IONA

>3 Artix™

Getting Started with

Artix Encompass
Version 1.3, December 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Artix Relay,
Artix Encompass, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive
Runtime Technology, Transparent Enterprise Deployment, and Total Business Integra-
tion are trademarks or registered trademarks of IONA Technologies PLC and/or its sub-
sidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-

tion and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 17-Dec-2003

M3178

Contents

List of Figures
Preface

Chapter 1 Artix Encompass Concepts
Introduction to Artix Encompass
The Elements of Artix
The Artix Bus
Artix Service Access Points
Artix Contracts
Solving Problems with Artix Encompass
The Artix Designer
Using the Artix Library

Chapter 2 Using Artix Designer to Build a C++ Web Service
The Web Service Project
Using Artix Designer
Starting Artix Designer
Creating an Artix Designer Project
Building the Widget Web Server
Building the Widget Web Service Client
Testing the Application

Chapter 3 Using Artix Command Line Tools to Build a C++ Web Service
The Web Service Project
Using Artix Encompass Tools
Building the Widget Web Server
Building the Widget Web Service Client
Testing the Application

Appendix A Implementation Code for the Widget Server and Client
Server Implementation Code

Vii

NO oA N

10

22

25
27
28
32
35
40
43
46

49
50
51
55
57
59

61
62

CONTENTS

Client Implementation Code
Glossary

Index

64
69

75

List of Figures

Figure 1: The Artix Bus

Figure 2: Artix WSDL Contract Elements
Figure 3: Client-Server System Diagram
Figure 4: Artix Contract Editor

Figure 5: Editing a complexType

Figure 6: Adding Parts to a Message

Figure 7: Editing a PortType

Figure 8: Editing an Operation

Figure 9: Artix Service Editor

Figure 10: Editing the Properties of an HTTP Port
Figure 11: Development Tool

Figure 12: Deployment Tool

Figure 13: Welcome Screen

Figure 14: Artix Designer

Figure 15: Select Project Type

Figure 16: New project details

Figure 17: System Configuration

Figure 18: WSDL File Selection

Figure 19: Widget Service Starting Point
Figure 20: Widget Server Development Screen
Figure 21: Widget Client Development Screen

12
13
14
15
16
17
18
19
20
21
33
34
35
36
37
38
39
41
44

LIST OF FIGURES

vi

Overview

Audience

Organization of this guide

Related documentation

Preface

Getting Started with Artix Encompass gives a brief overview of Artix
Encompass and provides a simple example of how to use Artix Encompass
to solve a real world problem.

Getting Started with Artix Encompass is for anyone who needs to
understand the concepts and terms used in IONA’s Artix Encompass
product, as well as anyone who needs maintain installed Artix systems.

This guide is divided as follows:

® “Artix Encompass Concepts” provides general information about Artix
and how it is used.

® “Using Artix Designer to Build a C++ Web Service” presents a walk
through of how to create a C++ Web service with the Artix Designer.

® “Using Artix Command Line Tools to Build a C++ Web Service”
presents a walk through of the same scenario using the Artix command
line tools.

The document set for IONA Artix includes the following:
® Qetting Started With Artix

® Artix User’s Guide

® Artix Installation Guide

® Artix Tutorial

® Artix C++ Programming Guide

vii

PREFACE

Online help

Reading path

viii

® Artix Security Guide

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs/artix/1.3/index.xml.

Artix includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.
® Adescription of each screen.

® A comprehensive index and glossary.

® Afull search feature.

® Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix Encompass

The Getting Started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ Web Service.

2. Artix Tutorial

The Tutorial guides you through programming Artix applications
against all of the supported transports.

3. Deploying and Managing Artix Solutions

The deployment guide describes deploying Artix enabled systems. It
provides detailed examples for a number of typical use cases.

4. GUI Online Help

The Artix design tools have context sensitive online help that provides
information specific to the tools that you are using.

5. Developing Artix Applications in C++

The development guide discusses the technical aspects of
programming applications using the Artix C++ API.

http://www.iona.com/support/docs/artix/1.3/index.xml
http://www.iona.com/support/docs/artix/1.3/index.xml

Additional resources

Typographical conventions

PREFACE

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Artix
and other products. You can access the knowledge base at the following

location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com .

This guide uses the following typographical conventions:

Const ant wi dth

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

[1]

{}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

In this chapter

CHAPTER 1

Artix Encompass
Concepts

Artix Encompass extends enterprise Quality of Service features
to Web services applications and enables the rapid creation
and deployment of EAI solutions using Web services
technology.

This chapter discusses the following topics:

Introduction to Artix Encompass page 2
The Elements of Artix page 4
Solving Problems with Artix Encompass page 10
The Artix Designer page 11
Using the Artix Library page 22

CHAPTER 1 | Artix Encompass Concepts

Introduction to Artix Encompass

Overview

Artix Encompass Features

Supported transports

Artix Encompass enables developers to expose existing application logic as
Web services without changing the underlying middleware upon which they
run or developers can write new C++ Web services. In addition, it provides
enterprise levels of service such as session management, service look-up,
security, and transaction propagation.

Encompass does this by leveraging IONA's proven Adaptive Runtime
Technology (ART) platform to provide a high-speed, stable backbone for
your Web service deployments. In addition, Encompass extends the ART
platform and the Web service metaphor by using the Artix Bus, IONA's
transport and payload format switching technology. The Artix Bus enables
the creation of Web services that communicate using protocols other than
SOAP over HTTP; Web services can be developed and deployed using
proven enterprise quality communication mechanisms such as TIBCO
Rendevous™, CORBA, and IBM WebSphere MQ (formerly MQSeries).

Artix Encompass has the following unique features:
® Support for C++ Web service development

® Routing

® Transaction support for Web services

® Support for Asynchronous Web services

® Mainframe support for Web services

® Support for Web services to use multiple transports and message data
formats

® Security support for Web services
® Support for stateful Web services
® Leasing for Web services

® load-balancing

® Look-up services

Artix supports the following message transports:
® HTTP

Introduction to Artix Encompass

® BEA Tuxedo

® |BM WebSphere MQ

® TIBCO Rendezvous™

® |IOP Tunnel

® Java Messaging Service

Supported payload formats Artix can automatically transform between the following payload formats:
* G2++
® FML - Tuxedo format
¢ CORBA (GIOP) — CORBA format
® FRL - fixed record length
® VRL - variable record length
® SOAP
® TibrvMsg - TIBCO Rendezvous format

The mapping of logical data items between payload formats is supported by
Artix tools.

CHAPTER 1 | Artix Encompass Concepts

The Elements of Artix

Overview Artix’s unique features are implemented by a number of plug-ins to IONA'’s
ART platform. These plug-ins form the core of Artix, the Artix Bus.
Applications that make use of Artix connect to the Bus using Artix Services
Access Points (SAPs). Service Access Points are described by Artix
Contracts.

Figure 1 shows how all of the Artix elements fit together.

SOAP/HTTP CORBA

Artix Bus
Figure 1: The Artix Bus
In this Section This section discusses the following topics:
The Artix Bus page 5
Artix Service Access Points page 6
Artix Contracts page 7

The Elements of Artix

The Artix Bus

Overview

Benefits

The Artix Bus is a set of plug-ins that work in much the same way as the
simultaneous translators at the United Nations. The plug-ins read data that
can be in a number of disparate formats, the Bus directly translates the data
into another format, and the plug-ins write the data back out to the wire in
the new format. In this way Artix enables all of the applications in your
company to communicate over the Web without needing to understand
SOAP or HTTP. It also means that clients can contact Web services without
understanding the native language of the server handling requests.

