IONA

>3 Artix™

User's Guide

Version 1.2, October 2003

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Artix Encompass, Artix Relay, Orbix, Orbix/E,
ORBacus, Artix, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive Runt-
ime Technology, Transparent Enterprise Deployment, and Total Business Integration are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 07-Nov-2003

M3113

Contents

List of Figures
List of Tables
Preface

Chapter 1 Introduction to Using Artix
The Artix Bus
The Artix Design Process

Chapter 2 Understanding Artix Contracts
Web Services Description Language Basics
Abstract Data Type Definitions
Abstract Message Definitions
Abstract Interface Definitions
Mapping to the Concrete Details
Artix Contract Specifics

The Logical Section
The Physical Section

Chapter 3 Configuration
Establishing the Host Computer Environment
Configuring Artix Runtime Behavior
Runtime Configuration Variables

ORB Plug-ins List
Binding Lists
Thread Pool Control
Artix Plug-in Configuration
Routing Plug-in
CORBA Plug-in
TIBCO Rendezvous Plug-in
Tuxedo Plug-in

Xi

Xiii

N =

11
14
17
20
21
23
25

27
28
31
35
36
38
40
42
43
45
46
47

CONTENTS

Locator Service Plug-in

Locator Service Endpoint Plug-in
Session Manager Plug-in

Session Manager Simple Policy Plug-in
Session Manager Endpoint Plug-in

Chapter 4 Artix Standalone Service

The Artix Standalone Service

Configuring the Service

Starting and Stopping the Service

Installing the Service as a Windows Service
Contracts for the Standalone Service

Chapter 5 Routing

Artix Routing

Configuring Artix to Use Routing

Compatibility of Ports and Operations

Defining Routes in Artix Contracts
Using Port-Based Routing
Using Operation-Based Routing
Advanced Routing Features

Attribute Propagation through Routes

Routing with Artix Designer

Error Handling

Chapter 6 Using the Artix Locator Service

Chapter 7 Using the Artix Session Manager

Deploying the Locator

Registering a Server with the Locator
Obtaining References from the Locator
Controlling Server Workloads

Fault Tolerance

Introduction to Session Management in Artix
Deploying the Session Manager

Registering a Server with the Session Manager
Working with Sessions

Fault Tolerance

48
49
50
51
52

53
54
57
59
61
63

65
66
67
68
71
72
75
78
82
84
91

93
95
99

101
104
106

107
108
111
116
119
127

Chapter 8 Artix Logging and SNMP Support

Artix Logging
Using Trace Macros
Application Server Platform Trace Macros
Using the SNMP Logging Plug-in
Using the XML Logging Plug-in
IT_Logging Overview
IT_Logging::LogStream Interface
Example
Using the Logging Functionality
Performance Logging

Chapter 9 Load Balancing

Load Balancing with the Artix Locator
Load Balancing with CORBA

Chapter 10 Using the CORBA Plug-in

CORBA Type Mapping

Primitive Type Mapping

Complex Type Mapping

Mapping XMLSchema Features that are not Native to IDL
Modifying a Contract to Use CORBA

Adding a CORBA Binding

Adding a CORBA Port
Generating IDL from an Artix Contract
Generating a Contract from IDL
Configuring Artix to Use the CORBA Plug-in
Using the CORBA Naming Service
Embedding Artix in a CORBA Application

Chapter 11 Using the HTTP Plug-in

HTTP Overview
Adding an HTTP Port
Adding an HTTP Port for Non-Secure Connections
Adding an HTTP Port for Secure Connections
HTTP WSDL Extensions
HTTP WSDL Extensions Overview
HTTP WSDL Extensions Details

CONTENTS

129
130
131
133
135
142
149
153
156
157
158

163
164
166

173
174
175
177
189
197
198
206
211
213
221
222
224

227
228
235
236
242
245
246
248

CONTENTS

HTTP Transport Attributes
Transport Attributes Overview
Server Transport Attributes
Client Transport Attributes

Chapter 12 Using the WebSphere MQ Plug-in
Introduction
Describing an Artix WebSphere MQ Port
Configuring an Artix WebSphere MQ Port
Adding an WebSphere MQ Port to an Artix Contract

Chapter 13 Using the Tuxedo Plug-in
Introduction
Using FML Buffers
Mapping FML Buffer Descriptions to Artix Contracts
Using the Tuxedo Transport
Embedding Artix in the Tuxedo Container

Chapter 14 Using the TIBCO Rendezvous Plug-in
Introduction
Using TibrvMsg
Using the TIB/RV Transport

Chapter 15 Using the 1IOP Tunnel
Introduction to IIOP Tunnels
Modifying a Contract to Use the IIOP Tunnel
Using the CORBA Naming Service

Chapter 16 Payload Formats
G2+ + Data Format
Fixed Record Length Data Format
Fixed Record Length Message Data Mapping
Adding a Fixed Record Length Binding to an Artix Contract
Pure XML Format
Tagged Data Format
Tagged Data Mapping
Adding a Tagged Data Binding to an Artix Contract

Vi

266
267
268
270

271
272
273
274
283

287
288
289
290
294
298

301
302
303
307

315
316
317
323

325
326
333
334
343
350
355
356
364

CONTENTS

Chapter 17 SOAP Payload Format 373
Overview of SOAP 374
Background to SOAP 375

SOAP Messages 378

SOAP Encoding of Data Types 384

Adding a SOAP Binding 392
Adding a Port for SOAP over HTTP 398
Adding a Port for Non-Secure Connections 399

Adding a Port for Secure Connections 402

SOAP WSDL Extensions 405

SOAP WSDL Extensions Overview 406

SOAP WSDL Extensions Details 407

Supported XML Types 417
Glossary 423

Index 427

vii

CONTENTS

viii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Artix Message Transporting

An Artix Contract

Using multiple Artix daemons
Using a single Artix daemon
Routing WSDL Location

Source and Destination Selection
Route Properties

Transport Attribute Routing Rules
Operation Routing Selection

: Review of Route Information

: The Session Manager Plug-ins

: Select WSDL location

: Select Interface to Map to CORBA
: Edit the CORBA Binding

: Select WSDL Location

: Edit CORBA Port Properties

: IDL Import

: IDL Include Directories

: Select WSDL location

: Selecting an HTTP Transport Type

: Example Set of HTTP Configuration Settings in GUI
: Example Set of SSL-Related HTTP Configuration Settings

: Select WSDL location

: WebSphere MQ Port Properties
: Select WSDL Location

: Edit Tuxedo Port Properties

21
55
55
85
86
87
88
89
90
109
201
202
203
208
209
214
215
237
238
240
243
284
285
295
296

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:

Select WSDL Location

Edit IIOP Tunnel Port Properties

Binding Selection

Fixed Binding Information Screen

Select WSDL location

Select Interface to Map to XML Format

Edit the CORBA Binding

Binding Selection

Tagged Binding Information Screen

Overview of Role of SOAP Encoding and Decoding
Select WSDL location

Editing a SOAP Binding for an Operation
Selecting a SOAP Transport Type

Example Set of SSL-Related HTTP Configuration Settings

320
321
344
345
352
353
354
365
366
385
393
395
400
403

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:

Part Data Type Attributes

Operation Message Elements

Attributes of the Input and Output Elements
Artix Namespaces

Artix Transport Plug-ins

Artix Payload Format Plug-ins

Artix Service Plug-ins

Artix Standalone Service Configuration Variables
it_artix_service Parameters

it_artix_service Parameters

it_artix_service Parameters

IT_Logging Common Data Types, Methods, and Macros
Primitive Type Mapping for CORBA Plug-in
Complex Type Mapping for CORBA Plug-in
HTTP Server Configuration Attributes
HTTP Client Configuration Attributes

HTTP Server Transport Attributes

HTTP Client Transport Attributes
Supported WebSphere MQ Features
WebSphere MQ Port Attributes

UsageStyle Settings

MQGET and MQPUT Actions

Artix WebSphere MQ Access Modes
ReportOption Attribute Settings
FormatType Attribute Settings

Artix FML Feature Support

15
17
18
23
36
37
37
57
59
61
62
149
175
177
248
255
268
270
272
274
276
277
277
279
281
288

Xi

LIST OF TABLES

Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:

Xii

Supported TIBCO Rendezvous Features
TibrvMsg Binding Attributes

TIBCO to XSD Type Mapping

TIB/RV Transport Properties

TIB/RV Supported Payload formats
Attributes for soap:binding

Attributes for soap:operation

Attributes for soap:body

soap:fault attributes

Attribute for soap:address

302
303
304
307
309
407
409
410
415
416

Audience

Organization of this guide

Preface

This guide is intended for Artix System designers. It assumes that the reader
has a working knowledge of the middleware transports that are being used
to implement the Artix system. It also assumes that the reader is familiar
with WSDL and software design concepts.

This guide is divided as follows:

Chapter 1 provides an overview of the concepts behind using Artix to
solve integration projects.

Chapter 2 describes the use of Web Services Description Language and
the specifics of Artix contracts.

Chapter 3 describes how to configure Artix services to provide optimal
performance.

Chapter 4 describes how to deploy the Artix standalone service.
Chapter 5 describes how to create message routes using Artix.
Chapter 6 describes how to use the Artix Locator Service.

Chapter 7 describes how to use the Artix Session Manager.

Chapter 8 provides a detailed discussion of using the advanced logging
features of Artix.

Chapter 10 describes how to integrate CORBA systems into an Artix
solution.

Chapter 11 describes how to use HTTP with Artix.

Chapter 12 describes how to integrate IBM WebSphere MQ systems
into an Artix solution.

xiii

PREFACE

Online help

Related documentation

Reading path

Xiv

® Chapter 13 describes how to use FML and BEA Tuxedo in an Artix
solution.

® Chapter 14 describes how to integrate TIBCO Rendezvous into an Artix
solution.

® Chapter 16 describes how to use the different payload formats
supported by Artix.

Artix includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.
® Adescription of each screen.

® A comprehensive index and glossary.

® Afull search feature.

® Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

The document set for Artix includes the following:
® QGetting Started with Artix

® Artix Tutorial

® Artix User’s Guide

® Artix C++ Programmer’s Guide

® Artix Security Reference

® Artix Thread Library Reference

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

If you are new to Artix, you should read the documentation in the following

order:

1. Getting Started with Artix
The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ client for a Web Service.

2. Artix Tutorial
The tutorial guides you through programming Artix applications against
all of the supported transports.

http://www.iona.com/support/docs
http://www.iona.com/support/docs

Additional resources

Typographical conventions

PREFACE

3. The Artix User’s Guide
The user’s guide describes the development pattern for designing and
deploying Artix enabled systems. It provides detailed examples for a
number of typical use cases.

4. GUI Online Help
The Artix design tools have context sensitive online help that provides
information specific to the tools that you are using.

5. Artix C++ Programmer’s Guide
The programmer’s guide discusses the technical aspects of
programming applications using the Artix C++ API.

The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com .

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QCRBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

XV

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Italic

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Keying conventions This guide may use the following keying conventions:

No prompt

%

(1

{}

XVi

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

CHAPTER 1

Introduction to
Using Artix

Artix allows you to design and deploy integration solutions that
are middleware-neutral.

In this chapter This chapter discusses the following topics:
The Artix Bus page 2
The Artix Design Process page 5

CHAPTER 1 | Introduction to Using Artix

The Artix Bus

Overview

The Artix bus provides a middleware connectivity solution that minimizes
invasiveness and lets an organization avoid being locked into any one
middleware transport. For example, the Artix bus can be used to connect a
BEA Tuxedo™-based server to a CORBA client. The Artix bus transparently
handles the message mapping and transformation between them. The
Tuxedo server is unaware that its client is using CORBA. In fact, with the
bus handling the communication, the client could be changed to an IBM
WebSphere MQ™ client without modifying the server.

Bus message transporting

The Artix bus shields applications from the details of the transports used by
applications on the other end of the bus, by providing on-the-wire message
transformation and mapping. Unlike the approach taken by Enterprise
Application Integration (EAI) products, the Artix bus does not use an
intermediate canonical format; it transforms the messages once. Figure 1
shows a high level view of how a message passes through the bus.

No Canonical Format: Direct On-The-Wire Transformation

Tuxedo Artix Bus MQSeries

"—I binding 1—| I—P biirvcling l—*

LTranspnrt of Choice <J

Figure 1: Artix Message Transporting

The approach taken by the Artix bus provides a high level of throughput by
avoiding the overhead of making two transformations for each message. The
approach does, however, limit the flexibility of message mapping. The Artix
bus can only map messages across varying transports; it cannot modify the
content or structure of the message.

Supported message transports

Supported payload formats

Bus contracts

The Artix Bus

The Artix bus supports the following message transports:
® HTTP

® BEA Tuxedo

®* IBM WebSphere MQ

* |IOP
® TIBCO Rendezvous™
® |IOP Tunnel

The Artix bus can automatically transform between the following payload
formats:

* G2++

® FML - Tuxedo format

® CORBA (GIOP) — CORBA format

® FRL - fixed record length

® VRL - variable record length

® SOAP

® TibrvMsg - TIBCO Rendezvous format

An Artix bus contract defines the interaction of a Service Access Point (SAP)
or endpoint with an Artix bus. Contracts are written using a superset of the

standard Web Service Definition Language (WSDL). Following the procedure
described by W3C, IONA has extended WSDL to support the bus’ advanced
functionality, and use of transports and formats other than HTTP and SOAP.

A bus contract consists of two parts:

Logical

The logical portion of the contract defines the namespaces, messages, and
operations that the SAP exposes. This part of the contract is independent of
the underlying transports and wire formats. It fully specifies the data
structures and possible operation/interaction with the interface. It is made
up of the WSDL tags <message>, <oper ati on>, and <por t Type>.

Physical

The physical portion of the contract defines the transports, wire formats,
and routing information used to deliver messages to and from SAPs, over
the bus. This portion of the contract also defines which messages use each

CHAPTER 1 | Introduction to Using Artix

Deployment models

Advanced Features

of the defined transports and bindings. The physical portion of the contract
is made up of the standard WSDL tags <bi ndi ng>, <port >, and

<oper at i on>. It is also the portion of the contract that may contain IONA
WSDL extensions.

Applications that use the Artix bus can be deployed in one of two ways:

Embedded mode is the most invasive use of the Artix bus and provides the
highest performance. In embedded mode, an application is modified to
invoke Artix functions directly and locally, as opposed to invoking a
standalone Artix service. This approach is the most invasive to the
application, but also provides the highest performance. Embedded mode
requires linking the application with Artix-generated stubs and skeletons to
connect client and server (respectively) to the Bus.

Standalone mode runs as a separate process invoked as a service. In
standalone mode, the Artix bus provides a zero-touch integration solution on
the application side. When designing a system, you simply generate and
deploy the Artix contracts that specify each endpoint of the bus. Because a
standalone switch is not linked directly with the applications that use it (as
in embedded mode), a contract for standalone mode deployment must
specify routing information. This is the least efficient of the two modes.

The Artix bus also supports the following advanced functionality:

® Message routing based on the operation or the port, including routing
based on characteristics of the port.

® Transaction support over Tuxedo and WebSphere MQ.

® SSL and TLS support.

® Security support for Tuxedo and WebSphere MQ.

® Container based deployment with IONA’s Application Server Platform
6.0 and Tuxedo 7.1 or higher.

The Artix Design Process

The Artix Design Process

Overview

Creating an Artix contract

Artix is a flexible and easy to use tool for integrating your existing
applications across a number of different middleware platforms. Artix also
makes it easy to expose your existing applications as Web services or as a
service for any number of applications using other middleware transports. In
addition, Artix provides a flexible programming model that allows you to
create new applications that can communicate using any of protocols that
Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a
straightforward process which requires a minimum of coding. The Artix
Designer provides a full suite of wizards to guide you through the modeling
of your systems, the generation of Artix components, and the deployment of
your system. Artix also ships with a number of command line tools that can
be used to generate Artix components.

Regardless of the complexity of your Artix project or the tools you chose to
develop your Artix project, there are four basic steps in developing a solution
using Artix:

1. Create an Artix contract to model your existing services.

2. Modify your Artix contract to describe how you intend to integrate or
expose your systems.

3. Generate the Artix components.

4. Develop any application level code needed to complete the solution.

The first step in solving a problem using Artix is to create a contract which
models the services you want to integrate. This involves creating logical
descriptions of the data and the operations you want the services to share,
and mapping them to the physical payload formats and transports the
services use to expose themselves to the network. Artix uses the industry
standard Web Services Description Language (WSDL) to model services.

For more information on Artix contracts and modeling services in WSDL,
read “Understanding Artix Contracts” on page 7.

CHAPTER 1 | Introduction to Using Artix

Describe the integration of the
services

Generate Artix components

Develop application code

After describing how your services are currently deployed, you must decide
how you want them to be integrated. If your services share a common
interface, you may simply need to add routing rules to your contract. Artix
provides a rich set of routing capabilities to map operations and interfaces to
one another. For a detailed discussion of routing, see Chapter 5 on page 65.

If you are exposing an existing service using a new transport or payload
format, you need to add the mapping of the service's data and operations to
the new payload format and transport.

If you are using Artix in standalone mode, you will need to generate a
configuration scope for your Artix switch and save the Artix contract defining
the interaction of your services.

If you are using Artix in embedded mode, you will also need to generate the
Artix stubs and skeletons that will form the backbone of your Artix
application code.

For a detailed discussion of Artix configuration, see Chapter 3 on page 27.

For a detailed description of generating Artix stubs and skeletons, see the
Artix C++ Programmer’s Guide.

Unless your services share identical interfaces, you will need to develop
some application code. Artix can only map between services that share a
common interface. Typically, you can make the required changes to only
one side of the services you are integrating and you can write the application
code using a familiar programming paradigm. For example, if you are a
CORBA developer integrating a CORBA system with a Tuxedo application,
Artix will generate the IDL representing the interface used in the service
integration. You can then implement the interface using CORBA.

If you are developing new applications using Artix, you will have to write the
application logic from scratch using the stubs and skeletons generated by
Artix. For a detailed discussion of developing applications using Artix, see
the Artix C++ Programmer’s Guide.

In this chapter

CHAPTER 2

Understanding
Artix Contracts

Artix contracts are WSDL documents that have IONA-specific
WSDL extensions, and which define Artix applications.

This chapter discusses the following topics:

Web Services Description Language Basics page 8

Abstract Data Type Definitions page 11
Abstract Message Definitions page 14
Abstract Interface Definitions page 17
Mapping to the Concrete Details page 20
Artix Contract Specifics page 21

CHAPTER 2 | Understanding Artix Contracts

Web Services Description Language Basics

Overview

Web service endpoints and Artix
service access points

Abstract operations

Port types

Concrete details

Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website, www.w3.org.

WSDL documents describe a service as a collection of endpoints. Each
endpoint is defined by binding an abstract operation description to a
concrete data format and specifying a network protocol and address for the
resulting binding.

Artix service access points extend the concept of endpoint to include
services that are available over any computer network, not just the web. A
service access point can be bound to payload formats other than SOAP and
can use transports other than HTTP.

The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Or, one WSDL document could be used to define several services
that use the same abstract messages.

A portType is a collection of abstract operations that define the actions
provided by an endpoint. When a port type is mapped to a concrete data
format, the result is a concrete representation of the abstract definition, in
the form of an endpoint or service access point.

The mapping of a particular port type to a concrete data format results in a
reusable binding. A port is defined by associating a network address with a
reusable binding, and a collection of ports define a service.

http://www.w3.org/TR/wsdl

Namespaces and imported
descriptions

Elements of a WSDL document

Example

Web Services Description Language Basics

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

WSDL supports the use of XML namespaces defined in the <def i ni ti on>
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

A WSDL document is made up of the following elements:

® <types> — the definition of complex data types based on in-line type
descriptions and/or external definitions such as those in an XML
Schema (XSD).

® <nessage> — the abstract definition of the data being communicated.

® <operation>- the abstract description of an action.

® <port Type> — the set of operations representing an absract endpoint.

® <bindi ng>— the concrete data format specification for a port type.

® <port> - the endpoint defined by a binding and a physical address.

® <service> — a set of ports.

Example 1 shows a simple WSDL document. It defines a SOAP over HTTP
service access point that returns the date.

Example 1: Simple WSDL

<?xm version="1.0"?>
<defi ni ti ons nanme="Dat eServi ce"
t ar get Namespace="ur n: dat eser vi ce"
xm ns="http://schenas. xm soap. or g/ wsdl / "
xm ns: SOAP- ENC="ht t p: / / schenas. xm soap. or g/ soap/ encodi ng/ "
xm ns: soap="ht t p: // schemas. xm soap. or g/ wsdl / soap/ "
xm ns: t ns="ur n: dat eservi ce"
xm ns: xsd="ht t p: / / waw. W8. or g/ 2001/ XM_Schena"
xm ns: xsd1="http: //i ona. coni dat es/ schenas" >

CHAPTER 2 | Understanding Artix Contracts

Example 1: Simple WSDL

<t ypes>
<schena t ar get Namespace="htt p: //i ona. coni dat es/ schenas"
xm ns="ht t p: / / waw. W8. or g/ 2000/ 10/ XM_Schena" >
<el ement nane="dat eType" >
<conpl exType>>
<al | >
<el ement nanme="day" type="xsd:int"/>
<el ement nanme="nonth" type="xsd:int"/>
<el enent name="year" type="xsd:int" />
</all>
</ conpl exType>
<el erment >
</ schenma>
</ types>
<message nane="Dat eResponse" >
<part name="date" el enent ="xsdl: dateType" />
</ message>
<port Type nane="Dat ePort Type" >
<oper ati on name="sendDat e" >
<out put nessage="t ns: Dat eResponse" nane="sendDate" />
</ oper at i on>
</ port Type>
<bi ndi ng name="Dat ePor t Bi ndi ng" type="t ns: Dat ePort Type" >
<soap: bi ndi ng styl e="rpc"
transport ="http://schemas. xni soap. or g/ soap/ http" />
<oper ati on nane="sendDat e" >
<soap: oper at i on soapActi on=
<out put nane="sendDat e" >
<soap: body
encodi ngSt yl e="htt p: // schenas. xm soap. or g/ soap/ encodi ng/ "
namespace="ur n: dat eservi ce" use="encoded" />
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce nane="Dat eServi ce">
<port bi ndi ng="t ns: Dat ePort Bi ndi ng" name="Dat ePort" >
<soap: address | ocation="http://wwm\. i ona. coni DatePort/" />
</ port>
</ servi ce>
</ defini ti ons>

style="rpc" />

10

Abstract Data Type Definitions

Abstract Data Type Definitions

Overview Applications typically use datatypes that are more complex than the
primitive types, like i nt, defined by most programming languages. WSDL
documents represent these complex datatypes using a combination of
schema types defined in referenced external XML schema documents and
complex types described in <t ypes> elements.

Complex type definitions Complex data types are described in a <t ypes> element. The W3C
specification states the XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire and not concrete descriptions, there are a few guidelines on using
XSD schemas to represent them:

® Use elements, not attributes.
® Do not use protocol-specific types as base types.

® Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, per sonal | nf o, defined in Example 2, contains a string, an
i nt, and an enum The string and the i nt both have equivalent XSD types
and do not require special type mapping. The enumerated type
hai r Col or Type, however, does need to be described in XSD.

Example 2: personalinfo

enum hai r Col or Type {red, brunette, blonde};

struct personal | nfo
{ .

string nang;

int age;

hai r Col or Type hai r Col or;
}

11

CHAPTER 2 | Understanding Artix Contracts

Example 3 shows one mapping of per sonal I nf o into XSD. This mapping is
a direct representation of the data types defined in Example 2.

hai r Col or Type is described using a named si npl eType because it does not
have any child elements. per sonal | nf o is defined as an el enent so that it
can be used in messages later in the contract.

Example 3: XSD type definition for personallnfo

<types>
<xsd: schema t ar get Nanmespace="ht t p: \\i ona. com per sonal \ schema"
xm ns: xsd1="htt p:\\i ona. com per sonal \ schena"
xm ns="ht t p: / / waw. W8. or g/ 2000/ 10/ XM_Schena" >
<si npl eType name="hai r Col or Type" >
<restriction base="xsd:string">
<enuner ation val ue="red" />
<enuner ation val ue="brunette" />
<enuner ati on val ue="bl onde" />
</ restriction>
</ si npl eType>
<el enment nane="personal | nf 0" >
<conpl exType>
<el enent name="name" type="xsd:string" />
<el enent nanme="age" type="xsd:int" />
<el enent name="hair Col or" type="xsdl: hair Col or Type" />
</ conpl exType>
</ el ement>
</ schena>
</ types>

Another way to map personallnfo is to describe hai r Gol or Type in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hai r Col or Type.

Example 4: Alternate XSD mapping for personalinfo

<types>
<xsd: schema t ar get Nanespace="ht t p: \\i ona. com per sonal \ schema"
xm ns: xsd1="htt p: \\i ona. com per sonal \ schena"
xm ns="ht t p: / / waw. W3. or g/ 2000/ 10/ XM_Schena" >
<el enment nane="personal | nf 0" >
<conpl exType>

<el enent name="nane" type="xsd:string" />
<el enent nanme="age" type="xsd:int" />

12

Abstract Data Type Definitions

Example 4: Alternate XSD mapping for personalinfo

<el enent nane="hai r Col or ">
<si npl eType>
<restriction base="xsd: string">
<enuner ation val ue="red" />
<enuner ation val ue="brunette" />
<enurrer ati on val ue="bl onde" />
</ restriction>
</ si npl eType>
</ el enent >
</ conpl exType>
</ el enent >
</ schena>
</ types>

13

CHAPTER 2 | Understanding Artix Contracts

Abstract Message Definitions

Overview

Messages and parameter lists

Example

14

WSDL is designed to describe how data is passed over a network and
because of this it describes data that is exchanged between two endpoints
in terms of abstract messages described in <nessage> elements. Each
abstract message consists of one or more parts, defined in <part > elements.
These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s <bi ndi ng> elements.

For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and one output message, the representation of the data returned by the
operation. In the abstract message definition, you cannot directly describe a
message that represents an operation's return value, therefore any return
value must be included in the output message

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of <part > elements that represent one element in a
parameter list. Therefore, all of the input parameters for a method call are
defined in one message and all of the output parameters, including the
operation’s return value, would be mapped to another message.

For example, imagine a server that stored personal information as defined in
Example 2 on page 11 and provided a method that returned an employee’s
data based on an employee ID number. The method signature for looking up
the data would look similar to Example 5.

Example 5: personalinfo lookup method

per sonal | nfo | ookup(l ong enpl d)

Abstract Message Definitions

This method signature could be mapped to the WSDL fragment shown in
Example 6.

Example 6: WSDL Message Definitions

<nessage name="per sonal LookupRequest ">
<part name="enpl d" type="xsd:int" />
<nessage />
<nessage name="per sonal LookupResponse>
<part name="return" el enent="xsdl: personal | nfo" />
<nessage />

Message naming Each message in a WSDL document must have a unique name within its
namespace. It is also recommended that messages are named in a way that
represents whether they are input messages, requests, or output messages,
responses.

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name and an attribute specifying its data type. The
data type attributes are listed in Table 1

Table 1: Part Data Type Attributes

Attribute Description

type="t ype_nane" The datatype of the part is defined by a
si npl eType or conpl exType called t ype_nane

el enent ="el em nane" | The datatype of the part is defined by an
el enent called el em nane.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, f oo, that is passed by reference or is an in/out, it can be a part in
both the request message and the response message as shown in

Example 7.

Example 7: Reused part
<nessage nanme="f ooRequest ">

<part name="foo" type="xsd:int" />
<nessage>

15

CHAPTER 2 | Understanding Artix Contracts

Example 7: Reused part
<nessage nane="f ooRepl y" >

<part name="foo" type="xsd:int" />
<nessage>

16

Abstract Interface Definitions

Abstract Interface Definitions

Overview

Port types

Operations

Elements of an operation

WSDL <por t Type> elements define, in an abstract way, the operations
offered by a service. The operations defined in a port type list the input,
output, and any fault messages used by the service to complete the
transaction the operation describes.

A port Type can be thought of as an interface description and in many Web
service implementations there is a direct mapping between port types and
implementation objects. Port types are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

Port types are described using the <port Type> element in a WSDL
document. Each port type in a WSDL document must have a unique name,
specified using the name attribute, and is made up of a collection of
operations, described in <oper at i on> elements. A WSDL document can
describe any number of port types.

Operations, described in <oper at i on> elements in a WSDL document are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a port type must have a unique name, specified using
the nare attribute. The nane attribute is required to define an operation.

Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.
The elements that can describe an operation are listed in Table 2.

Table 2: Operation Message Elements

Element Description
<i nput > Specifies a message that is received from another
endpoint. This element can occur at most once for each
operation.

17

CHAPTER 2 | Understanding Artix Contracts

Return values

18

Table 2: Operation Message Elements

Element Description

<out put > Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

<faul t> Specifies a message used to communicate an error
condition between the endpoints. This element is not
required and can occur an unlimited number of times.

An operation is required to have at least one i nput or out put element. The
elements are defined by two attributes listed inTable 3.

Table 3: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the nessage attribute
must correspond to the nane attribute of one of the abstract
messages defined in the WSDL document.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name. If only one element is used in the operation, the element
name defaults to the name of the operation. If both an i nput and an out put
element are used, the element name defaults to the name of the operation
with Request or Response respectively appended to the name.

Because the port type is an abstract definition of the data passed during in
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value it will be mapped into the out put
message as the last <par t > of that message. The concrete details of how the
message parts are mapped into a physical representation are described in
the binding section.

Example

Abstract Interface Definitions

For example, in implementing a server that stored personal information in
the structure defined in Example 2 on page 11, you might use an interface
similar to the one shown in Example 8.

Example 8: personallnfo lookup interface

interface personal | nf oLookup

{
personal | nfo | ookup(in int enplD)
rai ses(i d\ot Found) ;

}
This interface could be mapped to the port type in Example 9.
Example 9: personalinfo lookup port type

<nessage name="per sonal LookupRequest ">
<part name="enpl d" type="xsd:int" />
<nessage />
<nessage name="per sonal LookupResponse" >
<part name="return" el enent="xsdl: personal | nfo" />
<nessage />
<nessage name="i dNot FoundExcept i on">
<part nane="exception" el enent="xsd1:idNot Found" />
<nessage />
<port Type nane="per sonal | nf oLookup" >
<oper ati on name="| ookup" >
<i nput name="enpl D' nessage="per sonal LookupRequest" />
<out put nane="return" message="personal LookupResponse" />
<fault name="excepti on" nmessage="i dN\Not FoundException" />
</ operation>
</ port Type>

19

CHAPTER 2 | Understanding Artix Contracts

Mapping to the Concrete Details

Overview

Bindings

Services

20

The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions need
to be mapped to concrete representations of the data passed between the
applications and the details of the network protocols need to be added.

This is done by the WSDL bindings and ports. WSDL binding and port
syntax is not tightly specified by W3C. While there is a specification defining
the mechanism for defining the syntaxes, the syntaxes for bindings other
than SOAP and network transports other than HTTP are not bound to a
W3C specification.

To define an endpoint that corresponds to a running service, port types are
mapped to bindings which describe how the abstract messages defined for
the port type map to the data format used on the wire. The bindings are
described in <bi ndi ng> elements. A binding can map to only one port type,
but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data
types, and return values are specified. For example, the parts of a message
can be reordered in a binding to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

The final piece of information needed to describe how to connect a remote
service is the network information needed to locate it. This information is
defined inside a <port > element. Each port specifies the address and
configuration information for connecting the application to a network.

Ports are grouped within <ser vi ce> elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example all of the ports might be bound
to the same port type, but use different network protocols, like HTTP and
WebSphere MQ.

Artix Contract Specifics

Artix Contract Specifics

Overview Artix contracts are WSDL documents that describe Artix service access
points and their integration. Each mapping of a port type to a binding and
port defines an Artix service access point. An Artix contract also describes

the routing between service access points.

An Artix contract has two sections as shown in Figure 2:

Logical describes the abstract operations, messages, and data types used

by a service access point.

Physical describes the concrete message formats and transports used by a
service access point. The routing information defining how messages are
mapped between different service access points is also specified here.

Artix WSDL

r PortType
8 Operations Generates
o Messages —
2 Types

Bindin Specifies
2 g et
<
”
gl PO rt Specifies

—_—

Figure 2: An Artix Contract

o CH++

« Java

« XML
G2+
+FRL

- MQ
< llIoP
+ TUX

« FML
*VRL
+FRL

* TIB/RV
« HTTP

In this section The following topics are discussed in this section:

21

CHAPTER 2 | Understanding Artix Contracts

22

The Logical Section

page 23

The Physical Section

page 25

Artix Contract Specifics

The Logical Section

Overview

Namespaces

The logical section of an Artix contract defines the abstract operations that
the service access points offer. The logical view includes the <t ypes>,
<nessage>, and <por t Type> tags in a WSDL document. This portion of the
contract also specifies the namespaces used in defining the contract.

Artix contracts use several IONA-specific namespaces to define the Artix
extensions for mapping to different data formats and network transports.
These namespaces include:

Table 4: Artix Namespaces

Namespace Description
http://schenas. i ona. com transports/ http Specifies the WSDL extensions for HTTP
http://schenas. i ona. conitransports/ http/configuration | Specifies additional extensions to configure
the HTTP transport.

http://schemas. i ona. cond bi ndi ngs/ cor ba Specifies the WSDL extensions used to map
data to CORBA. This namespace also
specifies the transport specific configuration
setting for a CORBA port.

http: //schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenap Specifies the type mapping information used
to fully describe complex CORBA types
defined in IDL.

http://schenas. i ona. con routi ng Specifies the WSDL extensions to define
routing between Artix SAPs.

http: // schemas. i ona. cond t ransport s/ ny Specifies the WSDL extensions to configure

the WebSphere MQ transport.

23

CHAPTER 2 | Understanding Artix Contracts

Port types and code generation The Artix code generation tools, including the IDL generator, are driven by
the port types defined in an Artix contract. For each port type defined in a
contract, the code generators create an object named for the port type it
represents. For example, the port type defined in Example 9 on page 19
results in an object similar to the one shown in Example 10.

Example 10: personallnfo Object
cl ass personal | nf oLookup
{

per sonal | nf oLookup() ;
~per sonal | nf oLookup() ;

voi d | ookup(int enpl D, personal LookupResponse &return);

}

For more information on Artix code generation, see the Artix C++
Programmer’s Guide.

24

Artix Contract Specifics

The Physical Section

Overview

Bindings

Network protocols

CORBA type map

Routing

The physical section of an Artix contract defines the actual bindings and
transports used by the service access points. It includes the information
specified in the <bi ndi ng> and <ser vi ce> tags of a WSDL document. It also
includes the routing rules defining how the messages are routed between
the endpoints defined in the contract.

WSDL is intended to describe service offered over the Web and therefore
most bindings are specified using SOAP as the message format. WSDL can
bind data to other message formats however.

Artix provides bindings for several message formats including CORBA and
FML. For specific information on using these bindings see the appropriate
chapter in this guide.

WSDL documents typically use HTTP as the network protocol. However,
WSDL is not limited to representing connections over HTTP. Artix provides
port descriptions for several network protocols including 11OP and
WebSphere MQ. For more information on using these network protocols in
Artix see the appropriate chapter in this guide.

When using the CORBA additional data is required to fully map the logical
types to concrete CORBA data types. This is done using a CORBA type map
extension to standard WSDL. For a detailed description of how Artix maps
logical types to CORBA types read “CORBA Type Mapping” on page 174.

To fully describe the integration of service access points across an
enterprise, Artix contracts include routing rules for directing data between
the service access points. Routing rules are described in “Routing” on
page 65.

25

CHAPTER 2 | Understanding Artix Contracts

26

Overview

In this chapter

CHAPTER 3

Configuration

Artix’s customizable configuration provides a great deal of
control over how Artix systems perform. Configuration settings
affect the runtime behavior of Artix plug-ins.

There are several tasks involved in creating an environment in which Artix

applications can run:

® Establishing the host computer environment

® Establishing the common and application-specific Artix runtime
environments

® Configuring plug-ins to provide additional functions, for example,
logging and routing plug-ins.

This chapter discusses the following topics:

Establishing the Host Computer Environment page 28
Configuring Artix Runtime Behavior page 31
Runtime Configuration Variables page 35
Artix Plug-in Configuration page 42

27

CHAPTER 3 | Configuration

Establishing the Host Computer Environment

Overview To use the Artix design tools and the Artix runtime environment, the host
computer must have several IONA-specific environment variables set. These
can be configured during installation or set later by running the provided
artix_env script.

Environmental variables Artix requires that the following environment variables be set on your
system:
* JAVA HOME
® |T_PRODUCT DIR
® |T_CONFIG_FILE
® |T_IDL_CONFIG_FILE
®* |T_CONFIG_DIR
® |T_CONFIG_DOMAINS DIR
®* |IT_DOMAIN_NAME
® PATH

JAVA_HOME

The path to your system’s JDK is specified with the system environment
variable JAVA_ HOME. This must be set if you wish to use the Artix Designer.

IT_PRODUCT DIR

| T_PRODUCT_DI R points to the top level of your IONA product installation.
For example, if you install Artix into the C.\ Program Fi | es\ | ONA directory of
your Windows system, you would set | T_PRCDUCT_DI Rto point to that
directory.

Note: If you have other IONA products installed and you choose not to
install them into the same directory tree, you will need to reset
| T_PRODUCT_DI R each time you switch IONA products.

You can override this variable using the - ORBpr oduct _di r command line
parameter when running your Artix applications.

28

Establishing the Host Computer Environment

IT_CONFIG_FILE

| T_CONFI G_FI LE specifies the location of the configuration file Artix services
use by default. You can overide this setting by using the - CRBdomai n_nare
and - CRBconf i g_domai ns_di r command line options.

IT_IDL_CONFIG_FILE

| T_I DL_OONFI G FI LE specifies the configuration used by the Artix IDL
compiler. If this variable is not set, you will be unable to run the IDL to
WSDL tools provided with Artix. The configuration file for the Artix IDL
compiler is set as follows.

UNIX

Defaults to INSTALL_Di R/ artix/1.2/etc/idl.cfg.
Windows

Defaults to INSTALL_DiR artix\1. 2\etc\idl.cfg.

Note: Do not modify the default IDL configuration file.

IT_CONFIG_DIR

| T_CONFI G DI Rspecifies the root configuration directory. The default root
configuration directory is / et ¢/ opt /i ona on UNIX, and pr oduct -di r\ et c on
Windows. You can override this variable using the - GRBconfi g_di r
command line parameter.

IT_CONFIG_DOMAINS_DIR

| T_CONFI G DOVAI NS_Di R specifies the directory where Artix searches for its
configuration files. The configuration domains directory defaults to
CRBconfi g_di r/ domai ns on UNIX, and CRBconfi g_di r\ donai ns on
Windows. You can override this variable using the - GRBconf i g_donai ns_di r
command line parameter.

IT_DOMAIN_NAME

| T_DOVAI N_NAME specifies the name of the configuration domain used by
Artix to locate its configuration information. This variable also specifies the
file name the configuration information is stored in. For example the
configuration information for domain arti x would be stored in

CRBeconfi g_dir\ domai ns\ atri x. cf g on Windows and

CRBeconfi g_dir/ domai ns/ artix. cf g on Unix. You can override this variable
with the - GRBdonai n_name command line parameter.

29

CHAPTER 3 | Configuration

PATH

The Artix bin directories should be placed first on the PATHto ensures that
the proper libraries, configuration files, and utility programs (for example,
the IDL compiler) are used. These settings avoid problems that might
otherwise occur if the Application Server Platform and/or Tuxedo (both of
which include IDL compilers and CORBA class libraries) are installed on the
same host computer.

