example 3: registerServerFactory()

void registerServerFactory(QName serviceName,
 ServerFactoryBase factory,
 String portName)
throws BusException
7

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Starting the bus

After the bus is initialized and the server implementation is registered with
it, the bus is ready to listen for requests and pass them to the server for
processing. To start the bus, you use the bus� run() method. Once the bus
is started, it retains control of the process until it is shut down. The server�s
main() will be blocked until run() returns.

Completed server main() Example 4 on page 8 shows how the main() for a Java Artix server might
look.

Example 4: Server main()

// Java
import com.iona.jbus.*;
import javax.xml.namespace.QName;

public class Server
{
 public static void main(String args[])
 throws Exception
 {
 // Initialize the Artix bus
 Bus bus = Bus.init(args);

 // Register the implementation object factory
 QName name = new QName("http://xmlbus.com/HelloWorld",
 "HelloWorldService");
 ServerFactoryBase factory =
 new SingleInstanceFactory("./HelloWorld.wsdl",
 new HelloWorldImpl());
 bus.registerServerFactory(name, factory, "HelloWorldPort");

 // Start the Bus
 bus.run();
 }
}

 8

Developing a Client
Developing a Client

Overview Artix Java clients are implemented using dynamic proxies as described in
the JAX-RPC 1.1 specification. The interface used to create the proxy class
is defined in the generated file PortName.java. The only Artix specific code
that Artix Java clients need to use is to initialize and shutdown the Artix bus.

Initializing the bus Client applications initialize the bus in the same manner as server
applications, by calling the bus� init() method. Client applications,
however, do not need to make a call to the bus� run() method.

Instantiating the client proxy Artix Java clients use dynamic proxies, as described in the JAX-RPC
specification, to make requests on servers. Dynamic proxies are created
using the interface generated from your contract and the
javax.xml.rpc.Service interface. You need the QName of the service for
which you are creating the proxy, the QName of the endpoint with which the
proxy will contact the service, and the URL of the contract defining the
service. Once you have these three pieces of information, creating a
dynamic proxy requires three steps:

1. Obtain an instance of javax.xml.rpc.ServiceFactory to create the
service.

2. Use the ServiceFactory to create a Service instance for the service to
which the proxy will connect.

3. Use the Service to instantiate the dynamic proxy.

Obtaining a ServiceFactory instance

To obtain an instance of the ServiceFactory you call
ServiceFactory.newInstance(). This returns the ServiceFactory. Only
one is created per application and the same ServiceFactory is returned for
each successive call.

Creating a Service instance

A Service instance is created from the ServiceFactory using
createService(). createService() takes two arguments:

� the URL of the contract defining the service.
9

CHAPTER 1 | Developing Artix Enabled Clients and Servers
� the service�s QName.

Creating the dynamic proxy

The dynamic proxy is created from the Service using getPort(). getPort()
takes two arguments:

� the QName of the endpoint with which the proxy contacts the service.

� the name of the generated Java interface in PortName.java with
.class appended. For example, if the generated interface�s name is
HelloWorld, this argument would be HelloWorld.class.

getPort() returns an instance of java.rmi.Remote that must be cast to the
generated interface.

Shutting the bus down Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to the bus� run() method and can simply call
shutdown() on the bus before the main thread exits. It is advisable to pass
true to shutdown() to ensure that the bus is fully shutdown before exiting.

Full client code An Artix Java client developed to access the service HelloWorldService will
look similar to Example 5.

Example 5: Client Code

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

public class HelloWorldClient
{

 public static void main (String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);

2 QName name = new QName("http://xmlbus.com/HelloWorld",
 "HelloWorldService");
 10

Developing a Client
The code does the following:

1. The com.iona.jbus.Bus.init() function initializes the bus.

2. Creates the service�s QName.

3. Creates the QName of the endpoint with which the proxy will contact the
service.

4. Creates the URL of the contract defining the service.

5. The newInstance() function returns the ServiceFactory.

6. The createService() function instantiates the Service from which the
dynamic proxy is created.

7. The getPort() function returns a dynamic proxy to the HelloWorld
service. getPort() returns an instance of java.rmi.Remote that must
be cast to the interface defining the service.

8. Make a call on the proxy to request service.

9. Shutdown the bus.

3 QName portName = new QName("","HelloWorldPort");

4 String wsdlPath =
"file:/C:/IONA/artix/1.3/demos/java/hello_world/http_soap/Hel
loWorld.wsdl";

 URL wsdlLocation = new File(wsdlPath).toURL();

5 ServiceFactory factory = ServiceFactory.newInstance();

6 Service service = factory.createService(wsdlLocation, name);

7 HelloWorld impl = (HelloWorld)service.getPort(portName,
 HelloWorld.class);

8 String string_out;

 string_out = impl.sayHi();
 System.out.println(string_out);

9 bus.shutdown(true);

 }
}

Example 5: Client Code
11

CHAPTER 1 | Developing Artix Enabled Clients and Servers
Building an Artix Application

Required jar files Artix Java applications require that the following Artix jar files are in your
class path:

� it_bus.jar

� it_wsdl.jar

� it_ws_reflect.jar

� ifc.jar

You also need to ensure that the Artix version of jaxrpc-api.jar is used to
build your Artix application. The simplest way to make sure the correct
version is used is to prepend artix_install_dir\artix\1.3\lib to your
class path.
 12

Index

B
binding name

specifying to code generator 3
Bus.init() 9
Bus.run() 9

C
client stub code 2
Code generation 2
code generation

from the command line 2
impl flag 5

code generator
command-line 2
files generated 2

D
developing a server 5

I
init() function 6, 9
Initializing the Bus 6
IT_Bus::init() 6

P
port

specifying to code generator 3

R
run() function 9

S
server

developing 5
implementation class 5
main() function 6

server skeleton code 2
service name

specifying to code generator 3
Shutting the Bus down 8
skeleton code
generating with wsdltojava 3

W
wsdltojava 2

command-line switches 2
files generated 2
13

INDEX
 14

INDEX
15

INDEX
 16

INDEX
17

INDEX
 18

INDEX
19

INDEX
 20

INDEX
21

INDEX
 22

	Preface
	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	Java Package Names
	Developing a Server
	Developing a Client
	Building an Artix Application

	Index