While other Web service suites provide some ability to expose enterprise
applications as Web services, they frequently require a good deal of coding.
The Artix Bus eliminates the need to modify your applications or write code
by directly translating between the enterprise application’s native
communication protocol and SOAP over HTTP, the prevalent protocol for
Web services. For example, by deploying an Artix instance with a SOAP over
WebSphere MQ SAP and a SOAP over HTTP SAPoint, you can expose a
WebSphere MQ application directly as a Web service. The Webshpere MQ
application would not need to be altered or made aware that it was being
exposed using SOAP over HTTP.

The Artix Bus’ translation ability also makes it a powerful integration tool.
Unlike Enterprise EAl applications, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing and increases the speed at which messages are transmitted
through the Bus.

CHAPTER 1 | Artix Encompass Concepts

Artix Service Access

Overview

Reconfigurable connection

Points

An Artix Service Access Point (SAP) is where a service provider or service
consumer connects to the Artix Bus. SAPs are described by a contract
describing the services offered and the physical representation of the data
on the network.

In essence, an SAP provides an abstract connection point between
applications. The benefit of using this abstract connection is that it allows
you to change the underlying communication mechanisms without recoding
any of your applications. You simply need to modify the contract describing
the SAP. For example, if one of your backend service providers is a Tuxedo
application and you want to swap out Tuxedo for a CORBA implementation,
you would simply change the SAP’s contract to contain a CORBA
connection to the Bus. The clients accessing the backend service provider
never need to be aware that the application has changed.

The Elements of Artix

Artix Contracts

Overview

WSDL concepts

The Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
By defining characteristics like service operations and messages in an
abstract way — independent of the actual transport or protocol used to
implement the SAP — these characteristics can be bound to a variety of a
specific protocols and formats. In fact, Artix allows an abstract definition to
be bound to multiple specific protocols and formats. This means that the
same definitions can be reused in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a set of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

Understanding Artix contracts requires some familiarity with WSDL,
including the definitions of the following terms:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific protocol and data format for
operations defined in a portType.

A WSDL Port specifies a network address for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.

CHAPTER 1 | Artix Encompass Concepts

The Artix contract An Artix contract is specified in WSDL and conceptually divided into logical
and physical components.

The logical contract specifies things that are independent of the underlying
transport and wire format; it fully specifies the data structure and the
possible operations or interactions with the interface. It allows Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (wire format and transport).

The physical component of an Artix contract defines:

® The wire format, middleware transport, and service groupings

® The connection between the PortType ‘operations’ and wire formats
® Buffer layout for fixed formats

® Artix extensions to WSDL

Figure 2: Artix WSDL Contract Elements

Logical Contract:

<Schema>

<Type> (analogous to typedefs)

<Message> (analogous to parameter)

<Por t Type> (analogous to class or CORBA interface definition)
<Qper at i ons> (analogous to methods)

Physical Contract:

<Bi ndi ng> (payload format)

<Servi ces> (groups of ports)

<Port > (transport addressing information)

<Rout e> (rules governing system interaction)

Payload Formats A payload format controls the layout of a message delivered over a

transport. The WSDL definition of a Port and its binding together associate a
payload format with a transport. A binding can be specified in the logical

The Elements of Artix

portion of an Artix contract (port Type), which allows for a logical contract to
have multiple bindings and thus allow multiple on-the-wire formats to use
the same contract.

CHAPTER 1 | Artix Encompass Concepts

Solving Problems with Artix Encompass

Overview

Design phase

Development phase

Deployment phase

10

Artix Encompass allows you to easily solve the problems of how to expose
your existing backend systems as Web services or develop new Web
services using C++ and retianing all of the enterprise levels of service you
require. The process of building Artix solutions has three phases:

® Design

® Development

® Deployment

In the design phase, you decide what services you want to build, what
operations each service will need, and the data that the services will need to
exchange. After making these decisions, you will map the information into
Artix contracts that describe the services, operations, and data-types. As
part of this step, you will also map out the transports used by each service
and any routing rules that will be used.

The Artix designer and command line tools automate the mapping of your
service descriptions into WSDL based Artix contracts.

In the development phase, you use the contracts created in the design
phase to generate the client stubs and server skeletons for your C++ Web
services. In this phase, you will also write the C++ application code that
implements the service’s business logic. While the majority of this code will
be standard C++, some of it will involve using Artix specific APIs.

Artix provides tools for generating the client stubs and server skeletons for
you, but you will need to use your favorite development environment to
develop and debug that application code.

In the deployment phase, you take the fully developed applications from the
development pahse and the Artix contracts from the design phase and use
them to deploy the Web services into active use. To do this you may need to
modify the Artix configuration files or edit the Artix contracts descrbing your
service to fit the exact circumstances of your deployment environment.

The Artix Designer

The Artix Designer

Overview

System Diagram

The Artix Designer is a tool for creating and managing Artix contracts. It
provides editors for creating contracts from standard WSDL files as well as
from CORBA IDL files. The Designer also makes it easy to define new data
types, logical interfaces, payload bindings, and transports by providing
editors to walk you through each step.

The Artix Designer generates all of the Artix components you need to

complete your project. These components include:

® Artix contracts describing each of the services in your system.

® An Artix contract describing how Artix integrates your services.

® Any Artix stub and skeleton code needed to write Artix application
code.

® The needed configuration information to deploy your Artix instances.

In addition, the Artix Designer can also generate CORBA IDL from any
contracts that have a CORBA binding.

The first screen you see when using the Artix Designer is the system
diagram. The system diagram displays all of the services in your system and
the Artix instances deployed to integrate the services. This diagram is
updated as you add services and Artix instances to your system. Figure 3
shows a system diagram containing a client and server being integrated

11

CHAPTER 1 | Artix Encompass Concepts

using a standalone Artix instance.

=0l x|

Artix Designer
File Edit Contract Help

‘aEEEH 28 R 2 E A @ W

[widgets

E Readme
=LA Canfiguration
Client
JE Develapment
&% Deployrment
Artix
JE Develapment
&% Deployrment
Server
JE Develapment
&% Deployment
= [0 contracts

L B widgetorderFarm wsdl ’ﬁ ’ﬁ

Client Artix Server

Current View

Al -]

Figure 3: Client-Server System Diagram

Project Tree To the left of the Designer's editor panel is the project tree. The project tree
lists all of system diagram components with nodes for generating code,
generating deployment information, and, if you are using CORBA,
generating IDL. The project tree also lists all of the contracts imported into
your project..

12

Contract Editor

@ widgetOrderForm_wsdl - Artix Designer
File Edit Contract Help

DEREH 28 B8 @A 20 W

The Artix Designer

The drop down list at the bottom of the project tree panel controls the
amount of detail shown in the tree at a time. The default is to show all the
information about the project. You can chose to view only the contracts
imported into the project or just the system components.

The contract editor of the Artix Designer is where most of the work is done
when developing an Artix project. As shown in Figure 4, the contract editor
presents you with a graphical representation of an Artix contract. By
selecting the different nodes in the diagram you bring up editors that allow
you to add to or edit each of the parts of an Artix contract.

=0l x|

[widgets

ﬂcm

J; B Readme

A Configuration
Client
dﬁ Develapment
&% Deployment
Artix
dﬁ Develapment
&% Deployment
Server
dﬁ Develapment
&% Deployment
= [Contracts
L widgetOrderF arm.wsdl

—*

[og
&0
Types
— DA
Messages
2
j— Fort Types

widdgetOrderForm wes E !

Bindings
—@
Services
—AN
Routing
Current View
Al L [wspL

Figure 4: Artix Contract Editor

13

CHAPTER 1 | Artix Encompass Concepts

Type Editor The type editor is invoked from the contract editor and allows you to create

new logical types in your contract or modify existing types. When editing
existing types, the editor screen is tailored to match the kind of data type
you are editing. Figure 5 shows the screen for editing a conpl exType.