The default Artix bin directory is:

UNIX
$I T_PRCDUCT_DI R artix/ 1.2/ bin

Windows
% T_PRCDUCT DI Rvdartix\1.2\bin

Running the arti x_env Script The installation process creates a script, arti x_env, that captures the
default information for setting the host computer's Artix environment.
Running this script will properly configure your system to use Artix. It is
located in the Artix bin directory.

IT PRODUCT DIR artix\1.2\bin\arti x_env

30

Configuring Artix Runtime Behavior

Configuring Artix Runtime Behavior

Overview

Configuration Scopes

Artix, like the Application Server Platform, is built upon IONA’s Adaptive
Runtime Architecture (ART). Runtime behaviors are established through
common and application-specific configuration settings that are applied
during application startup. As a result, the same application code may be
run—and may exhibit different capabilities—in different configuration
environments.

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default configuration file is located in

% T_PRODUCT_DI R arti x\ 1. 2\ et c\ donmai ns\ arti x. cf g on Windows and
$I T_PRODUCT_Di R arti x/ 1. 2/ et ¢/ domai ns/ arti x. cf g on Unix.

The contents of this file may need to be changed to modify Artix logging,
routing, and other behaviors. Such changes may be the result of either
automatically generated code, settings in the Artix System Designer, or
manual editing of the Artix configuration file (arti x. cf g).

You can also manually create new Artix configuration domains to
compartmentalize your applications. However, this is only recommended if
you are familiar with configuring IONA’s ART platform.

An Artix configuration is divided into scopes. These are typically organized
into a hierarchy of scopes, whose fully-qualified names map directly to ORB
names. By organizing configuration variables into various scopes, you can
provide different settings for individual services, or common settings for
groups of services.

Configuration scopes apply to a subset of services or to a specific service in
an environment. Instances of the Artix standalone service can each have
their own configuration scopes. A default Artix standalone service scope is
automatically created when you install Artix.

Artix applications can have their own configuration scopes.

31

CHAPTER 3 | Configuration

32

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
(naneTag {.};).

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the arti x. cf g file, there are several predefined configuration scopes. For
example, the deno configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

deno
fm _plugin
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop", "iiop", "soap", "http", "@&", "tunnel",
"mg", "ws_orb", "fm"];
IE
tel co
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop”, "iiop”, "@", "tunnel"];
pl ugi ns: tunnel :iiop: port = "55002";
poa: M/Tunnel : di rect _persi stent = "true";
poa: MyTunnel : wel | _known_address = "pl ugi ns: t unnel ";
ser ver
{
orb_plugins = ["local _| og_streant, "iiop_profile",
"giop", "iiop”, "ots", "soap", "http", "Q:,
“tunnel "];
pl ugi ns: tunnel : poa_name = "M/Tunnel ";
B
b
tibrv
{
orb_plugins = ["local _| og_streant, "iiop_profile",
“giop", "iiop", "soap", "http", "tibrv"];
event _log:filters = ["*=FATAL+ERRCR'] ;
b
b

Mapping to a configuration scope

Namespaces

Configuring Artix Runtime Behavior

Note that the or b_pl ugi ns list is redefined within each configuration scope.

To make an Artix process run under a configuration scope, you name that
scope using the - CRBnane parameter. During process initialization, Artix
searches for a configuration scope with the same name as the - CRBnane
parameter.

There are two methods for supplying the - ORBnane parameter to an Artix
process:

® Pass the argument on the command line.
® Specify the ORBname as the third parameter to | T_Bus: :init().

For example, to start an Artix process using the configuration specified in the
deno. ti brv configuration scope, you could start the process use the
following syntax:

<processNane> [appl i cati on paraneters] -ORBnane denv.tibrv

Alternately, you could use the following code fragment to initialize the Artix
bus:

IT Bus::init (argc, argv, “deno.tibrv”);

If a corresponding configuration scope is not located, the process starts
under the higher level configuration scope. If there are no configuration
scopes that correspond to the CRBname parameter, the Artix process runs
under the default global scope. For example, if the nested configuration
scope ti brv does not exist, the Artix process uses the configuration
specified in the deno configuration scope; if the scope deno does not exist,
the process runs under the default global scope.

Most configuration variables are organized within namespaces, which serve
to group related variables. Namespaces can be nested, and are delimited by
colons (:). For example, configuration variables that control the behavior of
a plug-in begin with pl ugi ns: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts you would set the following variable:

pl ugi ns: arti x_service:iiop: port

33

CHAPTER 3 | Configuration

Variables

Data types

34

To set the location of the routing plug-in's contract you would set the
following variable:

pl ugi ns: routi ng: wsdl _url

Configuration data is stored in variables that are set within each namespace.
In some instances variables in different namespaces share the same variable
names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a

conpany. oper ati ons. or b_pl ugi ns variable would override a

conpany. or b_pl ugi ns variable. Similarly, plug-ins specified at the conpany
scope would apply to all SAPs in that scope, except those SAPs that belong
specifically to the conpany. oper at i ons scope and its child scopes.

Each configuration variable has an associated data type that determines the
variable's value. When creating configuration variables, you must specify the
variable type.

Data types can be categorized into two types:
® Primitive types
® Constructed types

Primitive types
There are three primitive types: bool ean, doubl e, and | ong,.

Constructed types

Artix supports two constructed types: string and Confi gLi st (a sequence
of strings).

® In an Artix configuration file, the stri ng character set is ASCII.
® The ConfigLi st type is simply a sequence of stri ng types. For

example:
orb_plugins = ["local _| og_strean, "iiop_profile",
"giop","iiop"];

Runtime Configuration Variables

Runtime Configuration Variables

In this section This section provides an overview of the most common configuration
variables use by the Artix runtime. The following topics are discussed in this
section:

ORB Plug-ins List page 36
Binding Lists page 38
Thread Pool Control page 40

35

CHAPTER 3 | Configuration

ORB Plug-ins List

Overview

Artix plug-ins

36

The or b_pl ugi ns variable specifies the plug-ins that Artix should load during

application initialization. A plug-in is a class or code library that can be

loaded into an Artix application at runtime. These plug-ins provide the user
the ability to load network transports, payload format mappers, error logging

streams, and other features “on the fly.”

The default entry for the or b_pl ugi ns variable includes all of the logging and

transport plug-ins:

orb_plugins = ["xmfile_log_streant,

“iiop_profile",
"giop",

"iiop",

"soap",

"http",

"tunnel ",

“ng”,
"ws_orb"];

Each network transport and payload format that Artix is capable of

interoperating with uses its own plug-in. Many of the Artix features also use

plug-ins. The Artix transport plug-ins are listed in Table 5.

Table 5: Artix Transport Plug-ins
Plug-in Transport
http Provides support for using HTTP and HTTPS.
ws_orb Provides support for CORBA interoperability.
t unnel Provides support for the IlOP transport using non-CORBA
payloads.
t uxedo Provides support for Tuxedo interoperability.
ny Provides support for WebSphere MQ interoperability.
tibrv Provides support for TIBCO Rendezvous interoperability.

Runtime Configuration Variables

The Artix payload format plug-ins are listed in Table 6.

Table 6: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.

@ Decodes and encodes messages packaged using the G2+ +
format.

fm Decodes and encodes messages packaged in FML format.

fixed Decode and encodes fixed record length messages.

The Artix feature plug-ins are listed in Table 7.

Table 7: Artix Service Plug-ins

Plug-in Artix Feature
routing Enables Artix routing.
| ocat or _endpoi nt Enables endpoints to use the Artix locator
service.
| ocat or _svr Enables the Artix locator. An Artix server acting

as the locator service must load this plug-in.

artix_wsdl _publish Enables Artix endpoints to publish and use Artix
object references.

37

CHAPTER 3 | Configuration

Binding Lists

Overview

client_binding_list

bi nding:client_binding_list = ["

38

The Artix bi ndi ng namespace contains variables that specify interceptor
settings. An interceptor acts on a message as it flows from sender to
receiver. Computing concepts that fit the interceptor abstraction include
transports, marshaling streams, transaction identifiers, encryption, session
managers, message loggers, containers, and data transformers. Interceptors
are a form of the “Chain of Responsibility” design pattern. Artix creates and
manages chains of interceptors between senders and receivers, and the
interceptor metaphor is a means of creating a “virtual connection” between
a sender and a receiver.

The Artix bi ndi ng namespace includes the following variables:
® client_binding_list
® server_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and POA
collocation (where server and client are collocated in the same process), and
message-level interceptors used in client-side bindings for 110P, SHMIOP
and GIOP.

The client _bindi ng_l i st specifies a list of potential client-side bindings.
Each item is a string that describes one potential interceptor binding. For
example:

OTS+PQA _Col oc”, " PQA Col oc", "OTS+td CP+l 1 CP', "A CP+l | CP'] ;

Interceptor names are separated by a plus (+) character. Interceptors to the

right are “closer to the wire” than those on the left. The syntax is as follows:

® Request-level interceptors, such as G aP, must precede message-level
interceptors, such as 11 CP.

® Qg CPor P col oc must be included as the last request-level
interceptor.

® Message-level interceptors must follow the G CP interceptor, which
requires at least one message-level interceptor.

® The last message-level interceptor must be a message-level transport
interceptor, such as I I GP or SHM CP.

server_binding_list

Runtime Configuration Variables

When a client-side binding is needed, the potential binding strings in the list
are tried in order, until one successfully establishes a binding. Any binding
string specifying an interceptor that is not loaded, or not initialized through
the orb_pl ugi ns variable, is rejected.

For example, if the ot s plug-in is not configured, bindings that contain the
Ors request-level interceptor are rejected, leaving [" PQA Col oc",

"A P+l I CP', "d OP+SHM COP']. This specifies that POA collocations should
be tried first; if that fails, (the server and client are not collocated), the @ cp
request-level interceptor and the I | OP message-level interceptor should be
used. If the ot s plug-in is configured, bindings that contain the OTS request
interceptor are preferred to those without it.

server _bindi ng_l i st specifies interceptors included in request-level
binding on the server side. The POA request-level interceptor is implicitly
included in the binding.

The syntax is similar to cl i ent _bi ndi ng_I i st. However, in contrast to the
client_binding_list, the left-most interceptors in the

server _binding_list are “closer to the wire”, and no message-level
interceptors can be included (for example, 11 CP). For example:

bi ndi ng: server_binding_list = ["Ors",""];

An empty string (*") is a valid server-side binding string; this specifies that
no request-level interceptors are needed. A binding string is rejected if any
named interceptor is not loaded and initialized.

The default server_binding_list is["Ors', ""]. If the ots plug-in is not
configured, the first potential binding is rejected, and the second potential
binding (") is used, with no explicit interceptors added.

39

CHAPTER 3 | Configuration

Thread Pool Control

Overview

high_water_mark

initial_threads

40

Variables in the t hr ead_pool namespace set policies related to thread
control. They can be set globally for Artix instances in a configuration scope,
or they can be set on a per-service basis. The settings set on a per-service
basis override the global settings for the configuration scope.

To set the values globally, use the following syntax:
t hread_pool : vari abl e_nane

To set the values on a per-service basis you can specify either the service's
name or the service’s fully qualified QName. The syntax is as follows:

t hread_pool : servi ce_nare: vari abl e_narre
t hread_pool : servi ce_gnane: vari abl e_nane

For example, if an Artix instance’s contract has a service named
per sonal | nf oSer vi ce, you would specify its thread control settings as
follows:

t hr ead_pool : per sonal | nf oSer vi ce: vari abl e_nane

The thread control settings specify the values for the thread pool on a
per-port basis. For instance, if per sonal I nf oSer vi ce describes three ports,
each port will have its own thread pool with values as specified by the
settings in the t hread_pool : per sonal | nf oSer vi ce namespace.

The following variables are in this namespace:
® high_water_nark

® initial_threads

® lowwater_nark

hi gh_wat er _mark sets the maximum number of threads allowed in each
port’s thread pool. Defaults to 25.

ini tial _threads sets the number of initial threads in each port’s thread
pool. Defaults to 2.

Runtime Configuration Variables

low_water_mark I ow wat er _mar k sets the minimum number of threads in each port’s thread
pool. Artix will terminate unused threads until only this number exists.
Defaults to 5.

41

CHAPTER 3 | Configuration

Artix Plug-in Configuration

Overview Each Artix transport and payload format have properties which are
configurable. The variables used to configure plug-in behavior are specified
in the configuration scopes of each Artix runtime instance and follow the
same order of precedence. A plug-in setting specified in the global
configuration scope will be overridden in favor of a value set in a narrower
scope.

For example, if you set pl ugi ns: routi ng: use_type_factory to true in the
global configuration scope and set it to fal se in the scope wi dget _form all
Artix runtimes, except for those running under the scope wi dget _form
would use t rue for the value of use_t ype_fact ory. Any Artix instance using
the scope wi dget _f or mwould use f al se the value of use_type _factory.

In this section This section discusses the following topics:
Routing Plug-in page 43
CORBA Plug-in page 45
TIBCO Rendezvous Plug-in page 46
Tuxedo Plug-in page 47
Locator Service Plug-in page 48
Locator Service Endpoint Plug-in page 49
Session Manager Plug-in page 50
Session Manager Simple Policy Plug-in page 51
Session Manager Endpoint Plug-in page 52

42

Artix Plug-in Configuration

Routing Plug-in

Overview The routing plug-in uses the following variables:

plugins:routing:shlib_name
plugins:routing:routing_wsdl
plugins:routing:use_type factory
plugins:routing:use_pass_through

plugins:routing:shlib_name

pl ugi ns: routi ng: shl i b_name specifies the shared library that implements
the routing plug-in. The default value for this is i t_routing. Do not change
this value.

plugins:routing:routing_wsdI

pl ugi ns: routing: routi ng_wsdl specifies the URL to search for Artix
contracts containing the routing rules for your application. This value can be
either a single URL or a list of URLs. If your application is using the routing
plug-in you must specify a value for this variable.

plugins:routing:use type factory

pl ugi ns: routi ng: use_t ype_fact ory specifies if the routing plug-in loads
user compiled type factories. The default setting is f al se.

Note: The use of type factories in routing is deprecated.

43

CHAPTER 3 | Configuration

plugins:routing:use_pass_through

44

pl ugi ns: rout i ng: use_pass_t hr ough specifies if the routing plug-in uses the
pass-through routing optimization. This optimization allows the router to
copy the message buffer directly from the source endpoint to the destination
endpoint if both use the same binding. The default value is tr ue.

Note: A few attributes are carried in the message body, as opposed to by
the transport. Such attributes are always propagated when the
pass-through optimization is in effect, regardless of attribute propagation
rules.

Artix Plug-in Configuration

CORBA Plug-in

Overview

Shared library configuration

In general, the Artix CORBA plug-in does not have any configuration
variables directly associated with it. However, the CORBA plug-in is
implemented using the same framework as IONA’s Application Server
Platform and it is affected by the same configuration settings as IONA’s
Application Server Platform.

For example, if you set the configuration variable:
pol i ci es: gi op: i nterop_pol i cy: send_principal = "true";

This will impact the CORBA messages that Artix sends.

Or, if you remove the plug-in POA_Col oc from the client binding list, then
collocation will not work.

The only configuration variable that is directly associated with the CORBA
plug-in is pl ugi ns: ws_or b: shl i b_nane. pl ugi ns: ws_or b: shl i b_nane
specifies the shared library that implements the CORBA plug-in. The default
value for this isit_ws_orb. Do not change this value.

45

CHAPTER 3 | Configuration

TIBCO Rendezvous Plug-in

Overview The TIBCO Rendezvous plug-in has only one configuration variable:

® plugins:tibrv:shlib_name

plugins:tibrv:shlib_name
pl ugi ns: ti brv: shlib_namne specifies the shared library that implements the

TIBCO Rendevous plug-in. The default value for this isit_ti brv. Do not
change this vaue.

46

Artix Plug-in Configuration

Tuxedo Plug-in

Overview The Tuxedo plug-in has only one configuration variable:

® plugins:tuxedo:server

plugins:tuxedo:server

pl ugi ns: t uxedo: server is a boolean that specifies if the Artix process is a
Tuxedo server and must be started using t nboot . The default is f al se.

47

CHAPTER 3 | Configuration

Locator Service Plug-in

Overview The locator service plug-in, servi ce_l ocat or, has the following
configuration variables:

® plugins:locator:service_url
® plugins:locator:peer_timeout

plugins:locator:service_url

pl ugi ns: | ocat or: servi ce_ur| specifies the location of the Artix contract
defining the location service and configuring its address. The name of this
contract is | ocat or . wsdl .

plugins:locator:peer_timeout

pl ugi ns: | ocat or: peer _ti neout specifies the amount of time, in
milliseconds, the locator plug-in waits between keep-alive pings of the
services registered with it. The default is 4000000 (4 sec.).

48

Artix Plug-in Configuration

Locator Service Endpoint Plug-in

Overview The locator service endpoint plug-in, I ocat or _endpoi nt, has the following
configuration variables:

® plugins:locator:wsdl_url
® plugins:session_endpoint_manager:peer_timout

plugins:locator:wsdl_url

pl ugi ns: | ocat or: wsdl _ur| specifies the location of the Artix contract
defining the location service and specifying the address locator endpoints
use to communicate with the locator service. The name of this contract is
| ocat or. wsdl .

plugins:session_endpoint_manager:peer_timout
pl ugi ns: sessi on_endpoi nt _manager : peer _ti nout specifies the amount of

time, in milliseconds, the server waits between keep-alive pings of the
locator service. The default is 4000000 (4 sec.).

49

CHAPTER 3 | Configuration

Session Manager Plug-in

Overview The session manager plug-in, sessi on_nanager _ser vi ce, has the following
configuration variables:

® plugins:session_manager_service:service_utl
® plugins:session_manager_service:peer_timeout

plugins:session_manager_service:service_url

pl ugi ns: sessi on_manager _ser vi ce: servi ce_ur| specifies the location of
the Artix contract defining the session manager. The name of this contract is
sessi on- manager . wsdl and it is located in the wsdl folder of your
installation.

plugins:session_manager_service:peer_timeout
pl ugi ns: sessi on_manager _ser vi ce: peer _ti neout specifies the amount of

time, in milliseconds, the session manager plug-in waits between keep-alive
pings of the services registered with it. The default is 4000000 (4 sec.).

50

Artix Plug-in Configuration

Session Manager Simple Policy Plug-in

Overview The session manager’s simple policy plug-in, smsi npl e_pol i cy, has the
following configuration variables:

® plugins:sm_simple_policy:max_concurrent_sessions
plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

pl ugi ns: sm si npl e_pol i cy: max_concur r ent _sessi ons specifies the

maximum number of concurrent sessions the session manager will allocate.
Default value is 1.

plugins:sm_simple_policy:min_session_timeout

pl ugi ns: sm si npl e_pol i cy: m n_sessi on_ti meout specifies the minimum
amount of time, in seconds, allowed for a session’s timeout setting. Zero
means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

pl ugi ns: sm si npl e_pol i cy: max_sessi on_ti neout specifies the maximum
amount of time, in seconds, allowed for a session’s timesout setting. Zero
means the unlimited. Default is 600.

51

CHAPTER 3 | Configuration

Session Manager Endpoint Plug-in

Overview The session manager endpoint plug-in, sessi on_endpoi nt _nmanager , has the
following configuration variables:
® plugins:session_endpoint_manager:wsdl_url
® plugins:session_endpoint_manager:endpoint_manager_url
® plugins:session_endpoint_manager:default_group
® plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:wsdl_url

pl ugi ns: sessi on_endpoi nt _manager : wsdl _ur| specifies the location of the
contract defining the session management service the endpoint manager is
to contact.

plugins:session_endpoint_manager:endpoint_manager _url

pl ugi ns: sessi on_endpoi nt _rmanager : endpoi nt _manager _ur | specifies the
location of the contract defining the endpoint manager. The contract
contains the contact information for the endpoint manager.

plugins:session_endpoint_manager:default_group

pl ugi ns: sessi on_endpoi nt _manager : def aul t _gr oup specifies the default
group name for all endpoints that are instantiated using the configuration
scope.

plugins:session_endpoint_manager:header_validation
pl ugi ns: sessi on_endpoi nt _manager : header _val i dat i on specifies whether

or not a server validates the session headers passed to it by clients. Default
value is true.

52

In this chapter

CHAPTER 4

Artix Standalone
Service

Artix lets you deploy middleware translation functions as a
standalone service external to both client and server
applications. The Artix standalone service can perform
transport switching, message routing, and middleware
bridging between non-Artix enabled applications.

This chapter discusses the following topics:

The Artix Standalone Service page b4
Configuring the Service page 57
Starting and Stopping the Service page 59
Installing the Service as a Windows Service page 61
Contracts for the Standalone Service page 63

53

CHAPTER 4 | Artix Standalone Service

The Artix Standalone Service

Overview The Artix standalone service is a minimally invasive means of connecting
applications that use different communication transports and message
formats. It does not require that any Artix-specific code be compiled or
linked into existing applications.

How it works The Artix standalone service is a daemon that listens for traffic on access
points specified in the Artix contract. It re-directs messages based on the
routing rules you provide, and performs any transport switching and
message formatting needed for the receiving application. Neither application
is aware that its messages are being intercepted by Artix and no application
development is required.

Note: Artix requires that services being integrated use equivalent
message layouts. For example, a service expecting a | ong cannot be sent a
float.

The standalone service's behavior is controlled by a combination of an Artix
contract and the Artix configuration file. For more information on Artix
contracts see “Understanding Artix Contracts” on page 7. For more
information on configuring the Artix runtime see “Configuration” on page 27.

Deployment patterns An Artix standalone service can be deployed in a number of ways. Two
common deployment patterns are:

54

The Artix Standalone Service

Deploying several daemons, each of which bridges between two distinct
applications.

g @ s
\ - /\

L —T — —T T
s = & - L3 & L
r

[xx[x]] [xz[x]] [xx[x]] [xx[x]] [xx[x]] [!-?[X]]

7

mj\

Figure 3: Using multiple Artix daemons

This approach simplifies designing integration solutions and provides faster
processing of each message. Using this approach, the Artix contract
describing the interaction of the applications is simpler because it contains
only the logical interfaces shared by the two applications, and the bindings
for each payload format.

Because most applications use only one network transport, the number of
ports will be minimal and the routing rules will also be simple. The fact that
the contract is kept simple also enhances the performance of each
individual daemon because it has less processing to do. In this approach,
each daemon’s resource usage can also be limited by tailoring its
configuration to optimize the daemon for the particular integration task for
which it is responsible.

Deploying one daemon to bridge between all of the applications in a
particular domain.

s
/N

s [= = oL R w1 —
0 S S Sl S S
[Iz[.r]] [Ix[x]] [xx[=11 [xx[+1] [Ix[z]] [Iz[-r]]

Figure 4: Using a single Artix daemon

\
7

55

CHAPTER 4 | Artix Standalone Service

This approach limits the number of external services required in your
deployment environment. This can simplify monitoring and installation of
deployments. It also reduces the number of “moving parts” in an integration
solution.

56

Configuring the Service

Configuring the Service

Overview

Orb plugins list

Service plug-in settings

Each instance of the Artix standalone service running on a host machine
needs its own configuration scope to specify the unique port on which its
administrative interface listens. Each instance also needs a corresponding
administrative interface configuration scope.

Having separate configuration scopes for each instance of the service also
allows greater control over the resources the service uses. You can specify
that it only load the transport and payload format plug-ins it requires. You
can also control the services threading and time-out behaviors.

For more information on configuring Artix, see “Configuration” on page 27.

In addition to the Artix plugins that provide support for the transports and
payload formats it will be working with, the Artix standalone service needs
to load the following plugins:

® iiop_profile

® logging
® iop
® giop

These need to be entered in its or b_pl ugi ns list.

The configuration variable that controls the behavior of the Artix standalone
service are in the pl ugi ns: arti x_ser vi ce namespace. Table 8 lists the
variables and their settings.

Table 8: Artix Standalone Service Configuration Variables

Variable Effect

shli b_nane Specifies the name of the Artix
service's shared library. This value
should always be set to
it_artix_service_svr.

57

CHAPTER 4 | Artix Standalone Service

Table 8: Artix Standalone Service Configuration Variables

Variable Effect

i i op: port Specifies the port number on
which the service listens for calls
from its administrative interface.
See “Service admin interface”.

i i op: host Specifies the name of the host
computer on which the service is
running. See “Service admin
interface”.

di rect _persi stence Specifies if the service's object
reference is persistent across
multiple invocations.

Service admin interface Each instance of the Artix standalone service must have a corresponding
administrative interface configuration scope. This scope must contain an
entry forinitial _references: | T_ArtixServi ceAdmi n: ref er ence.
initial _references: | T_ArtixServi ceAdni n: ref er ence specifies the port
number of this admin interface’s corresponding Artix service. The port
number is specified using the cor bal oc syntax:

corbal oc: i iop: 1. 2@ost nare: port/| T_ArtixServi ceAdm n

host nare is the hostname of the computer on which the corresponding Artix
service is running. port is the port number on which the corresponding Artix
service is listening.

58

Starting and Stopping the Service

Starting and Stopping the Service

Starting the service

To start the Artix standalone service, use the following script:
start_artix_service

This script starts an instance of the Artix standalone service using the
default configuration scope of i ona_ser vi ces. arti x_ser vi ce.

Alternatively, you can start the service directly using the following
command:

itartix_service -CRBname orb_nane - CRBdonai n_nanme domai n_nane
- ORBconf i g_domai ns_dir domai n_dir run [-background]

Table 9 describes the parameters taken by it _arti x_servi ce.

Table 9: it artix_service Parameters

Parameter

Description

- CRBnane orb_nane

Specifies the scope under which the service finds its configuration
details.

- CRBdonai n_nane dorai n_nane

Specifies the service's configuration file name. The configuration file
has the name domai n_nane. cf g.

For example, given domain name acnewi dget s, the service will read
its configuration from acnewi dget s. cf g.

- CRBeonfi g_domai ns_dir domain_dir | Specifies the location of the service’s configuration file.

run

Specifies that the service is to begin monitoring.

- backgr ound

Specifies that the service is to run in the background. If this
parameter is not specified, the service runs in the foreground of the
active command window.

For more information about configuring Artix see “Configuration” on
page 27.

59

CHAPTER 4 | Artix Standalone Service

Stopping the service To stop the Artix standalone service use the following script:
stop_artix_service

This script will stop an instance of the Artix standalone service started using
the start script, start_arti x_servi ce.

Alternatively, you can manually call the service’s administrative interface to
stop the service. To do so use the following command:

itarti x_service_adnin - CRBnane orb_nane

The value passed with the -CRBnane flag specifies the configuration scope
under which the administrative interface finds its configuration information.
The vital entry in the administrative interfaces configuration is the entry for
initial _references: | T_ArtixServi ceAdm n: reference. This entry must
contain the corbaloc address of the Artix service instance you wish to
shutdown.

60

Installing the Service as a Windows Service

Installing the Service as a Windows Service

Overview

Installing the service

On Windows systems, you can install instances of the Artix standalone
service as a service. This means the service starts at system boot and that
limited management functionality is provided through the Windows service
controls.

To install the Artix standalone service as a Windows service, use the
following script:

install _artix_service

This script installs the Artix standalone service using the default
configuration scope of i ona_ser vi ces. arti x_ser vi ce.

Alternatively, you can install an instance of the service directly using the
following command:

it_artix_service -ORBnane orb_nane - CRBdormai n_nane donai n_narre
- ORBconf i g_domai ns_dir domai n_dir install

Table 10 describes the parameters taken by it _artix_servi ce.

Table 10: it _artix_service Parameters

Parameter

Description

- CRBnane orb_nane

Specifies the scope under which the service finds its configuration
details.

- ORBdonai n_nane donai n_nane

Specifies the service's configuration file name. The configuration file
has the name domai n_nane. cf g.

For example, given domain name acnewi dget s, the service will read
its configuration from acnewi dget s. cf g.

- CRBeonfi g_domai ns_dir domai n_dir | Specifies the location of the service’s configuration file.

install

Specifies that the service is to installed as a Windows service.

61

CHAPTER 4 | Artix Standalone Service

Uninstalling the service

To uninstall the Artix standalone service as a Windows service use the
following script:

uninstall _artix_service

This script uninstalls the Artix standalone service using the default
configuration scope of i ona_servi ces. arti x_servi ce.

Alternatively, you can uninstall instances of the service directly using the
following command:

it_artix_service -CRBnane orb_name - ORBdomai n_nane donai n_name
- ORBconfi g_domai ns_dir domain_dir uninstall

Table 10 describes the parameters taken by it _arti x_ser vi ce.

Table 11: jt_artix_service Parameters

Parameter

Description

- CRBnane or b_nane

Specifies the scope under which the service finds its configuration
details.

- CRBdonai n_nane donai n_nane

Specifies the service's configuration file name. The configuration file
has the name donai n_nane. cfg.

For example, given domain name acnewi dget s, the service will read
its configuration from acnewi dget s. cf g.

- CRBeonfi g_domai ns_dir domai n_dir | Specifies the location of the service’s configuration file.

uni nstal |

Specifies that the service is to remove itself from the Windows
registry.

62

Contracts for the Standalone Service

Contracts for the Standalone Service

Routing

Locating the contracts

For more information

Contracts for instances of the Artix standalone service must have routing
rules to direct the flow of messages between the services defined within the
contract.

You must also ensure that the routing plug-in is loaded by the Artix
standalone service by placing the following entry in the or b_pl ugi ns list of
the instance’s configuration scope:

orb plugins = [... "routing"];

The Artix standalone service loads the contract specified by the

pl ugi ns: routi ng: wsdl _url configuration variable. For example if an
instance of the Artix standalone service was designed to use a contract
called per sonal I nf 0. wsdl and the contract was located in/etc/ contracts,
you would place the following in the instance’s configuration scope:

pl ugi ns: routi ng: wsdl _url ="/ et c/ contract s/ per sonal | nf 0. wsdl ";

For more information on Artix runtime configuration, see “Configuring Artix
Runtime Behavior” on page 31.

63

CHAPTER 4 | Artix Standalone Service

64

In this chapter

Routing

CHAPTER 5

Artix provides messages routing based on operations, ports, or

message attributes.

This chapter discusses the following topics:

Artix Routing page 66
Configuring Artix to Use Routing page 67
Compatibility of Ports and Operations page 68
Defining Routes in Artix Contracts page 71
Attribute Propagation through Routes page 82
Routing with Artix Designer page 84
Error Handling page 91

65

CHAPTER 5 | Routing

Artix Routing

Overview

Port-based

Operation-based

66

Artix routing is implemented within Artix service access points and is
controlled by rules specified in the SAP’s contract. Artix SAPs that include
routing rules can be deployed either in standalone mode or embedded into
an Artix service.

Artix supports the following types of routing:
® Port-based
® Operation-based

A router's contract must include definitions for the source services and
destination services. The contract also defines the routes that connect
source and destination ports, according to some specified criteria. This
routing information is all that is required to implement port-based or
operation-based routing. Content-based routing requires that application
code be written to implement the routing logic.

Port-based routing acts on the port or transport-level identifier, specified by
a <port > element in an Artix contract. This is the most efficient form of
routing. Port-based routing can also make a routing decision based on port
properties, such as the message header or message identifier. Thus Artix
can route messages based on the origin of a message or service request, or
based on the message header or identifier.

Operation-based routing lets you route messages based on the logical
operations described in an Artix contract. Messages can be routed between
operations whose arguments are equivalent. Operation-based routing can be
specified on the interface, <port Type>, level or the finer grained operation
level.

Configuring Artix to Use Routing

Configuring Artix to Use Routing

Overview

Adding the routing plug-in

Locating the routing information

Artix port- and operation-based routing is implemented as a plug-in to the
Artix runtime. Content based routing does not require that the routing
plug-in be loaded.

When using Artix port- or operation-based routing you must add the routing
plug-in to your SAP’s or b_pl ugi n list. The routing plug-in is simply called
routi ng. The following shows an or b_pl ugi n list for an Artix SAP that uses
routing:

orb plugins = ["xmfile_|og _streant, "iiop_profile", "giop",
“iiop", "soap", "my", "routing"];

See “Configuration” on page 27 for more information.

You need to add configuration information to point the routing plug-in to the
contract, or contracts, that contain the routing information the router is to
use. This is done with the pl ugi ns: routi ng: wsdl variable. This variable
specifies the contracts the routing plug-in will parse for routing rules. The
contract names are relative to the location from which the Artix SAP is
started.

For example, if an SAP’s configuration contained the following entry:

pl ugi ns: routi ng: wsdl =["routel. wsdl ", "../route2.wsdl",
“lartix/routes/route3"];

The routing plug-in would expect that rout e1. wsdl was located in the
directory in which the SAP was started and r out e2. wsdl was located one
directory level higher.

67

CHAPTER 5 | Routing

Compatibility of Ports and Operations

Overview

Port-based routing

68

Artix can route messages between services that expect similar messages.
The services can use different message transports and different payload
formats, but the messages must be logically identical. For example, if you
have a baseball scoring service that transmits data using SOAP over HTTP,
Artix can route the score data to a reporting service that consumes data
using CORBA. The only requirement for operation-based routing is that the
two services have an operation that uses messages with the same logical
description in the Artix contract defining their integration. For port-based
routing, the destination service must have a matching operation defined for
each of the operations defined for the source service.

Port-based routing is rough grained in that it the routing rules are defined on

the <port > elements of an Artix contract and do not look at the individual

operations defined in the logical interface, or <port Type>, to which the port

is bound. Therefore, port-based routing requires that the services between

which messages are being routed must have compatible logical interface

descriptions.

For two ports to have compatible logical interfaces the following conditions

must be met:

® The destination’s logical interface must contain a matching operation
for each operation in the source’s logical interface. Matching
operations must have the same name.

® Each of the matching operations must have the same number of input,
output, and fault messages.

® Each of the matching operations’ messages must have the same
sequence of part types.

For example, given the two logical interfaces defined in Example 11 you

could construct a route from a port bound to basebal | Scor ePort Type to a
port bound to basebal | GamePor t Type. However, you could not create a

Compatibility of Ports and Operations

route from a port bound to fi nal Scor ePort Type to a port bound to
basebal | GanePor t Type because the message types used for the get Score
operation do not match.

Example 11: Logical interface compatibility example

<message nane="scor eRequest >
<part name="ganeNunber" type="xsd:int" />
</ message>
<nessage name="basebal | Score">
<part name="honmeTean! type="xsd:int" />
<part name="awayTean! type="xsd:int" />
<part name="final" type="xsd: bool ean" />
</ message>
<nessage nane="fi nal Score">
<part name="hone" type="xsd:int" />
<part name="away" type="xsd:int" />
<part nanme="wi nni ngTean type="xsd:string" />
</ message>
<nessage name="w nner" >
<part nanme="wi nni ngTean type="xsd:string" />
</ message>
<port Type nane="basebal | GanePort Type" >
<oper ati on name="get Score" >
<i nput nessage="t ns: scor eRequest " nanme="scor eRequest "/ >
<out put message="t ns: basbal | Score" nane="basebal | Score"/>
</ oper at i on>
<oper ati on name="get Wnner" >
<i nput nessage="t ns: scor eRequest " name="wi nner Request "/ >
<out put message="tns:w nner" nane="w nner"/>
</ oper at i on>
</ por t Type>
<port Type nane="basebal | Scor ePort Type" >
<oper ati on name="get Score" >
<i nput nessage="t ns: scor eRequest" name="scor eRequest "/ >
<out put message="tns: basbal | Score" nane="basebal | Score"/>
</ oper at i on>
</ por t Type>
<port Type nane="fi nal Scor ePort Type" >
<oper ati on name="get Score" >
<i nput nessage="t ns: scor eRequest" name="scor eRequest "/ >
<out put message="tns: final Score" nanme="fi nal Score"/>
</ oper at i on>
</ por t Type>

69

CHAPTER 5 | Routing

Operation-based routing

70

Operation-based routing provides a finer grained level of control over how
messages can be routed. Operation-based routing rules check for
compatibility on the <oper at i on> level of the logical interface description.
Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

® The operations must have the same number of input, output, and fault
messages.
® The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 12 to the
interfaces in Example 11 on page 69, you could specify a route from

get Fi nal Scor e defined in ful | Scor ePort Type to get Scor e defined in
final ScorePort Type. You could also define a route from get Scor e defined
in ful | Scor ePort Type to get Scor e defined in basebal | Scor ePort Type.

Example 12: Operation-based routing interface

<port Type nane="ful | Scor ePort Type">
<oper ati on nane="get Scor e" >
<i nput nessage="t ns: scor eRequest" name="scor eRequest "/ >
<out put message="tns: basbal | Score" nane="basebal | Score"/>
</ operati on>
<oper ati on nane="get Fi nal Score">
<i nput nmessage="t ns: scor eRequest" nanme="scor eRequest "/ >
<out put message="tns: final Score" name="fi nal Score"/>
</ operat i on>
</ port Type>

Defining Routes in Artix Contracts

Defining Routes in Artix Contracts

Overview

In this section

Artix port-based and operation-based routing are fully implemented in the
contract defining the integration of your systems. Routes are defined using
WSDL extensions that are defined in the namespace

http://schenas. i ona. con r out i ng. The most commonly used of these
extensions are:

<routing:route> is the root element of any route defined in the contract.

<routing:source> specifies the port that serves as the source for messages
that will be routed using the route.

<routing:destination> specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be
aware that any routing is taking place.

This section discusses the following topics:

Using Port-Based Routing page 72
Using Operation-Based Routing page 75
Advanced Routing Features page 78

71

CHAPTER 5 | Routing

Using Port-Based Routing

Overview

Describing routes in an Artix
contract

72

Port-based routing is the highest performance type of routing Artix performs.
It is also the easiest to implement. All of the rules are specified in the Artix
contract describing how your systems are integrated. The routes specify the
source port for the messages and the destination port to which messages
are routed.

The Artix routing elements are defined in the

http://schemas. i ona. con rout i ng namespace. When describing routes in
an Artix contract you must add the following to your contract’s definition
element:

<definition ...
xm ns: routi ng="http://schenas. i ona. coni routi ng"
4

To describe a port-based route you use three elements:

<routing:route>

<routi ng: rout e> is the root element of each route you describe in your
contract. It takes on required attribute, nane, the specifies a unique identifier
for the route. rout e also has an optional attribute, mul ti Rout e, which is
discussed in “Advanced Routing Features” on page 78.

<routing:source>

<rout i ng: sour ce> specifies the port from which the route will redirect
messages. A route can have several source elements as long as they all
meet the compatibility rules for port-based routing discussed in “Port-based
routing” on page 68.

<routi ng: sour ce> requires two attributes, servi ce and port . servi ce
specifies the service element in which the source port is defined. port
specifies the name of the port element from which messages are being
received.

Example

1

Defining Routes in Artix Contracts

<routing:destination>

<routing: desti nati on> specifies the port to which the source messages
are directed. The destination must be compatible with all of the source
elements. For a discussion of the compatibility rules for port-based routing
see “Port-based routing” on page 68.

In standard routing only one destination is allowed per route. Multiple
destinations are allowed in conjunction with the route element’s mul i Rout e
attribute that is discussed in “Advanced Routing Features” on page 78.

<routing: desti nati on>requires two attributes, servi ce and port. servi ce
specifies the service element in which the destination port is defined. port
specifies the name of the port element to which messages are being sent.

For example, to define a route from basebal | Scor ePort Type to
basebal | GanePor t Type, defined in Example 11 on page 69, your Artix
contract would contain the elements in Example 13.