5 Edit Types - Artix Desig|

[Types
B
] Address
=] widgetorderinfo
=] widgetOrderBillinfa

New:. | ‘ Rename J | Delete I
Type Attributes
The following are the attributes defined in this Type;

MNarne \ Kind \ Type | Walue

[widgetsize simpleType ¥sdstring

=) <facet1= enumeration hig

=) <facetz= enumeration large

=) <facet3= enumeration rungo

=) <facetd= enumeration gargantuan
=

[o] | cancer] [apoy][he

Figure 5: Editing a complexType

When adding a new type the editor walks you through the creation of your
data type.

14

The Artix Designer

Message Editor The message editor is invoked from the contract editor and allows you to

add new messages to your contract and to edit existing messages. Using the
editor you can add new parts to existing messages from the types existing in
your contract and the editor ensures that there are no naming conflicts.
Figure 6 shows the message editor's main dialog.

) Edit Messages - Artix =

[Messages
I:_detorder
i

widgetOrderBill

New:. H Rename H Delete I

Message Pars

The following are the parts defined in this Message

MNarne \ Type
[0 widgetOrder
[B widgetOrderFarm ¥sd1 widgetOrderinfo
| Ean
[o] | cancer] [apoy][he

Figure 6: Adding Parts to a Message

Interface Editor The interface editor, or PortType editor, is invoked from the contract editor

and allows you to edit existing logical interfaces or add new logical
interfaces. Logical interfaces are referred to as port Types in a WSDL

15

CHAPTER 1 | Artix Encompass Concepts

Operation Editor

16

document and the editor dialogs rely on WSDL terminology. The output of
this editor will be entered in a port Type element in your contract. Figure 7
shows the interface editor.

) Edit Port Types - Artix 3 x|

[PorTypes
&£ ordervidgets

L [2] placewidgstarder,

Mew H Rename H Delete J

Operation Messages
The following are the messages defined in this Cperation:

Mame Style | Tupe \ Message
[placewidgetordiREQUEST_RESF..
=) order input widgetOrder
=] winl output widgetOrderBill
| Esit
ok || cancel || ampy || pewm

Figure 7: Editing a PortType

The operation editor is part of the interface editor. It allows you to modify

existing operations defined on the interface or to add new operations to the
interface. When adding messages to an operation, the editor will only allow
you to select from messages already defined in the contract. The editor also

Binding Editor

Service Editor

The Artix Designer

checks for any naming conflicts. Figure 8 shows the operation editor.

£, Edit Dperation Messages - Artix Designer 3 x|
Messages for Port Type Cperation - "placeWidgetCrder”
wE] |
Message | EH | Clear |
Name [|
Operation Messages
Type | Message I Name] | Rermuve
input tnzwidgetOrder order R
output tnzwidgetOrderBill bill
‘ ok J ‘ Cancel J ‘ Apply ‘ ‘ Help

Figure 8: Editing an Operation

The binding editor is invoked from the contract editor and allows you to map
any interface described in your contract to one of the payload formats
supported by Artix. The editor asks you to select the payload format and the
interface. It then performs the mapping automatically.

The service editor is invoked from the contract editor and allows you to edit
existing WSDL service definitions in your contract and to add new WSDL
service definitions in your contract. As shown in Figure 9, the editor shows

17

CHAPTER 1 | Artix Encompass Concepts

you the name of service, the ports defined as part of the service, the
transport used by the selected port, and any properties set on the selected
port.

 Edit Services - Artix Designer x|

[Sewices
£ [ordenviidgetsService

L B widgetOrderPart

Mew.. H Rename H Delete]

Port Properties
The following are the properties defined in this Port:

MName \ Binding \ Walug
1 witgetorderPort lorderwidostsBinding
=07 ardrass I] e
= [2] 1ocation i ~|hitpMocalhost8080

[0K H Cancel H Anply H Help

Figure 9: Artix Service Editor

18

The Artix Designer

Port Editor The port editor is part of the service editor and it allows you to modify the
properties of an existing port or add a new port to an existing service. It
provides you with a list of properties you can set on each type of port Artix
supports and ensures that the required values are supplied. Figure 10
shows the properties for an Artix HTTP port.

£ Edit Port Properties - Artix Designer x|

Propery Definitions in Port- "widgetOrderP o'
Transpaort

Transport Type

Attributes
Address

Attribute I Value
location (REQUIRED) http:flocalhost 080
Client
Aftribute Walue \
SendTimeout E
ReceiveTimeout
AutoRedirect
UserName -
Server
Aftribute Walue \
SendTimeout E
ReceiveTimeout
SuppressClientSendErrors
SuppressClientReceiveErrars -

[o || Cancal]| soply || Hei

Figure 10: Editing the Properties of an HTTP Port

Routing Editor The routing editor is invoked from the contract editor and allows you to
create routes between compatible ports. For this editor to be used, your
contract must have more than one port defined and the ports must be
compatible. For a detailed discussion on port compatibility and routing see
the Artix Users’ Guide.

19

CHAPTER 1 | Artix Encompass Concepts

Development Tool

20

@widgetOrderForm.wsdl - Artix Designer a0 ;Iglll

File Edit Contract Help

DEEEH 28

T widgets
E Readme
=LA Configuration
& client
tdﬁ Develapment
&% Deployment
B artix
dﬁ Develapment
&% Deployment
@ Server
dﬁ Develapment
&% Deployment
= [0 Contracts

L @ widgetOrderF arm.wsdl

Current View

All

The development tool is invoked by selecting the Development icon under
one of the services in the project tree. Using this tool, shown in Figure 11,
you can generate Artix C++ stub and skeleton code for the interfaces
defined by the selected service’s contract. The tool will also generate a make
file and sample server and client mainlines for you.

ER 2Emid 2@ W

Systermn Development Options

Develapment Environment

C++ Code Generation Options

v]

Code Location |.IServerIsrcIcpp | I Browse...

¥ Generate Implementation Code
Code Generation Options
[CopyWSDL from Project Directory

C++ Mamespace |widgets |

Select Service | |EH

Select Part | -]
@ Windows MMAKE Makefile

Generate Makefile (2 Unix Makefila

O Nane -

Advanced Options

Figure 11: Development Tool

If the service's contract contains a CORBA binding, the development tool
will also generate IDL describing the service’s interfaces.

Deployment Tool

gwidgetOrderForm.wsdl - Artix Desig

File Edit Contract Help

DEEEH 26 BR 2Ei 200

T widgets
B Readme
= [14 Configuration
& client
dﬁ Develapment
&% Deployrment
B Artix
tdﬁ Develapment
&% Deployrment
@ Server
dﬁ Develapment
&% Deployrment
=00 Contracts

L @ widgetOrderF arm.wsdl

Current View

All

The Artix Designer

The deployment tool is invoked by selecting the Deployment icon under one
of the services in the project tree. The deployment tool, show in Figure 12,
generates an Artix configuration file that is optimized for the selected
service, a script for setting up your Artix runtime environment, and a
composite Artix contract that is suitable for deployment into a runtime
system. The generated configuration file contains all of the information
needed to deploy your service using Artix. In the case of a standalone Artix
service the deployment tool also generates start and stop scripts for the Artix
service.

=0l

Deplayment Bundle

Domain name |Server |

Lacation |.IServensrc | | Browse...

[Generate a single Zip file

Logaing Output |Standard Qutput |E“

Logging Level |Err0rs Qnly |E“

| ok | | Reset | | Hel |

Figure 12: Deployment Tool

21

CHAPTER 1 | Artix Encompass Concepts

Using the Artix

Overview

If you are new to Artix

Design guides

Development guides

22

Library

The Artix library consists of a number of guides to help you understand and
use Artix. The guides are broken down into groups reflecting the three
phases of Artix problem solving. In addition Artix provides a Tutorial that
provides a number of guided excercises to build your skill using Artix.

If you are approaching Artix for the first time, it is suggested that you work
through the library in the following order:

1. Getting Started with Artix Encompass
Artix Tutorial

Deploying and Managing Artix Solutions
Designing Artix Solutions

ok W

Developing Artix Applications

Designing Artix Solutions explains Artix contracts and how to create them
using both the Artix designer and the Artix command line tools. It contains
detailed descriptions of the Artix WSDL extentions used to define routes,
payload formats, and transports. It also provides an overview of WSDL and
how it maps to certian programming concepts.

Artix has two development guides:

® Developing Artix Applications in C++

® Developing Artix Applications in Java

Both guides describe how to develop clients and servers using the Artix
APIs. They provide examples of advanced usages of Artix such as

transactions, using locator services, session management, and dynamic
configuration.

Artix also provides a reference guide to the tread control library used in the
Artix API.

Deployment guides

Using the Artix Library

Deploying and Managing Artix Solutions explains how to configure and
deploy all aspects of an Artix solution. It describes the Artix configuration
file, where to locate the contracts which control your Artix services, and how
to run Artix applications. It also explains how to configure and deploy the
Artix Locator and the Artix Session manager.

23

CHAPTER 1 | Artix Encompass Concepts

24

In this chapter

CHAPTER 2

Using Artix
Designer to Build
a C++ Web

Service

Artix Encompass is a world class utility for building C++ Web
services using simple, standard C++ programming
techniques. It provides all the tools needed to edit WSDL
contracts and generate starting point code for Web servers and
their clients.

This chapter discusses the following topics:

The Web Service Project page 27
Using Artix Designer page 28
Starting Artix Designer page 32
Creating an Artix Designer Project page 35
Building the Widget Web Server page 40

25

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

26

Building the Widget Web Service Client

page 43

Testing the Application

page 46

The Web Service Project

The Web Service Project

The problem scenario

How Artix simplifies solving the
problem

Your company produces widgets and has decided to automate its ordering
system to cut labor costs and reduce turnaround time. The new system will
allow the company’s customers to submit their orders electronically, will
generate and send electronic bills to the customer, and generate a work
order for your manufacturing system.

Your company’s ClO has determined he wants this new system to be
implemented using a Web service and that the development of both the
server and the client will be done in-house. Unfortunately, your IT
department doesn’t have anybody with solid Java or Web services skills and
there is no money or time to hire a new developer for this project.

Artix simplifies the solution to this problem by providing automated

generation of the following:

® C++ server skeletons which allow developers to program using
standard C++ metaphors

® C++ server implementation object method shells

® C++ client stubs which allow developers to program using standard
C++ metaphors

® C++ server mainline starting point code

® C++ client mainline starting point code

® makefiles for Unix or Windows

® deployment descriptors for Web services

27

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

Using Artix Designer

Overview

The Web service description

Artix Designer provides a graphical environment in which to define your Web
service's interfaces and the transports it will use. In this case, the problem is
to define a service that receives an order and returns a bill. A full description
of this service includes:

® The structure of the data the service sends and receives

® The operations offered by the service

® The order in which the data is encoded

® The payload format the service uses

® The transport the service uses

® The location of the service.

A Web service is defined in @ WSDL document. Artix can import WSDL
directly, and convert it into Artix contracts (which are themselves WSDL
files that may include IONA-specific extensions). Even if a service
description is less formal than an existing WSDL file (e.g., in the case where
a service is under development), Artix Designer provides a series of wizards

to guide you through the process of creating an Artix contract based on the
information available.

For the purposes of this example we will use a predefined Widget service
defined in Example 1.

Example 1: Vendor WSDL document

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defini ti ons nane="wi dget O der For m wsdl "
t ar get Namespace="ht t p: / / wi dget Vendor . corm wi dget O der For n¥
xm ns="http://schenas. xm soap. or g/ wsdl / "
xm ns: tns="htt p: // wi dget Vendor . com wi dget O der For n¥
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="ht t p: / / wan, W3. or g/ 2001/ XM_Scherma"
xm ns: xsd1="ht t p: // wi dget Vendor . coni t ypes/ wi dget Types" >

<t ypes>

<schera t ar get Namespace="htt p: //w dget Vendor . con t ypes/ wi dget Types"
xm ns="ht t p: / / waw. W3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /">

28

Using Artix Designer

Example 1: Vendor WSDL document

<xsd: si npl eType nane="wi dget Si ze" >
<xsd: restriction base="xsd:string">
<xsd: enuner ati on val ue="hi g"/>
<xsd: enuner ati on val ue="|arge"/>
<xsd: enuner ati on val ue="nmungo"/>
<xsd: enuner ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType name="Addr ess">
<xsd: sequence>
<xsd: el enent name="nane" type="xsd:string"/>
<xsd: el ement nane="street 1" type="xsd:string"/>
<xsd: el enent name="street2" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el ement nane="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el enent nanme="type" type="xsdl:wi dgetSi ze"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget OrderBil || nfo">
<xsd: sequence>
<xsd: el enent name="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:wi dgetSi ze"/>
<xsd: el enent nanme="ant Due" type="xsd:float"/>
<xsd: el ement nane="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schenma>
</ types>
<nessage name="w dget O der" >
<part name="w dget O der Form{ type="xsd1l: w dget O der | nfo"/>
</ message>
<nessage name="w dget OrderBill">
<part name="w dget O der Conf or nati on" type="xsdl: w dget O derBillInfo"/>
</ message>

29

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

Example 1: Vendor WSDL document

<port Type nane="order W dget s" >
<oper ati on name="pl aceW dget O der ">
<i nput nessage="t ns: wi dget O der" nane="order"/>
<out put message="tns:w dgetCrderBill" nane="bill"/>
</ oper at i on>
</ por t Type>
<bi ndi ng nanme="or der W dget sBi ndi ng" type="tns: order Wdget s">
<soap: bi ndi ng styl e="rpc" transport="http://schenmas.xn soap. or g/ soap/ http"/>
<oper ati on name="pl aceW dget Or der" >
<soap: oper ati on soapAction="" style="rpc"/>
<i nput nane="wi dget O der ">
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: / / wi dget Vendor . coni wi dget O der For nf' use="encoded"/ >
</i nput >
<out put nane="wi dget OrderBi || ">
<soap: body encodi ngStyl e="http://schenas. xm soap. or g/ soap/ encodi ng/ "
nanespace="ht t p: / / wi dget Vendor . coni wi dget O der For nf' use="encoded"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="order W dget sServi ce">
<port name="w dget O derPort" bindi ng="t ns: or der W dget sBi ndi ng" >
<soap: address | ocati on="http://| ocal host : 8080"/ >
</ port>
</ servi ce>
</ defi ni ti ons>

This WSDL document completely describes the interface exposed by the
Web service and the data that is passed to and from the server. Artix
Designer can import this file directly and use it in the Artix contract that
describes the entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

<types> Defines the complex data types used by the service. This
service uses an enumerated type, wi dget Si ze, to
describe the widgets, a structure, Addr ess, to hold the
shipping address, and two structures, wi dget O der I nfo
and wi dget Order Bi | | I nf o, for the data needed to
process the order.

<nessage> Defines the messages by which the service
communicates.

<por t Type> Defines the operations offered by the service.

30

Using Artix Designer

<bi ndi ng> Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

<servi ce> Defines the address where the service can be contacted.

31

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

Starting Artix Designer

Overview

Windows

UNIX

32

Artix Designer is a suite of tools for developing Artix solutions and managing
Artix projects.