Example 13: Port-based routing example

<servi ce name="basebal | Scor eServi ce">
<port bi ndi ng="t ns: basebal | Scor eBi ndi ng"
namre="basebal | ScorePort ">
<soap: address | ocati on="http://| ocal host: 8991"/>
</ port >
</ servi ce>
<servi ce name="basebal | GameSer vi ce" >
<port bi ndi ng="t ns: basebal | GaneBi ndi ng"
narre="basebal | GarrePort " >
<cor ba: address | ocati on="file://basebal|l.ref"/>
</ port >
</ servi ce>
<routing: route name="basebal | Rout ">
<routi ng: source servi ce="tns: basebal | ScoreServi ce"
port="tns: basebal | ScorePort" />
<routing: destination service="tns: basebal | GameServi ce"
port ="t ns: basebal | GanePort" />
</routi ng: r out e>

73

CHAPTER 5 | Routing

There are two sections to the contract fragment shown in Example 13:

1. The logical interfaces must be bound to physical ports in <ser vi ce>
elements of the Artix contract.

2. The route, basebal | Rout e, is defined with the appropriate service and
port attributes.

74

Defining Routes in Artix Contracts

Using Operation-Based Routing

Overview

Describing routes in an Artix
contract

How operation-based rules are
applied

Operation-based routing is a refinement of port-based routing. With
operation-based routing you can specify specific operations within a logical
interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by
adding routing rules to Artix contracts.

The contract elements for defining operation-based routes are defined in the
same namespace as the elements for port-based routing and you will need
to include in your contract’'s namespace declarations to use operation based
routing.

To specify an operation-based route you need to specify one additional
element in your route description: <routi ng: oper ati on>.

<rout i ng: oper at i on> specifies an operation defined in the source port's
logical interface and an optional target operation in the destination port’s
logical interface. You can specify any number of operation elements in a
route. The operation elements must be specified after all of the source
elements and before any destination elements.

oper at i on takes one required attribute, name, that specifies the name of the
operation in the source port’s logical interface that is to be used in the route.

oper at i on also has an optional attribute, t ar get , that specifies the name
operation in the destination port’s logical interface to which the message is
to be sent. If a target is specified, messages are routed between the two
operations. If no target is specified, the source operation’s name is used as
the name of the target operation. The source and target operations must
meet the compatibility requirements discussed in “Operation-based routing”
on page 70.

Operation-based routing rules apply to all of the source elements listed in
the route. Therefore, if an operation-based routing rule is specified, a
message will be routed if all of the following are true:

® The message is received from one of the ports specified in a source
element.

75

CHAPTER 5 | Routing

® The operation name associated with the received message is specified
in one of the <oper ati on> elements.

If there are multiple operation-based rules in the route, the message will be

routed to the destination specified in the matching operation’s t ar get

attribute.

Example For example to route messages from get Fi nal Scor e defined in
ful | Scor ePort Type, shown in Example 12 on page 70, to get Scor e defined
in fi nal ScorePort Type, shown in Example 11 on page 69, your Artix
contract would contain the elements in Example 14.

Example 14: Operation to Operation Routing

1 <service nane="ful | Scor eServi ce">
<port bi ndi ng="t ns: ful | Scor eBi ndi ng"
name="ful | ScorePort">
<cor ba: address="fil e://score.ref" />
</ port >
</ servi ce>
<servi ce nane="fi nal Scor eSeri ce">
<port bi ndi ng="tns: fi nal Scor eBi ndi ng"
narme="fi nal ScorePort">
<t uxedo: addr ess servi ceNane="fi nal ScoreServer" />
</ port >
</ servi ce>
2 <routing:route name="scoreRoute">
<routi ng: source servi ce="tns: ful | ScoreService"
port="tns:full ScorePort"/>
<routi ng: oper ati on name="get Fi nal Score" target="get Score"/>
<routing: destinati on service="tns:final ScoreService"
port="tns: final ScorePort"/>
</routi ng: rout e>

There are two sections to the contract fragment shown in Example 14-:

1. The logical interfaces must be bound to physical ports in <servi ce>
elements of the Artix contract.

2. The route, scoreRout e, is defined using the <r out e: oper ati on>
element.

76

Defining Routes in Artix Contracts

You could also create a route between get Scor e in basebal | GanePor t Type
to a port bound to basebal | Scor ePort Type; see Example 11 on

page 69.The resulting contract would include the fragment shown in
Example 15.

Example 15: Operation to Port Routing Example

<servi ce name="basebal | GamreSer vi ce" >
<port bi ndi ng="t ns: basebal | GaneBi ndi ng"
nane="basebal | GanePort ">
<soap: address | ocati on="http://| ocal host: 8991"/>
</ port >
</ servi ce>
<servi ce nanme="basebal | Scor eServi ce" >
<port bi ndi ng="t ns: basebal | Scor eBi ndi ng"
nanme="basebal | ScorePort">
<iiop:address |ocation="file:\\score.ref"/>
</ port >
</ servi ce>
<routing: route name="scor eRout e">
<routing: source service="tns: basebal | GaneSer vi ce"
port="tns: basebal | GanePort"/>
<routi ng: operati on name="get Score"/>
<routing: destination service="tns: basebal | Scor eSer vi ce"

port ="t ns: basebal | ScorePort"/>
</routi ng: r out e>

Note that the <rout i ng: oper at i on> element only uses the name attribute.
In this case the logical interface bound to basebal | Scor ePort

basebal | Scor ePor t Type, must contain an operation get Scor e that has
matching messages as discussed in “Port-based routing” on page 68.

77

CHAPTER 5 | Routing

Advanced Routing Features

Overview Artix routing also supports the following advanced routing capabilities:
® Broadcasting a message to a number of destinations.
® Specifying a failover service to route messages to provide a level of
high-availability.
® Routing messages based on transport attributes in the received
message’s header.

Message broadcasting Broadcasting a message with Artix is controlled by the routing rules in an
Artix contract. Setting the mul ti Rout e attribute to the <routi ng: rout e>
element to fanout in your route definition allows you to specify multiple
destinations in your route definition to which the source messages are
broadcast.

To do this using the routing editor of the Artix Designer

There are three restrictions to using the fanout method of message

broadcasting:

® All of the sources and destinations must be oneways. In other words,
they cannot have any output messages.

® The sources and destinations cannot have any fault messages.

® The input messages of the sources and destinations must meet the
compatibility requirements as described in “Compatibility of Ports and
Operations” on page 68.

Example 16 shows an Artix contract fragment describing a route for
broadcasting a message to a number of ports.

Example 16: Fanout Broadcasting
<nessage nane="statusA ert">
<part name="al ert Type" type="xsd:int"/>

<part name="al ert Text" type="xsd:string"/>
</ message>

78

Defining Routes in Artix Contracts

Example 16: Fanout Broadcasting

<port Type nane="st at usGener at or">
<oper ati on name="event Happens" >
<i nput nessage="tns:statusAl ert" nane="statusAlert"/>
</ oper at i on>
</ por t Type>
<port Type nane="st at usChecker" >
<oper ati on name="event Checker ">
<i nput nessage="tns:statusAl ert" nane="statusAlert"/>
</ oper at i on>
</ por t Type>
<servi ce nanme="st at usCGener at or Servi ce" >
<port bi ndi ng="t ns: st at usGener at or Bi ndi ng"
name="st at usGener at or Port ">
<soap: address | ocati on="http:\\ I ocal host: 8081"/>
</ port >
</ servi ce>
<servi ce nane="st at usChecker Servi ce" >
<port bi ndi ng="t ns: st at usChecker Bi ndi ng"
namre=" st at usChecker Port 1" >
<cor ba: address | ocation="file:\\statusl.ref"/>
</ port >
<port bi ndi ng="t ns: st at usChecker Bi ndi ng"
nane=" st at usChecker Port 2" >
<t uxedo: addr ess servi ceName="st at usServi ce"/ >
</ port >
</ servi ce>
<routing: route name="stat usBroadcast" multi Rout e="fanout">
<routing: source service="tns: st at usGener at or Ser vi ce"
port="tns: statusGeneratorPort"/>
<routing: operati on name="event Happens" t ar get =" event Checker"/>
<routing: destination service="tns: st at usChecker Servi ce"
port ="t ns: st at usChecker Port 1"/ >
<routing: destination service="tns: st at usChecker Servi ce"
port ="t ns: st at usChecker Port 2"/ >
</routi ng: r out e>

Failover routing Artix failover routing is also specified using the <rout i ng: r out e>'s
mul ti Rout e attribute. To define a failover route you set mul ti Rout e to equal
fail over. When you designate a route as failover, the routed message’s
target is selected in the order that the destinations are listed in the route. If
the first target in the list is unable to receive the message, it is routed to the
second target. The route will traverse the destination list until either one of
the target services can receive the message or the end of the list is reached.

79

CHAPTER 5 | Routing

Routing based on transport
attributes

80

To create a failover route using the Artix Designer...

Given the route shown in Example 17, the message will first be routed to
destinati onPort A. If service on desti nati onPort A cannot receive the
message, it is routed to dest i nati onPort B.

Example 17: Failover Route

<routing: route nane="fail over Route" multi Route="fail over">
<routing: source servi ce="tns: sour ceService"
port="tns: sourcePort"/>
<routing: destinati on servi ce="tns: desti nationServi ceA"
port="tns: desti nati onPort A"/ >
<routing: destination service="tns: desti nationServiceB"
port="tns: desti nati onPortB"/>
</routi ng: rout e>

Artix allows you to specify routing rules based on the transport attributes set
in a message’s header when using HTTP or WebSphere MQ. Rules based on
message header transport attributes are defined in
<routing:transportAttribut e> elements in the route definition. Transport
attribute rules are defined after all of the operation-based routing rules and
before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule
are specified in sub-elements to the <routing: tranport Attribute>. A
message passes the rule if it meets each criteria specified in the listed
sub-element.

Each sub-element has a nane attribute to specify the transport attribute, and
most have a value attribute that can be tested. Attributes dealing with string
comparisons have an optional i gnor ecase attribute that can have the values
yes or no (no is the default). Each of the sub-elements can occur zero or
more times, in any order:

<routing:equals> applies to string or numeric attributes. For strings, the

i gnor ecase attribute may be used.

<routing:greater> applies only to numeric attributes and tests whether the
attribute is greater than the value.

<routing:less> applies only to numeric attributes and tests whether the
attribute is less than the value.

Defining Routes in Artix Contracts

<routing:startswith> applies to string attributes and tests whether the
attribute starts with the specified value.

<routing:endswith> applies to string attributes and tests whether the
attribute ends with the specified value.

<routing:contains> applies to string or list attributes. For strings, it tests
whether the attribute contains the value. For lists, it tests whether the value
is a member of the list. cont ai ns accepts an optional i gnor ecase attribute
for both strings and lists.

<routing:empty> applies to string or list attributes. For lists, it tests
whether the list is empty. For strings, it tests for an empty string.

<routing:nonempty> applies to string or list attributes. For lists, it passes if
the list is not empty. For strings, it passes the string is not empty.

For information on the transport attributes for HTTP see “Using the HTTP
Plug-in” on page 227. For information on the transport attributes for
WebSphere MQ see “Using the WebSphere MQ Plug-in” on page 271.

To add transport attributes rules to your route using the Artix Designer...

Example 18 shows a route using transport attribute rules based on HTTP
header attributes. Only messages whose | f - Modi f i ed- Si nce is equal to
"Sat, 29 Qct 1994 19:43:31 GVI™.

Example 18: Transport Attribute Rules

<rot ui ng: rout e name="htt pTransport Rout e">

<routing: source service="tns: httpService"

port="tns: httpPort"/>
<routing:trasnportAttributes>
<rot ui ng: equal s nane="If Modi fi edS nce"
val ue="Sat, 29 Cct 1994 19:43:31 QvI'/>
</routing:transportAttributes>
<routing: destination service="tns: httpDest"
port="tns: httpDestPort"/>

</routi ng: r out e>

81

CHAPTER 5 | Routing

Attribute Propagation through Routes

Overview

Describing attribute propagation
rules in an Artix contract

82

Often you will need to ensure that message attributes are propagated
through the router when it transforms messages between different payload
formats or translates it across different transports. Artix can either simply
drop the message attributes between the formats or it can use attribute
propagation rules specified in the Artix contract describing the system.

The rule describing attribute propagation between two endpoints are
specified in the routing section of the Artix contract for the system. Each
route must specify the attributes it wants to propagate and for which
message it is propagated. If the attribute is not explicitly listed, the router
will not propagate it.

Note: There are a few attributes that are included as part of the message
body and these are propagated regardless of the specified propagation
rules.

To describe attribute propagation rules in a contract you use two elements.
One describes the attributes of the input message passed between the two
endpoints. The other describes the attributes of the output message
between the two endpoints.

<routing:propagatelnputAttribute >

<routi ng: propagat el nput At t ri but e> specifies an attribute from the input
message to propagate through the route. It takes one required property,
nane, which specifies the name of the message attribute to be propagated
through the route. For example, if you wanted to propagate the attribute
User Nane between two HTTP endpoints you would include the rule shown in
Example 19 in your contract’s route.

Example 19: Attribute Propagation Input Rule

<routing: route nane="VQoD' >
<routi ng: propagat el nput At tri but e nane="User Nare" />

</routi ng: rout e>

Attribute Propagation through Routes

propagat el nput At tri but e also takes a second optional property, target,
that allows you to specify the name of the coressponding attribute name in
the destination endpoint’s transport. If you do not specify a target, the router
assumes that the attribute names for both transports are identical.

For example, if your route is between an HTTP port and a JMS port and you
want to propagate the HTTP port’s User Nane attribute to the JMS port’s
JMBXUser | D attribute you would include the rule shown in Example 20 in
your contract’s route.

Example 20: Attribute Propagation Input Rule with Target

<routing: route name="VQaD' >
<routi ng: propagat el nput At t ri but e name="User Narre"
target ="JMbXUser | D' />

</routi ng: r out e>

<routing:propagateOutputAttribute >

<rout i ng: pr opagat eQut put At t ri but e> specifies an attribute from the
output message to propagate through the route. It takes the same properties
as propagat el nput At tri but es.

For example, if you needed the service at the HTTP endpoint in Example 20
needed to validate the UserName of the message returned from the JMS
endpoint, you would need to specify that the output message’s JMSXUserID
was propagated to the HTTP endpoint's UserName attribute by including
the rule shown in Example 21 in your contract’s route.

Example 21: Attribute Propagation Output Rule with Target
<routing:route nane="VaD' >
<routing: propagat eQut put At tri but e nane="JMsXUser | D'
tar get =" User Nane" />

</routi ng: r out e>

83

CHAPTER 5 | Routing

Routing with Artix Designer

Overview The Artix Designer includes a routing wizard that assists you in creating
routes from the services available in your contract. It walks you through the
steps of creating a route and provides you with the valid options for the
services available. It performs all of the compatibility testing for you and will
never allow you to create an invalid route.

Creating a route To create a route with the Artix Designer complete the following steps:

1. Load a contract with multiple service definitions that have operations
that can be routed.

2. Select Contracts | New | Route from the Designer menu.

Note: If the Route option is not available, your contract does not
have any compatible operations for routing.

84

Routing with Artix Designer

3. You will see a screen like Figure 5.

[} Routing - Artix Designer

Select\WSDL
Select the WSDL file this new contract itern should be added to.
® Add to existingWSDL “haseballScores”
(2 Add to nesw WSDL Digfined_route
P SelectWsDL
Source and Destinations
Mame, Multi-Route options
Operations
Transport Attributes
Route Summary
’ Previous] ’ Mewt] ’ Cancel] ’ Help

Figure 5: Routing WSDL Location

4. Select where you want to add the routing information.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

85

CHAPTER 5 | Routing

6. You will see a screen like Figure 6.

[} Routing - Artix Designer

~Select Port Types, Source and Destination Endpaoint

Paort Tynes IbaseballSc0res:baseballScorePonTypeE]]

Fource Endpoints =] basehallGameSenice : baseballGamePort
=] basehallScoreSerice | basehallScorePort
=] finalScoreSenvice : finalScorePort

= fullScoreSerice | fullScorePort

Destination Endpoints @ basehallGameService : haseballGamePort
=] finalScoreSenvice : finalScorePort
= fullScoreSerice | fullScorePort

Select\WSDL
P Source and Destinations

Mame, Multi-Route aptions

Operations
Transport Attributes

Route Summary

IErevious ” Mext ” Cancel ” Help

Figure 6: Source and Destination Selection

7. Select the source port Type for the route from the PortType pull-down
list.

8. Select the source endpoint from the available options in the Source
Endpoints list.

9. Select the destination endpoint from the available options in the
Destination Endpoints list.

10. Click Next.

86

Routing with Artix Designer

11. You will see a screen like Figure 7.

[} Routing - Artix Designer

SelectWSDL
Source and Destinations

P Mame, Multi-Route options
Operations
Transport Attributes
Route Summary

~Specify Route Name and Multi-Route Propertie

Route Mame |baseballRoute

~Multiple Route Destination Preference
© Failover
O Fanout

IErevious ” Mext ” Cancel ” Help

Figure 7: Route Properties

12. Enter the name of your route in the Route Name field.

13. If you selected multiple destination endpoints on the previous screen,
select either Failover or Fanout under Multiple Route Destination
Preference.

Note: This panel will allow you to select an invalid multiroute
behavior and you will get an error dialog when you click Next.

14. Click Next.

87

CHAPTER 5 | Routing

88

[} Routing - Artix Designer

SelectWSDL
Source and Destinations

Mame, Multi-Route aptions
Operations

P Transpart Attributes
Route Summary

15. You will see a screen like Figure 8.

~Specify Transport Aftribute

~Transport Attribute Rule Set:

I = |

Add Rule Set | [Remove Rute get

~Transport Attribute Rule

Marne |

| [s atrioute

Walue |

~Transport Attribute

Mame J Relation J Value J Case Sensitive J

Remaove Attribute

IErevious ” Mext ” Cancel ” Help]

Figure 8: Transport Attribute Routing Rules

16. To add transport attribute based routing rules, click Add Rule Set.

17. The counter will automatically set itself to 0.

18. Enter the name of the transport attribute to be used in Name.

19. Enter the value to be used as the test case in Value.

20. Click Add Attribute to add the attribute to the Transport Attribute
table.

21. Once the attribute is in the table you can edit it to determine how
matching attributes are compared to the value.

Routing with Artix Designer

22. Repeat this for all the attributes you want to use in routing.

Note: The editor has no knowledge of the valid attribute names and
will allow you to enter any names and values.

23. When you are finished entering attributes, click Next.

24. You will see a screen like Figure 9.

[} Routing - Artix Designer

~Specify Operations to be Routed

~Routed Operation

Mlgetsicore]

SelectWSDL
Source and Destinations

Mame, Multi-Route aptions
P Cperations
Transport Attributes

Route Summary

IErevious ” Mext H Cancel ” Help

Figure 9: Operation Routing Selection

25. Select the desired operations to route between.
26. Click Next.

89

CHAPTER 5 | Routing

90

[} Routing - Artix Designer

SelectWSDL
Source and Destinations

Mame, Multi-Route aptions
Operations
Transport Attributes

P Route Summary

~Route Summary

27. You will see a screen similar to Figure 10.

~Route Endpaint:

gource |V hasehallScoreService : baseballScorePort

Destination(s) | B hasehallGameSenice : baseballGamePort

SWSDL view of the updated Route

Route: baSebaIIScores:baseballRouteE]]

<rxml wersion="1.0" encoding="TUTF-5"> n
<definitions name="baseballicores">
<route name="haseballFoute">
<ns3:source port="haseballicorePort” service="tns:baseballicoreigs

<ns3idestination port="haseballGanePort” service="tns:basehallGan
</router
</definitions>

IErevious ” Hext ” Finish H Cancel ” Help

Figure 10: Review of Route Information

28. Click Finish to create your route.

Error Handling

Error Handling

Initialization errors Errors that can be detected during initialization while parsing the WSDL,
such as routing between incompatible logical interfaces and some kinds of
route ambiguity, are logged and an exception is raised. This exception aborts
the initialization and shuts down the server.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned
to the client; for example “no route” or “ambiguous routes”.

91

CHAPTER 5 | Routing

92

Overview

In this Chapter

CHAPTER 6

Using the Artix
Locator Service

The Artix Locator allows Artix servers to publish their
references for dynamic discovery by Artix clients.

A system with many servers cannot afford the overhead of manually
propagating each servers contact information to all off the clients that might
need to contact them. Given the large number of clients and the distributed
nature of enterprise level deployments, the time required to accomplish this,
and the room for error, are too great. Also, over time hardware upgrades,
machine failures, or site reconfiguration require you to move servers and
repeat the exercise of propagating the server's information to all clients.

The Artix locator isolates clients from changes in a server's contact
information. The Artix contract defining how the client contacts the server
contains the address for the Artix locator and it is the locator that provides
the client with a reference to the server. Servers are automatically registered
with the locator when they start-up.

This chapter discusses the following topics:

Deploying the Locator page 95
Registering a Server with the Locator page 99
Obtaining References from the Locator page 101

93

CHAPTER 6 | Using the Artix Locator Service

94

Controlling Server Workloads

page 104

Fault Tolerance

page 106

Deploying the Locator

Deploying the Locator

Overview

Building a standalone locator
service

The Artix locator is implemented as a group of ART plug-ins. This means
that any Artix application can host the locator service by loading the

servi ce_| ocat or plug-in. However, it is recommended that users generate
an Artix server that only hosts the locator service and deploy that service
into their Artix environment.

In either case, the locator service requires modifications to the Artix
configuration domain in which the locator is run. You also need to generate
a copy of | ocat or. wsdl , the contract that describes the locator service,
containing the locator service's contact information.

To generate a standalone locator service you write a simple Artix server
mainline and link it with the Artix libraries. Example 22 shows an example
of the locator's mainline.

Example 22: Artix Locator Mainline

i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>
#i ncl ude <it_bus/faul t_exception. h>

usi ng namespace | T_Bus;

int main(int argc, char* argv[])
{
try
{
IT Bus::init(argc, argv, "locator_service");
I T_Bus::run();
| T_Bus: : shut down() ;
}
catch (I T_Bus:: Exception& e)
{
printf("Exception occurred: 9%", e.Message());
return 1;

}

return O;

}

95

CHAPTER 6 | Using the Artix Locator Service

96

The locator’'s mai n() only needs to initialize the Artix bus with the name of
the locator's configuration scope and call | T_Bus: : run() . The configuration
scope name is the third parameter to I T_Bus::init(), | ocator. service.
The Artix bus will load the plug-ins for the locator service.

Example 23 shows a sample makefile for building the locator service.
Example 23: Locator Makefile
| T_PRODUCT_VER = 1.2

ART BI'N DI R=$(I T_PRODUCT DI R)\artix\$(1 T_PRCDUCT VER)\ bi n

ART_CXX_| NCLUDE_DI R="$(| T_PRCDUCT_DI R)\arti x\ $(1 T_PRCDUCT VER)\i
ncl ude"

ART LIB DIR="$(IT_PRODUCT DIR)\artix\$(I T_PRODUCT_VER)\I i b"

oxx=cl
CXXFLAGS=- | $(ART_CXX_INCLUDE DIR) -Zi -nol 0go - CR - GX - V8 - Zn®250
-MD $(EXTRA CXXFLAGS) $(CXXLOCAL_DEFI NES)

LI NK=l i nk

LDFLAGS=/ DEBUG / NOLO30

LDLI BS=/ LI BPATH $(ART_LI B DIR) $(EXTRA LI B PATH) $(LI NK_ W TH)
kernel 32.1ib ws2_32.1ib advapi 32.1ib user32.1ib

SH.I B_CXX_COWP| LER | D= vc60
SH.| BLDFLAGS=-dI | -debug -i ncrenental : no

OBJS=$(SQURCES: . cxx=. obj)
LINK WTH=it_bus.libit_afc.libit_art.lib it_ifc.lib

SOURCES = | ocat or . cxx
all: locator.exe

| ocat or . exe: $(SOURCES) $(OBIS)
if exist $@del $@
$(LINK) /out:$@S$(LDFLAGS) $(CBIS) $(LDLIBS)

The locator must be linked with the following Artix libraries:
® it _bus.lib
® jt_afc.lib
® it _art.lib
* jt_.ifc.lib

Configuring the locator

Generating the locator’s contact
information

<servi ce nane="Locat or Servi ce">

Deploying the Locator

To run the locator you need to ensure that it loads the locator service
plug-in, servi ce_l ocat or . In addition, the locator must load the soap and
htt p plug-ins as all of its communication is done using SOAP over HTTP.

In the locator’s configuration scope specify the service plug-in to read the
correct Artix contract for the locator by setting

pl ugi ns: | ocat or: servi ce_url to point to the copy of | ocat or . wsdl
containing the address for this instance of the locator.

Example 24 shows the configuration scope used to start the locator.
Example 24: Locator configuration scope

| ocat or _servi ce

{

pl ugi ns: | ocat or: servi ce_url ="l ocat or. wsdl "
orb_plugins = ["xmfile_|l og_streant, "iiop_profile", "giop",
"iiop", "soap", "http", "service_|locator"];

IE

For more information on Artix configuration see “Configuration” on page 27.

You also need to configure the port on which the locator will run. To do this
you modify | ocat or . wsdl , provided in the wsdl folder of your Artix
installation, to specify the HTTP address at which the locator service will
listen. This can be either done manually for deploying the locator on a
well-known fixed port, or automatically for deploying the locator on a
dynamically allocated port.

To deploy the locator on a well-known fixed port, open | ocat or . wsdl in any
text editor and edit the <soap: addr ess> entry at the bottom of the contract
to specify the proper address. Example 25 shows a modified locator service
contract entry. The highlighted part has been modified to point to the
desired address.

Example 25: Locator Service Address

<port name="Locat or Servi cePort" bi ndi ng="1s: Locat or Ser vi ceBi ndi ng" >
<soap: address | ocation="http://| ocal host : 8080/ ser vi ces/ | ocat or/ Locat or Ser vi ce"/ >

</ port >
</ servi ce>

97

CHAPTER 6 | Using the Artix Locator Service

To deploy the locator on a dynamically allocated port, configure the locator
to use the copy of | ocat or. wsdl shipped with Artix. Once the locator
initializes the Artix bus, it will need to publish a new copy of its contract
with the actual contact information. Example 26 shows how to publish the
locator’s contract.

Example 26: Dynamically Located Locator Service

I T _Bus::Bus_var bus = I T _Bus::init(argc, argv,
"| ocat or _service");

// Now we wite out the updated WBDL for the Locator Services

/1 Get the WBDL Defintions object.
| T_Bus: : Q\ane service_name("",
"Locat or Servi ce",
"http://ws.iona.conilocator");
| T_Bus:: Service * service = bus->get_service(servi ce_nane);
const | T _WBDL:: WsDLDefinitions & definitions =
servi ce->get _wsdl _definitions();

I/ Serialize the WBDL nodel to another wsdl file.

I T_Bus:: Fil eQut put Stream strean{"acti ve-1ocator.wsdl ") ;
I T_Bus: : XM.Qut put Stream xml _strean{stream true);
definitions.wite(xm _strean;

stream cl ose();

I T _Bus::run();

Starting the locator Once the locator has been generated and properly configured it can be
started just like any other application.

98

Registering a Server with the Locator

Registering a Server with the Locator

Overview

Configuring the server

Registration

A server does not need to have its implementation changed to work with the
Artix locator. All that is required is that the server be configured to load the
proper plug-ins and to reference the correct locator contract.

Any server that wishes to register itself with the locator must load the
following plug-ins in addition to the transport and payload plug-ins it
requires:

® soap
® http
® |ocator_endpoi nt

| ocat or _endpoi nt allows the server to register with the running locator.

The server's configuration also needs to set pl ugi ns: | ocat or: wsdl _ur| to
point to the appropriate locator contract.

Example 27 shows the configuration scope of a server that registers with the
locator service.

Example 27: Server Configuration Scope

rune_server

{

pl ugi ns: | ocat or: wsdl _ur| ="l ocat or. wsdl ";
orb_plugins = ["xmfile_| og_streant, "soap", "http", "tunnel",
"l ocat or _endpoi nt"];

}

rune_ser ver provides its services using SOAP over IIOP so in addition to the
locator plug-ins it also loads the t unnel plug-in.

For more information on Artix configuration see “Configuration” on page 27.

Once a properly configured server starts up, it automatically registers with
the locator specified by the contract pointed to by
pl ugi ns: | ocat or: wsdl _url .

929

CHAPTER 6 | Using the Artix Locator Service

You can register multiple instances of the same server with a locator. The
locator will generate a pool of references for the server type. When clients
make a request for a server, the locator will supply references from this pool
using a round-robin algorithm.

100

Obtaining References from the Locator

Obtaining References from the Locator

Overview

Instantiating a locator service
proxy

Unlike servers, clients must be specifically written to work with the Artix
locator. There are three steps a client must take to obtain a server reference
from the Artix locator. They are:

1. Instantiate a proxy for the locator service.
2. Look up the desired server's endpoint using the locator service proxy.
3. Create a proxy for the desired server using the returned endpoint.

Before a client can invoke any of the look up methods on the locator service,
it must create a proxy to forward requests to the running locator. To do this
the client creates an instance of Locat or Servi ced i ent using the locator
service’s contract name, | ocat or . wsdl , the locator service’s QName, and
the port name used in the locator service’s contract, Locat or Ser vi cePort .

Note: For more information on Artix proxy constructors, read the Artix
C++ Programmer’s Guide.

Example 28 shows how to instantiate a locator service proxy. The
parameters used to create the locator service’s QName, Locat or Servi ce
and http://ws. i ona. con | ocat or, should never be modified.

Example 28: Instantiating a Locator Service Proxy

/] C++
Q\ane | ocat or _servi ce_nanme("", "Locator Service",
"http://ws.iona.conlocator");
| ocat or _proxy = new Locat or Servi ced ient ("l ocator.wsdl ",
| ocat or _ser vi ce_nane,
"Locat or Servi cePort");

101

CHAPTER 6 | Using the Artix Locator Service

Looking up a server’s endpoint After instantiating a locator service proxy, a client can then look up servers

using the proxy’s | ookup_endpoi nt () method. | ookup_endpoi nt () has the
following signature:

voi d | ookup_endpoi nt (| ookupEndpoi nt i nput,
| ookupEndpoi nt Response out put) ;

i nput contains the QName of the server the client is looking up. The QName
is set using the set servi ce_gname() method. The QName of the service is
comprised of the service name specified in the Artix contract’s <ser vi ce>
tag and the target namespace of the Artix contract.

out put contains a reference to the server. If the locator cannot find a
registered instance of the requested server, | ookup_endpoi nt () returns an
endpoi nt Not Exi st Faul t exception.

Example 29 shows the client code to look up an instance of the widget
ordering service, or der W dget Ser vi ce.

Example 29: Looking up a Server Using the Locator Service

Il Ct+
/]l Create the Q\Nane for the server
Q\ane service_name("", "order WdgetsService",

"http://w dget Vendor . coni wi dget O der For nt') ;

// Create | ookup input paraneter
| ookupEndpoi nt i nput ;
i nput . set servi ce_gnane(servi ce_nane) ;

/1 The output paraneter is set by |ookup_endpoi nt
| ookupEndpoi nt Response out put ;

/1 call | ookup_endpoint on the | ocator proxy
| ocat or _pr oxy- >l ookup_endpoi nt (i nput, output);

Creating a server proxy The client uses the reference returned in the output parameter of
I ookup_endpoi nt () to instantiate a server proxy for making requests on the
requested server. To instantiate the proxy use the correct proxy class for the

102

Obtaining References from the Locator

server you have requested and pass the return value of the returned
| ookupEndpoi nt Response’s get ser vi ce_endpoi nt () method to the proxy
class’ constructor.

Note: Because the Artix locator's look up is only one level deep, it is
possible that the original look up can return a reference to a second Artix
locator. Clients running in an environment where multiple locator redirects
are possible must be explicitly designed to handle this situation.

Example 30 shows the client code for creating a proxy widget server from
the results of the look up performed in Example 29 on page 102.

Example 30: /nstantiate a Proxy Server

Il C++
or der Wdget sd i ent wi dget _proxy(out put. get servi ce_endpoint());

For more information on writing Artix client code read the Artix C++
Programmer’s Guide.

103

CHAPTER 6 | Using the Artix Locator Service

Controlling Server Workloads

Overview

Procedure

Get a service instance

104

Services can request that they temporarily be taken off of the locator’s list of
active references. This is particularly useful for managing the workloads
placed on services. When they reach a certain capacity, a service can in
effect disappear from any new clients wishing to access it. When the
service's workload is reduced it can then reappear and once again become
available to new clients.

To control the registered state of service you need to do the following three
things:

1. Obtain a handle for the service with which you intend to work.

2. Use the obtained handle to temporarily deregister the service from the
locator.

3. Use the obtained handle to reregister the service with the locator.

To get an instance of a service you need to use | T_Bus: : get _servi ce() on
a bus instance. get _servi ce() takes the QName of the desired service and
returns a generic service handle, | T_Bus: : Servi ce*.

Note: A bus instance can only return service handles for services that is
activated on that particular bus.

Example 31 shows how to obtain a handle for a service from the active bus.

Example 31: Obtaining a Service Handle

/1 C+H
// Build service Q\ame
I T_Bus: : Q\ane service_name("", "MvBervice", "http://M conl);

/] Get the service handle fromthe active bus
| T_Bus: : Servi ce* = bus->get_servi ce(servi ce_nane);

For more information on using get _servi ce() see the Artix C++
Programmer’s Guide.

Deregistering a service

Reregistering a service

Controlling Server Workloads

To temporarily deregister a service, you use the reached_capaci t y()
method of the service handle returned by the active bus. This method
informs the service’s endpoint manager that the service is busy and does not
want to receive requests from any new clients. The endpoint manager will
then contact the locator and ask to be removed from the list of available
services.

Note: Clients that already have a valid reference for the service will still
be able to make request on the service once it has been deregistered.

Example 32 shows how to call r eached_capaci ty().
Example 32: Calling reached _capacity()
\\ C++

\\ Service otained previously
servi ce->reached_capacity();

When the service is ready to be reregistered, you use the bel ow capaci ty()
method of the service handle used when deregistering the service.
bel ow _capaci ty() informs the endpoint manager that the service is capable
of accepting requests from new clients. The endpoint manager then contacts
the locator and asks to be placed on the list of available services.

Example 33 shows how to call r eached_capaci ty().
Example 33: Calling below_capacity()
\\ C++

\\ Service otained previously
servi ce->bel ow_capacity();

105

CHAPTER 6 | Using the Artix Locator Service

Fault Tolerance

Overview

Endpoint failure

Service failure

106

Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix locator is designed to recover from the
two most common failures faced by a look-up service:

® failure of a registered end-point.

® failure of the look-up service itself.

When an endpoint gracefully shuts down, it notifies the locator that it will no
longer be available and the locator removes the endpoint from its list so it
cannot give a client a reference to a dead endpoint. However, when an
endpoint fails unexpectedly, it cannot notify the locator and the locator can
unknowingly give a client an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the locator
service occasionally pings all of its registered endpoints to see if they are still
running. If an endpoint does not respond to a ping, the locator removes that
endpoint’s reference.

You can adjust the interval between locator service pings by setting the
configuration variable pl ugi ns: | ocat or : peer _ti meout . The default setting
is 4 seconds. For more information see “Configuration” on page 27.

When the locator service fails all of the references to the registered
endpoints are lost and the active endpoints are no longer registered with the
locator. To ensure that the active endpoints reregister with the locator when
it restarts, the endpoints, after the locator has missed its ping interval, will
periodically attempt to reregister with the locator until they are successful.

You can adjust the interval at which the endpoint pings the locator by
setting the configuration variable

pl ugi ns: sessi on_endpoi nt _manager : peer _ti nout . The default setting is 4
seconds. For more information see “Configuration” on page 27.

In this chapter

CHAPTER 7

Using the Artix
Session Manager

The Artix Session Manager helps you manage service

resources.

This chapter discusses the following topics:

Introduction to Session Management in Artix page 108
Deploying the Session Manager page 111
Registering a Server with the Session Manager page 116
Working with Sessions page 119
Fault Tolerance page 127

107

CHAPTER 7 | Using the Artix Session Manager

Introduction to Session Management in Artix

Overview

How do the plug-ins interact?

108

The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager endpoints are:

Session Manager Service Plug-in (sessi on_nanager _ser vi ce) is the central
service plug-in. It accepts and tracks endpoint registration, hands out
session to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (sessi on_endpoi nt _manager) is the
portion of the session manager that resides in a registered endpoint. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,

sm si npl e_pol i cy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each

group.

Figure 11 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service

Introduction to Session Management in Artix

plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy

plug-in.

Figure 11: The Session Manager Plug-ins

The endpoint manager plug-ins are deployed into the server processes
which contain session managed endpoints. A process can host two
endpoints, like Service C and Service D in Figure 11, but the process will
have only one endpoint manager. The endpoint manager plug-ins are in
constant communication with the session manager service plug-in to report
on endpoint health, to receive information on new sessions that have been
granted to the managed endpoints, and to check on the health of the
session manager service.

109

CHAPTER 7 | Using the Artix Session Manager

What are sessions?

What are groups?

110

The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the
water-slide group, it would ask the session manager for a session with the
water-slide group. The session manager would then check and see if the
water-slide group had an available session, and if so it would return a
session id and the list of water-slide endpoint references to the client. The
session manager would then notify the endpoint managers in the water-slide
group that a new session had been issued, the new session’s id, and the
duration for which the session is valid. When the client then makes requests
on the services in the water-slide group, it must include the session
information as part of the request. The endpoint manager for the services
then check the session information to ensure it is valid. If it is, the request is
accepted. If it is not, the request is rejected.

If the client wants to continue using the water-slide services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client’s session has
expired, it will have to request a new one.

The Artix session manager does not pass out sessions for each individual
service, or endpoint, that is registered with it. Instead, services are
registered as part of a group, and sessions are handed out for the group. A
group is a collection of endpoints that are managed as one unit by the
session manager. While the session manager does not specify that the
services in a group be related, it is recommended that the endpoints have
some relationship.

A service's group affiliation is controlled by the configuration scope under
which it is run. To change a service’s group, you simply need to edit the
value for pl ugi ns: sessi on_endpoi nt _nanager : def aul t _gr oup in the
process’ configuration scope. For more information on Artix configuration
see “Configuration” on page 27.

Deploying the Session Manager

Deploying the Session Manager

Overview The Artix session manager is implemented as a group of ART plug-ins. This
means that any Artix application can host the session manager's core
functionality by loading the sessi on_nanager _ser vi ce and
sm si npl e_pol i cy plug-ins. However, it is recommended that users
generate an Artix server that only hosts the session manager and deploy that
server into the Artix environment.

In either case, the session manager requires modifications to the Artix
configuration domain in which the session manager is run. You also need to
generate a copy of sessi on- manager . wsdl , the contract that describes the
session manager, containing the session manager’s contact information.

Building a standalone session To generate a standalone instance of the session manager you need to write
manager a simple Artix server mainline and link it with the Artix libraries. Example 34
shows an example of the session manager’'s mainline.

Example 34: Artix Session Manager Mainline
i ncl ude <it_bus/bus. h>
#i ncl ude <it_bus/ Exception. h>

#i ncl ude <it_bus/faul t_exception. h>

usi ng namespace | T_Bus;

111

CHAPTER 7 | Using the Artix Session Manager

112

Example 34: Artix Session Manager Mainline

#int main(int argc, char* argv[])

{
try
{
I T_Bus::Bus_var bus = | T_Bus::init(argc, argv,
"managed_sessi ons") ;
bus->run();
bus- >shut down() ;
}
catch (1T _Bus:: Exception& e)
{
printf("Exception occurred: 9", e.Mssage());
return 1;
}
return O;
}

The session manager's mai n() only needs to initialize the Artix bus with the
name of the session manager’s configuration scope and call I T_Bus: : run() .
The configuration scope name is third parameter to I T_Bus: :init(),
managed_sessi ons. The Artix bus will load the plug-ins for the session
manager.