On a Windows system you can start Artix Designer from the Start menu.
Select Programs | IONA | Artix | Artix Designer. You can also start Artix
Designer from the command line with the following command:

start_desi gner
The executable for this command is installed in the following directory:

% T_PRODUCT DI Rdartix\ 1. 3\ bin

On a UNIX system you must start Artix Designer from the command line. To

start Designer, complete the following steps:

1. Run % T_PRCDUCT DiR%artix\ 1.3\ bin\artix_env to source the Artix
environment.

2. Run % T_PRCDUCT_DI R arti x\ 1. 3\ bi n\ st art_desi gner to start the
GUL.

Starting Artix Designer

Once the GUI is running 1. Select Go straight to designer on the welcome screen shown in
Figure 13.

£ Artix Welcome : |

Welcome to Arix, please select an aption:

® |Create a new project|
@] Open an existing project.

O Go straight to designer

[Don't show me this panel again Cancel

Figure 13: Welcome Screen

2. You will see a screen like Figure 14.

33

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

5 Artix Designer i =]
File Edit Contract Help

21T 11 BYIEIET Y K
4

T Mo Project b

Current View

Al -]

Figure 14: Artix Designer

34

Creating an Artix Designer Project

Creating an Artix Designer Project

Overview An Artix project consists of one or more Artix contracts, a system design
diagram, and a number of source code files. Artix Designer creates a special
directory and project structure to manage these artifacts.

Procedure

To create a new Artix Designer project complete the following steps:

1. Create a new Artix project by selecting New | Project from the
designer’s File menu.

2. You will see a screen like Figure 15.

5 Select Project Type

i H Selectthe type of project to create.
Select Project Type

® Integrate with an existing weh service
O Integrate with an existing COREA application

O Other

I Lot T il i

Figure 15: Select Project Type

3. Select Integrate with an existing web service.
4. Click Next.

35

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

5. You will see a screen like Figure 16.

£ Add Project Details x|

Add the project details.

Proje

MName [widgets |

Save Location |C:1Documents ang Settingslernjohnsan | Change

aiciisned Raniicatas TR L il B ool

Figure 16: New project details

6. Type Wdget s in the Name field.
7. Click Change.

Using the file navigation dialog box, navigate to your home directory
and click Select Project Directory.

9. Click Next.

36

Creating an Artix Designer Project

10. A screen like that shown in Figure 17 appears:.

5 Select Configuration X|
Indicate how Artix will be used.
O Standalone
®|[Embedded
{ Prev JI Mext I ’ Finish ” Help J [gancel]

Figure 17: System Configuration

11. Select Embedded.
12. Click Next.

37

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

38

) Select WSDL or IDL

Select Project Type

13.

You will see a screen like Figure 18.

Specify a WSDL or IDL file.

File |1gs1.emj0hn501ru1yD0cumentsLArtix’twidgets‘twidgets.wsdl| Select

Walidate File

e J[wet | [fmsh |[wew] [cancel]

Figure 18: WSDL File Selection

14.
15.

16.

17.
18.
19.
20.

Click the Select button.

Using the file navigation dialog box, navigate to your Artix installation
directory.

Under your Artix installation directory, locate the denos/ wi dget s
directory.

Select wi dget s. wsdl from the file selection box.

Click the Validate File button.

When Finish becomes available, click it to create your project.
The Designer screen now looks like Figure 19.

5 Artix Designer
File Edit Contract Help

[widget
E Readme
Canfiguration
Client
“i Develapment
&% Deployment
Server
“i Develapment
&% Deployrment
[0 contracts
L @ widgetOrderF arm.wsdl

Current View

Al -]

‘AEEE 28 B8 /2 EAla2@\n
Ll

Creating an Artix Designer Project

=10l x|

M

Client

Server

Figure 19: Widget Service Starting Point

39

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

Building the Widget Web Server

Overview Artix Designer generates server stubs for any of the contracts used to
describe a component of your integration project. In addition, the designer
generates a sample server mainline, and generates a makefile to build the
server.

Once Artix Designer generates the stub code, you must write the
implementation logic using the C++ development environment of your
choice.

Procedure To develop the widget web server using Artix Designer complete the
following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Server node under the Configuration folder on
the project tree.

3. A copy of the contract will appear under the Server node.
4. Select the Development icon under the Server node in the project tree.

40

Building the Widget Web Server

5. You will see a screen similar to Figure 20.

@widgetOrderForm.wsdl - Artix Designer T = |EI|1|
File Edit Contract Help

DEEE 28 BE 2mid 200

[widget Systern Development Options
E Readme
- IEA Canfiguration Develapment Environment
& client =
E widgetOrderForm.w C++ Code Generation Options H
dﬁ Develapment
&% Deployment Code Location |.IServerIsrcIcpp | I Browse...
@ Server
widgetOrderF arm.w ¥ Generate Implementation Code
*§ Developrment Code Generation Options
& Deployment [Copy WSDL from Project Directory

= [0 Contracts
L @ widgetOrderF arm.wsdl

C++ Mamespace |Widget |
Select Service |0rder‘v’\fidgetSSer\fice |EH
Select Part [widgetorderPart -]

@ Windows NMAKE Makefile

Generate Makefile (2 Unix Makefila

O Nane .

| J—— | — | > Advanced Options

Current View

[-] &

Figure 20: Widget Server Development Screen

Select C++ from the Development Environment pull-down list.
Enter Wdget Server for the C++ Namespace.

Select the appropriate type of makefile generation for your platform.
Select orderWidgetsService from the Select Service pull-down list.
Select widgetOrderPort from the Select Port pull-down list.

Click OK.

- =2 0 00N o

— O

41

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

12. The following files are generated in the Server/ src/ cpp directory of
your project folder:

order Wdgets. h order Wdget sd i ent . cxx
orderWdgetsQient.h or der Wdget sl npl . cxx
order Wdget sl npl . h or der W dget sSer ver . cxx

or der Wdget sServer. h Sanpl ed i ent. cxx

Sanpl eSer ver . cxx Makefil e

Server _wsdl TypesFact ory. cxx Server _wsdl TypesFactory. h
wi dget s_wsdl Types. cxx wi dget s_wsdl Types. h

For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Qient. *, source
files.

13. Insert the highlighted code shown in “Server Implementation Code” on
page 62, to or der Wdget sl npl . cxx to add the application logic to the
server.

14. Build the server.
UNIX

nake server. exe
Windows

nnmake server. exe

42

Building the Widget Web Service Client

Building the Widget Web Service Client

Overview

Procedure

Artix-generated proxy classes integrate smoothly into a standard C+ +
application. To use an Artix proxy you must initialize the Artix Bus and then
instantiate an instance of the proxy class. Once instantiated the proxy object
provides all of the functionality of the server through standard invocations of
its methods.

To develop the widget web service client using Artix Designer complete the
following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Client node under the Configuration folder on
the project tree.

3. A copy of the contract will appear under the Client node.

4. Select the Development icon under the Client node in the project tree.

43

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

5. You will see a screen similar to Figure 21.

@ArtixDesigner _|EI|1|
File Edit Contract Help

DEEE 28 EE 2mid 28W0

[widget Systern Development Options
B Readme
- I Canfiguration Develapment Environment
& client =
E widgetOrderForm.w C++ Code Generation Options M
dﬁ Development
&% Deployment Code Location |.ICIientfsrcIcpp | I Browse...
@ Server
widgetOrderF arm.w ¥ Generate Implementation Code
*§ Development Code Generation Options
& Deployment [Copy WSDL from Project Directory

B Bl contracts [T Al e
L @ widgetOrderF arm.wsdl

C++ Mamespace |Widget |
Select Service |0rder‘v’\fidgetSSer\fice |EH
Select Part [widgetorderPart -]

@ Windows NMAKE Makefile

Generate Makefile (2 Unix Makefile
O Nane -
4 I—llllﬁ 3 Advanced Options
Current View EJ

o B

Figure 21: Widget Client Development Screen

Select C++ from the Development Environment pull-down list.
Enter Wdget A i ent for the C++ Namespace.