Example 35 shows a sample makefile for building the session manager.
Example 35: Session Manager Makefile
| T_PRODUCT_VER = 1.2

ART BIN DI R=$(I T_PRODUCT DI R)\artix\$(1 T_PRCDUCT VER)\ bi n

ART_CXX_| NOCLUDE DI R="$(1 T_PRODUCT_DIR)\arti x\ $(| T_PRODUCT_VER)\i
ncl ude"

ART LIB DIR="$(IT_PRODUCT DIR)\artix\$(I T_PRODUCT_VER)\I i b"

oxx=cl
CXXFLAGS=- | $(ART_CXX_INOLUDE DIR) -Zi - nol 0go - GR - GX - V8 - Zn®250
-MD $(EXTRA CXXFLAGS) $(CXXLOCAL_DEFI NES)

Configuring the session manager

Deploying the Session Manager

Example 35: Session Manager Makefile

LI NK=l i nk

LDFLAGS=/ DEBUG / NOLG3O

LDLI BS=/ LI BPATH $(ART_LIB DIR) $(EXTRA LI B PATH) $(LINK_ WTH)
kernel 32.1ib ws2_32.1ib advapi 32.1ib user32.lib

SHLI B_CXX_COWPI LER | D= vCc60
SH.I BLDFLAGS=-dI | -debug -i ncrenental : no

OBJS=$(SOURCES: . cxx=. 0bj)
LINK WTH=it _bus.lib it_afc.libit_art.lib it_ifc.lib

SOURCES = sessi on_nmanager . Cxx
al | : sessi on_nmanager . exe

sessi on_nanager . exe: $(SOURCES) $(BIS)
if exist $@del $@
$(LINK) /out:$@$(LDFLAGS) $(CBIS) $(LDLIBS)

The session manager must be linked with the following Artix libraries:
® it _bus.lib
® it_afc.lib

® jt_art.lib
® itifc.lib

To run the session manager you need to ensure that it loads the session
manager service plug-in, sessi on_manager _ser vi ce and the session
manager policy plug-in, sm si npl e_pol i cy. In addition, the session
manager must load the soap and htt p plug-ins as all of its communication
is done using SOAP over HTTP.

In the session manager’s configuration scope you will need to specify the
location for the session manager’s contract by setting

pl ugi ns: sessi on_manager _ser vi ce: servi ce_ur| to point to the copy of
sessi on- manager . wsdl containing the contact information for this session
manager.

113

CHAPTER 7 | Using the Artix Session Manager

managed_sessi ons

{

Example 36 shows the configuration scope used to start the session
manager.

Example 36: Session Manager Configuration Scope

orb plugins = ["xmfile_|log streant, "iiop_profile", "giop", "iiop", "soap", "http",

"sessi on_manager _servi ce",

b

Generating the session manager’s
contact information

"smsinpl e_policy"];
pl ugi ns: sessi on_manager _ser vi ce: servi ce_url ="sessi on- namager . wsdl "

For more information on Artix configuration see “Configuration” on page 27.

You also need to configure the port on which the session manager will run.
To do this you modify sessi on- manager . wsdl , provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the session
manager will listen. This can be either done manually for deploying the
session manager on a well-known fixed port, or automatically for deploying
the session manager on a dynamically allocated port.

To deploy the session manager on a well-known fixed port, open

sessi on- manager . wsdl in any text editor and edit the <soap: addr ess> entry
for the Sessi onManager Ser vi ce to specify the proper address. Example 37
shows a modified session manager contract entry. The highlighted part has
been modified to point to the desired address.

Example 37: Session Manager Address

<servi ce name="Sessi onManager Servi ce">
<port name="Sessi onManager Port" bi ndi ng="sm Sessi onManager Bi ndi ng" >

<soap: addr ess

| ocation="http://I ocal host: 8080/ servi ces/ sessi onManagerent / sessi onManager Servi ce"/ >

</ port >
</ servi ce>

114

Starting the session manager

Deploying the Session Manager

To deploy the session manager on a dynamically allocated port, configure
the session manager to use the copy of sessi on- manager . wsdl shipped with
Artix. Once the session manager initializes the Artix bus, it will need to
publish a new copy of its contract with the actual contact information.
Example 38 shows how to publish the session manager’s contract.

Example 38: Dynamically Located Session Manager

I T _Bus::Bus_var bus = | T_Bus::init(argc, argv,
" managed- sessi ons") ;

// Now we wite out the updated WSDL for the session manager

/1 Get the WBDL Defintions object.
| T_Bus: : Q\ane servi ce_nanme("",
" Sessi onManager Ser vi ce",
"http://ws.iona. conl sessi on- nanager");
| T_Bus:: Service * service = bus->get_servi ce(servi ce_nane);
const | T _WBDOL: : WsDLDefinitions & definitions =
servi ce- >get _wsdl _definitions();

// Serialize the WBDL nodel to another wsdl file.

I T_Bus:: Fil eQut put Stream strean("acti ve-snservice. wsdl ") ;
I T_Bus: : XM_Qut put St ream xml _strean{stream true);
definitions.wite(xm _strean);

streamcl ose();

I T_Bus::run();

Once the session manager has been generated and properly configured it
can be started just like any other application. The only caveat is that the

session manager must be started before any servers that need to register
with it.

115

CHAPTER 7 | Using the Artix Session Manager

Registering a Server with the Session Manager

Overview Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Configuring the server Any server that wishes to be managed by the session manager must load
the following plug-ins in addition to the transport and payload plug-ins it
requires:
® soap
® http

® session_endpoi nt _nanager

sessi on_endpoi nt _manager allows the server to register with a running
session manager.

The server's configuration also needs to set the following configuration
variables:

plugins:session_endpoint_manager:wsdl_url points to the contract
describing the contact information for the session manager that will be
managing the server.

plugins:session_endpoint_manager:endpoint_manager_url points to the
contract describing the contact information for the endpoint manager for this
server. This enables the session manager to contact the service to with
updated state information.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.

Note: While the session manager does not require it, it is recommended
that all services in a group implement the same interface.

116

Registering a Server with the Session Manager

Example 39 shows the configuration scope of a server that is managed by
the session manager.

Example 39: Server Configuration Scope

gaj ag_ser ver

{
orb plugins = ["xmfile_|og_streant, "soap", "http", "fixed", "session_endpoint_manager"];
pl ugi ns: sessi on_endpoi nt _nanager : wsdl _ur| =" sessi on- manager - ser vi ce. wsdl ";
pl ugi ns: sessi on_endpoi nt _nanager : endpoi nt _nanager _ur | =" sessi on- nanager - endpoi nt . wsdl ";

pl ugi ns: sessi on_endpoi nt _nanager : deaf ul t _gr oup="qaj ag_gr oup";

b

A server loaded into the gaj ag_ser ver configuration scope will be managed
by the session manager at the location specified in

sessi on- nanager - ser vi ce. wsdl , its endpoint manager will come up at the
address specified in sessi on- manager - endpoi nt . wsdl , and by default all
services instantiated by the server will belong to the session manager group
gaj ag_gr oup.

For more information on Artix configuration see “Configuration” on page 27.

You also need to configure the port on which the endpoint manager will run.
To do this you modify sessi on- manager . wsdl , provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open

sessi on- nanager . wsdl and edit the <soap: addr ess> entry for the

Sessi onEndpoi nt Manager Ser vi ce to specify the proper address.

Example 40 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 40: Endpoint Manager Address

<servi ce name="Sessi onEndpoi nt Manager Ser vi ce" >
<port name="Sessi onEndpoi nt Manager Port" bi ndi ng="sm Sessi onEndpoi nt Manager Bi ndi ng" >
<soap: addr ess
| ocation="http://| ocal host: 8080/ ser vi ces/ sessi onManagerent / sessi onEndpoi nt Manager "/ >
</ port >
</ servi ce>

117

CHAPTER 7 | Using the Artix Session Manager

Registration

118

In the server's configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting

pl ugi ns: sessi on_endpoi nt _manager : endpoi nt _manager _ur | to point to the
copy of sessi on- manager . wsdl containing the address for this instance of
the endpoint manager.

Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by

pl ugi ns: sessi on_endpoi nt _nanager : wsdl _url .

You can register multiple instances of the same server with a session
manager. The session manager generates a pool of references for the server
type and associate them by their group. Clients are given a list of all
available endpoints in a given group and can request a session from the
pool.

Working with Sessions

Working with Sessions

Overview

Instantiating a session manager
proxy

Clients that wish to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session
manager proxy.

Obtain the list of endpoints available in the group.

Create a service proxy from one of the endpoints in the group.
Build a session header to pass to the service.

Invoke requests on the endpoint using the proxy.

Renew the session as needed.

© N o o~ W

End the session using the session manager proxy when finished with
the endpoint.

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of Sessi onManager Qi ent using the
session manager’s contract name, sessi on- manager . wsdl .

Note: For more information on Artix proxy constructors, read the Artix
C++ Programmer’s Guide.

Example 41 shows how to instantiate a session manager proxy.
Example 41: /nstantiating a Session Manager Proxy
[l Ct++

Sessi onManager d i ent sessi on_manager _proxy = new
Sessi onManager d i ent (" sessi on_manager . wsdl ") ;

119

CHAPTER 7 | Using the Artix Session Manager

Start a session

120

After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager's
begi n_sessi on() method. begi n_sessi on() has the following signature:

voi d begi n_sessi on(I T_Bus_Ser vi ces: : Begi nSessi on i nput,
| T_Bus_Servi ces: : Begi nSessi onResponse out put) ;

i nput contains the name of the desired group and the desired duration of
the session. The group name is set using the set endpoi nt _group() method.
The group name can be any valid string and corresponds to the default
group name set in the service’s configuration scope as described in
“Configuring the server” on page 116.

The session duration is set using the set pref er ed_r enew_ti meout ()
method. The duration is specified in seconds. If the specified duration is less
than the value specified by the service’s m n_sessi on_t i neout configuration
setting, it will be set to the configured minimum value. If the specified
duration is higher than the value specified by the service’s

max_sessi on_ti meout configuration setting, it will be set the configured max
value. For more information see “Configuration” on page 27.

out put contains the information needed to use the session.

Once a session is returned in out put , you will need to extract the session ID
to work with the session. This is done using get sessi on_i d() .

get session_i d() returns the session ID as an

| T_Bus_Servi ces: : Sessi onl D.

Working with Sessions

Example 42 shows the client code to begin a session for gaj ag_gr oup.
Example 42: Beginning a Session

Il C++
| T_Bus_Servi ces: : Begi nSessi on begi n_sessi on_r equest ;
| T_Bus_Servi ces: : Begi nSessi onResponse begi n_sessi on_r esponse;

// set the group to request

begi n_sessi on_r equest . set endpoi nt _gr oup(" qaj ag_group");
// set session renewal interval to 10 mins

begi n_sessi on_r equest . set preferred_renew_ti meout (600) ;

sessi on_ngr . begi n_sessi on(begi n_sessi on_r equest ,
begi n_sessi on_r esponse) ;

| T_Bus_Servi ces: : Sessi onl d session;
session =

begi n_sessi on_r esponse. get sessi on_i nfo(). get session_i d();

Get a list of endpoints in the group The session manager hands out sessions for a group of services, so in order
to get an individual endpoint upon which to make requests a client needs to
get a list of the endpoints in the session’s group. The session manager
proxy's get _al | _endpoi nt s() method returns a list of all endpoints

registered to the specified group. get _al | _endpoi nts() has the following
signature:

voi d get _al | _endpoi nt s(l T_Bus_Servi ces: : Get Al | Endpoi nts request,
I T_Bus_Servi ces: : Get Al | Endpoi nt sResponse r esponse)

request contains the session ID for which you are requesting endpoints. Set
the session ID using the set sessi on_i d() method on request with the
session ID returned from the session manager.

r esponse contains the list of endpoints returned from get _al I _endpoi nt s() .
If the group has no endpoints, response will be empty.

121

CHAPTER 7 | Using the Artix Session Manager

Create a proxy for the requested
service

122

Example 43 shows how to get the list of endpoints for a group.
Example 43: Retrieving the List of Endpoints in a Group

/1 C+H

| T_Bus_Servi ces: : Get Al | Endpoi nts request;

I T_Bus_Servi ces: : Get Al | Endpoi nt sResponse response;

// group session initialized above.
get _al | _endpoi nt s_request . set sessi on_i d(sessi on);

sessi on_ngr. get _al | _endpoi nt s(request, response);

The client can use any of the endpoints returned by get _al | _endpoi nt s()
to instantiate a server proxy for making requests on the requested server. To
instantiate the proxy, you first need to narrow down the list returned
endpoints to the desired one. Get Al | Enpoi nt sResponse contains an array of
references to active endpoints that can be retrieved using

Get Al | Endpoi nt sResponse’s get endpoi nt s() method. You can use simple
indexing to get one of the references. For example, to use the first endpoint
you would use the following:

response. get endpoi nt s() [0]

Because the session manager simply returns the endpoints in the order the
services registered with the session manager, the clients must be
responsible for circulating through the list or else they will all make requests
on only one service in the group. Also, because the session manager does
not force all members of a group to implement the same interface, you may

Create a session header

Working with Sessions

want to have your clients check each endpoint to see if it implements the
correct interface by checking the reference’s service name as shown in
Example 44.

Example 44: Checking the Endpoint for its Interface

/1 CH
| T_Bus: : Ref erence endpoi nt = response. get endpoi nts()[0];
if (endpoint.get_service_nanme() ==
Q\arre("", "Qaj agService", "http://qgaj ags. conl))
{
/] instantiate a Qqj aqServi ce usi ng endpoi nt

}

el se

{

/1 do sonething el se

}

Example 45 shows the client code for creating a proxy gaj aq server from a
group endpoint.

Example 45: Instantiate a Proxy Server

Il C++
Qqaj aqd i ent gaj aq_proxy(response. get endpoi nts()[0]);

Services that are being managed by the session manager will only accept
requests that include a valid session header. The session header information
is passed to the server as part of the proxy’s input message attributes.
Creating the session header and putting into the input message attributes
takes three steps:

1. Set the proxy to use input message attributes.
2. Get a handle to the proxy’s input message attributes.
3. Set the session information into the input message attributes.

Setting the proxy to use input message attributes

Artix client proxies all support a helper method, get _port (), that provides
access to the port information used by the client to connect the server. One
of an Artix proxy’s port properties is use_i nput _nessage_attri but es.

123

CHAPTER 7 | Using the Artix Session Manager

124

Setting this property to t r ue tells the bus to endure the input message
attributes are propagated through to the server. Example 46 shows how to
set the client proxy port's use_i nput _nmessage_at tri but es property to true.

Example 46: Use Input Message Attributes

/[C++
I/ Get the proxy’s port
I T Bus::Port proxy_port = gaj ag_proxy.get_port();

I/ set the port property
proxy_port.use_input_attributes(true);

Getting a handle to the input message attributes

A pointer to the proxy port’s input message attributes is returned by the
port’s get _i nput _nessage_attri butes() method. Example 47 shows how
to get a handle to the input message attributes.

Example 47: Getting the Input Message Attributes

MessageAttri but es& i nput _attributes =
proxy_port().get_i nput_nessage_attributes();

Setting the session information into the input message attributes

There are two attributes that need to be set to include the proper session
information in the input message:

SessionName specifies the name the session manager has given this
session. The session manager endpoints in the group will also be given this
name to validate session header's against. The session name is returned by
invoking get name() of the session ID of the active session.

SessionGroup specifies the group name for which the session is valid. The
session endpoints also use to ensure that the session is for the correct
group. The session group is returned by invoking get endpoi nt _gr oup() on
the session ID of the active session.

Make requests on service proxy

Renewing a session

Working with Sessions

The input message attributes are set using the message attribute handle’s
set_string() method. set_string() takes two attributes. The first is a
string specifying the name of the attribute being set. The second is the value
to be set for the attribute. Example 48 shows how to set the session
information in to the input message attributes.

Example 48: Setting the Input Message Attributes

[l Ct++
input _attributes.set_string("Sessi onNarre", session. getnane());
input _attributes.set_string("Sessi onG oup”,

sessi on. get endpoi nt _group());

Once the session information is added to the proxy’s port information, the
client can invoke operations on the client as it would a non-managed server.
If the endpoint rejects the request because the client’s session is not valid,
an exception is raised.

If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy’'s

renew sessi on() method. renew sessi on() has the following signature:

voi d renew sessi on(| T_Bus_Servi ces: : RenewSessi on par ans,
I T_Bus_Servi ces: : RenewSessi onResponse renewed) ;

par ans contains the session ID of the session being renewed and the
duration, in seconds, of the renewal. The session ID is set using par ans’
set sessi on_i d() method. The renewal duration is set using par ans’
setrenew timeout () method.

If the renewal is successful, r enewed will return containing the duration of
the renewal. The returned duration may be different if the requested renewal
duration was outside of the configured range for session timeouts.

If the renewal is unsuccessful, an
| T_Bus_Servi ces: : r enewSessi onFaul t Except i on is raised.

125

CHAPTER 7 | Using the Artix Session Manager

End the session

126

Example 49 shows how to end a session.
Example 49: Ending a Session

/1 C+H
| T_Bus_Servi ces: : RenewSessi on par ans;
| T_Bus_Ser vi ces: : RenewSessi onResponse r enewed;
par ans. set sessi on_i d(sessi on) ;
par anes. set renewal _t i meout (600) ;
try
{
sessi on_nyr . renew_sessi on(parans, renewed);

}

catch (I T_Bus_Servi ces: : renewSessi onFaul t Except i on)

/1 handl e the exception

}

When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy’s
end_sessi on() method. end_sessi on() has the following signature:

voi d end_sessi on(| T_Bus_Servi ces: : EndSessi on parans) ;

par ans contains the session ID of the session being ended. The session ID is
set using par ans’ set sessi on_i d() method.

Example 50 shows how to end a session.
Example 50: Ending a Session

/1 C+H

| T_Bus_Servi ces: : EndSessi on par ans;
par ans. set sessi on_i d(sessi on) ;
sessi on_ngr. end_sessi on(par ans) ;

For more information on writing Artix client code read the Artix C++
Programmer’s Guide.

Fault Tolerance

Fault Tolerance

Overview

Endpoint failure

Service failure

Enterprise level deployments demand that applications can cleanly recover
from occasional failures. The Artix session is designed to recover from the
two most common failures:

® failure of a registered endpoint.

® failure of the session manager itself.

When an endpoint gracefully shuts down, it notifies the session manager
that it will no longer be available and the session manager removes the
endpoint from its list so it cannot give a client a reference to a dead
endpoint. However, when an endpoint fails unexpectedly, it cannot notify
the session manager and the session manager can unknowingly give a client
an invalid reference causing the failure to cascade.

To mitigate the risk of passing invalid references to clients, the session
manager occasionally pings all of its registered endpoints to see if they are
still running. If an endpoint does not respond to a ping, the session manager
removes that endpoint’s reference.

You can adjust the interval between session manager pings by setting the
configuration variable pl ugi ns: sessi on_nanager : peer _ti neout. The
default setting is 4 seconds. For more information see “Configuration” on
page 27.

When the session manager fails all of the references to the registered
endpoints are lost and the active endpoints are no longer be registered. To
ensure that the active endpoints reregister with the session manager when it
restarts, the endpoints, after the session manager has missed its ping
interval, will periodically attempt to reregister with the session manager until
they are successful.

You can adjust the interval between the endpoint’s pings of the session
manager by setting the configuration variable

pl ugi ns: sessi on_endpoi nt _manager : peer _ti nout . The default setting is 4
seconds. For more information see “Configuration” on page 27.

127

CHAPTER 7 | Using the Artix Session Manager

128

CHAPTER 8

Artix Logging and
SNMP Support

This chapter describes various Artix logging approaches,
including Artix support for SNMP (Simple Network
Management Protocol) and integration with third-party SNMP
management tools.

In this chapter This chapter includes the following sections:
Artix Logging page 130
Using Trace Macros page 131
Using the SNMP Logging Plug-in page 135
Using the XML Logging Plug-in page 142
IT_Logging Overview page 149
IT_Logging::LogStream Interface page 153
Example page 156
Performance Logging page 158

129

CHAPTER 8 | Artix Logging and SNMP Support

Artix Logging

Overview Artix provides the following | T_Loggi ng: : | ogst r eamplug-ins: the

xm fil e_| ogstreamand snnp_| ogst r eam In addition, IONA Application
Server Platform logging features such as | ocal _| ogst ream are provided.

For information on configuring these plugins see “Configuration” on
page 27.

130

Using Trace Macros

Using Trace Macros

Artix Trace Macros

In using Trace macros, the most important concept is the trace level. Trace

level is an enum, defined init_bus/ | oggi ng_support, that lets you filter

events:

const
const
const
const
const
const
const

| T_TracelLevel
I T_TracelLevel
| T_TracelLevel
I T_TracelLevel
I T_TracelLevel
| T_TracelLevel
| T_TracelLevel

| T_TRACE_FATAL

| T_TRACE_ERRCR
| T_TRACE_WARN NG = 16;

I T_TRACE = 4;

| T_TRACE BUFFER = 2;
| T_TRACE_METHCDS = 1;

/| FATAL

/| ERRCR

/1 \WARN NG
/11 NFO H GH
/11 NFO_ MED
/11 NFO LON

| T_TRACE_METHCDS_| NTERNAL = 1; //|NFO LOW

The simplest trace statement emits a constant string at level | T_TRACE. For
example:

TRACELOE " Hel 1 0 wor | d");

Several versions of the macro allow using a C printf format string, and
passing in some arguments. Because you cannot have variable argument
lists for macros, there are several defined according to how many arguments
are allowed:

TRACELOGL("M/ nane is: %", "Slim Shady");

TRACELOZ("At state nunber %l, this happened: %", 44,

"connection failure");

Both the zero argument and the multi argument versions have a set that
allows a trace level to be passed in, instead of level | T_TRACE. For example:

TRACELOG W TH_LEVEL(I T_METHODS, “Md ass:: M/d ass()");

TRACELOG WTH LEVEL1(| T_TRACE METHCDS | NTERNAL, "Val ue of ny_nane_field was 96",

ny_nane_field);

131

CHAPTER 8 | Artix Logging and SNMP Support

132

If you must create your own output using i ost r eans or another expensive
process that isn't supported by the macro, you use the trace guard block, so
that the trace level test will prevent your trace creation code from running
when it will not produce output. For example:

BEQ N_TRACE(| T_TRACE)
String trace_nessage = "data el enents: “;

for(i =0; i < data_count; i++)
{
trace_message = trace_nessage + data_ itenfi] + "
}
TRACELOZ(trace_nessage. c_str());
END_TRACE

To create binary output (for instance, a hex dump of the buffer), use
TRACELO®BUFFER. For example:

TRACELO®BUFFER vvMMessageDat a, vvMJVessageDat a. Get Si ze())

If the trace statement issues at a level less than or equal to the process trace
level, then the entry is written to disk. The default log file name is
it_bus. | og.

Using Trace Macros

Application Server Platform Trace Macros

Overview <or bi x\ | oggi ng_suppor t . h> defines ASP-style logging macros.

IT_LOG_MESSAGE Macros

IT_LOG_MESSAGE() Macro

Il CH

#define | T_LOG MESSACGE(\
event_log, \
subsystem \
id, \
severity, \
desc \

) ...
A macro to use for reporting a log message.

Parameters
event _|og The log (Event Log) where the message is to be reported.
subsystem The Subsystemn d.
id The Event I d.
severity The EventPriority.
desc A string description of the event.
Examples Here is a simple example of usage:

| T_LOG MESSAGE(
event _| og,
I T_I'| OP_Loggi ng: : SUBSYSTEM
| T_I'l OP_Loggi ng: : SOCKET_CREATE_FAI LED,
| T_Loggi ng: : LOG ERRCR,
SOCKET_CREATE_FAI LED_MSG

133

CHAPTER 8 | Artix Logging and SNMP Support

IT_LOG_MESSAGE_1() Macro

Parameters

134

[l Ct+
#define | T_LOG MESSAGE 1(\
event _|og, \
subsystem \
id, \
severity, \
desc, \
paran0 \
)

A macro to use for reporting a log message with one event parameter.

event _| og The log (Event Log) where the message is to be reported.
subsystem The Subsyst em d.

id The Event I d.

severity The EventPriority.

desc A string description of the event.

par an® A single parameter for an Event Par anet er s sequence.

In addition, the I T_LOG MESSAGE 2(), | T_LOG MESSAGE 3(),

| T_LOG MESSAGE 4(), and | T_LOG MESSAGE 5() macros, are provided for
reporting log messages with two, three, four, and five parameters,
respectively.

Using the SNMP Logging Plug-in

Using the SNMP Logging Plug-in

SNMP Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

The Artix SNMP LogStream plug-in uses the open source library net - snnp
(v.5.0.7) to emit SNMPv1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

the Artix Management A MIB file is a database of objects that can be managed using SNMP. It has

Information Base (MIB) a hierarchical structure, similar to a DOS or UNIX directory tree. It contains
both pre-defined values and values that can be customized. The Artix MIB is
shown below:

Example 51: Artix MIB

IONA-ARTIX-M B DEFINTIONS ::= BEGN

| MPCRTS
MCDULE- | DENTI TY, OBJECT- TYPE,
I nt eger 32, Counter 32,

Unsi gned32,
NOTI FI CATI ON- TYPE FROM SNWv2- SM
D spl ayString FROM RFC1213-M B

-- v2 s/current/current

iona OBJECT IDENTIFIER ::= { iso(1l) org(3) dod(6) internet(1) private(4) enterprises(1l) 3027 }

i onaM b MODULE- | DENTI TY
LAST- UPDATED " 200303210000Z"

CRGAN ZATI ON "1 ONA Technol ogi es PLC'

135

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 8 | Artix Logging and SNMP Support

Example 51: Artix MIB

QONTACT- | NFO

Cor por at e Headquarters
Dublin Cfice

The | ONA Bui | di ng

Shel bour ne Road

Bal | sbri dge

Dublin 4 Irel and
Phone: 353- 1- 662- 5255
Fax: 353-1-662- 5244

US Headquarters

Wl t ham O fi ce

200 West Street 4th Fl oor
Wal t ham NMA 02451

Phone: 781-902- 8000

Fax: 781-902- 8001

Asi a- Paci fic Headquarters

| ONA Technol ogi es Japan, Ltd
Akasaka Sanchone Bl dg.

7F 3-21-16 Akasaka, M nato-ku,
Tokyo, Japan 107- 0052

Tel : +81 3 3560 5611

Fax: +81 3 3560 5612

E-nai | : support @ona. com

DESCR! PTI ON
"This MB nodul e defines the objects used and format of SNWP traps that are generated
fromthe Event Log for Artix based systens from | QNA Technol ogi es"

c:={ iona 1}

136

Using the SNMP Logging Plug-in

Example 51: Artix MIB

-- i ona(3027)

- |
-- i onaM b(1)

P I I I
-- or bi x3(2) | CONAADm n (3) Artix (4)

== Arti xEvent LogM bChj ect s(0) ArtixEvent LogM bTraps (1)

| - event Source (1) |- ArtixbaseTrapDef (1)
|- eventld (2)
-- |- eventPriority (3)
|- tineStanp (4)
| - eventDescription (5)

Artix CBJECT IDENTIFIER ::={ ionaMb 4 }

Arti xEvent LogM bbj ect s CBJECT IDENTIFIER ::={ Artix 0}

Arti xEvent LogM bTr aps CBJECT IDENTIFIER ::={ Artix 1}

Arti xBaseTr apDef CBJECT IDENTIFIER ::= { ArtixEventLogM bTraps 1 }

-- MB variabl es used as varbi nds
event Sour ce CBJECT- TYPE
SYNTAX D spl ayString (Sl ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON
"The conponent or subsystem whi ch generated the event."
::={ ArtixEvent LogM bChj ects 1 }

137

CHAPTER 8 | Artix Logging and SNMP Support

Example 51: Artix MIB

event | d CBJECT- TYPE
SYNTAX | NTEGER
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"The event id for the subsystemwhi ch generated the event."

i:={ ArtixEvent LogM b(hj ects 2 }

eventPriority CBIECT- TYPE
SYNTAX | NTEGER
MAX- ACCESS not - accessi bl e
STATUS current
DESCR PTI ON

"The severity level of this event. This maps to | T_Loggi ng::EventPriority types. Al
priority types map to four general types: INFO (1), WARN (W, ERROR (E), FATAL_ERRCR (F)"

i:={ ArtixEvent LogM b(hj ects 3 }

ti mest anp CBJECT- TYPE
SYNTAX D spl ayString (S| ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"The tine when this event occurred."

i:={ ArtixEvent LogM b(hj ects 4 }

event Descri pti on CBJECT- TYPE
SYNTAX D splayString (Sl ZE(O. . 255))
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON

"The conponent/application description data included with event."
i:={ ArtixEvent LogM b(hj ects 5 }

-- SNWv1 TRAP definitions

-- ArtixEvent LogBaseTraps TRAP- TYPE
-- CBJECTS {

-- event Sour ce,

-- event | d,

-- eventPriority,

138

Using the SNMP Logging Plug-in

Example 51: Artix MIB

ti mest anp,
event Descri ption

}

STATUS current

ENTERPRI SE i ona

VAR ABLES { ArtixEvent LogM bChj ects }

DESCR PTION "The generic trap generated froman Artix Event Log."
::={ ArtixBaseTrapDef 1 }

-- SNWPv2 Notification type

Arti xEvent LogNot i f NOTI FI CATI ON- TYPE

END

CBJECTS {
event Sour ce,
event | d,
eventPriority,
ti mest anp,
event Descri pti on

}

STATUS current

ENTERPR! SE i ona

DESCR PTION "The generic trap generated froman Artix Event Log."
c:={ ArtixBaseTrapDef 1 }

IONA SNMP integration Events received from various Artix components are converted into SNMP

management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.

Artix supports SNMP version 1 and 2 traps only.

Artix provides a logstream plug-in called snnp_| og_st ream The shlib name
of the SNMP plug-in found in the arti x. cf g file is:

pl ugi ns: snnp_| og_stream shli b_name = "it_snnp"

139

CHAPTER 8 | Artix Logging and SNMP Support

pl ugi ns:
pl ugi ns:
pl ugi ns:
pl ugi ns:

pl ugi ns:

140

The SNMP plug-in has five configuration variables, whose defaults can be
overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

snnp_| og_stream community = "public";

snnp_| og_stream server

snnp_| og_stream port

snnp_| og_streamtrap_type

snnp_| og_stream oi d

"l ocal host";

"162";

ne

"<your | ANA nunber in dotted decimal notation>"

The last plugin described, oi d, is the Enterprise Object Identifier. This
identifier is assigned to specific enterprises by the Internet Assigned
Numbers Authority (IANA). The first six numbers correspond to the prefix:
"iso.org.dod.internet.private.enterprise" (1.3.6.1.4.1). Each enterprise is
assigned a unique number, and can provide additional numbers to further
specify the enterprise and product. For example, the oi d for IONA is 3027.
IONA has added "1.4.1.0" for Artix. Thus the complete OID for IONA’s Artix
is"1.3.6.1.4.1.3027.1.4.1.0". To find the number for your enterprise, visit
the IANA website at http://www.iana.org.

The SNMP plug-in implements the | T_Loggi ng: : LogSt r eaminterface and
hence, acts like the I ocal _I og_st reamplug-in.

http://www.iana.org

Using the XML Logging Plug-in

Using the XML Logging Plug-in

Using the XML Logging Plug-in

logging_support.h

You can modify your event log filters to enable or disable Artix tracing.
The out-of-the-box setting for event _| og: filters is ["*=FATAL+ERRCR'] .

So, for example, to cause transport buffer events to be shown, update the
event_log:filters to includel | NFO MED:

event _|og:filters = ["*=FATAL+ERRCR+WARN NG+l NFO MED'] ;
The following causes typical trace statement output:
event log:filters = ["*=FATAL+ERROR*WARN NGH NFO H "] ;

In addition, you can:

® add xmfile_|l og_streamtothe orb_pl ugins list

® update the filename variable (default is it_bus.log):
plugins:xmfile_log_streamfilename = "artix_|logfile.xm";

b modify the size element (default is 2MB):
pl ugi ns: xm file_l og_streammax_file_size = "100000";

® add optional element (default is false):

pl ugins: xmfile_log_streamuse pid = "fal se";
The Artix logging output from the TRACE macros now goes to the event log,
solocal _| og_stream xmfil_l og_streamor SNMP_log stream can be
used.

The following example shows the contents of logging_support.h:

141

CHAPTER 8 | Artix Logging and SNMP Support

Example 52: Artix logging _support.h

#if !defined(_I T_BUS LOGA NG)
#define _|I T_BUS LOGA NG_

#i ncl ude <stdi o. h>

#i ncl ude <stdarg. h>

#i ncl ude <it_bus/ APl _Defi nes. h>

#def i ne MAX_STACK_ALLQCATI ON 256
#def i ne MAX_TRACE S| ZE 16384

typedef | T UShort |T_TracelLevel;

//these are now equal to ART |ogging val ues, these are just for backward conmpatibility
/lvalue to put in event_log:filters

const | T TracelLevel |T _TRACE FATAL = 64; /| FATAL
const | T TracelLevel |T _TRACE ERRCR = 32; /| ERROR
const | T_TracelLevel |T_TRACE WARN NG = 16; /1 WARNI NG
const | T _TracelLevel |T _TRACE = 4; /11 NFO H CH
const | T TracelLevel |T_TRACE BUFFER = 2; /11 NFO_MED
const | T_TracelLevel |T_TRACE METHCDS = 1; /11 NFO LON

const | T TraceLevel |T_TRACE METHCDS | NTERNAL = 1; //INFO LONV
extern | T_AFC APl | T_TracelLevel g_log_filter;

nanespace CCRBA

{
class ORB;
IH
namespace | T_Loggi ng
{

cl ass Event Log;
}

142

Using the XML Logging Plug-in

Example 52: Artix logging_support.h

extern "C'

{
void | T_AFC APl set_global |og filter(IT TracelLevel trace_|evel);
voi d | T_AFC APl set_| oggi ng_def aul t _CRB(OCRBA: : CRB* orb);

void | T_AFC APl wite_log_record(lT_Logging::EventLog* event | og, | T TracelLevel trace_level,
const char* description, ...);

void | T_AFC APl wite_|log_record_w th_CDATA(I T_Loggi ng: : Event Log* event | og, |T_TraceLevel
trace_| evel, const char* description, const char* data buffer, |ong buffer_size);

void I T_AFC APl wite_|og record_with_binary(lT_Logging::Event Log* event | og, |T_TracelLevel
trace_| evel , const char* description, const char* data buffer, |ong buffer_size);

}

[/ These are for witing data buffers
//binary buffers are witten in a hex dunp fornat.
//to see output fromthese, include INFOMED in your event_log:filters
#define | T_LOG BUFFER(event _| og, Entry, Length) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\
wite_|og record_w th_binary(event_|log, | T_TRACE BUFFER "Buffer Qutput", Entry, Length);
\
}

#define | T_LOG CDATA(event _| og, description, Entry) \
if ((g_log filter & | T_TRACE BUFFER != 0) \
{\

}

wite | og_record_w th_CDATA(event | og, | T_TRACE BUFFER description, Entry, 0); \

#define | T_LOG CDATA Sl ZE(event _| og, description, Entry, Size) \
if ((g_log filter & | T_TRACE BUFFER) != 0) \
{\

}

wite | og_record_w th_CDATA(event | og, | T_TRACE BUFFER description, Entry, S ze); \

#def i ne | T_LOG CDATA Bl NARY_BUFFER(event _| og, descri ption, bbData) \
if ((g_log filter & | T_TRACE BUFFER) != 0) \
{\
wite_ | og_record_w th_binary(event_| og, | T_TRACE BUFFER descri pti on,
bbDat a. get _const _poi nter(), bbData.get_size()); \
}

143

CHAPTER 8 | Artix Logging and SNMP Support

Example 52: Artix logging _support.h

//these are used for controlled tracing operations. descriptionis a printf format string
//they allow specifying the trace |level so callers can control visibility
#define | T_LOG QUARDEDO(event | og, trace_l evel, description) \
if ((g_log_filter & trace_level) !=0) \
wite_ | og_record(event | og, trace_| evel, description);

#define | T_LOG QUARDED event | og, trace_l evel, description) \
I T_LOG GUARDEDO(event _| og, trace_l| evel, description)

#define | T_LOG QUARDEDL(event | og, trace | evel, description, Argl) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDED2(event | og, trace | evel, description, Argl, Arg2) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDED3(event | og, trace | evel, description, Argl, Arg2, Arg3) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDEDA(event | og, trace |l evel, description, Argl, Arg2, Arg3, Arg4) \
if ((g_log_filter &trace level) !=0) \
{\

}

#define | T_LOG QUARDEDG(event | og, trace | evel, description, Argl, Arg2, Arg3, Arg4, Arg5) \
if ((g_log_filter &trace level) !=0) \
{\

}

wite_|og record(event _log, trace_level, description, Argl); \

wite_|og record(event _log, trace_level, description, Argl, Arg2); \

wite_|og record(event _log, trace_level, description, Argl, Arg2, Arg3); \

wite_|og record(event _log, trace_level, description, Argl, Arg2, Arg3, Argd); \

wite | og_record(event | og, trace_level, description, Argl, Arg2, Arg3, Arg4, Args); \

144

Using the XML Logging Plug-in

Example 52: Artix logging_support.h

//these are used to guard a code bl ock from executing when the purpose of the code

//block is solely for formatting a trace statement. It prevents the code from

[/ executing when the trace_level is filtered out and woul dn't be used anyway.

#defi ne BEQ N TRACE(trace_| evel) \
if ((g_log_filter &trace level) != 0) \
{

#def i ne END_TRACE \
}

/lall the macros that follow are just short hand for the previous ones, but they
//default the event_log to O, which uses the first one that was | oaded (usually
//the only one unless you are using multiple orb names in your cfg file

/1 These are for witing data buffers
//binary buffers are witten in a hex dunp fornat.
//to see output fromthese, include |NFO MED in your event_log:filters
#def i ne TRACELOGBUFFER(Entry, Length) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\

}

#def i ne TRACELOG CDATA(descri ption, Entry) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\

}

#def i ne TRACELOG CDATA Sl ZE(description, Entry, Size) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\

}

#def i ne TRACELOG _CDATA Bl NARY BUFFER(descri ption, bbData) \
if ((g_log_filter & IT_TRACE BUFFER) != 0) \
{\
wite_|og record_with_binary(0, | T_TRACE BUFFER descri ption, bbData.get_const_pointer(),
bbDat a. get _si ze()); \
}

wite | og_record with_binary(0, |T_TRACE BUFFER "Buffer Qutput", Entry, Length); \

wite |og_record with CDATA(O, | T _TRACE BUFFER description, Entry, 0); \

wite |og_record with CDATA(O, | T TRACE BUFFER description, Entry, Size); \

145

CHAPTER 8 | Artix Logging and SNMP Support

Example 52: Artix logging _support.h

/1 These are used for nethod | evel tracing
//to see output fromthese, include |NFO LONin your event_log:filters
#def i ne BEG N_| NTERNAL_METHOD(Nane) \
const char *FuncNane = Nane; \
if ((g_log filter & I T_TRACE METHODS | NTERNAL) = 0) \
wite |og_record(0, | T _TRACE METHODS | NTERNAL, FuncNane);

#def i ne END_| NTERNAL_METHOD

#def i ne BEG N_METHOD(Narre) \
const char *FuncName = Nane; \
if ((g_log_ filter & | T_TRACE METHODS | NTERNAL) !'= 0) \
wite | og_record(0, | T _TRACE METHODS, FuncNane);

#def i ne END_METHCD
//these are used for controlled tracing operations. descriptionis a printf format string
//they allow specifying the trace | evel so callers can control visibility
#def i ne TRACELOG WTH LEVELO(trace_| evel , description) \
I T_LOG GUARDED(0, trace_l evel, description)

#def i ne TRACELOG WTH LEVEL(trace_| evel , description) \
I T_LOG GUARDED(0, trace_l evel, description)

#def i ne TRACELOG WTH LEVEL1(trace_| evel, description, Argl) \
I T_LOG GUARDEDL(0, trace_l evel, description, Argl)

#def i ne TRACELOG WTH LEVEL2(trace_| evel , description, Argl, Arg2) \
I T_LOG GUARDED2(0, trace_l| evel, description, Argl, Arg2)

#def i ne TRACELOG WTH LEVEL3(trace_| evel, description, Argl, Arg2, Arg3) \
I T_LOG GUARDED3(0, trace_l|evel, description, Argl, Arg2, Arg3)

#def i ne TRACELOG WTH LEVEL4(trace_| evel, description, Argl, Arg2, Arg3, Arg4) \
I T_LOG GUARDEDA(0, trace | evel, description, Argl, Arg2, Arg3, Arg4)

#def i ne TRACELOG WTH LEVEL5(trace_| evel , description, Argl, Arg2, Arg3, Arg4, Arg5) \
I T_LOG GUARDED5(0, trace | evel, description, Argl, Arg2, Arg3, Arg4, Argb)

146

Using the XML Logging Plug-in

Example 52: Artix logging_support.h

//these are used for normal tracing operations. descriptionis a printf format string
//they default the trace level to IT_TRACE if you want to use another |evel see the previous set
#def i ne TRACELOZ descri ption) \

I T_LOG QUARDED(O, | T_TRACE, description)

#def i ne TRACELOR)(descri ption) \
I T_LOG QUARDED(O, | T_TRACE, description)

#def i ne TRACELOGL(descri ption, Argl) \
I T _LOG QUARDEDL(O, | T_TRACE description, Argl)

#def i ne TRACELOX(description, Argl, Arg2) \
I T_LOG QUARDED2(0, | T_TRACE, description, Argl, Arg2)

#def i ne TRACELOG3(descri ption, Argl, Arg2, Arg3) \
I T_LOG QUARDED3(0, | T _TRACE, description, Argl, Arg2, Arg3)

#def i ne TRACELOGA(description, Argl, Arg2, Arg3, Arg4) \
| T_LOG QUARDEDA(0, | T_TRACE description, Argl, Arg2, Arg3, Arg4)

#def i ne TRACELOGH(description, Argl, Arg2, Arg3, Arg4, Arg5) \
I T_LOG QUARDEDS(0, | T_TRACE description, Argl, Arg2, Arg3, Arg4, Argb)

#endi f

147

CHAPTER 8 | Artix Logging and SNMP Support

IT Logging Overview

The | T_Loggi ng module is the centralized point for controlling all logging
methods. The LogSt r eaminterface controls how and where events are
received.

The 1 T_Loggi ng module also uses the following common data types, static
method, and macros.

Table 12: /T_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros
Applicationld f or mat _message()
Event | d
Event Par anet er s I T_LOG MESSAGK()
EventPriority I T_LOG MESSACGE 1()
Subsyst em d I T_LOG MESSAGE 2()
Ti mest anp I T_LOG MESSAGE_3()

| T_LOG MESSAGE 4()
| T_LOG MESSAGE 5()

IT_Logging::Applicationld Data Type

/11DL
typedef string Applicationld;

An identifying string representing the application that logged the event.
For example, a Unix and Windows Appl i cati onl d contains the host name
and process ID (PID) of the reporting process. Because this value can differ

from platform to platform, streams should only use it as informational text,
and should not attempt to interpret it.

IT_Logging::Eventld Data Type

/11DL
typedef unsigned | ong Eventld;

An identifier for the particular event.

148

IT_Logging Overview

IT_Logging::EventParameters Data Type

/11DL
typedef OCRBA: : AnySeq Event Paraneters;

A sequence of locale-independent parameters encoded as a sequence of Any
values.

IT_Logging::EventPriority Data Type

/11D

typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into the
following categories of priority.

Information A significant non-error event has occurred. Examples include
server startup/shutdown, object creation/deletion, and
information about administrative actions. Informational
messages provide a history of events that can be invaluable
in diagnosing problems.

Warning The subsystem has encountered an anomalous condition, but
can ignore it and continue functioning. Examples include
encountering an invalid parameter, but ignoring it in favor of
a default value.

Error An error has occurred. The subsystem will attempt to
recover, but may abandon the task at hand. Examples
include finding a resource (such as memory) temporarily
unavailable, or being unable to process a particular request
due to errors in the request.

Fatal Error An unrecoverable error has occurred. The subsystem or
process will terminate.

The possible values for an Event Pri ori ty consist of the following:

LOG NO EVENTS

LOG ALL_EVENTS

LOG | NFO LOW

LOG | NFO MED

LOG INFO H &H

LOG INFO (LOG | NFO LOW

149

CHAPTER 8 | Artix Logging and SNMP Support

LOG ALL_| NFO
LOG WARN NG

LOG ERRCR

LOG FATAL_ERRCR

A single value is used for Event Log operations that report events or
LogSt r eamoperations that receive events. In filtering operations such as
set_filter(), these values can be combined as a filter mask to control
which events are logged at runtime.

IT_Logging::format_message()

Parameters

Il Ct+
static char* fornat_message(
const char* description,
const | T_Loggi ng: : Event Par aret er s& par ans

)
Returns a formatted message based on a format description and a sequence
of parameters.

Messages are reported in two pieces for internationalization:

description A locale-dependent string that describes of how to use the
sequence of parameters in par ans.

par ans A sequence of locale-dependent parameters.

format _nessage() copies the descri pti on into an output string, interprets
each event parameter, and inserts the event parameters into the output
string where appropriate. Event parameters that are primitive and

Syst enExcept i on parameters are converted to strings before insertion. For
all other types, question marks (?) are inserted.

IT_Logging::Subsystemld Data Type

150

/11DL
typedef string Subsystemnid;

An identifying string representing the subsystem from which the event
originated. The constant _DEFAULT may be used to enable all subsystems.

IT_Logging Overview

IT_Logging::Timestamp Data Type

/11DL
typedef unsigned | ong Ti nestanp;

The time of the logged event in seconds since January 1, 1970.

151

CHAPTER 8 | Artix Logging and SNMP Support

LogStream::report_event()

IT Logging::LogStream Interface

Each of the Artix logging plug-ins implements the | T_Loggi ng: : LogSt r eam
interface. The LogSt r eaminterface allows an application to intercept events
and write them to some concrete location via a stream.

I T_Loggi ng: : Event Log objects maintain a list of LogSt r eamobjects. You
register a LogSt r eamobject from an Event Log using r egi st er _strean() .
The complete LogSt r eaminterface is as follows:

/1 1DL in nodul e | T_Loggi ng

interface LogStream {
voi d report_event (

in Applicationld
in Subsystend
in Eventld
in EventPriority
in Timestanp
in any

)

voi d report_message(
in Applicationld
in Subsystend
in Eventld
in EventPriority
in Timestanp
instring

appl i cation,
subsyst em
event,
priority,
event _time,
event _data

appl i cation,
subsyst em
event,
priority,
event _time,
description,

in Event Paraneters paraneters

)
}

These operations are described in detail as follows:

/1 1DL
voi d report_event (

in Applicationld
in Subsystemd
in BEventld

in EventPriority
in Timestanp

in any

appl i cati on,
subsyst em
event,
priority,
event _tine,
event _data

Parameters

See also

)
Reports an eve

appl i cation
subsyst em
event
priority
event _tine

event _data

IT_Logging::LogStream Interface

nt and its event-specific data to the log stream.

An ID representing the reporting application.
The name of the subsystem reporting the event.
A unique ID defining the event.

The event priority.

The time when the event occurred.
Event-specific data.

I T_Loggi ng: : Event Log: : report _event ()

I T_Loggi ng: : LogSt ream : r epor t _nessage()

LogStream::report_message()

Parameters

See also

/1 1D

voi d report_message(

)
Reports an eve

appl i cation
subsyst em
event
priority
event _tine
description

paraneters

in Applicationld application,
in Subsystemnd subsyst em
in Eventld event,

in EventPriority priority,
in Timestanp event _time,
instring descri ption,
in EventParaneters paraneters

nt and message to the log stream.

An ID representing the reporting application.
The name of the subsystem reporting the event.
The unique ID defining the event.

The event priority.

The time when the event occurred.

A string describing the format of par anet ers.

A sequence of parameters for the log.

I T_Loggi ng: : Event Log: : report _nmessage()

153

CHAPTER 8 | Artix Logging and SNMP Support

I T_Loggi ng: : LogStream : report_event ()

154

Example

Example

Controlling Application Logging

This example shows application logging enable by including the

xni file_l og_streamplugin in the orb_pl ugi ns list (this plugin is included
in the default or b_pl ugi ns list, though it is not included in the or b_pl ugi ns
lists within many of the demo program configuration scopes). If you want to
enable logging to an XML file for the applications you develop, include this
plugin in your orb_plugins list.

To enable usage of the xmlfile_log_stream plugin, several other
configuration variables must also be set. These variable are all set within the
default/global scope in the arti x. cf g file:

plugins: xnm file_l og_streamshlib_name =
“it_xmfile”;

plugins: xmfile_|og_streamfil enane =
“artix_|l ogfile.xm"”;
default: it_bus.|og

plugins: xmfile_|og_streamnmax_fil e_size =
*2000000";
default: 2 nb

plugins: xmfile_|log streamuse_pid =
“fal se”;
default: fal se

standard | oggi ng setting; logs errors and warni ngs
event _log:filters =
[“*=FATAL+ERRCR+WARNI NG'] ;

very detail ed | oggi ng
#event _log:filters = [“*=*"];

transport buffer |oggi ng
#event _log:filters =
[“*=FATAL+ERRCR+WARNI NG+l NFO MED'] ;

high level informational |ogging

#event _|og: filters =
[“*=FATAL+ERRCR+WARNI NGH NFO H "] ;

155

CHAPTER 8 | Artix Logging and SNMP Support

Using the Logging Functionality

156

The default configuration settings enable logging of only serious errors and

warnings. If you want more exhaustive information, you should either select
a different filter list at the default scope, or include a more expansive

event _| og: filters configuration variable within your configuration scope.

If you have trouble running any of the demos, you should enable a high level
of logging, whichrequires adding the xmlfile_log_stream plugin to the
orb_plugins list and selecting the desired reporting level.

Performance Logging

Performance Logging

Overview

Performance logging

Configuration

The performance logging plugins allow applications based on IONA products
to integrate effectively with Enterprise Management Systems (EMSs).
Currently artix support integration with IBM Tivoli™.

This section covers general Artix details. For information on integartion with
a Tivoli installation, refer to the Tivoli Integration Guide.

Performance logging lets you see how each server is responding to load.
These plugins log this data to file or syslog. Your EMS can read the
performance data from the logs and initiate appropriate actions. For
example, issuing a restart to a server that has become unresponsive, or
starting a new replica for an overloaded cluster.

The performance logging component consist of three plugins:

® The response time logger plugin

® The request counter plugin

® The collector plugin

The response time logger plugin monitors response times of requests as they
pass through ART binding chains. It can be used to collect response times

for CORBA, RMI-IIOP or HTTP calls in IONA’'s CORBA and J2EE products.
The request counter plugin performs the same function for Artix.

The collector plugin periodically harvests data from the response time logger
and request counter plugins and logs the results. To monitor the
performance of CORBA or J2EE requests (made in the context of IONA's
Application Server Platform), you must perform the following steps to
reconfigure the Application Server Platform:

157

CHAPTER 8 | Artix Logging and SNMP Support

Add it _response_tine_| ogger to the orb_plugins list for the server you
wish to instrument. Add it _reponse_tine_| ogger to the server and servlet
binding lists for that server. For example:

bi ndi ng: servl et _binding_list=[

"it_response_tine_|ogger + it_servlet_context + it_character_encoding

+ it_locale + it_nam ng_context + it_exception_mapping + it_http_sessions

+ it_web security + it_servliet filters + it_web redirector + it_web_app_activator "
Il

bi ndi ng: server _bi ndi ng_| i st =[

"it_response_tine_| ogger+i t _nam ng_cont ext +CS| +j 2eecsi +OIS+i t _security_rol e_nappi ng",
"it_response_tine_| ogger+it_nam ng_cont ext +OIS+it _security_rol e_nmappi ng",
"it_response_tine_| ogger+it_nam ng_context + CS|+j 2eecsi +it_security_rol e_mappi ng",
"it_response_tine_| ogger+it_nam ng_context+it_security_rol e_mappi ng",
"it_response_tine_| ogger+it_nam ng_context",

"it_response_tine_| ogger"

Ik

orb_pl ugi ns=[

"it_servl et _bi ndi ng_manager", "it_servlet_context",

"it_http_sessions", "it_servliet filters", "http",

"it_servl et_dispatch", "it_exception_mapping", "it_nam ng_context",
"it_web_security", "it_web_app_activator",

"it_default_servl et_binding", "it_security service", "it_character_encoding",
"it_locale", "it_classloader_servlet","it_classl oader_nappi ng",
"it_web_redirector", "it_deployer",

"it_response_tine_| ogger"

I

Configuring the collector plugin You can configure the collector plugin to log data either to a file or to syslog.
The following example results in performance data being logged to
/var/ | og/ ny_app/ perf _| ogs/ treasury_app. | og every 90 seconds (if you
do not specify the period, it defaults to 60 seconds):

plugins:it_response_tine_collector:period = "90";

plugins:it_response_time_collector:fil ename =
"/var/| og/ ny_app/ perf_l ogs/treasury_app.|og";

You can also configure the collector to log to a syslog daemon or Windows
Event Log:

pl ugins:it_response_tine_col |l ector: system| oggi ng_enabl ed = "true";
pl ugins:it_response_tinme_col |l ector:syslog_appid = "treasury";

158

Logging Formats

Performance Logging

sysl og_appi d lets you specify the application name, which is prepended to
all syslog messages. If you do not specify a sysl og_appi d, it defaults to
"iona".

You can cause your EMS to monitor a cluster of servers by configuring
multiple servers to log to the same file. If the servers are running on different
hosts, then the log file's location must be on an NFS mounted or shared
directory.

Alternatively, you can use sysl ogd as a mechanism for monitoring a cluster,
by choosing one sysl ogd to act as the central logging server for the cluster.
For example, to use the host t eddy as the central log server, edit the

/et c/ sysl og. conf file for each host that runs a server replica, and add:

Substitute the name of your |og server
user.info @eddy

Some syslog daemons do not accept log messages from other hosts by
default. In this case it may be necessary to restart the sysl ogd on t eddy
with a special flag to allow remote log messages. Consult the man pages on
your system to determine whether this is necessary and what flags to use.

Performance data is logged in a well-defined format. For CORBA and J2EE
applications based on IONA’s Application Server Platform, this format is:

YYYY- M DDTHH MM SS [oper at i on=name] count=n avg=n nax=n m n=n

® operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

® count is the number of times this operation or URI was logged during
the last interval.

® avg is average response time (in milliseconds) for this operation or URI
during the last interval.

® max is the longest response time (in milliseconds) for this operation or
URI during the last interval.

® ninis the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The format for Artix log messages is:

YYYY- MM DDTHH MM SS [nanespace=nnn ser Vi ce=sss port =ppp oper ati on=nane] count=n avg=n nax=n m n=n

159

CHAPTER 8 | Artix Logging and SNMP Support

160

® nanespace is an Artix namespace.

® service is an Artix service.

® port is an Artix port.

® operation is the name of the operation for CORBA invocations or the
URI for requests on servlets.

® count is the number of times this operation or URI was logged during
the last interval.

® avg is average response time (in milliseconds) for this operation or URI
during the last interval.

® nmax is the longest response time (in milliseconds) for this operation or
URI during the last interval.

® ninis the shortest response time (in milliseconds) for this operation or
URI during the last interval.

The combination of namespace, service and port denote a unique Artix
Service Access Point.

Performance Logging

161

CHAPTER 8 | Artix Logging and SNMP Support

162

Overview

In this chapter

CHAPTER 9

Load Balancing

Artix solutions can be configured to balance workloads among
a number of servers.

Artix provides two methods for balancing workloads among a number of
servers. One uses the lightweight Artix locator to load balance among a
groups of Artix enabled servers. The second leverages IONA’s Application
Server Platform’s location services to load balance among Artix servers that
use CORBA as their communications medium.

This chapter discusses the following topics:

Load Balancing with the Artix Locator page 164

Load Balancing with CORBA page 166

163

CHAPTER 9 | Load Balancing

Load Balancing with the Artix Locator

Overview

Advantages

Starting to load balance

164

The Artix locator provides a lightweight mechanism for balancing workloads
among a group of servers. When a number of servers with the same service
name register with the Artix locator, it automatically creates a list of the
references and hands out the references to clients using a round robin
algorithm. This process is invisible to both the clients and the servers.

Using the Artix locator to load balance provides several advantages over
using CORBA load balancing. Chief among these is that using the Artix
locator allows you to use all of the supported Artix transports. Also, the Artix
locator does not require you to have another middleware platform installed
into your environment.

To begin load balancing with the Artix locator you must deploy an Artix
locator, configure your servers to load the locator plug-ins, and design your
clients to look up their server references from the Artix locator. For
information on doing this see “Using the Artix Locator Service” on page 93.
Once the locator is deployed and your servers are properly configured, you
need to bring up a number of instances of the same service. This can be
accomplished by one of two methods depending on your system topology:
1. Create an Artix contract with a number of ports for the same service
and have each server instance startup on a different port.

2. Create a number of copies of the Artix contract defining the service,
change the port information so each copy has a separate port address,
and then bring up each server instance using a different copy of the
Artix contract.

Note: The locator uses the service name specified in the <ser vi ce> tag of
the server’s Artix contract to determine if it is part of a group. It is

recommended that if you are using the Artix locator to load balance, your
services should be associated with the same binding and logical interface.

Load Balancing with the Artix Locator

As each server starts up it will automatically register with the locator. The
locator will recognize that the servers all have the same service name
specified in their Artix contracts and will create a list of references for these
server instances.

As clients make requests for the service, the locator will cycle through the
list of server instances to hand out references.

165

CHAPTER 9 | Load Balancing

Load Balancing with CORBA

Overview If an Artix SAP is mapped to a CORBA service, and that CORBA service is
accessible via IONA’s Application Server Platform 6.0 Service Pack 1 (or
later), the implementation of that service can be load balanced using the
Application Server Platform’s locator service. In order to accomplish this,
the Artix configuration file must duplicate some of the information from the
Application Server Platform configuration domain, as described in the
following steps.

For information on the load balancing feature of the Application Server
Platform’s load balancing features read the Application Server Platform
Administrator’s Guide.

Configuration Steps The following steps work with an Application Server Platform installation
that uses either file-based configuration or a configuration repository.
However, because Artix supports only file-based configuration, the relevant
configuration information must be inserted into the arti x. cf g file. The
following configuration example assumes that an Application Server
Platform domain exists, and that the locator service is run from this domain:

1. From the donai n. cf g file, obtain the following configuration
information and add it to arti x. cf g file.

initial _references:|T_NodeDaenon:reference =
"1 OR 000000000000002149444c3a49545f 4e6f 64654461656d6f 6e2f 4e6f 64654461656d6f 6632a312e3000000000
0000000100000000000000760001020000000008686f 726174696f 00782800000000001d3a3e€0233310c6e6f 64655
f 6461656d6f 6e000a4e6f 64654461656d6f 6600000000000003000000010000001800000000000100010000000000
01010400000001000101090000001200000004010000000000000600000006000000000011" ;

2. Create an CRBnane for each Artix SAP that participates in load
balancing. For example:

itadm n orbnanme create denos. clustering. server_1
itadm n orbnanme create denos. clustering. server_2
itadm n orbnanme create denos. clustering. server_3

166

itadm n poa create -replicas

Load Balancing with CORBA

3. Create a POA that declares these CRBnanes as replicas, and specify
either round-robin or random load balancing. For example:

denos. cl ust eri ng. server _1, denos. cl usteri ng. server _2, denos. cl ust eri ng. server_3
-1 oad_bal ancer round_robi n A uster Deno

The POA name (d ust er Deno) is expressed in WSDL as:

<corba: pol i cy persistent="true" serviceid="service_id" poanane="d ust er Deno"/>

Replicated Application Server
Platform services

You can choose any POA name; however, the POA name you register using
i tadnmi n must be the same name you declare in the WSDL file.

When cor ba: pol i cy persistent=true is specified, you must also specify
servi cei d. Failure to specify servi cei d will either result in an IOR that
cannot be used for load balancing, or a process that outlives the POA.

To run such a ClusterDemo, you start the CORBA servers that underlie the
Artix SAP as follows:

Server - CRBnane denos. cl ustering. server_1
Server - CRBnane denos. cl ustering. server_2
Server -CRBnane denwos. cl ust ering. server_3

When you run a client to connect to the Artix SAP, the first request goes to
the first server (because round_robi n load balancing was declared). If a
second client is started, its request goes to the second server, and a third
client’s request goes to the third server.

If your Application Server Platform services are replicated, and if Artix is

deployed on each of the machines on which those services are replicated,

then the Artix SAPs themselves can be replicated and load-balanced. For

example,

1. On the “master” machine (e.g., the machine that hosts the
configuration repository), create an CRBnane for each Artix SAP that
participates in load balancing. For example:

itadnmi n orbnane create denos.cl ustering.server_1
itadm n orbnanme create denos.cl ustering. server_2
itadm n orbnane create denos.cl ustering.server_3

167

CHAPTER 9 | Load Balancing

itadmn poa create -replicas

2. Create a POA that declares these CRBnarres as replicas, and specify
either round-robin or random load balancing. For example:

denos. cl ustering. server _1, denos. cl ust eri ng. server _2, denos. cl ust eri ng. server_3
-1 oad_bal ancer round_robi n Q uster Deno

Creating the load-balanced
environment dynamically

168

3. On each machine that replicates the service, obtain the Node
Daemon’s initial reference and add it to the arti x. cf g file on that
machine.

4. Start a server on each machine, passing one of the three specified
CRBnanes to it (cl ustering. server_1, denos. cl usteri ng. server_2,
or denos. cl ustering.server_3).

This service is now load balanced among the three replicated Artix SAPs. If

one or two of these SAPs is killed, the client invocation is directed to the
remaining machine(s).

It is possible to create a load balance environment without creating the POA

or manually registering ORB names. To accomplish this:

1. On the master machine, obtain the Node Daemon initial reference and
put it in the arti x. cf g file.

2. Start the CORBA service, passing the same ORB name as that
specified in the Artix client’'s WSDL contract. This ORB name is
received by the Node Daemon, which creates a POA with that name. If
you do not specify an ORB name, the name WsORB is used.

3. On the master machine, issue the following command in the
Application Server Platform environment with the name you chose:

itadm n poa nodify -allowdynreplicas yes POA Nane

4. On each of the slave machines where the service is replicated, obtain
the Node Daemon initial reference from the Application Server
Platform domain configuration and put it in the arti x. cf g file.

5. On each of the slave machines where the service is replicated, start the
CORBA service, using a different CRBnane each time.

Other load balancing features

Load Balancing with CORBA

6. On the master machine, issue the following command in the
Application Server Platform environment (inserting the type of load
balancing and the CRBnarres you have chosen):

itadnmn poa nodify -1 <round_robin | random> PQA nane

7. Start the Artix SAP.

In addition to POA name, the Application Server Platform configuration file
can also affect load balancing by specifying:

1. Persistent or Transient POA policy
2. Object ID

These load-balancing-related configuration values can be specified in an
Artix WSDL contract using WSDL extensions for CORBA ports:

The POA name can be specified as follows:
<cor ba: pol i cy poaname="ny_poa_nane"/ >

The default POA name is WECRB.
The POA persistence policy can be set as follows:

<corba: policy persistent="true | false"/>

If this value is set to true, the POA policy is persistent. The default
persistence value is f al se.

The Service ID can be set as follows:
<cor ba: pol i cy servi cei d="ncnane"/>

Object ID is provided by the POA if the POA Policy SYSTEM | Dis set. Setting
this to any string sets the POA policy USER | D and uses the value provided
as the obj ect _i d. If this is not set, the POA policy is SYSTEM | D.

The following WSDL examples illustrate these points.

The contract fragment in Example 53 results in the following POA policy
settings:

® PERSI STENT
® UWSERID
® POANane="masterl"

169

CHAPTER 9 | Load Balancing

® (j ectl D="masterl"

Example 53: Setting the PERSISTENT POA policy

<servi ce nane="BaseServi ce">

<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" nanme="BasePort Cor ba" >
<cor ba: address | ocation="file://naster.ref"/>

<corba: pol i cy persistent="true" poanane="master1l" servicel D="nmaster1"/>
</ port>

</ servi ce>

The contract fragment in Example 54 results in the following POA policy
settings:

® TRANSI ENT (Default)

® SYSTEM I D (Default)

® POAName="masterl"

Example 54: Setting the POAName POA policy

<servi ce nane="BaseService">

<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" name="BasePort Cor ba" >
<corba: address | ocation="file://master.ref"/>

<cor ba: pol i cy poananme="naster1"/>
</ port >

</ servi ce>

The contract fragment in Example 55 results in a POA with the following
policy settings:

® TRANSI ENT (Default)

® WSERID

®* poAName="WSORB" (Default)

® (j ectl D="masterl"

Example 55: Setting the USER_ID POA policy

<servi ce nane="BaseServi ce">
<port bi ndi ng="t ns: BasePor t Cor baBi ndi ng" nane="BasePort Cor ba" >
<corba: address | ocation="file://master.ref"/>

<cor ba: pol i cy poaname="naster1" servicel D="naster1"/>
</ port >

</ servi ce>

170

Load Balancing with CORBA

The contract fragment in Example 56 results in a POA with all default
policies.

Example 56: Default POA policies

<servi ce name="BaseService">
<port bi ndi ng="t ns: BasePort Cor baBi ndi ng" nanme="BasePort Cor ba" >
<corba: address | ocation="file://master.ref"/>
</ port>
</ servi ce>

171

CHAPTER 9 | Load Balancing

172

In this chapter

CHAPTER 10

Using the CORBA

Plug-in

The CORBA Plug-in allows CORBA applications to be used with
an Artix integration solution. It also provides CORBA

functionality to Artix applications.

This chapter discusses the following topics:

CORBA Type Mapping page 174
Modifying a Contract to Use CORBA page 197
Generating IDL from an Artix Contract page 211
Generating a Contract from IDL page 213
Using the CORBA Naming Service page 222
Embedding Artix in a CORBA Application page 224

173

CHAPTER 10 | Using the CORBA Plug-in

CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA
application to understand, Artix contracts need to unambiguously describe
how data is mapped to CORBA data types. For primitive types, the mapping
is straightforward. However, complex types such as structures, arrays, and
exceptions require more detailed descriptions.

Unsupported types The following CORBA types are not supported:
® object references
® value types
® boxed values
® local interfaces
® abstract interfaces
® forward-declared interfaces

In this section This section discusses the following topics:
Primitive Type Mapping page 175
Complex Type Mapping page 177
Mapping XMLSchema Features that are not Native to IDL page 189

174

CORBA Type Mapping

Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 13 lists the mappings for the supported IDL primitive types.
Table 13: Primitive Type Mapping for CORBA Plug-in
IDL Type XML Schema Type CORBA Binding Type Artix C++ Type
Any xsd"anyType cor ba: any | T_Bus: : AnyHol der
bool ean xsd: bool ean cor ba: bool ean | T_Bus: : Bool ean
char xsd: byt e cor ba: char | T_Bus: : Char
doubl e xsd: doubl e cor ba: doubl e | T_Bus: : Doubl e
f1 oat xsd: fl oat cor ba: fl oat | T_Bus: : Fl oat
oct et xsd: unsi gnedByt e cor ba: oct et I T_Bus:: Cctet
| ong xsd: i nt corba: | ong I T_Bus: : Long
I ong | ong xsd: | ong cor ba: | ongl ong | T_Bus: : LongLong
short xsd: short cor ba: short | T_Bus: : Short
string xsd: string corba: string I T _Bus::String
unsi gned short xsd: unsi gnedshort cor ba: ushort | T_Bus: : UShort
unsi gned | ong xsd: unsi gnedlI nt cor ba: ul ong | T_Bus: : ULong
unsi gned | ong | ong xsd: unsi gnedLong cor ba: ul ongl ong I T_Bus: : ULongLong

Unsupported types

Artix does not support the following CORBA types:

® whar
® wstring

® long double

175

CHAPTER 10 | Using the CORBA Plug-in

Example The mapping of primitive types is handled in the CORBA binding section of
the Artix contract. For example, consider an input message that has a part,
scor e, that is described as an xsd: i nt as shown in Example 57.

Example 57: WSDL Operation Definition

<nessage nane="runsScor ed" >
<part name="score" />
</ message>
<portType ...>
<oper ati on nane="get Runs" >
<i nput nessage="tns: runsScored" nane="runsScored" />
</ operati on>
</ port Type>

It is described in the CORBA binding as shown in Example 58.
Example 58: Example CORBA Binding

<binding ...>
<oper ati on nane="get Runs" >
<cor ba: operati on name="get Runs" >
<cor ba: par am nane="score" nmode="in" idltype="corba:long"/>
</ cor ba: oper at i on>
<i nput />
<out put / >
</ operati on>
</ bi ndi ng>

The IDL is shown in Example 59.
Example 59: getRuns IDL

/1 1DL
voi d get Runs(in score);

176

CORBA Type Mapping

Complex Type Mapping

Overview

Mapping chart

Because complex types (such as structures, arrays, and exceptions) require
a more involved mapping to resolve type ambiguity, the full mapping for a
complex type is described in a <cor ba: t ypeMappi ng> element at the bottom
of an Artix contract. This element contains a type map describing the
metadata required to fully describe a complex type as a CORBA data type.
This metadata may include the members of a structure, the bounds of an
array, or the legal values of an enumeration.

The <cor ba: t ypeMappi ng> element requires a t ar get Namespace attribute
that specifies the namespace for the elements defined by the type map. The
default URI is htt p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypemap. By
default, the types defined in the type map are referred to using the cor bat m
prefix.

Table 14 shows the mappings from complex IDL types to XMLSchema, Artix
CORBA type, and Artix C++ types.

Table 14: Complex Type Mapping for CORBA Plug-in

IDL Type

XML Schema Type

CORBA Binding Type

Artix C++ Type

struct

See Example 60

cor ba: struct

I T_Bus::

SequenceConpl exType

enum

See Example 61

cor ba: enum

I T_Bus::

AnySi npl eType

fixed

xsd: deci nal

corba: fi xed

I T_Bus::

Deci nal

uni on

See Example 66

cor ba: uni on

I T_Bus::

Choi ceConpl exType

t ypedef

See Example 69

array

See Example 71

cor ba: array

| T_Bus::

ArrayT<>

sequence

See Example 77

cor ba: sequence

I T_Bus::

ArrayT<>

exception

See Example 80

cor ba: exception

I T_Bus::

User Faul t Except i on

177

CHAPTER 10 | Using the CORBA Plug-in

Structures

Structures are mapped to <cor ba: st ruct > elements. A <cor ba: struct >
element requires three attributes:

name A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

repositoryl D The fully specified repository ID for the CORBA type.

The elements of the structure are described by a series of <cor ba: menber >
elements. The elements must be declared in the same order used in the IDL
representation of the CORBA type. A <cor ba: nenber > requires two
attributes:

nane The name of the element

i dl type The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in
the type map.

For example, the structure defined in Example 2 on page 11, personal I nf o,
can be represented in the CORBA type map as shown in Example 60:

Example 60: CORBA Type Map for personallnfo

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap" >

<cor ba: struct nanme="personal | nfo" type="xsd1l: personal | nf 0" repositoryl D="1DL: personal | nfo: 1. 0">

<cor ba: nenber name=
<cor ba: nenber nane=
<cor ba: nenber nane=
</ cor ba: st ruct >
</ cor ba: t ypeMappi ng>

Enumerations

178

"nane" idltype="corba:string" />
"age" idltype="corba:long" />
"hai rCol or" idltype="corbatm hairCol or Type" />

The idltype cor bat m hai r Col or Type refers to a complex type that is defined
earlier in the CORBA type map.

Enumerations are mapped to <cor ba: enun® elements. A <cor ba: enun»
element requires three attributes:

name A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

CORBA Type Mapping

repositorylD The fully specified repository ID for the CORBA type.

The values for the enumeration are described by a series of

<cor ba: enuner at or > elements. The values must be listed in the same order
used in the IDL that defines the CORBA enumeration. A

<cor ba: enurrer at or > element takes one attribute, val ue.

For example, the enumeration defined in Example 2 on page 11,
hai r Col or Type, can be represented in the CORBA type map as shown in
Example 61:

Example 61: CORBA Type Map for hairColorType

<cor ba: t ypeMappi ng tar get Nanespace="ht t p: // schemas. i ona. com bi ndi ngs/ cor ba/ t ypemap" >

<cor ba: enum nane="hai r Gol or Type" type="xsd1: hai r Gol or Type"
reposi toryl D="1 DL: hai r Gol or Type: 1. 0" >

Fixed

<cor ba: enunerat or val ue="red" />
<cor ba: enurer at or val ue="brunette" />
<cor ba: enurer at or val ue="bl onde" />
</ cor ba: enun»
</ cor ba: t ypeMappi ng>

Fixed point data types are a special case in the Artix contract mapping. A
CORBA fixed type is represented in the logical portion of the contract as the
XML Schema primitive type xsd: deci mal . However, because a CORBA fixed
type requires additional information to be fully mapped to a physical CORBA
data type, it must also be described in the CORBA type map section of an
Artix contract.

CORBA fixed data types are described using a <cor ba: fi xed> element. A
<cor ba: fi xed> element requires five attributes:

nane A unique identifier used to reference the CORBA type in
the binding.

repositoryl D The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd: deci nal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.

179

CHAPTER 10 | Using the CORBA Plug-in

scal e The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

For example, the fixed type defined in Example 62, nyFi xed, would be
Example 62: myFixed Fixed Type

\\ I DL
typedef fixed<4, 2> nyFi xed,;

described by a type entry in the logical type description of the contract, as
shown in Example 63.

Example 63: Logical description from myFixed

<xsd: el ement nane="nyF xed" type="xsd: deci mal "/>

In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 64. Notice that the description in the CORBA type
map includes the information needed to fully represent the characteristics of
this particular fixed data type.

Example 64: CORBA Type Map for myFixed

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenap" >

<cor ba: fi xed nane="nyFi xed" repositoryl D="1DL: nyFi xed: 1. 0" type="xsd: deci nal " di gits="4"

scal e="2"
</ corba: t ypeMappi ng>

Unions

180

Unions are particularly difficult to describe using the WSDL framework of an
Artix contract. In the logical data type descriptions, the difficulty is how to
describe the union without losing the relationship between the members of
the union and the discriminator used to select the members. The easiest
method is to describe a union using an <xsd: choi ce> and list the members
in the specified order. The OMG'’s proposed method is to describe the union
as an <xsd: sequence> containing one element for the discriminator and an
<xsd: choi ce> to describe the members of the union. However, neither of
these methods can accurately describe all the possible permutations of a
CORBA union.

CORBA Type Mapping

Artix's IDL compiler generates a contract that describes the logical union
using both methods. The description using <xsd: sequence> is named by
prepending _onyg_ to the types name. The description using <xsd: chi oce> is
used as the representation of the union throughout the contract.

For example consider the union, nyuni on, shown in Example 65:
Example 65: myUnion IDL

/11DL
uni on nylni on switch (short)
{
case 0O:
string caseo;
case 1:
case 2:
float casel2;
defaul t:
| ong caseDef;

iE

This union is described in the logical portion of the contact with entries
similar to those shown in Example 66:

Example 66: myUnion Logical Description

<xsd: conpl exType name="nyUhi on">
<xsd: choi ce>
<xsd: el enent nane="case0" type="xsd:string"/>
<xsd: el ement nane="casel2" type="xsd:float"/>
<xsd: el ement nane="caseDef" type="xsd:int"/>
</ xsd: choi ce>
</ xsd: conpl exType>
<xsd: conpl exType name="_onyg_nyUni on4" >
<xsd: sequence>
<xsd: el ement m nCccurs="1" maxCccurs="1" nane="di scrim nator" type="xsd:short"/>
<xsd: choi ce m nCQccurs="0" nmaxCQccurs="1">
<xsd: el ement nane="case0" type="xsd:string"/>
<xsd: el ement nane="casel2" type="xsd:float"/>
<xsd: el ement nanme="caseDef" type="xsd:int"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: conpl exType>

181

CHAPTER 10 | Using the CORBA Plug-in

In the CORBA type map portion of the contract, the relationship between
the union’s discriminator and its members must be resolved. This is
accomplished using a <cor ba: uni on> element. A <cor ba: uni on> element
has four mandatory attributes.

nane A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

descrimnator The IDL type used as the discriminator for the union.
repositoryl D The fully specified repository ID for the CORBA type.

The members of the union are described using a series of nested
<cor ba: uni onbr anch> elements. A <cor ba: uni onbr anch> element has two
required attributes and one optional attribute.

name A unique identifier used to reference the union member.

i dltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.

def aul t The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to t r ue.

Each <cor ba: uni onbr anch> except for one describing the union’s default
member will have at least one nested <cor ba: case> element. The
<cor ba: case> element’s only attribute, | abel , specifies the value used to
select the union member described by the <cor ba: uni onbr anch>.

For example nyni on, Example 65 on page 181, would be described with a
CORBA type map entry similar to that shown in Example 67.

Example 67: myUnion CORBA type map

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap" >

<cor ba: uni on nane="nyUni on" type="xsd1l: nylhi on" di scri m nator="cor ba: short"
reposi toryl D="1DL: nyUni on: 1. 0" >

182

<cor ba: uni onbr anch name="case0" idltype="corba: string">
<cor ba: case | abel ="0"
</ cor ba: uni onbr anch>

CORBA Type Mapping

Example 67: myUnion CORBA type map

<cor ba: uni onbr anch name="casel2" idltype="corba: fl oat">
<cor ba: case | abel ="1" />
<cor ba: case | abel ="2" />
</ cor ba: uni onbr anch>
<cor ba: uni onbr anch name="caseDef" idltype="corba:long" defaul t="true"/>
</ cor ba: uni on>
</ cor ba: t ypeMappi ng>

Type Renaming Renaming a type using a t ypedef statement is handled using a
<cor ba: al i as> element in the CORBA type map. The Artix IDL compiler
also adds a logical description for the renamed type in the <t ypes> section
of the contract, using an <xsd: si npl eType>.

For example, the definition of myLong in Example 68, can be described as
Example 68: myLong IDL

/11DL
typedef |ong nylLong;

shown in Example 69:
Example 69: myLong WSDL

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions name="typedef.idl" ...>
<t ypes>

<xsd: si npl eType nane="nyLong">
<xsd:restriction base="xsd:int"/>
</ xsd: si npl eType>

</ types>

<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schemas. i ona. con bi ndi ngs/ cor ba/ t ypenmap" >
<corba: al i as nane="nyLong" type="xsd:int" repositoryl D="I1DL: nyLong: 1. 0"
baset ype="cor ba: | ong"/ >
</ cor ba: t ypeMappi ng>
</ defini ti ons>

183

CHAPTER 10 | Using the CORBA Plug-in

Arrays Arrays are described in the logical portion of an Artix contract, using an
<xsd: sequence> with its m nCccur s and maxCeccur s attributes set to the
value of the array’s size. For example, consider an array, nyArray, as
defined in Example 70.