Select the appropriate type of makefile generation for your platform.
Select orderWidgetsService from the Select Service pull-down list.
Select widgetOrderPort from the Select Port pull-down list.

Click OK.

22 0 0 N o

- o

44

Building the Widget Web Service Client

12. The following files are generated in the Qi net/ src/ cpp directory of
your project folder:

order Wdget s. h or der Wdget sd i ent . cxx
orderWdgetsQient.h or der W dget sl npl . cxx
order Wdget sl npl . h or der W dget sSer ver . cxx

or der Wdget sServer. h Sanpl ed i ent . cxx

Sanpl eSer ver. cxx Makefi | e

d i ent _wsdl TypesFact ory. cxx dient_wsdl TypesFactory. h
wi dget s_wsdl Types. cxx wi dget s_wsdl Types. h

For the purposes of generating a web service client to interact with the
widget web server, you do not need any of the server, *Server. * and
or der W dget sl npl . cxx, source files.

13. Insert the highlighted code shown in “Client Implementation Code” on
page 64, to sanpl ed i ent. cxx to add the application logic to the
client.

14. Build the client.
UNIX

nmake client.exe
Windows

nmake client. exe

45

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

Testing the Application

Overview

Procedure

Sample output

46

Once all of the components are generated, your system is ready to be tested.

To test your Artix project complete the following steps:

1.
2.
3.

4.

Go to the widget project directory you created.
Run artix_env.
Go to the server directory.

The server will be located in the Server/ src/ cpp folder of your project
directory.

Start the server with the following command:

start server

5.

6.

Go to the client directory.

The client will be located in the d i ent/ src/ cpp folder of your project
directory.

Start the client with the following command:

start client

7.

Answer the questions to complete the widget order form.

The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Example 2 shows the output from a sample run of the Artix project.

Example 2: Sample Widget Order

C\IONA artix\ 1. 3\denos\ wi dget s>start client

Testing the Application

Example 2: Sample Widget Order

order Wdgets d i ent
How many wi dgets do you want to order?123

Wiat type of widgets do you want to order?

1- Bg
2 - Large
3 - Mungo

4 - @Grgantuan
Sel ection [1-4]4

Enter Street Address: 123 H m Street
Enter Apt. or Suite Nunber:
Enter Aty: Wl ford

Enter State:CT

Enter ZI P Code: 02343

Sendi ng Wdget O der

Bill for Your Wdgets

O der Nunber: 23:12: 4807/ 31/ 03
Date: 07/31/03

Quantity: 123

Type: Gargant uan

Amount Due: 123

Ship To:

123 EEm Street

Wal ford, CT
02343

47

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service

48

In this chapter

CHAPTER 3

Using Artix
Command Line
Tools to Build a
C++ Web Service

Artix Encompass is a world class utility for building C++ Web
services using simple, standard C++ programming
techniques. It provides all the tools needed to edit WSDL
contracts and generate starting point code for Web servers and
their clients.

This chapter discusses the following topics:

The Web Service Project page 50
Using Artix Encompass Tools page 51
Building the Widget Web Server page 55
Building the Widget Web Service Client page 57
Testing the Application page 59

49

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service

The Web Service Project

The problem scenario

How Artix simplifies solving the
problem

50

Your company produces widgets and has decided to automate its ordering
system to cut labor costs and reduce turnaround time. The new system will
allow the company’s customers to submit their orders electronically, will
generate and send electronic bills to the customer, and generate a work
order for your manufacturing system.

Your company’s ClO has determined he wants this new system to be
implemented using a Web service and that the development of both the
server and the client will be done in-house. Unfortunately, your IT
department doesn’t have anybody with solid Java or Web services skills and
there is no money or time to hire a new developer for this project.

Artix simplifies the solution to this problem by providing automated

generation of the following:

® C++ server skeletons which allow developers to program using
standard C++ metaphors

® C++ server implementation object method shells

® C++ client stubs which allow developers to program using standard
C++ metaphors

® C++ server mainline starting point code

® C++ client mainline starting point code

® makefiles for Unix or Windows

® deployment descriptors for Web services

Using Artix Encompass Tools

Using Artix Encompass Tools

Overview Artix Encompass provides a full set of command line tools to take a Web
service description and build the server stubs and client proxy code needed
to implement the service. In this case, the problem is to define a service that
receives an order and returns a bill. A full description of this service
includes:
® The structure of the data the service sends and receives
® The operations offered by the service
® The order in which the data is encoded
® The payload format the service uses
® The transport the service uses
® The location of the service.

A Web service is defined in a WSDL document. Artix tools import WSDL

directly and generate standard C+ + code as starting point for development
of the Web service.

The Web service description For the purposes of this example we will use a predefined Widget service
defined in Example 3.

Example 3: Vendor WSDL document

<?xm version="1.0" encodi ng="UTF-8"?>
<defi ni ti ons nane="wi dget O der For m wsdl "
t ar get Nanmespace="ht t p: / / wi dget Vendor . corm wi dget O der For n¥
xm ns="ht t p: // schenmas. xm soap. or g/ wsdl /"
xm ns: tns="htt p: //w dget Vendor . com w dget O der For n¥
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="htt p: / / wan. W3. or g/ 2001/ XM_Schema"
xm ns: xsd1="ht t p: // wi dget Vendor . coni t ypes/ wi dget Types" >
<t ypes>
<schera t ar get Namespace="htt p: / / wi dget Vendor . con t ypes/ wi dget Types"
xm ns="ht t p: / / waw. wW3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / " >

51

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service

Example 3: Vendor WSDL document

<xsd: si npl eType nane="wi dget Si ze">
<xsd:restriction base="xsd:string">
<xsd: enurrer ati on val ue="bi g"/>
<xsd: enurer ati on val ue="| arge"/ >
<xsd: enurrer at i on val ue="nungo"/ >
<xsd: enurrer ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType name="Address">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="street1" type="xsd:string"/>
<xsd: el ement nane="street2" type="xsd:string"/>
<xsd: el ement nane="city" type="xsd:string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el ement nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O derBil || nfo">
<xsd: sequence>
<xsd: el ement nane="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="ant Due" type="xsd:float"/>
<xsd: el ement name="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schena>
</ types>
<nessage nanme="w dget O der ">
<part name="w dget O der Form type="xsd1: w dget O der | nfo"/>
</ message>
<nessage nanme="w dget OrderBill">
<part name="w dget O der Conf or mati on" type="xsdl: w dget O derBilllnfo"/>
</ message>

52

Using Artix Encompass Tools

Example 3: Vendor WSDL document

<port Type nane="order W dget s">
<oper ati on name="pl aceW dget O der ">
<i nput nessage="tns: wi dget rder" nane="order"/>
<out put message="tns:w dget O derBill" nane="bill"/>
</ oper at i on>
</ por t Type>
<bi ndi ng nanme="or der W dget sBi ndi ng" type="tns: order Wdget s">
<soap: bi ndi ng styl e="rpc" transport="http://schenas. xn soap. or g/ soap/ http"/>
<oper ati on nane="pl aceW dget O der ">
<soap: oper ati on soapAction="" style="rpc"/>
<i nput nane="wi dget O der" >
<soap: body encodi ngStyl e="htt p://schenas. xnl soap. or g/ soap/ encodi ng/ "
nanmespace="htt p://wi dget Vendor . coni wi dget O der For nf use="encoded"/ >
</i nput >
<out put nane="w dgetOrderBil|">
<soap: body encodi ngStyl e="htt p://schenas. xn soap. or g/ soap/ encodi ng/ "
nanmespace="htt p://wi dget Vendor . coni wi dget O der For nf use="encoded"/ >
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="or der W dget sServi ce">
<port name="w dget O derPort" bi ndi ng="t ns: or der W dget sBi ndi ng" >
<soap: address | ocati on="http://| ocal host: 8080"/ >
</ port >
</ servi ce>
</ defini ti ons>

This WSDL document completely describes the interface exposed by the
Web service and the data that is passed to and from the server. Artix
Designer can import this file directly and use it in the Artix contract that
describes the entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

<t ypes> Defines the complex data types used by the service. This
service uses an enumerated type, wi dget Si ze, to
describe the widgets, a structure, Addr ess, to hold the
shipping address, and two structures, wi dget O der I nf o
and wi dget Order Bi | | I nf o, for the data needed to
process the order.