Example 70: myArray IDL

/11 DL
typedef | ong nyArray[10];

Its logical description will be similar to that shown in Example 71:
Example 71: myArray logical description

<xsd: conpl exType name="nyArray">
<xsd: sequence>
<xsd: el ement nane="item!' type="xsd:int" m nQccurs="10" maxCccurs="10" />
</ xsd: sequence>
</ xsd: conpl exType>

In the CORBA type map, arrays are described using a <cor ba: arr ay>
element. A <cor ba: array> has five required attributes.

nane A unique identifier used to reference the CORBA type in
the binding.

repositoryl D The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

el entype The IDL type of the array’s element. This type can be

either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.

For example, the array nyArray will have a CORBA type map description
similar to the one shown in Example 72:

Example 72: myArray CORBA type map
<cor ba: t ypeMappi ng t ar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenmap" >
<cor ba: array nane="nyArray" repositoryl D="1DL: nyArray: 1. 0" type="xsdl: nyArray"

el ent ype="corba: | ong" bound="10"/>
</ cor ba: t ypeMappi ng>

184

CORBA Type Mapping

Multidimensional Arrays Multidimensional arrays are handled by creating multiple arrays and
combining them to form the multidimensional array. For example, an array
defined as follows:

Example 73: Multidimensional Array

\\ 1D
typedef |ong array2d[10] [10];

generates the following logical description:
Example 74: Logical Description of a Multidimensional Array

<xsd: conpl exType name="_1 array2d">
<xsd: sequence>
<xsd: el ement nane="iten!' type="xsd:int" m nQccurs="10" maxCccurs="10"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="array2d">
<xsd: sequence>
<xsd: el ement nane="iten! type="xsdl: 1 array2d" m nCccurs="10" nmaxCccurs="10"/>
</ xsd: sequence>
</ xsd: conpl exType>

The corresponding entry in the CORBA type map is:
Example 75: CORBA Type Map for a Multidimensional Array

<cor ba: t ypeMappi ng tar get Namespace="ht t p: // schenas. i ona. cond bi ndi ngs/ cor ba/ t ypenap" >
<cor ba: anonarray name="_2 array2d" type="xsdl:_2_array2d" el emype="corba:long" bound="10"/>
<corba: array nane="array2d" repositoryl D="1DL: array2d: 1. 0" type="xsdl: array2d"
el ent ype="corbatm _2 array2d" bound="10"/>
</ cor ba: t ypeMappi ng>

Sequences Because CORBA sequences are an extension of arrays, sequences are
described in Artix contracts similarly. Like arrays, sequences are described
in the logical type section of the contract using <xsd: sequence> elements.
Unlike arrays, the nmi nCccurs and naxCecur s attributes do not have the
same value. ninCccurs is set to 0 and maxQeceurss is set to the upper limit of
the sequence. If the sequence is unbounded, maxCccurs is set to unbounded.

185

CHAPTER 10 | Using the CORBA Plug-in

For example, the two sequences defined in Example 76, | ongSeq and
char Seq:

Example 76: /DL Sequences

\\ 1DL
t ypedef sequence<| ong> | ongSeq;
typedef sequence<char, 10> char Seq;

are described in the logical section of the contract with entries similar to
those shown in Example 77:

Example 77: Logical Description of Sequences

<xsd: conpl exType name="I| ongSeq" >
<xsd: sequence>
<xsd: el enent name="iten' type="xsd:int" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="char Seq" >
<xsd: sequence>
<xsd: el ement nane="iten! type="xsd:byte" m nCccurs="0" maxCccurs="10"/>
</ xsd: sequence>
</ xsd: conpl exType>

In the CORBA type map, sequences are described using a
<cor ba: sequence> element. A <cor ba: sequence> has five required

attributes.

name A unique identifier used to reference the CORBA type in
the binding.

repositoryl D The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

el entype The IDL type of the sequence’s elements. This type can

be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

186

CORBA Type Mapping

For example, the sequences described in Example 77 has a CORBA type
map description similar to that shown in Example 78:

Example 78: CORBA type map for Sequences

<cor ba: t ypeMappi ng tar get Nanespace="ht t p: // schermas. i ona. com bi ndi ngs/ cor ba/ t ypemap" >
<cor ba: sequence nane="|ongSeq" repositoryl D="1DL:|ongSeq: 1. 0" type="xsdl:| ongSeq"
el ent ype="cor ba: | ong" bound="0"/>
<cor ba: sequence nane="char Seq" repositoryl D="1DL: char Seq: 1. 0" type="xsd1: char Seq"
el ent ype="cor ba: char" bound="10"/>

</ cor ba: t ypeMappi ng>

Exceptions

Because exceptions typically return more than one piece of information, they
require both an abstract type description and a CORBA type map entry. In
the abstract type description, exceptions are described much like structures.
In the CORBA type map, exceptions are described using <cor ba: except i on>
elements. A <cor ba: except i on> element has three required attributes:

nane A unique identifier used to reference the CORBA type in
the binding.
type The logical type the structure is mapping.

repositoryl D The fully specified repository ID for the CORBA type.

The pieces of data returned with the exception are described by a series of
<cor ba: menber > elements. The elements must be declared in the same
order as in the IDL representation of the exception. A <cor ba: menber > has
two required attributes:

name The name of the element

idtype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined
within the type map.

For example, the exception defined in Example 79, i dNot Found,
Example 79:idNotFound Exception

\\ I DL
exception i dNot Found

{
short id;
iE

187

CHAPTER 10 | Using the CORBA Plug-in

would be described in the logical type section of the contract, with an entry
similar to that shown in Example 80:

Example 80: /dNotFound logical structure

<xsd: conpl exType name="i dNot Found" >
<xsd: sequence>
<xsd: el enent nanme="id" type="xsd: short"/>
</ xsd: sequence>
</ xsd: conpl exType>

In the CORBA type map portion of the contract, i dN\ot Found is described by
an entry similar to that shown in Example 81:

Example 81: CORBA Type Map for idNotFound
<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schenas. i ona. cond bi ndi ngs/ cor ba/ t ypemap" >
<cor ba: excepti on name="i dNot Found" type="xsd1:i dNot Found" repositoryl D="1DL:i dN\ot Found: 1. 0" >
<cor ba: menber nanme="id" idltype="corba: short" />

</ cor ba: excepti on>
</ corba: t ypeMappi ng>

188

CORBA Type Mapping

Mapping XMLSchema Features that are not Native to IDL

Overview

Binary type mappings

There are a number of data types that you can describe in your Artix
contract using XMLSchema that are not native to IDL. Artix can map these
data types into legal IDL so that your CORBA systems can interoperate with
applications that use these data type descriptions in their contracts.

These features include:

® Binary type mappings
® Attribute mapping

® Nested choice mapping
® Inheritance mapping

® Nillable mapping

There are three binary types defined in XMLSchema that have direct
correlation to IDL data-types. These types are:

® xsd: base64Bi nary
® xsd: hexBi nary

® soapenc: base64

These types are all mapped to octet sequences in CORBA. For example, the
schema type, j oeBi nary, described in Example 82 results in the CORBA
typemap description shown in Example 83.

Example 82: joeBinary schema description

<xsd: el ement nane="j oeBi nary type="xsd: hexBi nary" />
The resulting IDL for j oeBi nary is shown in Example 84.
Example 83: joeBinary CORBA typemap

<cor ba: sequence nane="j oeBi nary" bound="0"
el entype="corba: octet" repositoryl D="1DL: | oeBi nary: 1. 0"
type="xsd: hexBi nary" />

189

CHAPTER 10 | Using the CORBA Plug-in

Attribute mapping

The mappings for xsd: base64Bi nary and soapenc: base64 would be similar
except that the t ype attribute in the CORBA typemap would specify the
appropriate type.

Example 84:joeBinary IDL

\\ I DL
t ypedef sequence<octet> j oeBi nary;

XMLSchema attributes are treated as normal elements in a CORBA
structure. For example, the complex type, nmadAt t r, described in
Example 85 contains two attributes, materi al and si ze.

Example 85: madAttr XMLSchema

<conpl exType nane="madAttr">
<sequence>
<el enent name="styl e" type="xsd:string" />
<el enent name="gender" type="xsd: byte" />
</ sequence>
<attribute nane="material" type="xsd:string" />
<attribute nane="size" type="xsd:int" />
<conpl exType>

madAt t r would generate the CORBA typemap shown in Example 86. Notice
that materi al and si ze are simply incorporated into the madAttr structure
in the CORBA typemap.

Example 86: madAttr CORBA typemap

<corba: struct name="nmadAttr" repositoryl D="1DL: madAttr: 1. 0" type="typens: nadAttr">

<cor ba: nenber
<cor ba: menber
<cor ba: nenber
<cor ba: nenber
</ corba: struct >

190

name="styl e" idltype="corba:string"/>
name="gender" idltype="corba: char"/>
name="nmateri al " idltype="corba:string"/>
name="si ze" idl type="corba:long"/>

Nested choice mapping

CORBA Type Mapping

Similarly, in the IDL generated using a contract containing madAt tr, the
attributes are made elements of the structure and are placed in the order in
which they are listed in the contract. The resulting IDL structure is shown in
Example 87.

Example 87: madAttr IDL

\\ I DL

struct nmadAttr

{
string style;
char gender;
string naterial ;
I ong si ze;

When mapping complex types containing nested xsd: choi ce elements into
CORBA, Artix will break the nested xsd: choi ce elements into separate

uni ons in CORBA. The resulting union will have the name of the original
complex type with Choi ceType appended to it. So, if the original complex
type was named j oe, the union representing the nested choice would be
named j oeChoi ceType.

The nested choice in the original complex type will be replaced by an
element of the new union created to represent the nested choice. This
element will have the name of the new union with _f appended. So if the
original structure was named carl a, the replacement element will be named
carl aChoi ceType_f.

The original type description will not be changed, the break out will only
appear in the CORBA typemap and in the resulting IDL.

191

CHAPTER 10 | Using the CORBA Plug-in

For example, the complex type det ai | s, shown in Example 88, contains a
nested choi ce.

Example 88: details XMLSchema

<conpl exType nane="Detail s">
<sequence>
<el ement nanme="nane" type="xsd:string"/>
<el enent name="addr ess" type="xsd:string"/>
<choi ce>
<el ement nanme="enpl oyer" type="xsd:string"/>
<el enent name="unenpl oynent Nunber" type="xsd:int"/>
</ choi ce>
</ sequence>
</ conpl exType>

The resulting CORBA typemap, shown in Example 89, contains a new
union, det ai | sChoi ceType, to describe the nested choice. Note that the

t ype attribute for both det ai | s and det ai | sChoi ceType have the name of
the original complex type defined in the schema. The nested choice is
represented in the original structure as a member of type

det ai | sChoi ceType.

Example 89: details CORBA typemap

<cor ba: struct name="details" repositoryl D="1DL: details:1.0" type="xsdl:details">
<cor ba: menber idltype="corba: string" nane="nane"/>
<cor ba: menber idltype="corba:string" name="address"/>
<cor ba: nenber idltype="ns1: detail sChoi ceType" nane="det ai | sChoi ceType_f"/>
</ cor ba: st ruct >
<cor ba: uni on di scri m nat or =" cor ba: | ong" nane="det ai | sChoi ceType"
repositoryl D="1DL: det ai | sChoi ceType: 1. 0" type="xsdl: detail s">
<cor ba: uni onbranch i dl t ype="corba: stri ng" name="enpl oyer ">
<cor ba: case | abel ="0"/>
</ cor ba: uni onbr anch>
<cor ba: uni onbranch i dl t ype="corba: | ong" nane="unenpl oynment Nunber ">
<cor ba: case | abel ="1"/>
</ cor ba: uni onbr anch>
</ cor ba: uni on>

192

Inheritance mapping

The resulting IDL is shown in Example 90.

Example 90: details IDL

\\ I DL
uni on det ai | sChoi ceType swi t ch(| ong)

{
case 0:
string enpl oyer;
case 1:
| ong unenpl oyrment Nunber ;
ik
struct details
{
string nane;
string address;

ks

det ai | sChoi ceType Det ai | sChoi ceType_f;

CORBA Type Mapping

XMLSchema describes inheritance using the <ext ensi on> tag. For example
the complex type seaKayak, described in Example 91, inherits a number of

fields from the complex type kayak.
Example 91: seaKayak XMLSchema

<conpl exType nane="kayak" >
<sequence>

<el enent name="I| engt h" type="xsd:int" />
<el enent name="wi dth" type="xsd:int" />

<el enent name="naterial" type="xsd:string" />

</ sequence>
</ conpl exType>
<conpl exType nane="seaKayak" >
<conpl exCont ent >
<ext ensi on base="kayak">
<sequence>

<el enent name="chi nes" type="xsd:string" />
<el enent name="cockpitStyle" type="xsd:string" />

</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

193

CHAPTER 10 | Using the CORBA Plug-in

When complex types using inheritance described with the <ext ensi on> tag
are mapped into CORBA, Artix flattens the inheritance. As shown in
Example 92, Artix maps the inherited fields as normal members of the
structure in the CORBA type map. The inheritance chain is not maintained.

Example 92: seaKayak CORBA type map

<cor ba: st ruct name="seaKayak" repositoryl D="I1 DL: seaKayak: 1. 0" type="t ypens: seaKayak" >

<cor ba:
<cor ba:
<cor ba:
<cor ba:
<cor ba:

el enent
el enent
el enent
el enent
el enent

</ corba: struct >
<cor ba: struct name="kayak" repositoryl D="IDL: seaKayak: 1. 0" type="t ypens: seaKayak" >
<cor ba: el enent nane="I| engt h" i dl t ype="corba: | ong" />
<cor ba: el ement name="wi dth" idltype="corba:long" />
<cor ba: el enent name="naterial" idltype="corba:string" />
</ cor ba: st ruct >

194

name="| engt h" idltype="corba:long" />
nanme="wi dth" idl type="corba:long" />
name="material " idltype="corba:string" />
narre="chi nes" idltype="corba: string" />
name="cockpi t Styl e" idltype="corba:string" />

The IDL generated by Artix to handle complex schema types that use
inheritance also flattens the inheritance as shown in Example 93.

Example 93: seaKayak IDL

\\ IDL

struct seaKayak

{
| ong | engt h;
I ong wi dth;
string naterial ;
string chines;
string cockpitStyle;

}

struct kayak

{
|l ong | engt h;
| ong wi dth;
string nmaterial ;

}

Because the CORBA mappings break the inheritance chain, you must be
careful about how data is exchanged between components using contracts
with this type of mapping. While the service for which the original schema

Nillable mapping

CORBA Type Mapping

types were developed may treat certain objects as equivalent due to
inheritance, the CORBA services using the contract do not handle receiving
the wrong data gracefully.

XMLSchema supports an optional attribute, ni I | abl e, that specifies that an
element can be ni | . Setting an element to ni | is different than omitting an
element whose ni nCeceur s attribute is set to 0; the element must be
included as part of the data sent in the message.

Elements that have ni |1 abl e="true" set in their logical description are
mapped to a CORBA union with a single case, TRUE, that holds the value of
the element if it is not set to ni | .

For example, imagine a service that maintains a database of information on
people who download software from a web site. The only required piece of
information the visitor needs to supply is their zip code. Optionally, visitors
can supply their name and e-mail address. The data is stored in a data
structure, webDat a, shown in Example 94.

Example 94: webData XMLSchema

<conpl exType name="webDat a" >
<sequence>
<el enent name="zi pCode" type="xsd:int" />
<el enent name="nane" type="xsd:string" nillable="true />
<el enent name="enai | Addr ess" type="xsd: string"
nillable="true" />
</ sequence>
</ conpl exType>

195

CHAPTER 10 | Using the CORBA Plug-in

When webDat a is mapped to a CORBA binding, it will generate a union,
string_nil, to provide for the mapping of the two nillable elements, name
and enai | Addr ess. Example 95 shows the CORBA typemap for webDat a.

Example 95: webData CORBA Typemap

<cor ba: t ypemappi ng ...>
<cor ba: struct name="webDat a" repositoryl D="IDL: webDat a: 1. 0" type="xsd1: webDat a" >
<cor ba: menber idl type="corba: | ong" name="zi pCode"/>
<cor ba: menber idltype="nsl:string_nil" name="nane"/>
<cor ba: menber idltype="nsl:string_nil" name="email Address"/>
</ cor ba: st ruct >
<cor ba: uni on di scri m nat or =" cor ba: bool ean" nane="string_nil" repositoryl D="1DL:string_nil:1.0"
type="xsd1: emai | Addr ess" >
<cor ba: uni onbranch idl t ype="corba: string" nane="val ue">
<cor ba: case | abel =" TRUE"'/ >
</ cor ba: uni onbr anch>
</ cor ba: uni on>
</ cor ba: t ypeMappi ng>

The type assigned to the union, string_ni |, does not matter as long as the
type assigned maps back to an xsd: stri ng. This is true for all nillable
element types.

Example 96 shows the IDL for webDat a.
Example 96: webData IDL

\\ I DL
union string_nil swtch(bool ean) {
case TRUE
string val ue;
ik
struct webData {
| ong zi pCode;
string_nil nane;
string_nil emnail Address;

iE

196

Modifying a Contract to Use CORBA

Modifying a Contract to Use CORBA

Overview

In this section

Service Access Points (SAPs) that use CORBA require that special binding,
port, and type mapping information be added to the physical portion of the
Artix contract. The binding definition resolves any ambiguity about
parameter order, return values, and type. The port definition specifies the
addressing information need by clients or servers to locate the CORBA
object. The port can also specify POA policies the exposed CORBA object
uses. The type mapping information maps complex schema types, defined
in the logical portion of the contract, into CORBA data types.

This section discusses the following topics:

Adding a CORBA Binding page 198

Adding a CORBA Port page 206

197

CHAPTER 10 | Using the CORBA Plug-in

Adding a CORBA Binding

Overview

Mapping to the binding

198

CORBA applications use a specific payload format when making and
responding to requests. The CORBA binding, described using an IONA
extension to WSDL, maps the parts of a logical message to the proper
payload format for CORBA applications. The CORBA binding specifies the
repository ID of the IDL interface, resolves parameter order and mode
ambiguity, and maps the data types to CORBA data types.

The extensions used to map a logical operation to a CORBA binding are
described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element
has one required attribute: reposi t oryl D. reposi t or yl D specifies the full
type ID of the interface. The type ID is embedded in the object’s IOR and
therefore must conform to the IDs that are generated from an IDL compiler.
These are of the form:

I DL: nodul e/ i nterface: 1.0

The cor ba: bi ndi ng element also has an optional attribute, bases, that
specifies that the interface being bound inherits from another interface. The
value for bases is the type ID of the interface from which the bound
interface inherits. For example, the following IDL:

/11D
interface clash{};
interface bad : clash{};

would produce the following cor ba: bi ndi ng:

<cor ba: bi ndi ng reposi toryl D="I OL: bad: 1. 0"
bases="IDL: cl ash: 1. 0"/ >

corba:operation is an IONA-specific element of <oper ati on> and describes
the parts of the operation’s messages. <cor ba: oper at i on> takes a single
attribute, name, which duplicates the name given in <oper at i on>.

Modifying a Contract to Use CORBA

corba:param is a member of <cor ba: oper ati on>. Each <part > of the input
and output messages specified in the logical operation, except for the part
representing the return value of the operation, must have a corresponding
<cor ba: par ane. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation. <cor ba: par an» has the
following required attributes:

nmode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: i n, i nout, out .
Parameters set to i n must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to i nout must appear in both
the input and output messages of the logical operation.

i dltype Specifies the IDL type of the parameter. The type names
are prefaced with cor ba: for primitive IDL types, and
corbat m for complex data types, which are mapped out
in the cor ba: t ypeMappi ng portion of the contract.

nane Specifies the name of the parameter as given in the
logical portion of the contract.

corba:return s a member of <cor ba: oper ati on> and specifies the return
type, if any, of the operation. It only has two attributes:

nane Specifies the name of the parameter as given in the
logical portion of the contract.

i dltype Specifies the IDL type of the parameter. The type names
are prefaced with cor ba: for primitive IDL types and
corbat m for complex data types which are mapped out
in the cor ba: t ypeMappi ng portion of the contract.

corba:raises is a member of <cor ba: oper ati on> and describes any
exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message must
have a corresponding <cor ba: r ai ses> element. <corba:raises> has one
required attribute, except i on, which specifies the type of data returned in
the exception.

199

CHAPTER 10 | Using the CORBA Plug-in

Using Artix Designer

200

In addition to operations specified in <cor ba: oper ati on> tags, within the
<oper at i on> block, each <operati on> in the binding must also specify
empty <i nput > and <out put > elements as required by the WSDL
specification. The CORBA binding specification, however, does not use
them.

For each fault message defined in the logical description of the operation, a
corresponding <f aul t > element must be provided in the <operation>, as
required by the WSDL specification. The nane attribute of the <f aul t >
element specifies the name of the schema type representing the data passed
in the fault message.

The Binding Editor walks you through the generation of a CORBA binding
based on your existing contract. It then generates a new contract containing
the CORBA binding and the associated CORBA type map.

To add a CORBA binding to an Artix contract complete the following steps:

1. From the project tree, select the service to which you want to add the
CORBA binding.

2. Select Bindings |New Binding from the Contract menu of the designer.

Modifying a Contract to Use CORBA

3. You will see a screen like Figure 12.

[] Binding Editor - Artix Designer

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.
O Add to existing WSDL "widgetOrderForm.wsdl
(@) Add to new WEDL widgets-corbal
P SelectWsDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract
’ Previous] ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 12: Select WSDL location

4. Select where to create the WSDL entry for the new binding.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.
6. Select CORBA from the list of possible bindings.

201

CHAPTER 10 | Using the CORBA Plug-in

202

7. Click Next to select the interface you want mapped to the CORBA

binding.

8. You will see a dialog similar to Figure 13.

) Binding Editor - Artix Designer

~Port Type

Port Type

"DErSDnaanﬂDemu

Binding Name [parsonalinfoDemo_CORBABinding

Operations To Bind

lookup

Select Binding Type
= Select Port Type

Edit Binding

View WEDL Contract

I Previous ” Mext]l FEinish

|[Cancel][Help

Figure 13: Select Interface to Map to CORBA

9. From the drop down list select the interface you want to map to the

CORBA binding.

10. Enter the name for the new binding.

11. If there is more than one operation described in the interface, select

the operation that are to be mapped into the CORBA binding.
12. Click Next to edit the new CORBA binding.

Modifying a Contract to Use CORBA

13. You will see a dialog similar to Figure 14.

) Binding Editor - Artix Designer

-CORBA Binding
D personalinfoCemo_CORBABinding

2 Binding
L E lookup
3 Type Mapping
=) personalinfaDermo hairCalarType
E =) personalinfaDermo.personallnfo

= [personalinfaDermo.idMotFound

~Type Description: "personalinfoDemo.idMNotF ound*

Group Type |Sub-group Ty..| Element Na...| Element Type| minQOccurs | maxOccurs
psd xsd:short 1
Select Binding Type ~CORBA Type Mapping: "personalinfoDemo idNotFound”
Select Port Type Mame | Tupe | Repository ID[Tvpe Descrip.] 1DLType | Element Na...|
P Edit Binding personalinfo... corbaexcept . IDLpersonal... xsd1:person. . corba:short id
Wiew WSDL Contract
|I Previous | I Mext I I Finish I I Cancel I I Help

Figure 14: Edit the CORBA Binding

14. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

15. Edit the values shown in white if they are not correct.

16. When you are finished editing the binding, click Next.

17. Review the newly created contract containing the new CORBA binding.
18. If the contract is correct, click Finish.

When you have completed creating the new CORBA binding the contract
describing the binding and the CORBA type map is added to the project tree
under the selected service. This new contract will not contain a CORBA port
description. For details on adding a CORBA port description see “Adding a
CORBA Port” on page 206.

203

CHAPTER 10 | Using the CORBA Plug-in

Using the command line

Example

204

The wesdl t ocor ba tool also adds CORBA binding information to an existing
Artix contract. To generate a CORBA binding using wsdl t ocor ba use the
following command:

wsdl tocorba -corba -i portType [-d dir][-b binding][-0 file]
wsdl _file

The command has the following options:

-cor ba Instructs the tool to generate a CORBA binding for the
specified port type.

-i port Type Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.
-b binding Specifies the name for the generated CORBA binding.

Defaults to port TypeBi ndi ng.

-o file Specifies the name of the generated WSDL file. Defaults
towsdl _file-corba.wsdl .

The generated WSDL file will also contain a CORBA port with no address
specified. To complete the port specification you can do so manually or use
the Artix Designer.

For example, the logical operation per sonal | nf oLookup, shown in
Example 9 on page 19, has a CORBA binding similar to the one shown in
Example 97.

Modifying a Contract to Use CORBA

Example 97: personallnfoLookup CORBA Binding

<bi ndi ng name="per sonal | nf oLookupBi ndi ng" type="t ns: per sonal | nf oLookup" >
<cor ba: bi ndi ng repositoryl D="1DL: per sonal | nf oLookup: 1. 0"/ >
<oper ati on name="1| ookup" >
<cor ba: operati on nanme="| ookup" >
<cor ba: par am nane="enpl d* node="i n" idltype="corba:long"/>
<corba:return nanme="return" idltype="corbatm personal | nfo"/>
<cor ba: rai ses excepti on="cor bat mi dN\Not Found"/ >
</ cor ba: oper at i on>
<i nput />
<out put / >
<faul t nane="personal | nf oLookup. i dNot Found"/ >
</ oper at i on>
</ bi ndi ng>

205

CHAPTER 10 | Using the CORBA Plug-in

Adding a CORBA Port

Overview

Address specification

Specifying POA policies

206

CORBA ports are described using the IONA-specific WSDL elements
<cor ba: addr ess> and <cor ba: pol i cy> within the WSDL <port > element, to
specify how a CORBA object is exposed.

The IOR of the CORBA object is specified using the <cor ba: addr ess>
element. You have four options for specifying IORs in Artix contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

| OR 22342. ...
® Specify a file location for the IOR, using the following syntax:
file://file_nanme

® Specify that the IOR is published to a CORBA name service, by
entering the object’s name using the cor baname format:

cor banane: rir: NameSer vi ce#obj ect _nane

For more information on using the name service with Artix see “Using
the CORBA Naming Service” on page 222.

® Specify the IOR using cor bal oc, by specifying the port at which the
service exposes itself, using the cor bal oc syntax.

corbal oc: i i op: host : port/ servi ce_nane

When using cor bal oc, you must be sure to configure your service to
start up on the specified host and port.

Using the optional <cor ba: pol i cy> element, you can describe a number of
POA polices the Artix service will use when creating the POA for connecting
to a CORBA application. These policies include:

® POA Name

® Persistence

Procedure

Modifying a Contract to Use CORBA

® |D Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA’s Application Server Platform 6.0, such as load balancing and fault
tolerance, when deploying an Artix integration project. For information on
using these advanced CORBA features, see the Application Server Platform
documentation.

POA Name

Artix POAs are created with the default name of Ws_CRB. To specify the
name of the POA Artix creates to connect with a CORBA object, you use the
following:

<cor ba: pol i cy poananme="poa_nane" />

Persistence

By default Artix POA’s have a persistence policy of f al se. To set the POA’s
persistence policy to true, use the following:

<cor ba: pol i cy persistent="true" />

ID Assignment

By default Artix POAs are created with a SYSTEM | D policy, meaning that
their ID is assigned by the ORB. To specify that the POA connecting a
specific object should use a user-assigned ID, use the following:

<cor ba: pol i cy servi cei d="PQA d" />

This creates a POA with a USER | D policy and an object id of POAI d.

To add a CORBA port to your service contract using the GUI, complete the
following steps:

1. From the project tree, select the contract to which you want to add the
CORBA port.

2. Select Services|New Service from the Contract menu of the designer.

207

CHAPTER 10 | Using the CORBA Plug-in

208

[] Binding Editor - Artix Designer

P SelectWSDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract

3. You will see a screen like Figure 12.

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.

O Add to existing WSDL "widgetOrderForm.wsdl

(@) Add to new WEDL widgets-corbal

T W B N

Figure 15: Select WSDL Location

4. Select where to create the WSDL entry for the new service.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a unique name for the new service.

10.
11.

Modifying a Contract to Use CORBA

Click Next.
Enter a name for the new CORBA port that is being created.

From the drop down list, select the binding that the port is going to
expose.

Click Next.
You will see a dialog similar to Figure 16.

) New Service - Artix Designer

~Property Cefinitions in Port- "CORBA_PORT"
a0 Rt
Transport Type
“Attribute
Address
Aftribute | WValue | Specified
location ‘ ‘
Falicy
Aftribute WValue Specified
poaname [m]
serviceid O
Define Service =
persistent false L
Define Port
= Define Extensar Properties
Port Summary
Senice Summary
H Previous I " Mext " | FEinish | [Cancel] [Help

Figure 16: Edit CORBA Port Properties

12.
13.
14.

15.
16.
17.
18.

From the drop down list in the Transport box, select corba.
In the Address table, enter the CORBA address in the line for Location.

If you want to set any of the supported POA policies, place a check in
the Specified box on the appropriate line in the Policy table and enter
a valid value.

Click Next.
Review the settings for the new CORBA port.
If it is correct, click Next.

Review the settings for the new service in which the CORBA port is
described.

209

CHAPTER 10 | Using the CORBA Plug-in

19. If it is correct, click Finish.

Example For example, a CORBA port for the per sonal | nf oLookup binding would look
similar to Example 98:

Example 98: CORBA personallnfoLookup Port

<servi ce name="per sonal | nf oLookupServi ce">
<port name="personal | nf oLookupPort"
bi ndi ng="t ns: per sonal | nf oLookupBi ndi ng" >
<cor ba: address | ocation="file://objref.ior" />
<corba: pol i cy persistent="true" />
<cor ba: pol i cy servi cei d="per sonal | nf oLookup" />
</ port>
</ service>

Artix expects the IOR for the CORBA object to be located in a file called
obj ref.ior, and creates a persistent POA with an object id of per sonal | nf o
to connect the CORBA application.

210

Generating IDL from an Artix Contract

Generating IDL from an Artix Contract

Overview

Using Artix Designer

From the command line

Artix clients that use a CORBA transport require that the IDL defining the
interface exist and be accessible. Artix provides tools to generate the
required IDL from an existing WSDL contract. The generated IDL captures
the information in the logical portion of the contract and uses that to
generate the IDL interface. Each <port Type> in the contract generates an
IDL module.

To generate IDL from the Artix Designer complete the following steps:

1. Select the Development icon under the service for which you are going
to generate IDL.

Note: The service must have a CORBA binding defined in one of its
associated contracts to generate IDL.

2. From the drop down list next to Development Environment select IDL.
Enter the name and location of the file to which the generated IDL will
be generated.

4. Click OK.

The wsdl t ocor ba tool compiles Artix contracts and generates IDL for the
specified CORBA binding and port type. To generate IDL using wsdl t ocor ba
use the following command:

wsdl tocorba -idl -b binding [-corba][-i portType][-d dir]
[-ofile] wsdl _file

The command has the following options:

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b bi ndi ng Specifies the CORBA binding from which to generate IDL.

- corba Instructs the tool to generate a CORBA binding for the

specified port type.

211

CHAPTER 10 | Using the CORBA Plug-in

212

-i port Type Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.
-o file Specifies the name of the generated WSDL file. Defaults

towsdl _file.idl.

By combining the -i dl and - cor ba flags with wsdl t ocor ba, you can
generate a CORBA binding for a logical operation and then generate the IDL
for the generated CORBA binding. When doing so, you must also use the -i
por t Type flag to specify the port type from which to generate the binding
and the - b bi ndi ng flag to specify the name of the binding to from which to
generate the IDL.

Generating a Contract from IDL

Generating a Contract from IDL

Overview

CORBA WSDL namespaces

Unsupported type handling

Using Artix Designer

If you are starting from a CORBA server or client, Artix can build the logical
portion of the WSDL contract from IDL. Contracts generated from IDL have
CORBA-specific entries and namespaces added.

The IDL compiler also generates the binding information required to format
the operations specified in the IDL. However, since port information is
specific to the deployment environment, the port information is left blank.

Contracts generated from IDL include two additional name spaces:

xm ns: corba="htt p: //schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: cor bat =" ht t p: / / schenas. i ona. con bi ndi ngs/ cor ba/ t ypenap"

Be aware that the IDL compiler ignores any definitions that use unsupported
CORBA types. The IDL compiler also ignores any definition that uses a
previously ignored definition. For example, assume you have the following
IDL definitions infile.idl:

interface A

{

struct S

{
A nenber ;
¥

S get_op();

The IDL compiler does not generate any corresponding contract information
for the structure S because it contains a member that uses an object
reference. Similarly, the IDL complier does not generate any contract
information for the operation get _op() because it references structure S.

The Artix Designer imports IDL files, generates a new Artix contract to
describe the CORBA service represented by the IDL, and adds the new
contract to the project tree.

213

CHAPTER 10 | Using the CORBA Plug-in

214

To import an IDL file into Artix Designer complete the following steps:

1. Select either a contracts folder or a service node from the project tree.
2. Select Import... from the Contract menu.

3. You will see a dialog similar to Figure 17.

) Import Contract - |
Enter Service URL or WSDLADL file

|1ents and Settingslemjohnsalhly Documentsﬂﬂi)ﬂpersonallnfo.idIEH

|| Browse. .. || Add

[] Logical Contract Only (Mo Binding or Service endpoint information)

Impart Type
|Local WEDL or IDL Files ¢wsdl) ¢%id) -]

Selected Contracts

QK]| Cancel H Help

Figure 17: /DL Import

Click Browse to locate the IDL file.
Select Local WSDL or IDL Flles from the Import Type drop down list.

If you only wish to generate the logical portion of the contract select
Logical Contract Only.

Note: If this option is selected the generated contracts will not
contain any binding, CORBA typemap, or transport information.

7. Click Add to move the IDL file into the Selected Contracts list.

Generating a Contract from IDL

A dialog similar to Figure 18 will appear.

) IDL Include x|

Enter Directary {or Click OKiCancel to accept defaulty

| |
| Browse... | Add |

Selected Directaries
ChDocuments and Settings\emjohnszo

| Remove |

I QK]| Cancel H Help

Figure 18: /DL Include Directories

9.

10.
11.
12.

13.

Enter the names of the directories to search for included IDL files.
Click Add to add a directory to the list.

When finished adding directories, click OK.

Repeat steps 4 through 11 until you have added all of the IDL files to
import.

Click OK.

One contract will be added to the project tree under the selected folder or
service for each IDL file imported. The contracts will include a CORBA
binding, a CORBA type map, and a CORBA port description. You will need
to add location information to the CORBA port before you can deploy a
service using the CORBA port. For information on adding a location to the
CORBA port see “Address specification” on page 206.

215

CHAPTER 10 | Using the CORBA Plug-in

From

idl

216

the command line IONA's IDL compiler supports several command line flags that specify how
to create a WSDL file from an IDL file. The IDL compiler is run using the
following command:

-wsdl : [-aaddress] [-ffile][-Qdir][-turi][-stype][-rfile][-Lfile][-Pfile] idlfile

The command has the following options:

-wsdl

- aaddr ess
-ffile
-Qdir
-turi
-stype
-rfile
-Lfile
-Pfile

Specifies that WSDL is to be generated. This flag is
required.

Specifies an absolute address through which the object
reference may be accessed. The addr ess may be a
relative or absolute path to a file, or a corbaname URL

Specifies a file containing a string representation of an
object reference. The contents of this file is incorporated
into the WSDL file. The fi | e must exist when you run the
IDL compiler.

Specifies the directory into which the WSDL file is
written.

Specifies the URI for the cor bat mnamespace. This
overrides the default.

Specifies the XMLSchema type used to map the IDL
sequence<oct et > type. Valid values are base64Bi nary
and hexBi nary. The default is base64Bi nary.

Specify the pathname of the schema file imported to
define the Ref erence type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.

Specifies that the logical portion of the generated WSDL
specification into is written to fil e. fil e is then imported
into the default generated file.

Specifies that the physical portion of the generated WSDL
specification into is written to fil e. fil e is then imported
into the default generated file.

Generating a Contract from IDL

To combine multiple flags in the same command, use a colon delimited list.
The colon is only interpreted as a delimiter if it is followed by a dash.
Consequently, the colons in a corbanane URL are interpreted as part of the
URL syntax and not as delimiters.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.

Example

Imagine you needed to generate an Artix contract for a CORBA server that

exposes the interface shown in Example 99.

Example 99: personallnfoService Interface

interface personal | nfoService

{

IE

enum hai r Gol or Type {red, brunette, blonde};

struct personal | nfo

{
string nane;

| ong age;

hai r Gol or Type hai r Gol or;
iE

exception i d\ot Found

{
short id;
¥

personal | nf o | ookup(in | ong enpl d)
rai ses (i dNot Found);

To generate the contract, you run it through the IDL compiler using either
the GUI or the command line. The resulting contract is similar to that shown
in Example 100.