<nmessage> Defines the messages by which the service
communicates.

<port Type> Defines the operations offered by the service.

53

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service

<bi ndi ng> Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

<servi ce> Defines the address where the service can be contacted.

54

Building the Widget Web Server

Building the Widget Web Server

Overview

Procedure

Artix's wsdltocpp tool generates server stubs for any of the contracts used to
describe a component of your integration project. In addition, it generates a
sample server mainline, and generates a makefile to build the server.

Once wsdltocpp generates the stub code, you must write the
implementation logic using the C++ development environment of your
choice.

To develop the widget web server using wsdltocpp complete the following
steps:

1. Go to the Artix bi n directory.
UNIX

$I T_PRCDUCT DI R artix/1.3/bin
Windows
% T_PRODUCT DI RAartix\1.3\bin

2. Source the arti x_env script.
3. Go to the widgets demo directory.

UNIX

$I T_PRCDUCT_DI R arti x/ 1. 3/ denos/ wi dget s
Windows

% T_PRCDUCT_DI Rdarti x\ 1. 3\ denos\ wi dget s

4. Generate the server stubs from widget.wsdl using the wsdl t ocpp tool.

UNIX

wsdl t ocpp -sanpl e -server -inpl -m UN X w dgets. wsdl

55

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service

56

Windows
wsdl tocpp -sanpl e -server -inpl -m NVAKE wi dget s. wsdl

5. The following files are generated:

order Wdgets. h or der Wdget sl npl . cxx
order Wdgetslnpl . h or der W dget sSer ver. cxx

or der Wdget sServer. h Sanpl eSer ver. cxx

wi dgt s_wsdl TypesFact ory. cxx wi dgt s_wsdl TypesFactory. h
wi dgt s_wsdl Types. cxx wi dgt s_wsdl Types. h
Makefile

6. Insert the highlighted code shown in “Server Implementation Code” on
page 62, to or der Wdget sl npl . cxx to add the application logic to the
server.

7. Build the server.

UNIX
nake server. exe
Windows

nnake server. exe

Building the Widget Web Service Client

Building the Widget Web Service Client

Overview

Procedure

Artix generated proxy classes integrate smoothly into a standard C++
application. To use an Artix proxy you must initialize the Artix Bus and then
instantiate an instance of the proxy class. Once instantiated the proxy object
provides all of the functionality of the server through standard invocations of
its methods.

To create the widget web service client using wsdl t ocpp complete the
following steps:

1. Go to the Artix bi n directory.
UNIX

$I T_PRCDUCT_DI R arti x/ 1. 3/ bi n
Windows
% T_PRODUCT DI Roh arti x\ 1. 3\ bi n

2. Source the arti x_env script.
3. Go to the widgets demo directory.

UNIX

$I T_PRCDUCT_DI R arti x/ 1. 3/ denos/ wi dget s
Windows

% T_PRCDUCT_DI Rdarti x\ 1. 3\ denos\ wi dget s

4. Generate the client proxies from wi dget . wsdl using the wsdl t ocpp
tool.

UNIX

wsdl tocpp -sanple -client -mUN X wi dgets. wsdl

57

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service

Windows
wsdl tocpp -sanpl e -client -m NVAKE wi dget s. wsdl

5. The following files are generated:

order Wdgets. h order Wdget sd i ent . cxx
orderWdgetsQient.h Sanpl ed i ent. cxx

Makefil e wi dgt s_wsdl TypesFact ory. cxx
wi dgt s_wsdl TypesFact ory. h wi dgt s_wsdl Types. h

wi dgt s_wsdl Types. cxx

For the purposes of generating a Web service client to interact with the
widget web server, you do not need any of the server, *Server. * and
order Wdget s. i npl , source files.

6. Insert the highlighted code shown in “Client Implementation Code” on
page 64, to sanpl ed i ent. cxx to add the application logic to the
client.

7. Build the client.

UNIX
make client.exe
Windows

nmake client. exe

58

Testing the Application

Testing the Application

Overview

Procedure

Sample output

Once all of the components are generated, your system is ready to be tested.

To test your Artix project complete the following steps:
1. Go to the widget project directory you created.
2. Runartix_env.

3. Start the server with the following command:
start server
4. Start the client with the following command:
start client

5. Answer the questions to complete the widget order form.

The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Example 4 shows the output from a sample run of the Artix project.
Example 4: Sample Widget Order

C\IONA artix\1. 1\ denos\ wi dget s>start client

59

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service

Example 4: Sample Widget Order

orderWdgets dient
How many wi dgets do you want to order 2123

Wiat type of wi dgets do you want to order?

1- Bg
2 - Large
3 - Muingo

4 - @Grgantuan
Sel ection [1-4]4

Enter Street Address: 123 E m Street
Enter Apt. or Suite Nunber:
Enter Aty: Wl ford

Enter State: CT

Enter ZI P Code: 02343

Sendi ng Wdget O der

Bill for Your Wdgets

O der Nunber: 23:12:4807/31/03
Dat e: 07/31/03

Quantity: 123

Type: Gargant uan

Amount Due: 123

Shi p To:

123 H m Street

wal ford, CT
02343

60

In this appendex

APPENDEX A

Implementation

Code for the
Widget Server and
Client

This appendex contains the following:

Server Implementation Code page 62

Client Implementation Code page 64

61

CHAPTER A | Implementation Code for the Widget Server and Client

Server Implementation Code

Overview The logic of an Artix server is developed inside of an implementation class
generated by the Artix tools. This implementation code can typically be
written using standard C++. For more advanced functionality, like
transactions or security, you may need to use Artix-specific calls.

Code Example 5 shows the implementation code for the sample widget Web
service.

Example 5: Widget Server Implementation

#include <it_cal/iostream h>
#include <it_cal/fstreamh>
#include <it_cal/cal.h>

#i ncl ude <string. h>

#include <stdlib. h>

#i ncl ude "or der Wdget sl npl . h"

| T_USI NG NAMESPACE_STD

order Wdget sl npl : : order Wdget sl npl (I T_Bus:: Bus_ptr bus) : orderWdget sServer (bus)
{
}

or der W dget sl npl : : ~or der W dget sl npl ()
{
}

voi d order Wdget sl npl : : pl aceW dget O der (

const wi dget Orderlnfo & w dget O der Form

wi dget O derBilllnfo & w dget O der Conf or mat i on
) | T_THRONDECL((I| T_Bus: : Exception))
{

wi dget O der Conf or mat i on. set anount (wi dget O der For m get amount ()) ;

wi dget O der Conf or mat i on. set or der _dat e(wi dget O der For m get order _date());

62

Server Implementation Code

Example 5: Widget Server Implementation
wi dget O der Conf or mat i on. set t ype(wi dget O der Form gettype());

wi dget O der Conf or mat i on. set shi ppi ngAddr ess(
wi dget O der For m get shi ppi ngAddr ess());

I T _Bus::Float amDue = (float)(w dget O der Form get anount () * 1.00);
wi dget O der Conf or mat i on. set ant Due(ant Due) ;

char tenpQ dNunj 128], tenpBuf[20];

_strtinme(tenpQ d\un;

_strdat e(tenpBuf);

strcat (t enpQ d\Num t enpBuf) ;

wi dget O der Conf or mat i on. set or der Nunber (t enpQr dNun) ;

63

CHAPTER A | Implementation Code for the Widget Server and Client

Client Implementation Code

Overview The logic of an Artix client is developed using standard C+ + calls.
Artix-specific code is only needed to initialize the Artix Bus in the mainline of
your client. For more advanced functionality, like transactions or security,
you may need to use Artix specific-calls.