217

CHAPTER 10 | Using the CORBA Plug-in

Example 100:personalinfoService Contract

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions nanme="personal I nfo.idl"
t ar get Namespace="ht t p: / / schemas. i ona. con i dl / per sonal | nfo. i dl "
xm ns="http://schenas. xn soap. or g/ wsdl / "
xm ns: tns="http://schenas.iona.coniidl/personal Info.idl"
xm ns: xsd="ht t p: / / wan W3. or g/ 2001/ XM_Scherma"
xm ns: xsd1="htt p: // schenas. i ona. coni i dl t ypes/ per sonal I nfo.idl "
xm ns: corba="htt p: // schenas. i ona. coni bi ndi ngs/ cor ba"
xm ns: cor bat m="ht t p: // schenas. i ona. con bi ndi ngs/ cor ba/ t ypermap" >
<t ypes>
<schera t ar get Nanespace="htt p: //schenas. i ona. conii dl t ypes/ per sonal I nfo.idl "
xm ns="ht t p: / / waw. W8. or g/ 2001/ XM_Schenma"
xm ns: wsdl =" htt p: // schenmas. xm soap. or g/ wsdl /">
<xsd: si npl eType nane="per sonal | nf oSer vi ce. hai r Gol or Type" >
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="red"/>
<xsd: enuner ati on val ue="brunette"/>
<xsd: enurer at i on val ue="bl onde"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType name="per sonal | nf oServi ce. per sonal | nf 0" >
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="age" type="xsd:int"/>
<xsd: el ement nane="hai rCol or" type="xsd1: per sonal | nf oServi ce. hai r Col or Type"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="per sonal | nf oServi ce. i dNot Found" >
<xsd: sequence>
<xsd: el ement name="id" type="xsd:short"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="per sonal | nf oServi ce. | ookup. enpl d" type="xsd:int"/>
<xsd: el ement nane="per sonal | nf oSer vi ce. | ookup. ret urn"
t ype="xsd1: per sonal | nf oServi ce. per sonal | nfo"/>
<xsd: el ement nane="per sonal | nf oSer vi ce. i dNot Found"
t ype="xsd1: per sonal | nf oSer vi ce. i dNot Found"/ >
</ schena>
</ types>
<nessage name="per sonal | nf oServi ce. | ookup" >
<part nanme="enpl d" el enent ="xsd1: per sonal | nf oSer vi ce. | ookup. enpl d"/ >
</ message>
<nessage name="per sonal | nf oServi ce. | ookupResponse" >
<part name="return" el ement ="xsdl: personal | nf oServi ce. | ookup. return"/>
</ message>

218

Generating a Contract from IDL

Example 100:personallnfoService Contract

<nessage nanme="_excepti on. personal | nf oSer vi ce. i d\Not Found" >
<part name="exception" el ement="xsdl: per sonal | nf oServi ce. i dNot Found"/ >
</ message>
<port Type nane="personal | nf oServi ce" >
<oper ati on name="| ookup" >
<i nput nessage="t ns: per sonal | nf oSer vi ce. | ookup" name="I| ookup"/>
<out put message="t ns: per sonal | nf oServi ce. | ookupResponse" nane="| ookupResponse"/>
<fault nessage="tns:_excepti on. personal | nf oServi ce. i dNot Found"
name="per sonal | nf oSer vi ce. i d\ot Found"/ >
</ oper at i on>
</ por t Type>
<bi ndi ng name="personal | nf oServi ceBi ndi ng" type="t ns: personal | nf oServi ce">
<cor ba: bi ndi ng repositoryl D="IDL: personal | nf oServi ce: 1. 0"/ >
<oper ati on name="| ookup" >
<cor ba: operati on name="1| ookup" >
<cor ba: par am nane="enpl d* node="i n" idltype="corba:long"/>
<corba:return name="return" idltype="corbatm personal | nf oServi ce. personal | nfo"/>
<cor ba: rai ses excepti on="cor bat m per sonal | nf oSer vi ce. i dNot Found" / >
</ corba: oper ati on>
<i nput/ >
<out put / >
<faul t name="personal | nf oServi ce. i d\Not Found"/ >
</ oper at i on>
</ bi ndi ng>
<servi ce name="personal | nf oServi ceServi ce">
<port nane="personal | nfoServi cePort" bi ndi ng="t ns: per sonal | nf oSer vi ceBi ndi ng" >
<corba: address | ocation="..."/>
</ port >
</ servi ce>
<cor ba: t ypeMappi ng t ar get Namespace="ht t p: / / schemas. i ona. con bi ndi ngs/ cor ba/ t ypenmap" >
<cor ba: enum nane="per sonal | nf oSer vi ce. hai r Col or Type"
t ype="xsd1: per sonal | nf oServi ce. hai r Col or Type"
reposi toryl D="1 DL: per sonal | nf oSer vi ce/ hai r Col or Type: 1. 0" >
<cor ba: enuner at or val ue="red"/ >
<cor ba: enuner at or val ue="brunette"/>
<cor ba: enurer at or val ue="bl onde"/ >
</ cor ba: enun®
<cor ba: struct name="per sonal | nf oSer vi ce. per sonal | nf 0"
t ype="xsd1: per sonal | nf oServi ce. per sonal | nf 0"
reposi toryl D="1DL: per sonal | nf oSer vi ce/ per sonal | nf o: 1. 0" >
<cor ba: nenber nane="nane" idltype="corba:string"/>
<cor ba: nenber nane="age" idltype="corba:long"/>
<cor ba: nenber nane="hair Col or" idltype="corbat m personal | nf oServi ce. hai r Col or Type"/ >
</ cor ba: struct >

219

CHAPTER 10 | Using the CORBA Plug-in

Example 100:personalinfoService Contract

<cor ba: excepti on nanme="per sonal | nf oServi ce. i d\Not Found"
t ype="xsd1: per sonal | nf oSer vi ce. i dNot Found"
reposi toryl D="1DL: per sonal | nf oServi ce/ i dNot Found: 1. 0" >
<cor ba: menber name="id" idltype="corba: short"/>
</ cor ba: except i on>
</ cor ba: t ypeMappi ng>
</ defi ni ti ons>

220

Configuring Artix to Use the CORBA Plug-in

Configuring Artix to Use the CORBA Plug-in

Overview

Loading the plug-in

Plug-in configuration

The CORBA interopability features of Artix are provided through a plug-in. If
you are using Artix with the CORBA transport, you need to ensure that the
CORBA plug-in is loaded by the Artix runtime and that the plug-in is
properly configured.

To configure the Artix runtime to load the CORBA plug-in add ws_or b to the
or b_pl ugi ns list for your Artix instance. For example, if your Artix instance
is getting its configuration from the configuration scope, the or b_pl ugi ns list
would look like Example 101.

Example 101:0rb_plugin list for CORBA

{
corba_i nterop
{
orb plugins = ["xmfile_|log_streant, "iiop_profile", "giop",
“iiop", "my", "ws_orb", "fixed"];
}
}

The CORBA plug-in is configured using the same configuration variables as
IONA's Application Server Platform’s CORBA implementation. For more
information on configuring the CORBA plug-in, see the Application Server
Platform Configuration Reference.

221

CHAPTER 10 | Using the CORBA Plug-in

Using the CORBA Naming Service

Overview

Servers

In order to fully integrate with deployed CORBA systems, Artix can use a
CORBA naming service that supports the CosNani ng interface. Doing so
requires editing the port information in the service’s contract and modifying
the Artix configuration.

To specify that an Artix instance (acting as proxy for a server) is to use the
CORBA naming service, you edit the <cor ba: addr ess> element of the
CORBA port. In place of the file name used in the | ocati on attribute,
specify a cor bananme. For example, to specify that the converter server
publishes its IOR to the CORBA naming service, specify the

<cor ba: addr ess> as follows:

<cor ba: addr ess | ocati on="cor banane: rir:/ NaneSer vi ce#per sonal | nf oServi ce”/ >

Clients

Configuration

222

This registers the server in the name service under the name
per sonal | nf oSer vi ce.

An Artix instance (acting as a proxy for a client) can also use the

<cor ba: addr ess> element to specify what name to look up in the CORBA
name service. The name the client looks up in the name service is the string
after the # in the specified location. For example, a client using the

<cor ba: addr ess> shown above in “Servers” looks up the IOR for an object
named per sonal I nf 0Ser vi ce.

Artix applications that wish to use a CORBA name service must be
configured to load a name resolver plug-in and have an initial reference for
the running name service.

Using the CORBA Naming Service

To modify the Artix configuration do the following:

1. Open the Artix configuration file,
IT_PRODUCT_DIRartix\1. 2\etc\artix.cfg, in a text editor.

2. In the global scope, add the following lines:
initial _references: NareSer vi ce: r ef erence="corbal oc: : | ocal host : port Nunber / NaneSer vi ce";

url _resol vers: cor banare: pl ugi n="nam ng_r esol ver";
pl ugi ns: nam ng_r esol ver: shl i b_name="it_nam ng";

por t Nunber is the number of the port on which the name service is
running.

For more information on configuring Artix, see “Configuration” on page 27.

223

CHAPTER 10 | Using the CORBA Plug-in

Embedding Artix in a CORBA Application

Overview

CORBA client applications

224

Artix, because it is built on IONA's flexible ART platform, can be embedded
within any CORBA application implemented using IONA'’s Application Server
Platform 6.0 or later without modifying any of the CORBA application’s
code. Embedding Artix is done by altering the application’s configuration to
load the required Artix plug-ins.

Embedding Artix into your CORBA application has several advantages:

You do not need a separate process to route messages to the
non-CORBA pieces of your application.

You improve messaging performance over using the Artix standalone
service.

You can still code using a familiar paradigm and realize the benefits of
using Artix.

You can leverage all of the CORBA infrastructure to provide enterprise
level qualities of service and management.

To embed Artix into a CORBA client application you need to do the
following:

1.

Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

Edit the configuration scope for your CORBA client so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA client will be interacting with a sever using
SOAP over WebSphere MQ your ORB plug-in list would be similar to
the one in Example 102 on page 225. Note that the required Artix
plug-ins for the SOAP binding, the WebSphere MQ transport, CORBA,
and routing are highlighted.

Make an entry for pl ugi ns: routi ng: wsdl _ur| that specifies where the
Artix applications contract resides.

CORBA server applications

Embedding Artix in a CORBA Application

In Example 102, the Artix contract describing the application is stored
in /artix/wsdl Repos/ scor eBox. wsdl .

Example 102:Embedded Artix orb_plugin list

corba_client.artix

{
orb_pl ugi ns=["iiop_profile", "giop", "soap", "ng", "ws_orb",
"routing"];
pl ugi ns: routi ng: wsdl _url ="/arti x/wsdl Repos/ scor eBox. wsdl ";

}

4. When you start your CORBA client ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a client that uses the configuration shown in Example 102, you
would start the client with the following command:

client -ORBnane corba client.artix

To embed Artix into a CORBA server that uses the routing plug-in there are

two caveats:

® Your CORBA server must generate persistent object references.

® Your CORBA server must run one time to export the persistent
references and then be restarted for the Artix routing plug-in to work.

The routing plug-in requires valid object references to properly load itself

and when embedded into the CORBA server, the routing plug-in is loaded by

the ORB before any object references are generated. By using persistent

object references and pregenerating them before fully deploying the server,

as when using the naming service, you satisfy the routing plug-in.

Complete the following steps to configure a CORBA server to embed Artix:

1. Create an Artix contract that fully describes the interfaces, bindings,
transports, and routing rules used in your Artix application.

2. Edit the configuration scope for your CORBA server so that the ORB
plug-ins list contains the required Artix plug-ins to support the bindings
and transports used by your Artix application.

For example, if your CORBA server will be interacting with a client
using SOAP over WebSphere MQ your ORB plug-in list would be
similar to the one in Example 103 on page 226. Note that the required

225

CHAPTER 10 | Using the CORBA Plug-in

Artix plug-ins for the SOAP binding, the WebSphere MQ transport,
CORBA, and routing are highlighted.

3. Make an entry for pl ugi ns: routi ng: wsdl _ur| that specifies where the
Artix applications contract resides.
In Example 103, the Artix contract describing the application is stored
in /artix/wsdl Repos/ scor eBox. wsdl .

4. Edit the server’s client binding list, bi ndi ng: cl i ent _bi ndi ng_I i st, so
that none of the listed bindings use POA Col oc.
The configuration scope in Example 103 shows a client binding list
that does not use PQA_Col oc. The default client binding list includes
entries for " OTS+PQA_Col oc" and " PQA Col oc".

Example 103:Embedded Artix Server Configuration

corba_server.artix

{
orb_plugins=["iiop_profile", "giop", "soap", "ny", "ws_orb",
"routing"];
pl ugi ns: routi ng: wsdl _url ="/ arti x/ wsdl Repos/ scor eBox. wsdl ";
bi ndi ng: cl i ent_binding_|ist=[“OrS+d QP+l I CP", “A CP+l I OP’];
bi ndi ng: server _binding_list=["0rS'];
}

5. When you start your CORBA server ensure that you start it using the
proper ORB name to load the Artix plug-ins.

For a server that uses the configuration shown in Example 103, you
would start the client with the following command:

server -CRBnane corba_server.artix

226

In this chapter

CHAPTER 11

Using the HTTP
Plug-in

The HTTP plug-in lets you configure an Artix integration
solution to use the HTTP transport. This chapter first provides
a brief introductory overview of HTTP. It then explains how to
configure and extend a WSDL contract to use an HTTP port
and provides a description of the WSDL extensions involved.
Finally it provides an overview of the WSDL extension schema
that supports the use of HTTP with Artix.

This chapter discusses the following topics:

HTTP Overview page 228
Adding an HTTP Port page 235
HTTP WSDL Extensions page 245
HTTP Transport Attributes page 266

227

CHAPTER 11 | Using the HTTP Plug-in

HTTP Overview

Overview

What is HTTP?

Resources and URLs

228

This section provides an introductory overview of the hypertext transport
protocol (HTTP). The following topics are discussed:

® “Whatis HTTP?” on page 228.

® “Resources and URLs” on page 228.

® “HTTP transaction processing” on page 229.

® “Format of HTTP client requests” on page 229.

® “Format of HTTP server responses” on page 231.
® “HTTP properties” on page 232.

Note: A complete introduction to HTTP is outside the scope of this guide.
For more details about HTTP see the W3C HTTP specification at
http://wawv W8. or g/ Prot ocol s/ rfc2616/ rfc2616. ht m .

HTTP is the standard TCP/IP-based protocol used for client-server

communications on the World Wide Web. The main function of HTTP is to
establish a connection between a web browser (client) and a web server for
the purposes of exchanging files and possibly other information on the Web.

HTTP is termed an application protocol. It defines how messages between
web browsers and web servers should be formatted and transmitted. It also
defines how web browsers and web servers should behave in response to
various commands.

The files and other information that can be transmitted are collectively
known as resources. A resource is basically a block of information. Files are
the most common example of resources and they can be in various
multimedia formats, such as text, graphics, sound, and video. Other
examples of resources are server-side script output or dynamically generated
query results.

HTTP transaction processing

Format of HTTP client requests

HTTP Overview

A resource is identifiable by a uniform resource locator (URL). As its name
suggests, a URL is the address or location of a resource. A URL typically
consists of protocol information followed by host (and optionally port)
information followed by the full path to the resource. HTTP is not the only
protocol or mechanism for data transfer; other examples include TELNET or
the file transfer protocol (FTP). Each of the following is an example of a
URL:

o htt p: //wwv i ona. cond suppor t/ docs/ i ndex. xm

® ftp://ftp.omy. org/ pub/ docs/ formal / 01- 12- 35. pdf
® telnet://xyz.com

In the first of the preceding examples, htt p: denotes that the protocol for
data transfer is HTTP, // www i ona. comdenotes the hostname where the
resource resides, and / suppor t/ docs/ i ndex. xmt is the full path to the
resource (in this case, an XML text file). The other URLs follow similar
patterns.

When a web user on the client-side requests a resource, either by typing a
URL or by clicking on a hypertext link, the client browser builds an HTTP
request and opens a TCP/IP socket connection to send the request to the
internet protocol (IP) address for the host denoted by the URL for the
requested resource. The web server host contains an HTTP daemon that
waits for client browser requests and handles them when they arrive. When
the HTTP daemon receives a request, the requested resource is then
returned to the client browser. The server's response can take the form of
HTML pages and possibly other programs in the form of ActiveX controls or
Java applets.

The following is an example of the typical format of an HTTP client request:
CGET REQUEST-UR HTTP/ 1.1
header field: value

header field: val ue

HTTP request body (if applicable)

229

CHAPTER 11 | Using the HTTP Plug-in

The preceding code can be explained as follows:

CGET

REQUEST- LR

HTTP/ 1.1

header field

HTTP request
body

230

This is an HTTP method that instructs the server to return
the requested resource.

Other HTTP methods might be used here instead. These

include:

® HeAD—this instructs the server to just return
information about the resource (in headers) but not
the actual resource itself.

® pcsT—this can be used if you want to send data in
the body of the request for subsequent processing
by the server.

® pur—this can be used to replace the contents of the
target resource with data from the client.

Note: GET is the most commonly used method in HTTP
client requests.

This represents the URL of the resource that the client is
requesting. The typical format of a URL is:

htt p: // host narre/ pat h-t o-r esour ce

For example:
http://wwv i ona. cond suppor t/ docs/ i ndex. xm

This indicates that the client is using HTTP to transmit
the request, and the version of HTTP that the client is
using (in this example, 1. 1).

Header information can be included to provide
information about the request. In HTTP 1.1, the only
mandatory header field is Host :, to identify the host
where the requested resource resides.

In Artix, a number of HTTP client request headers can be
configured and sent as part of a client request to a server.
See “HTTP WSDL Extensions” on page 245 and “Server
Transport Attributes” on page 268 for more details.

This can contain user-entered data or files that are being
sent to the server for processing.

Note: This is typically blank in an HTTP request unless
the PUT or PCST method is specified.

HTTP Overview

Format of HTTP server responses The following is an example of the typical format of an HTTP server
response:

HTTP/ 1.1 200 K
header field: val ue
header field: val ue

HTTP response body

The preceding code can be explained as follows:

HTTP/ 1. 1 This indicates that the server is using HTTP to transmit
the response, and the version of HTTP that the server is
using (in this example, 1. 1).

200 K This is status information that indicates whether the
request was processed successfully. The 3-digit code is
meant to be machine-readable, and the accompanying
descriptive text is for human consumption.

Status codes can be broadly described as follows:

® 2xx—A status code starting with 2 means the
request was processed successfully.

® 3xx—A status code starting with 3 means the
resource is now located elsewhere and the client
should redirect the request to that new location.

® 4xx—A status code starting with 4 means that the
request has failed because the client has either sent
a request in the wrong syntax, or it might have
requested a resource that is invalid or that it is not
authorized to access.

® 5xx—A status code starting with 5 means that the
request has failed because the server has
experienced internal problems or it does not support
the request method specified.

231

CHAPTER 11 | Using the HTTP Plug-in

HTTP properties

232

header field Header information can be included to provide

information about the response itself or about the
information contained in the body of the response.

In Artix, a number of HTTP server response headers can
be configured and sent as part of the server response to
the client. See “HTTP WSDL Extensions” on page 245
and “Client Transport Attributes” on page 270 for more
details.

HTTP response This is where the requested resource is returned to the

body client, if the request has been processed successfully.
Otherwise, it might contain some explanatory text as to
why the request was not processed successfully.

The data in the body of the response can be in a variety
of formats, such as HTML or XML text, GIF or JPEG
image, and so on.

The basic properties of HTTP can be summarized as follows:

Comprehensive addressing—The target resource on which a client
request is to be invoked is indicated by means of a universal resource
identifier (URI), either as a location (URL) or name (URN). As
explained in “Resources and URLs” on page 228, a URL consists of
protocol information followed, typically, by host (and optionally port)
information followed by the full path to the resource. For example:

htt p: // waw. i ona. com support/ docs/ i ndex. xm

See “Resources and URLs” on page 228 for more details.

Request/response paradigm—A client (web browser) can establish an
HTTP connection with a web server by means of a URI, to send a
request to that server. See “Format of HTTP client requests” on

page 229 for details of the format of a client request message. See
“Format of HTTP server responses” on page 231 for details of the
format of a server response message.

Connectionless protocol—HTTP is termed a connectionless protocol
because an HTTP connection is typically closed after a single
request/response operation. While it is possible for a client to request
the server to keep a connection open for subsequent request/response

HTTP Overview

operations, the server is not obliged to keep the connection open. The
advantage of closing connections is that it does not incur any overhead
in terms of session housekeeping; however, the disadvantage is that it
makes it difficult to track user behavior.

Note: A potential workaround to tracking user behavior is through
the use of cookies. A cookie is a string sent by a web server to a web
browser and which is then sent back to the web server again each
time the browser subsequently contacts that server.

Stateless protocol—Because HTTP connections are typically closed
after each request/response operation, there is no memory or footprint
between connections. A workaround to this, in CGI applications, is to
encode state information in hidden fields, in the path information, or in
URLs in the form returned to the client browser. State can also be
saved in a file, rather than being encoded, as in the typical example of
a visitor counter program, where state is identified by means of a
unique identifier in the form of a sequential integer.

Multimedia support—HTTP supports the transfer of various types of
data, such as text (for example, HTML or XML files), graphics (for
example, GIF or JPEG files), sound, and video. These types are
commonly referred to as multipart internet mail extension (MIME)
types. A server response can include header information that informs
the client of the MIME type of the information being sent by the server.
Proxies and caches—The communication chain between a client and
server might include intermediary programs known as proxies. A proxy
can receive client requests, possibly modify the request in some way,
and then forward the request along the chain possibly to another proxy
or to the target server. Such intermediaries can employ caches to store
responses that might be appropriate for subsequent requests. Caches
can be shared (public) or private. Specific directives can be established
in relation to cache behavior and not all responses might be cacheable.

233

CHAPTER 11 | Using the HTTP Plug-in

® Security—Secure HTTP connections that run over the secure sockets
layer (SSL) or transport layer security (TLS) protocol can also be
established. A secure HTTP connection is referred to as HTTPS and
uses port 443 by default. (A non-secure HTTP connection uses port 80
by default.)

Note: See “HTTP WSDL Extensions” on page 245 for details of the
various SSL-related configuration attributes that can be used in
extending a WSDL contract.

234

Adding an HTTP Port

Adding an HTTP Port

Overview You can configure an Artix WSDL contract with various extensions that
support the use of an HTTP port with an Artix integration solution. When
adding an HTTP port to a contract you can choose to specify whether or not
HTTP connections should run securely (over SSL or TLS). This section
describes how to use the Artix Designer GUI to add both secure and
non-secure HTTP ports to WSDL contracts.

Note: This section is only relevant if you want to use HTTP with a
payload format other than SOAP. If you are using SOAP over HTTP, see
the “SOAP Payload Format” chapter of this guide.

In this section This section discusses the following topics:
Adding an HTTP Port for Non-Secure Connections page 236
Adding an HTTP Port for Secure Connections page 242

235

CHAPTER 11 | Using the HTTP Plug-in

Adding an HTTP Port for Non-Secure Connections

Overview

GUI steps

236

This section describes how to use the Artix Designer GUI to add to a WSDL

contract an HTTP port that does not enable secure connections. It discusses
the following topics:

® “GUI steps” on page 236.
® “WSDL example” on page 239.

Note: This section deals specifically with how to set up port information
within the <ser vi ce> component of a WSDL contract. To add a port, you
must have already created a payload format binding within the <bi ndi ng>
component of the contract. See the chapter relating to the payload format

you are using for more details about setting up a binding for it in a WSDL
contract.

To add an HTTP port to your service contract, using the Artix Designer GUI,
complete the following steps:

1. From the project tree, select the contract to which you want to add the
HTTP port.

2. Select Services|New Service from the Contract menu of the designer.

Adding an HTTP Port

3. You will see a screen like Figure 19.

[] Binding Editor - Artix Designer

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.
O Add to existing WSDL "widgetOrderForm.wsdl
(@) Add to new WEDL widgets-corbal
P SelectWsDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract
’ Previous] ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 19: Select WSDL location

4. Select where to create the WSDL entry for the new binding.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a unique name for the new service.

237

CHAPTER 11 | Using the HTTP Plug-in

7. Click Next.
Enter a name for the new HTTP port that is being created.

9. From the Binding drop down list, select the binding that the port is
going to expose.

10. Click Next.

11. From the Transport Type drop down list, select http-conf. The screen
then appears as shown in Figure 20.

) New Service - Artix Designer

~Property Definitions in Part- "HTTP_Port"
“Transport

Transport Type [hitn-conf ~ |

“Attribute
Server
Aftribute Value Specified
Port d =
SendTimeout O
ReceiveTimeout O
SuppressClientSendErrars O
SuppressClientReceiveE... O -
Client
Aftribute Value Specified
URL] E

o, SendTimeout O
ReceiveTimeout O
Define Part sutoRedirect O
P Diefine Extensor Properties UszerMame | b
Fort Summary
Service Summary
[Previous] ’ Mesxt] | Finish | ’ Cancel] ’ Help

Figure 20: Selecting an HTTP Transport Type

Note: Except for the URL attribute in the Client configuration table, all
attributes on this screen are optional.

238

WSDL example

Adding an HTTP Port

12. To specify a value for a particular attribute, place a check in the
Specified box on the appropriate line, and type (or in the case of
certain true or false attributes select) the value you want.

Note: You must specify a value for the URL attribute. In this case,
the URL you specify has a htt p:// prefix. See “HTTP WSDL
Extensions” on page 245 for details of all attributes.

13. Click Next.
14. Review the settings for the new HTTP port.
15. If it is correct, click Next.

16. Review the settings for the new service in which the HTTP port is
described.

17. If it is correct, click Finish.

Figure 21 shows an example summary of HTTP configuration settings in the
GUL.

239

CHAPTER 11 | Using the HTTP Plug-in

I

New Service - Artix Designer

~Service Summary

MNewly Created Service Information
EaseSerice
HTTP_Part- BaseForiTypeBinding
hitp-conf.client -
Fassword=goofy
SendTimeout=3000
URL=http:fhwwee. iona.comisupportidocslindex xml
ReceiveTimeout=3000
UserMame=jzmith
hitp-conf.zerver -
HonorkeepAlive=true
SuppressClientReceiveErrars=false
SuppressClientSendErrars=false

SendTimeout=3000
ReceiveTimeout=3000
Define Service
Define Port
Define Extensar Properties
Fort Summary
P Service Summary
" Previous I | Mext | || Finish || ’ Cancel] ’ Help]

Figure 21: Example Set of HTTP Configuration Settings in GUI

240

Adding an HTTP Port

Example 104 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 21 on page 240. As shown in Example 104, client and server
HTTP configuration attributes are contained respectively within elements
called http-conf:client and http-conf: server.

Example 104:Extract of Example WSDL Contract

<wsdl : servi ce nane="BaseServi ce">
<wsdl : port bi ndi ng="ns1: BasePort TypeBi ndi ng" nanme="HITP_Port">
<http-conf:client Password="goofy" ReceiveTi neout ="3000" SendTi neout ="3000"
URL="ht t p: // waw. i ona. cond support/docs/index. xm " User Name="j smth"/>
<htt p- conf: server Honor KeepAl i ve="true" Recei veTi meout="3000"
SendTi nmeout =" 3000" Suppr essd i ent Recei veErrors="fal se"
Suppr essd i ent SendEr ror s="f al se"/>
</wsdl : port >
</ wsdl : servi ce>

241

CHAPTER 11 | Using the HTTP Plug-in

Adding an HTTP Port for Secure Connections

Overview

SSL-related attributes

This section describes how to use the Artix Designer GUI to add to a WSDL

contract an HTTP port that enables secure connections. It discusses the
following topics:

® “SSL-related attributes” on page 242.
® “GUI steps” on page 243.
® “WSDL example” on page 243.

Note: This section deals specifically with how to set up HTTP port
information within the <servi ce> component of a WSDL contract. To add
a port, you must have already created a payload format binding within the
<bi ndi ng> component of the contract. See the chapter relating to the
payload format you are using for more details about setting up a binding
for it in a WSDL contract.

The SSL-related attributes that can be configured to be included in the

<htt p- conf: client>and <htt p- conf: server > elements of an HTTP port
binding are as follows:

Client SSL Attributes Server SSL Attributes

UseSecur eSocket s UseSecur eSocket s

QientCertificate

ServerCertificate

QientCertificateChain

Server CertificateChain

dientPrivat eKey

Server Pri vat eKey

dientPrivat eKeyPassword

Ser ver Pri vat eKeyPasswor d

Trust edRoot Certificate

Trust edRoot Certificate

See Table 15 on page 248 for more details of the server attributes. See
Table 16 on page 255 for more details of the client attributes.

242

GUI steps

WSDL example

E_'- New Service - Artix Designer

Define Service

Define Port

Define Extensor Properties
P Port Summary

Service Summary

Adding an HTTP Port

All the GUI steps described in “GUI steps” on page 236 are relevant and
should be followed here, with the following stipulations:

® Specify https:// rather than http:// as the prefix for the value of the
URL attribute in the Client configuration table.

® Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See “SSL-related attributes” on page 242
for a listing of these attributes. See “HTTP WSDL Extensions” on
page 245 for more details about them.

Note: When you specify https:// as the prefix for the value of the URL
attribute in the Client configuration table, a secure HTTP connection is
automatically enabled, even if UseSecureSockets is not set to true.

Figure 22 shows an example summary of SSL-related HTTP configuration
settings in the GUI

FPart Summary

MNewly Created Port Information

hitp-conf.client -
ClientCerdificate=chaspenws09cerisikey.cert.pem
Password=goofy
ClientPrivatekey=ciaspenwilicentsiprivkey.pem
URL=https:itwive iona.comisupport’docsiindexxml
UseSecureSockets=true
ClientPrivatekeyPassword=mypasskey
UserMame=jsmith

ClientCedificate Chain=claspenwxS0Ncertsikey.cert.pem
TrustedRootCedificates=claspenwsldicaicacert.pem

hitp-confserver -
ServerCetificateChain=claspenxsicertsikey.certpem
ServerPrivatekey=claspenxbiNcertsiprivkey.pem
UseSecureSockets=true

ServerCetificate=c\aspenwsl8icensikey.cert.pem

Check here to create another Port [

" Frevious I" Text "’ Finish H Cancel ” Help]

Figure 22: Example Set of SSL-Related HTTP Configuration Settings

243

CHAPTER 11 | Using the HTTP Plug-in

Example 105 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 22 on page 243. As shown in Example 105, client and server
HTTP configuration attributes are contained respectively within elements
called http-conf:client and http-conf:server.

Example 105:Extract of Example WSDL Contract with SSL Attributes

<wsdl : servi ce name="BaseServi ce">
<wsdl : port bi ndi ng="ns1: BasePort TypeBi ndi ng" name="HITP_SSL_Port" >

<htt p-conf:client

<htt p- conf: server

</wsdl : port >
</wsdl : servi ce>

244

AientCertificate="c:\aspen\x509\certs\key.cert. pent
dientCertificateChai n="c:\aspen\x509\ cert s\ key. cert. pent
dient Privat eKey="c: \ aspen\ x509\ cert s\ pri vkey. pent

d i ent Pri vat eKeyPasswor d="nykeypass" Passwor d="goof y"
Trust edRoot Certi ficates="c:\ aspen\ x509\ ca\ cacert . pen{
URL="ht t ps: //ww. i ona. conl suppor t/ docs/ i ndex. xm "
UseSecur eSocket s="t r ue"

User Name="j smth"/>

ServerCertificate="c:\aspen\ x509\ cert s\ key. cert. pent
Server Certificat eChai n="c: \ aspen\ x509\ cert s\ key. cert. pent
Server Pri vat eKey="c: \ aspen\ x509\ cert s\ pri vkey. pent

Ser ver Pri vat eKeyPasswor d="nykeypass"

Trust edRoot Certi ficates="c:\ aspen\ x509\ ca\ cacert . pent
UseSecur eSocket s="true"/ >

HTTP WSDL Extensions

HTTP WSDL Extensions

Overview This section provides an overview and description of the attributes that you
can configure as extensions to a WSDL contract for the purposes of using
the HTTP transport plug-in with Artix.

In this section This section discusses the following topics:
HTTP WSDL Extensions Overview page 246
HTTP WSDL Extensions Details page 248

245

CHAPTER 11 | Using the HTTP Plug-in

HTTP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in
configuring the HTTP transport plug-in for use with Artix.

Configuration layout Example 106 shows (in bold) the WSDL extensions used to configure the
HTTP transport plug-in for use with Artix. (Ellipses (that is, ...) are used to
denotes sections of the WSDL that have been omitted for brevity.)

Example 106:HTTP configuration WSDL extensions

<definitions...

xm ns: htt p="http://schemas. i ona. com t ransports/http"

xm ns: htt p-conf="http://schenas. i ona. coni transports/ http/configu
ration"

<servi ce name="..">
<port bi ndi ng="..">

<http-conf:client SendTi neout=".."
Recei veTi neout =" ..!
Aut oRedi rect =" .."!
User Nanme=".."
Passwor d=""..!
Aut hori zati onType=".."
Aut hori zati on=".."
Accept =" .."
Accept Language=".."
Accept Encodi ng=".."
Cont ent Type=".."
Host =" .."
Connecti on=".."
CacheControl =" .."
Cooki e=".."
Br owser Type=".."
Referer=".."
ProxyServer =" .."
ProxyUser Nane="."
Pr oxyPasswor d=" ...
ProxyAut hori zat i onType=".."
ProxyAut hori zati on=".."
UseSecur eSocket s=".."

246

HTTP WSDL Extensions

Example 106:HTTP configuration WSDL extensions

<ht t p- conf : server

dientCertificate="."
dientCertificateChai n=".."
dientPrivateKey=".."

d i ent Pri vat eKeyPasswor d=".."
Trust edRoot Certificate="."/>

SendTi neout =" .."
Recei veTi meout =" .."
Suppr essd i ent SendEr r or s=".."

Suppr essd i ent Recei veErrors=".."

Honor KeepAl i ve=".."

Redi rect URL=".."

CacheControl =".."

Cont ent Locat i on="".."

Cont ent Type=".."

Cont ent Encodi ng="".."

Server Type=".."

UseSecur eSocket s=".."
ServerCertificate="."

Server Certifi cat eChai n=".."
Server Pri vat eKey=".."

Server Pri vat eKeyPasswor d=".."
Trust edRoot Certificate="..""/>

247

CHAPTER 11 | Using the HTTP Plug-in

HTTP WSDL Extensions Details

Overview

Server configuration attributes

This subsection describes each of the configuration attributes that can be
set up as part of the WSDL extensions for configuring the HTTP transport
plug-in for use with Artix. It discusses the following topics:

® “Server configuration attributes” on page 248.

® “Client configuration attributes” on page 255.

Table 15 describes the server-side configuration attributes for the HTTP
transport that are defined within the htt p- conf : server element.

Table 15: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

SendTi neout

This specifes the length of time, in milliseconds, that the server can
continue to try to send a response to the client before the connection is
timed out.

The timeout value is at the user’s discretion. The default is 3000.

Recei veTi meout

This specifies the length of time, in milliseconds, that the server can
continue to try to receive a request from the client before the connection
is timed out.

The timeout value is at the user’s discretion. The default is 3000.

Suppressd i ent SendErrors

This specifies whether exceptions are to be thrown when an error is
encountered on receiving a client request.

Valid values are true and f al se. The default is f al se, to throw
exceptions on encountering errors.

Suppr essd i ent Recei veErrors

This specifies whether exceptions are to be thrown when an error is
encountered on sending a response to a client.

Valid values are true and f al se. The default is f al se, to throw
exceptions on encountering errors.

248

HTTP WSDL Extensions

Table 15: HTTP Server Configuration Attributes

Configuration Attribute

Explanation

Honor KeepAl i ve

This specifies whether the server should honor client requests for a
connection to remain open after a server response has been sent to a
client. Servers can achieve higher concurrency per thread by honoring
requests to keep connections alive.

Valid values are true and fal se. The default is fal se, to close the
connection after a server response is sent.

If set to t rue, the request socket is kept open provided the client is using
at least version 1.1 of HTTP and has requested that the connection is
kept alive (via the client-side Connect i on configuration attribute).
Otherwise, the connection is closed.

If set to f al se, the socket is automatically closed after a server response
is sent, even if the client has requested the server to keep the connection
alive (via the client-side Connect i on configuration attribute).

Redi rect URL

This specifies the URL to which the client request should be redirected if
the URL specified in the client request is no longer appropriate for the
requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code is set to 302 and the status description
is set to (hbj ect Moved.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

249

CHAPTER 11 | Using the HTTP Plug-in

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation
CacheCont r ol This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a response from a server to a
client.

Valid values are:

® no-cache—This prevents a cache from using a particular response
to satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

® public—This indicates that a response can be cached by any
cache.

®* private—This indicates that a response is intended only for a
single user and cannot be cached by a public (shared) cache. If
specific response header fields are specified with this value, the
restriction applies only to those header fields within the response. If
no response header fields are specified, the restriction applies to
the entire response.

® no-store—This indicates that a cache must not store any part of a
response or any part of the request that evoked it.

® no-transform—This indicates that a cache must not modify the
media type or location of the content in a response between a
server and a client.

® nust-reval i dat e—This indicates that if a cache entry relates to a
server response that has exceeded its expiration time, the cache
must revalidate that cache entry with the server before it can be
used in a subsequent response.

® proxy-reval i dat e—This indicates the same as nust -reval i dat e,
except that it can only be enforced on shared caches and is ignored
by private unshared caches. If using this directive, the public
cache directive must also be used.

250

HTTP WSDL Extensions

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation

® nmax-age—This indicates that the client can accept a response
whose age is no greater than the specified time in seconds.

® s-maxage—This indicates the same as max- age, except that it can
only be enforced on shared caches and is ignored by private
unshared caches. The age specified by s- mraxage overrides the age
specified by max- age. If using this directive, the proxy-revali dat e
directive must also be used.

® cache- ext ensi on—This indicates additional extensions to the other
cache directives. Extensions might be informational (that is, do not
require a change in cache behavior) or behavioral (that is, act as
modifiers to the existing base of cache directives). An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Cont ent Locat i on This specifies the URL where the resource being sent in a server
response is located.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

251

CHAPTER 11 | Using the HTTP Plug-in

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation

Cont ent Type This specifies the media type of the information being sent in a server
response (for example, text/html, image/gif, and so on). This is also
known as the multipurpose internet mail extensions (MIME) type. MIME
types are regulated by the Internet Assigned Numbers Authority (IANA).
See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of t ext might be qualified as
follows: text/htm or text/xm . Similarly, a main type of image might
be qualified as follows: i mage/ gi f or i mage/ j peg.

The default type is t ext / xni . Other specifically supported types include:
appl i cation/jpeg, appl i cati on/ mswor d, appl i cati on/ xbi t map,

audi o/ au, audi o/ wav, text/htm , text/text,image/ gif, i mage/]peg,
vi deo/ avi , vi deo/ npeg. Any content that does not fit into any type in the
preceding list should be specified as appl i cati on/ oct et - st r eam

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Cont ent Encodi ng This can be used in conjunction with Cont ent Type. It specifies what
additional content codings have been applied to the information being
sent by the server, and what decoding mechanisms the client therefore
needs to retrieve the information.

The primary use of Cont ent Encodi ng is to allow a document to be
compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

Server Type This specifies what type of server is sending the response to the client.

Values in this case take the form pr ogr am nane/ ver si on. For example,
Apache/ 1. 2. 5.

If this is set, it is sent as a transport attribute in the header of a response
message from the server to the client.

252

HTTP WSDL Extensions

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation

UseSecur eSocket s This indicates whether the server wants a secure HTTP connection
running over SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS.

Valid values are true and f al se. The default is f al se, to indicate that
the server does not want to open a secure connection.

Note: Ifthehttp-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecur eSocket s is not set to true.

Server Certificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the server. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

A server must present such a certificate, so that the client can
authenticate the server.

Server CertificateChain This is only relevant if the HTTP connection is running securely over SSL
or TLS.

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use Server Certi fi cat eChai n to allow the certificate chain
of PEM-encoded X509 certificates to be presented to the client for
verification.

This specifies the full path to the file that contains all the certificates in
the chain. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

Server Pri vat eKey This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This is used in conjuction with Server Certifi cate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by Server Certificate. For example:

c:\ aspen\ x509\ cert s\ pri vkey. pem

This is required if, and only if, Server Certifi cate has been specified.

253

CHAPTER 11 | Using the HTTP Plug-in

Table 15: HTTP Server Configuration Attributes

Configuration Attribute Explanation

Server Pri vat eKeyPasswor d This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending
them over a public network, and the password is delivered by a secure
means.

Trust edRoot Certificate This is only relevant if the HTTP connection is running securely over SSL
or TLS.

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. For example:

c: \ aspen\ x509\ ca\ cacert. pem

This is used to validate the certificate presented by the client.

254

Client configuration attributes

HTTP WSDL Extensions

Table 16 describes the client-side configuration attributes for the HTTP
transport that are defined within the htt p-conf: cl i ent element.

Table 16: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

SendTi neout

This specifies the length of time, in milliseconds, that the client can
continue to try to send a request to the server before the connection is
timed out.

The timeout value is at the user’s discretion. The default is 3000 (that is,
30 seconds).

Recei veTi neout

This specifies the length of time, in milliseconds, that the client can
continue to try to receive a response from the server before the
connection is timed out.

The timeout value is at the user’s discretion. The default is 3000 (that is,
30 seconds).

Aut oRedi r ect

This specifies whether a client request should be automatically
redirected on behalf of the client when the server issues a redirection
reply via the Redi rect URL server-side configuration attribute.

Valid values are true and fal se. The default is fal se, to let the client
redirect the request itself.

User Nane

Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the user name that is to be used
for authentication.

Note: Artix does not perform any validation on user names specified. It
is the user’s responsibility to ensure that user names are correct in terms
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request

message from the client to the server.

255

CHAPTER 11 | Using the HTTP Plug-in

Table 16: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Passwor d

Some servers require that client users can be authenticated. In the case
of basic authentication, the server requires the client user to supply a
username and password. This specifies the password that is to be used
for authentication.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Aut hori zat i onType

Some servers require that client users can be authenticated. If basic
username and password-based authentication is not in use by the server,
this specifies the type of authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user’s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Aut hori zation

Some servers require that client users can be authenticated. If basic
username and password-based authentication is not in used by the
server, this specifies the actual data that the server should use to
authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user's
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used, this does not need to be set.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

256

HTTP WSDL Extensions

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Accept This specifies what media types the client is prepared to handle. These
are also known as multipurpose internet mail extensions (MIME) types.
MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). See ht t p: // waw. i ana. or g/ assi gnnent s/ medi a- t ypes/ for more
details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/htm or text/xm . Similarly, a main type of image might
be qualified as follows: i mage/ gi f or i mage/j peg.