Code The client application logic code is shown in Example 6.

Example 6: Widget Web Service Client

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

<i t_bus/ bus. h>
<it_bus/ Excepti on. h>
<it_cal/iostream h>
<it_cal /fstreamh>
<string. h>

<stdlib. h>

<tinme. h>

"order Wdget s i ent . h"

| T_USI NG_NAMESPACE_STD
usi ng nanmespace | T_Bus;

| ong get_anount ()

{

| ong anount ;

cout << endl;
cout << "How many widgets do you want to order?" << flush;

cin >> anount;

retur n(anount) ;

64

Client Implementation Code

Example 6: Widget Web Service Client

wi dget Si ze get _type()

{

}

w dget S ze type;
char sel ecti on;

cout
cout
cout
cout
cout
cout
cout

cin

Swi t

{

}

<< endl ;

<< "What type of widgets do you want to order?" << endl;
<< "1 - Big" << endl;

<< "2 - Large" << endl;

<< "3 - Mingo" << endl;
<< "4 - Grgantuan" << endl;
<< "Selection [1-4]" << flush;
>> sel ecti on;
ch (sel ection)
case '1':
{
type. set_val ue("bi g");
br eak;
}
case '2':
{
type. set_val ue("l arge");
br eak;
}
case '3':
{
type. set _val ue(" nungo");
br eak;
}
case '4':
{
type. set _val ue("gar gant uan");
br eak;
def aul t
type. set _val ue("nungo");

return(type);

65

CHAPTER A | Implementation Code for the Widget Server and Client

66

Example 6: Widget Web Service Client

Addr ess get _address()

{

}

Addr ess addr ess;
char tenp[256];

cout << endl;
cout << "Enter Street Address:" << flush;

gets(tenp);

gets(tenp);
addr ess. set street 1(strdup(tenp));

cout << "Enter Apt.

gets(tenp);
addr ess. set street 2(strdup(tenp));

Il clears the buffer

or Suite Nunber:" << flush;

cout << "Enter Gty:" << flush;

gets(tenp);
addr ess. setci ty(strdup(tenp));

cout << "Enter State:" << flush;
cin >> tenp;
addr ess. set state(strdup(tenp));

cout << "Enter ZIP Code:" << fl ush;
cin >> tenp;
addr ess. set zi pCode(strdup(tenp));

return(address);

void print_bill (w dgetCderBilllnfo bill)

{

cout
cout
cout
cout

cout

cout

<<
<<
<<
<<

<<

<<

"Date: " <<
"Quantity:

"Type: " <<
"Amount Due:

"Bill for Your Wdgets" << endl;
"Order Nunber: " << bill.getorderNunber () << endl;

bill.getorder_date() << endl;

' << bill.getamount () << endl;

bill.gettype().get_val ue() << endl;

' << bill.getanmt Due() << endl;

Client Implementation Code

Example 6: Widget Web Service Client

}

cout << "Ship To:" << endl;

cout << bill.getshi ppi ngAddress().getstreet1() << endl;

cout << bill.getshi ppi ngAddress().getstreet2() << endl;

cout << bill.getshippi ngAddress().getcity() << ", " <<
bi | | . get shi ppi ngAddress().getstate() << endl;

cout << hill.getshi ppi ngAddr ess() . get zi pCode() << endl;

int main(int argc, char** argv)

{

cout << "orderWdgets dient" << endl;

/*

*

*/

O eate an instance of the web service client.

try
IT Bus::init(argc, argv);
orderWdgetsdient client;

/] Sanpl e invocation calls are shown in
// commented |ines bel ow

[*
::wdgetOrderlnfo w dget O der Form 0O;
:iwidgetOrderBilllnfo w dget O der Confornmation_1;
client.placeWdget Oder (w dget O der Form O,

wi dget O der Conf or mati on_1);
*/

67

CHAPTER A | Implementation Code for the Widget Server and Client

Example 6: Widget Web Service Client

wi dget OrderI nfo order_form

or der _f orm set anount (get _anount ());

char date[10] ;

_strdate(date);

order_form set order_dat e(strdup(date));
order_formsettype(get_type());

or der _f or m set shi ppi ngAddr ess(get _address());

widgetOderBilllnfo bill;
cout << "Sending Wdget Oder" << endl;

client.placeWdget O der(order_form bill);
print_bill(bill);

}
cat ch(1 T_Bus: : Excepti on& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e. Message()
<< endl ;
return -1;
}
return O;

68

Glossary

Artix Designer
A suite of GUI tools for creating and deploying Artix integration solutions.

Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <port Type>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

Connection
An established communication link between any two Artix endpoints.

Contract

An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <por t Type>, <oper at i on>, <nessage>, <t ype>, and <schena> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
‘operations.” The physical contract is specified in the <port >, <bi ndi ng> and
<servi ce> WSDL tags.

Contract Editor

A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.

69

GLOSSARY

70

Deployment Mode

One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

Embedded Mode

Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

End-point

The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application). Contrast with Service.

Host
The network node on which a particular service resides.

Marshalling Format

A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

Payload Format

The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL via the binding
definition.

Protocol
A protocol is a transport whose format is defined by an open standard.

71

GLOSSARY

72

Routing

The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both end-points and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router

A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

Service

An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point

The mechanism, and the points at which individual service providers and
consumers connect to the service bus.

Service Bus

The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

Standalone Mode

An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch

A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.

Transport
An on-the-wire format for messages.

Transport Plug-In

A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port > element of a contract.

73

GLOSSARY

74

Index

A

Artix Bus b

Artix contract 8

Artix Designer 28, 32
binding editor 17
contract editor 13
interface editor 15
message editor 15
operation editor 16
port editor 19
project tree 12
service editor 17
system diagram 11
type editor 14

B
binding 7, 31, 54

C

contract 7

contract editor
binding editor 17
interface editor 15
message editor 15
service editor 17
type editor 14

interface editor
operation editor 16

M
message 30, 53

o

operation 7

P

payload format 3, 8
portType 7, 30, 53

S
service 31, 54
Service Access Point 6, 7

T
types 30, 53

W

Web Services Definition Language 7
WSDL 28, 51

75

INDEX

76

	List of Figures
	Preface
	Artix Encompass Concepts
	Introduction to Artix Encompass
	The Elements of Artix
	The Artix Bus
	Artix Service Access Points
	Artix Contracts

	Solving Problems with Artix Encompass
	The Artix Designer
	Using the Artix Library

	Using Artix Designer to Build a C++ Web Service
	The Web Service Project
	Using Artix Designer
	Starting Artix Designer
	Creating an Artix Designer Project
	Building the Widget Web Server
	Building the Widget Web Service Client
	Testing the Application

	Using Artix Command Line Tools to Build a C++ Web Service
	The Web Service Project
	Using Artix Encompass Tools
	Building the Widget Web Server
	Building the Widget Web Service Client
	Testing the Application

	Implementation Code for the Widget Server and Client
	Server Implementation Code
	Client Implementation Code

	Glossary
	Index