An asterisk (that is, *) can be used as a wildcard to specify a group of
related types. For example, if you specify i mage/ *, this means that the
client can accept any image, regardless of whether it is a GIF or a JPEG,
and so on. A value of */* indicates that the client is prepared to handle
any type.

Examples of typical types that might be set are text/xm , text/htni,
text/text, image/ gif, i mage/j peg, appl i cation/j peg,

appl i cati on/ nswor d, appl i cati on/ xbi t map, audi o/ au, audi o/ wav,

vi deo/ avi , vi deo/ npeg. A full list of MIME types is available at
http://wwv i ana. or g/ assi gnrent s/ nedi a- t ypes/ .

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Accept Language This specifies what language (for example, American English) the client
prefers for the purposes of receiving a response. Language tags are
regulated by the International Organisation for Standards (ISO) and are
typically formed by combining a language code (determined by the
ISO-639 standard) and country code (determined by the ISO-3166
standard) separated by a hyphen. For example, en- US represents
American English. A full list of language codes is available at
http://ww w3. org/ WAl / ER/ | G ert/is0639. htm A full list of country
codes is available at http: //wwv i so. ch/i so/ en/ pr ods- ser vi ces/

i s03166ma/ 02i so- 3166- code- | i sts/list-enl.htm .

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

257

CHAPTER 11 | Using the HTTP Plug-in

Table 16: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Accept Encodi ng

This specifies what content codings the client is prepared to handle. The
primary use of content codings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Content codings
are regulated by the Internet Assigned Numbers Authority (IANA). See
ht t p: // waw. w8. or g/ Prot ocol s/ rf c2616/ r f c2616- sec3. ht mi for more
details of content codings.

Possible content coding values include zi p, gzi p, conpress, defl ate,
and i dentity. Artix performs no validation on content codings. It is the
user's responsibility to ensure that a specified content coding is
supported at application level.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cont ent Type

This is relevant if the client request specifies the POST method, to send
data to the server for processing. This specifies the media type of the
data being sent in the body of the client request.

For web services, this should be set to text/ xni . If the client is sending
HTML form data to a CGl script, this should be set to

appl i cat i on/ x- wawwf or m ur | encoded. If the HTTP PCST request is
bound to a fixed payload format (as opposed to SOAP), the content type
is typically set to appl i cati on/ oct et - stream

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Host

This specifies the internet host (and port number) of the resource on
which the client request is being invoked. This is sent by default based
upon the URL specified in the URL attribute. It indicates what host the
client prefers for clusters (that is, for virtual servers mapping to the same
internet protocol (IP) address).

Note: Certain DNS scenarios or application designs might request you
to set this, but it is not typically required.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

258

HTTP WSDL Extensions

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Connecti on This specifies whether a particular connection is to be kept open or
closed after each request/response dialog.

Valid values are cl ose and Keep- Al i ve. The default is cl ose, to close
the connection to the server after each request/response dialog.

If Keep- Al i ve is specified, and the server honors it, the connection is
reused for subsequent request/response dialogs.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

259

CHAPTER 11 | Using the HTTP Plug-in

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation
CacheCont r ol This specifies directives about the behavior that must be adhered to by
caches involved in the chain comprising a request from a client to a
server.

Valid values are:

® no-cache—This prevents a cache from using a particular response
to satisfy subsequent client requests without first revalidating that
response with the server. If specific response header fields are
specified with this value, the restriction applies only to those
header fields within the response. If no response header fields are
specified, the restriction applies to the entire response.

® no-store—This indicates that a cache must not store any part of a
response or any part of the request that evoked it.

® nmax- age—This indicates that the client can accept a response
whose age is no greater than the specified time in seconds.

® max-stal e—This indicates that the client can accept a response
that has exceeded its expiration time. If a value is assigned to
max- st al e, it represents the number of seconds beyond the
expiration time of a response up to which the client can still accept
that response. If no value is assigned, it means the client can
accept a stale response of any age.

® mn-fresh—This indicates that the client wants a response that
will be still be fresh for at least the specified number of seconds
indicated by the value set for min-fresh.

® no-transform—This indicates that a cache must not modify media
type or location of the content in a response between a server and a
client.

® only-if-cached—This indicates that a cache should return only
responses that are currently stored in the cache, and not responses
that need to be reloaded or revalidated.

260

HTTP WSDL Extensions

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation

® cache-ext ensi on—This indicates additional extensions to the other
cache directives. Extensions might be informational (that is, do not
require a change in cache behavior) or behavioral (that is, act as
modifiers to the existing base of cache directives). An extended
directive is specified in the context of a standard directive, so that
applications not understanding the extended directive can at least
adhere to the behavior mandated by the standard directive.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Cooki e This specifies the cookie to be sent to the server. Some session designs
that maintain state use cookies to identify sessions.

Note: If the cookie is static, you can supply it here. However, if the
cookie is dynamic, it must be set by the server when the server is first
accessed, and is then handled automatically by the application runtime.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Browser Type This specifies information about the browser from which the client
request originates. In the standard HTTP specification from the World
Wide Web consortium (W3C) this is also known as the user-agent.
Some servers optimize based upon the client that is sending the request.

Specifying the browser type is usually only necessary if sites have HTML
customized for use with Netscape as opposed to Internet Explorer, and
so on. However, you can also specify the browser type to facilitate
optimizing for different SOAP stacks.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

261

CHAPTER 11 | Using the HTTP Plug-in

Table 16: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

Ref erer

If a client request is as a result of the browser user clicking on a
hyperlink rather than typing a URL, this specifies the URL of the
resource that provided the hyperlink.

This is sent automatically if Aut oRedi rect is set to true. This can allow
the server to optimize processing based upon previous task flow, and to
generate lists of back-links to resources for the purposes of logging,
optimized caching, tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request
message from the client to the server.

Pr oxySer ver

This specifies the URL of the proxy server, if one exists along the
message path. A proxy can receive client requests, possibly modify the
request in some way, and then forward the request along the chain
possibly to the target server. A proxy can act as a special kind of security
firewall.

Note: Artix does not support the existence of more than one proxy
server along the message path.

Pr oxyUser Nane

This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. In the case of basic authentication, the proxy
server requires the client user to supply a username and password. This
specifies the user name that is to be used for authentication.

Note: Artix does not perform any validation on user names specified. It
is the user’s responsibility to ensure that user names are correct in terms
of spelling and case (if case-sensitivity applies at application level).

262

HTTP WSDL Extensions

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation

Pr oxyPasswor d This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. In the case of basic authentication, the proxy
server requires the client user to supply a username and password. This
specifies the password that is to be used for authentication.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

Pr oxyAut hor i zat i onType This is only relevant if a proxy server exists along the message path.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. If basic username and password-based
authentication is not in use by the proxy server, this specifies the type of
authentication that is in use.

This specifies the name of the authorization scheme in use. This name is
specified and handled at application level. Artix does not perform any
validation on this value. It is the user’s responsibility to ensure that the
correct scheme name is specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

ProxyAut hori zat i on This is only relevant if proxy servers are in use along the
request-response chain.

Some proxy servers require that client users can be authenticated
regardless of whether those users have already been authenticated by
any downstream login. If basic username and password-based
authentication is not in used by the proxy server, this specifies the actual
data that the proxy server should use to authenticate the client.

This specifies the authorization credentials used to perform the
authorization. These are encoded and handled at application-level. Artix
does not perform any validation on the specified value. It is the user's
responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

263

CHAPTER 11 | Using the HTTP Plug-in

Table 16: HTTP Client Configuration Attributes

Configuration Attribute Explanation

UseSecur eSocket s This indicates whether the client wants to open a secure connection
(that is, HTTP running over SSL or TLS). A secure HTTP connection is
commonly referred to as HTTPS.

Valid values are true and f al se. The default is f al se, to indicate that
the client does not want to open a secure connection.

Note: Ifthehttp-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecur eSocket s is not set to true.

QientCertificate This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This specifies the full path to the PEM-encoded X509 certificate issued
by the certificate authority for the client. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

Some servers might require the client to present a certificate, so that the
server can authenticate the client.

AientCertificateChain This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

PEM-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the server, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the
case, you can use dient Certifi cat eChai nto allow the certificate chain
of PEM-encoded X509 certificates to be presented to the server for
verification.

This specifies the full path to the file that contains all the certificates in
the chain. For example:

c:\aspen\ x509\ cert s\ key. cert. pem

dientPrivat ekey This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This is used in conjuction with Qi ent Certi fi cate. It specifies the full
path to the PEM-encoded private key that corresponds to the X509
certificate specified by d i ent Certifi cate. For example:

c:\ aspen\ x509\ cert s\ pri vkey. pem

This is required if, and only if, Qi ent Certi ficat e has been specified.

264

HTTP WSDL Extensions

Table 16: HTTP Client Configuration Attributes

Configuration Attribute

Explanation

dientPrivat eKeyPassword

This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This specifies a password that is used to decrypt the PEM-encoded
private key, if it has been encrypted with a password.

The certificate authority typically encrypts these keys when sending
them over a public network, and the password is delivered by a secure
means.

Note: Artix does not perform any validation on passwords specified. It
is the user’s responsibility to ensure that passwords are correct in terms
of spelling and case (if case-sensitivity applies at application level).

Trust edRoot Certificate

This is only relevant if the HTTP connection is to run securely over SSL
or TLS (that is, if UseSecur eSocket s is set to true).

This specifies the full path to the PEM-encoded X509 certificate for the
certificate authority. For example:

c:\ aspen\ x509\ ca\ cacert . pem

This is used to validate the certificate presented by the server.

265

CHAPTER 11 | Using the HTTP Plug-in

HTTP Transport Attributes

Overview One of the basic properties of HTTP is that client or server information, and
information about the possible content of a message, is made available
through a series of header fields on an HTTP message. This section outlines
both the client transport attributes and server transport attributes that can
be sent, using Artix, in an HTTP request or response message.

In this section This section discusses the following topics:
Transport Attributes Overview page 267
Server Transport Attributes page 268
Client Transport Attributes page 270

266

HTTP Transport Attributes

Transport Attributes Overview

Overview

What are transport attributes?

Programmatic use of transport
attributes

This subsection outlines the background to the HTTP transport attributes
that can be used with Artix.

A number of the configuration attributes described in “HTTP WSDL
Extensions” on page 245 can be subsequently transmitted, for information
purposes, as transport attributes in the header of HTTP request and
response messages. Client configuration attributes can be sent by the client
as server transport attributes in the header of a request message. Similarly,
server configuration attributes can be sent by the server as client transport
attributes in the header of a response message.

Note: Transport attributes can only be sent if they have been configured
as extensions to a WSDL contract, as described in “HTTP WSDL
Extensions” on page 245.

The application runtime can read transport attributes to facilitate it in the
processing of client requests and server responses. See the C++ Artix
Programmer’s Guide for more details of how applications can handle
transport attributes.

267

CHAPTER 11 | Using the HTTP Plug-in

Server Transport Attributes

Overview

Details

This subsection outlines the attributes that can be sent to a server for
information purposes in the header of a request message.

Table 17 describes the transport attributes that can be sent from a client to
a server in the header of a request message.

Table 17: HTTP Server Transport Attributes (Sheet 1 of 2)

Configuration Attribute

Explanation

User Nane This lets the server know the user name of the browser user for the
purposes of basic HTTP authentication by the server.
Passwor d This lets the server know the password of the browser user for the

purposes of basic HTTP authentication by the server.

Aut hori zat i onType

This lets the server know what type of authentication the client expects
the server to use, if username and password-based basic authentication
is not being used.

Aut hori zation

This lets the server know the actual authentication data (authorization
token) being sent by the client, if username and password-based basic
authentication is not being used.

Accept This lets the server know what multimedia (MIME) types (for example,
text/html, image/gif, image/jpeg, and so on) the client can accept.
Accept Language This lets the server know what language(s) (for example, English,

French, German, and so on) the client prefers for the purposes of
receiving a request.

Accept Encodi ng

This lets the server know what content codings (for example, gzip) the
client can accept.

Cont ent Type

If a client request is using the POST method, to send data to the server for
processing, this lets the server know the MIME type of the data being
sent.

Note: This should be text/xm for web services. If the client is sending
form data, this can be set to appl i cat i on/ x- ww- f or m ur | encoded.

268

HTTP Transport Attributes

Table 17: HTTP Server Transport Attributes (Sheet 2 of 2)

Configuration Attribute Explanation

Host This lets the server know what host the client prefers for clusters (that is,
for virtual servers mapping to the same IP).

Connecti on This lets the server know whether the client wants a particular
connection to be kept open or not after each request/response dialog.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.

CacheCont rol This lets the server know what behavior the client expects caches
involved in the request chain to adhere to. See “CacheControl” on
page 260 for more details of possible settings for this field.

Cooki e This lets the server know what cookie is being sent to the server.

Note: This relates to static cookies. Dynamic cookies are set by the
server when the server is first accessed, and are then handled
automatically by the application runtime.

Br owser Type This lets the server know details about the browser from which the client
request originates.

Ref er er If the client request has resulted from the browser user clicking on a
hyperlink rather than entering a URL from the keyboard, this lets the
server know the URL that contains the hyperlink. This in turn lets the
server generate lists of back-links to resources for the purposes of
logging, optimized caching, tracing of obsolete or mistyped links, and so
on.

Note: This is sent automatically if the client request is configured (via
the Aut oRedi rect attribute) to be automatically redirected when the
server issues a redirection reply via the Redi rect URL server-side
attribute. This can allow the server to optimize processing based upon
previous task flow. However, it is typically not used in web services
applications.

QientCertificate If the HTTP connection is running securely over SSL or TLS, this lets the
server know the PEM-encoded X509 certificate issued by the certificate
authority for the client. Some servers can require the client to present a
certificate, so that the server can authenticate the client.

269

CHAPTER 11 | Using the HTTP Plug-in

Client Transport Attributes

Overview This subsection outlines the attributes that can be sent to a client for
information purposes in the header of a response message.

Details Table 17 describes the transport attributes that can be sent from a server to
a client in the header of a response message.

Table 18: HTTP Client Transport Attributes

Configuration Attribute Explanation

Redi rect URL This lets the client know the URL to which the client request was
redirected if the URL specified in the client request was no longer
appropriate for the requested resource.

In this case, if a status code is not automatically set in the first line of the
server response, the status code in the first line of the response is set to
302 and the status description is set to hj ect Moved.

CacheCont r ol This lets the client know what behavior the server expects caches
involved in the response chain to adhere to. See “CacheControl” on
page 250 for more details of possible settings for this field.

Cont ent Locat i on This lets the client know the URL from which the requested resource is
coming.

Cont ent Type This lets the client know the MIME type (that is, text/ntml, image/gif,
image/jpeg, and so on) of the information that is being sent by the
server.

Cont ent Encodi ng This lets the client know how the information being sent by the server is

encoded. This in turn lets the client know what decoding mechanisms it
needs to retrieve the information.

Server Type This lets the client know what type of server is sending the information.

270

In this chapter

CHAPTER 12

Using the
WebSphere MQ
Plug-in

The Artix WebSphere MQ plug-in and the associated WSDL
binding extensions provides the ability to integrate with
WebSphere MQ applications or provide WebSphere MQ
qualities of service to non-WebSphere MQ applications.

This chapter discusses the following topics:

Introduction page 272

Describing an Artix WebSphere MQ Port page 273

271

CHAPTER 12 | Using the WebSphere MQ Plug-in

Introduction

Overview

Integration with synchronous
messaging models

Supported Features

272

Artix provides connectivity to IBM’s WebSphere MQ messaging system. This
connectivity opens several opportunities for using Artix. The most obvious
use is to integrate non-WebSphere MQ applications with WebSphere MQ
applications. Another powerful use of Artix's WebSphere MQ connectivity is
writing Artix code that leverages WebSphere MQ qualities of service to
provide enterprise class solutions.

Because Artix abstracts the details of the messaging infrastructure from the
application level code, Artix allows for a seamless integration between
WebSphere MQ, which uses an asynchronous messaging model, and
applications that use a synchronous messaging model. Asynchronous
WebSphere MQ applications will still send messages without blocking and
poll the reply queue for a response if one is expected. Synchronous
applications, such as CORBA applications, will continue to block between
making a request and receiving a response. Neither end needs to be aware
of how the other end handles messages.

Table 19 shows the matrix of WebSphere MQ features Artix supports.

Table 19: Supported WebSphere MQ Features

Feature Supported Not
Supported

Dynamic Queue Creation X

SSL X

Queue Manager Clustering X
LDAP X
Channel Process Pooling X
Wildcards for Security Settings X

Describing an Artix WebSphere MQ Port

Describing an Artix WebSphere MQ Port

Overview

WebSphere MQ port elements

In this section

To enable Artix to interoperate with WebSphere MQ, you must describe the
WebSphere MQ port in the Artix contract defining the behavior of your Artix
instance. Artix uses a number of proprietary WSDL extensions to specify all
of the attributes that can be set on an WebSphere MQ port. The
XMLSchema describing the extensions used for the WebSphere MQ port
definition is included in the Artix installation under the schenas directory.

The Artix Designer walks you through adding an WebSphere MQ port to an
Artix contract and ensures that you include all of the required information. If
you are comfortable editing Artix contracts, you can also describe the port
manually using any standard text editor.

When describing an WebSphere MQ port in your Artix contract you use two
child elements to the port:

<mgq:client> describes the port Artix client applications use to connect to a
WebSphere MQ server application.

<mq:server> describes the port WebSphere MQ client applications use to
connect to Artix.

You must use at least one of these elements in your Artix WebSphere MQ
port description.

This section discusses the following topics:

Configuring an Artix WebSphere MQ Port page 274

Adding an WebSphere MQ Port to an Artix Contract page 283

273

CHAPTER 12 | Using the WebSphere MQ Plug-in

Configuring an Artix WebSphere MQ Port

Overview The Artix WebSphere MQ port description is specified by the namespace
http:\\schemas. i ona. com transpor t s\ ng. It defines a number of attributes
to configure an WebSphere MQ port. Table 20 lists the defined attributes.
They are described in detail following the table.

Table 20: WebSphere MQ Port Attributes
Attributes Description
QueueManager Nane Specifies the name of the queue manager.
QueueNare Specifies the name of the message queue.

Repl yQueueNane

Specifies the name of the queue where response messages are received.

Repl yQueueManager

Specifies the name of the reply queue manager.

Mbdel QueueNane

Specifies the name of the queue to be used as a model for creating dynamic
queues.

Connect i onNane

Specifies the name of the connection by which the adapter connects to the
queue.

Connect i onReusabl e

Specifies if the connection can be used by more than one application.

Connect i onFast Pat h

Specifies if the queue manager will be loaded in process.

UsageStyl e

Specifies if messages can be queued without expecting a response.

Correl ationStyl e

Specifies the type of identifier to be used to correlate request and response
messages with each other.

AccessMde

Specifies the level of access applications have to the queue.

Ti nmeout

Specifies the amount of time within which the send and receive processing
must begin before an error is generated.

MessageExpi ry

Specifies how long messages are retained in the queue.

MessagePriority

Specifies the priority with which messages will be processed.

Del i ver yMode

Specifies the delivery mode of the messages sent to the queue.

274

Describing an Artix WebSphere MQ Port

Table 20: WebSphere MQ Port Attributes

Attributes

Description

Transact i onal

Specifies if transaction operations must be performed on the messages sent
to the queue.

Repor t Opt i on Specifies how the queue reports message activity.
For mat Type Specifies what type of data is contained in the message body.
Messagel d Specifies a unique ID to assist in correlating messages with their responses.

Correl ationld

Specifies a unique ID to assist in correlating messages with their responses.

Appl i cati onDat a

Specifies optional information to be associated with the message.

Account i ngToken

Specifies user-supplied information for accounting purposes.

Convert Specifies in the messages in the queue need to be converted to the system'’s
native encoding.

QueueManagerName QueueManager Nare specifies the name of the WebSphere MQ queue
manager that controls the message queue the port uses. Defaults to the
local queue manager name.

QueueName QueueNane is a required attribute for an WebSphere MQ port. It specifies the

ReplyQueueName

ReplyQueueManager

ModelQueueName

message queue the port uses.

Repl yQueueNane specifies the name of the reply message queue used by the
port.

Repl yQueueManager specifies the name of the WebSphere MQ queue
manager that controls the reply message queue. Defaults to the local queue
manager name.

Model QueueNane is only needed if you are using dynamically created queues.
It specifies the name of the queue from which the dynamically created
queues are created.

275

CHAPTER 12 | Using the WebSphere MQ Plug-in

ConnectionName

ConnectionReusable

ConnectionFastPath

UsageStyle

CorrelationStyle

276

Connect i onNarre is a required attribute for an Artix WebSphere MQ port. It
specifies the name of the connection Artix uses to connect to its queue.

Connect i onReusabl e specifies if the connection named in the
Connect i onNane field can be used by more than one application. Valid
entries are yes and no. Defaults to no.

Connect i onFast Pat h specifies if you want to load the queue manager in
process. Valid entries are yes and no. Defaults to no.

UsageSt yl e specifies if a message can be queued without expecting a
response. Valid entries are peer, requester, and responder as described in
Table 21.

Table 21: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response.

r equest er Specifies that the message sender expects a
response message.

r esponder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

Correl ati onStyl e determines how WebSphere MQ matches both the
message identifier and the correlation identifier to select a particular
message to be retrieved from the queue (this is accomplished by setting the
corresponding MQMD MATCH MSG | D and MMD MATCH CCRREL_|I Din the

Mat chQpt i ons field in My@AVDto indicate that those fields should be used as
selection criteria).

The valid correlation styles for an Artix WebSphere MQ port are nessagel d,
correl ationl d, and nessagel d copy.

Describing an Artix WebSphere MQ Port

Table 22 shows the actions of MQGET and MQPUT when receiving a message
using specified message ID and correlation ID.

Table 22: MQGET and MQPUT Actions

Artix Port Setting

Action for MQGET Action for MQPUT

nessagel d

Set correlation ID on message descriptor Copy message ID onto message
to message ID descriptor’'s Correl ation_I D

correlationld

Set correlation ID on message descriptor Copy CorrelationID onto message
to Correl ationl D descriptor’s CorrelationID

nessagel d copy

Set message ID on message descriptor to Copy MessagelD onto message
messagel D descriptor's MessagelD

AccessMode

AccessMode is a required attribute for an Artix WebSphere MQ port. It
controls the action of MCPEN in the Artix WebSphere MQ transport. Its
values can be peek, send, reci ve, recei ve excl usi ve, and r ecei ve
shar ed, as explained in Table 23.

Table 23: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQDO BRONBE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQDO _QUTPUT. send opens a queue
so that it is open to receive messages.

recei ve Equivalent to MQDO | NPUT_AS Q DEF. r ecei ve
opens a queue to get messages using a
queue-defined default. The default value depends
on the Def I nput QpenQpt i on queue attribute
(MQOO_| NPUT_EXQLUSI VE or MO0 | NPUT_SHARED).

277

CHAPTER 12 | Using the WebSphere MQ Plug-in

Timeout

MessageExpiry

278

Table 23: Artix WebSphere MQ Access Modes

Attribute Setting Description

reci eve exclusive | Equivalent to MQOO | NPUT_EXCLUSI VE. recei ve
excl usi ve opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC COBJECT | N_USE if the queue is
currently open (by this or another application) for
input of any type.

recei ve shared Equivalent to MQOO | NPUT_SHARED. r ecei ve

shar ed opens queue to get messages with shared
access. The queue is opened for use with
subsequent MYGET calls. The call can succeed if
the queue is currently open by this or another
application with MQOO | NPUT_SHARED.

Ti meout specifies the amount of time, in milliseconds, that a message can
sit on the queue before an error message is generated. If the reply to a
particular request has not arrived after the specified period, it is treated as
an error.

MessageExpi ry specifies message lifetime, expressed in tenths of a second.
It is set by the Artix endpoint that puts the message onto the queue. The
message becomes eligible to be discarded if it has not been removed from
the destination queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the
put is to a remote queue. It may also be decremented by message channel
agents to reflect transmission times, if these are significant.

MessageExpi ry can also be set to | NFI N TE which indicates that the
messages have unlimited lifetime and will never be eligible for deletion. If
MessageExpi ry is not specified, it defaults to | NFI NI TE lifetime.

MessagePriority

DeliveryMode

Transactional

ReportOption

Describing an Artix WebSphere MQ Port

MessagePri ori ty defines the message priority. Its value must be greater
than or equal to zero; zero is the lowest priority. If not specified, this field
defaults to priority normal , which is 5. The special values for
MessagePri ori ty include hi ghest (9), hi gh (7), nedi um(5), | ow(3) and
I ovest (0).

Del i ver yMode can be persi stent or not persi stent. persistent means
that the message survives both system failures and restarts of the queue
manager. Internally, this sets MQVD Persistence of the Artix WebSphere MQ
port to MPER_PERSI STENT or MPER_NOT_PERSI STENT. To support
transactional messaging, you must make the messages per si stent .

Transact i onal controls the ability for a message to participate in a
transaction. Valid values are yes and no. For a yes value, messages operate
within the normal unit-of-work protocols; a message is not visible outside
the unit of work until the unit of work is committed. If the unit of work is
rolled back, the message is deleted from the queue. For a no value,
messages operate outside the normal unit-of-work protocols; a message is
available immediately and it cannot be deleted by rolling back a unit of
work.

The default value is no.

Repor t Opt i on enables the application sending the original message to
specify which report messages are required, whether the application
message data is to be included in them, and how the message and
correlation identifiers in the report or reply message are to be set. The values
of this attribute are explained in Table 21.

Table 24: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO NCNE. none specifies that no
reports are required. This value can be used to
indicate that no other options have been specified.

279

CHAPTER 12 | Using the WebSphere MQ Plug-in

FormatType

280

Table 24: ReportOption Attribute Settings

Attribute Setting

Description

Ccoa

Corresponds to MQRO_OQA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod

Corresponds to MQRO QCD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.

exception

Corresponds to MQRO_EXCEPTI ON. except i on
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
queue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration

Corresponds to MQRO_EXPI RATI ON. expi rat i on
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.

di scard

Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

For mat Type specifies an optional format name to indicate to the receiver the
nature of the data in the message. The name may contain any character in
the queue manager's character set, but it is recommended that the name be
restricted to the following:

Describing an Artix WebSphere MQ Port

® Uppercase A through Z
® Numeric digits O through 9

The special values for For mat can be none, string, event, progr amnabl e
command, and uni code , as described in Table 25.

Table 25: FormatType Attribute Settings

Attribute Setting Description
none (Default) Corresponds to MFMI_NCNE. No format name
is specified.
string Corresponds to MFMI_STRI NG. st ri ng

specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

uni code Corresponds to MFMI_STRI NG. uni code
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)

event Corresponds to MFMI_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.

progr ammabl e command | Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

281

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 12 | Using the WebSphere MQ Plug-in

Messageld

Correlationld

ApplicationData

AccountingToken

Convert

282

Messagel d is an alphanumeric string of up to 20 bytes in length. This string
will be used to correlate request and response messages with each other. A
value must be specified in this attribute if Correl ati onStyl e is set to none.

Correl ationld is an alphanumeric string of up to 20 bytes in length. This
string will be used to correlate request and response messages with each
other. A value must be specified in this attribute if Correl ati onStyl e is set
to none.

Appl i cat i onDat a specifies any application specific information that needs
to be set in the message header.

Account i ngToken specifies application specific information used for
accounting purposes.

Convert specifies if messages are to be converted to the receiving systems
native data format. Valid values are yes and no. Default is no.

Describing an Artix WebSphere MQ Port

Adding an WebSphere MQ Port to an Artix Contract

Overview

Procedure

The description for an Artix WebSphere MQ port is entered in a <port >
element of the Artix contract containing the interface to be exposed over
WebSphere MQ. Artix defines two elements to describe WebSphere MQ
ports and their attributes:

<maq:client> describes the port Artix client applications use to connect to
an WebSphere MQ server application.

<mq:server> describes the port WebSphere MQ client applications use to
connect to Artix.

You can use one or both of the WebSphere MQ elements to describe the
Artix WebSphere MQ port. Each can have different configurations depending
on the attributes you choose to set.

Artix Designer walks you through the process of adding an WebSphere MQ
port to an Artix contract.

To add an WebSphere MQ port to an Artix contract complete the following
steps:

1. Select the node for the service to which you want to add the
WebSphere MQ port from the project tree.

2. Select Contracts | New | Service from the Designer menu.

283

CHAPTER 12 | Using the WebSphere MQ Plug-in

284

[] Binding Editor - Artix Designer

P SelectWSDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract

3. You will see a screen like Figure 23.

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.

O Add to existing WSDL "widgetOrderForm.wsdl

(@) Add to new WEDL widgets-corbal

T W B N

Figure 23: Select WSDL location

4. Select where to create the WSDL entry for the new service.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter the name for the new service.

Describing an Artix WebSphere MQ Port

7. Click Next.

8. Enter a name for the new port.

9. Select the desired binding from the Available Bindings pull-down list.
10. Click Next.

11. Select mq from the Transport Type pull-down list.

12. You will see a screen like Figure 24.

P Define Extensar Froperties ModelQueusMame

~Property Cefinitions in Port - "MQathon®
“Transport

Transport Type

“Attribute:
Senver

Aftribute Walug Specified \
QueueManager]

QueueMame Lensman
Reply

ReplyQueueMName
ModelQueueMame

OO0O®E I

Client

Aftribute Walug S
QueueiManager
QueushMame Gammera
Replya
ReplyQueueMName

=1
I
El

=

Define Service
Define Port

OO0 ®E O

Port Summary
Service Summary

I Previous I[Mext]l Einish |[Cancel][Help

Figure 24: WebSphere MQ Port Properties

13.

14.

15.
16.

Enter values for the desired attributes.

You must supply values for the QueueNarme and AccessMde of the port
at a minimum.

Ensure that the attributes you want set have a check mark in the
Specified column.

Click Next.
Click Finish.

285

CHAPTER 12 | Using the WebSphere MQ Plug-in

Example An Artix contract exposing an interface, monst er Bash, bound to a SOAP
payload format, Raydon, on an WebSphere MQ queue, U t r avan would
contain a service element similar to Example 107.

Example 107:Sample WebSphere MQ Port

<servi ce nane="Mt hra">
<port name="X' bi ndi ng="t ns: Raydon" >
<ng: server QueueManager =" UVA'
QueueNane="U t r avan"
Repl yQueueManager =" W NR'
Repl yQueueNane="H ek"
Accesshde="r ecei ve"
Correl ationStyl e="nessagel d copy"/>
</ port >
</ servi ce>

286

CHAPTER 13

Using the Tuxedo
Plug-in

Artix easily integrates BEA Tuxedo applications with CORBA
and Web service applications.

In this chapter This chapter discusses the following topics:
Introduction page 288
Using FML Buffers page 289
Using the Tuxedo Transport page 294
Embedding Artix in the Tuxedo Container page 298

287

CHAPTER 13 | Using the Tuxedo Plug-in

Introduction

Overview

FML support

288

Artix provides integration with Tuxedo applications by supporting use of the
Tuxedo ATMI transport. Artix also supports Field Manipulation Language
(FML) buffers, in Tuxedo Version 7.1 or higher.

Artix supports the following FML features:

Table 26: Artix FML Feature Support

Feature Supported Not
Supported
16-bit FML Buffers X
32-bit FML Buffers X
VIEWS X
Buffer Pointers X
Embedded 32-bit FML Buffers X
Embedded 32-bit Views X
Character Arrays X
Multi-Byte Character Arrays X
Packed Decimals X
Multiple Occurrence Fields X

Using FML Buffers

Using FML Buffers

Overview

In this section

Field Manipulation Language (FML) buffers allow Tuxedo applications to
manipulate data stored outside of their application space with ease. FML
buffers are described using field table files that may be compiled into C
header files.

Artix enables non-Tuxedo applications to interact with Tuxedo applications
that use FML buffers by translating the data stored in the buffers into data
that the non-Tuxedo application can understand. Artix allows the
non-Tuxedo application to manipulate the data in the buffer in the same
manner as a Tuxedo application.

This section discusses the following topics:

Mapping FML Buffer Descriptions to Artix Contracts page 290

289

CHAPTER 13 | Using the Tuxedo Plug-in

Mapping FML Buffer Descriptions to Artix Contracts

Overview

Mapping to logical type
descriptions

personal Info Field Table

nane nunber type
name 100 string
age 102 short
hai r Gol or 103 string

290

FML buffers used by Tuxedo applications are described in one of two ways:
® Afield table file that is loaded at run time.

® A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the
contents of a buffer. It clearly describes each field’s name, id number, data
type, and a comment. Using the FML library calls, Tuxedo applications map
the field table description to usable f1 di ds at run time.

The C header file description of an FML buffer simply maps field names to
their f1 di d. The f1did is an integer value that represents both the type of
data stored in a field and a unique identifying number for that field. To
create an FML header file from a field table file, you use the Tuxedo

mkf I dhdr and nkf | dhdr 32 utility programs.

Because FML does not provide a means for determining if a field has
multiple entries without scanning the buffer, FML buffers must be described
as a sequence of sequences. Each field of a buffer is described as an
unbounded sequence of the type specified in the field description table. The
field elements are ordered in increasing order by their f1di d.

For example, the per sonal | nf o structure, defined in Example 2 on page 11,
could be described by the field table file shown in Example 108.

Example 108:personalinfo Field Table File

comrent

Person’ s name
Person’ s age
Person’s hair col or

fl ags

Using FML Buffers

The C++ header file generated by the Tuxedo nkf | dhdr tool to represent
the per sonl I nf o FML buffer is shown in Example 109. Even if you are not
planning to access the FML buffer using the compile time method, you will
need to generate the header file when using Artix because this will give you
the f1di d values for the fields in the buffer.

Example 109:personallnfo C++ header

/* f name fldid */
[* ee--e e */
#def i ne nane ((FLD D) 41060) /* nunber: 100 type: string */
#def i ne age ((FLD D) 102) /* nunber: 102 type: short */

#def i ne hai r Col or ((FLD D) 41063) /* nunber: 103 type: string */

<t ypes>

The order of the elements in the sequence used to logically describe the
FML buffer are ordered in increasing order by 1 di d value. For the

per sonal I nf o FML buffer age must be listed first in the Artix contract
despite the fact that it is the second element listed in the field table. The
corresponding logical description of the FML buffer data in an Artix contract
is shown in Example 110.

Example 110:Logical description of personallnfo FML buffer

<schema t ar get Namespace="ht t p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. w3. or g/ 2001/ XM_Schena"
xm ns: wsdl =" ht t p: // schenmas. xm soap. or g/ wsdl /" >
<conpl exType nane="per sonal | nf oFM_16" >

<sequence>

<el enent nane="age" type="xsd: short" m nCccurs="0" maxCccurs="unbounded"/>
<el enent nane="nane" type="xsd:string" m nGccurs="0" maxCccur s="unbounded"/ >
<el ement name="hai r Col or" type="xsd: string" m nCccurs="0" maxCccurs="unbounded"/>

</ sequence>
</ conpl exType>
</ schenma>
</ types>

Mapping to the physical FML
binding

Artix defines an FML namespace to describe the physical binding of a
message to an FML buffer. To include the FML namespace to your Artix
contract include the following in the <def i ni ti on> element at the beginning
of the contract.

xmns: fm ="http://ww. iona.con bus/fm"

291

CHAPTER 13 | Using the Tuxedo Plug-in

Example

292

The FML namespace defines a number of elements to extend the Artix
contract’s <bi ndi ng> element. These include:

<fml:binding>
The <f i : bi ndi ng> element identifies that this binding definition is for an

FML buffer. It also specifies the encoding style and transport used with this
message.

The encoding style is specified using the mandatory styl e attribute. The
valid encoding styles are doc and rpc.

The transport is specified using the mandatory transport attribute. This
attribute can take the URI for any of the valid Artix transport definitions.

<fml:idNameMapping>

The <f m : i dNameMappi ng> element contains the map describing how the
element names defined in the logical portion of the contract to the f1di d
values for the corresponding fields in the FML buffer. This map consists of a
series of <f m : el enent > elements whose fi el dNarre attribute is the name of
the logical type describing the element and whose fi el di d attribute is the
f1di d value for the field in the FML buffer. The field elements must be listed
in increasing order of their f1di d values.

The <f mi : i dNareMappi ng> element also specifies if the application is to use
FML16 buffers or FML32 buffers. This is done using the mandatory t ype
attribute. t ype can be either f m 16 for specifying FML16 buffers or f m 32 for
specifying FML32 buffers.

<fml:operation>

The <f i : oper ati on> element is a child of the standard <oper at i on>
element. It informs Artix that the operation’s messages are to be packed into
an FML buffer. <f ni : oper at i on> takes a single attribute, name, whose value
must be identical to the nare attribute of the <oper at i on> element.

For example, the binding for the personallnfo FML buffer, defined in
Example 108 on page 290, will be similar to the binding shown in
Example 111.

Using FML Buffers

Example 111:personalinfo FML binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons nane="per sonal | nf oServi ce" target Nanespace="http://info.org/"
xm ns="ht tp: // schenas. xm soap. or g/ wsdl / "
xm ns: tns="htt p://soapi nt erop. org/ "
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM-Schera"
xm ns: xsd1="ht t p: / / soapi nt er op. or g/ xsd"
xmns: fm ="http://ww i ona. cond bus/ fm ">

<nessage name="r equest | nf 0" >

<part name="request" type="xsdl: personal | nf oFM.16"/ >
</ message>
<nessage name="i nf oRepl y" >

<part name="reply" type="xsdl: personal | nf oFM.16"/ >
</ message>

<port Type nane="per sonal | nf oPort">
<oper ati on name="i nf oRequest ">
<i nput nessage="tns:request | nfo" nanme="request|nfo" />
<out put message="tns: i nfoRepl y" name="i nf oRepl y" />
</ oper at i on>
</ por t Type>

<bi ndi ng nane="per sonal | nf oBi ndi ng" type="tns: personal | nf oPort ">
<fm :binding style="rpc" transport="http://schenas.iona.conitransports/tuxedo"/>
<fm : i dNaneMappi ng type="fni 16" >
<fm:element field\Nane="age" fiel dl d="102" />
<fm:element field\ame="nanme" fi el dl d="41060" />
<fm:element fieldName="hairColor" fieldld="41063" />
</fn :i dNaneMappi ng>

<oper ati on name="i nf oRequest ">
<fm : operati on nanme="i nf oRequest"/ >
<i nput nanme="request | nfo" />
<out put nane="i nf oRepl y" />
</ oper at i on>
</ bi ndi ng>

</ definitions>

293

CHAPTER 13 | Using the Tuxedo Plug-in

Using the Tuxedo Transport

Overview

Describing a Tuxedo port

Using Artix Designer to add a
Tuxedo port to an Artix contract

294

Artix allows services to connect using Tuxedo’s transport mechanism. This
provides them with all of the qualities of service associated with Tuxedo.

To use the Tuxedo transport, you need to describe the port using Tuxedo in
the physical part of an Artix contract. The extensions used to describe a
Tuxedo port are defined in the namespace:

xm ns: t uxedo="htt p: // schemas. i ona. con t r ansport s/ t uxedo"

This namespace will need to be included in your Artix contract's
<defini ti on>element.

As with other transports, the Tuxedo transport description is contained
within a <port > element. Artix uses <t uxedo: ser ver > to describe the

attributes of a Tuxedo port. <t uxedo: ser ver > takes a single mandatory
attribute, servi ceNarre, which specifies the bulletin board name of the
Tuxedo port being exposed.

To add a Tuxedo port to an Artix contract using Artix Designer complete the
following steps:

1. Select the contract you to which you are going to add the Tuxedo port.

Note: The contract must have an existing SOAP binding before Artix
Designer will allow you to add a Tuxedo port to the contract.

2. Select Services|New Service... from the Contract menu.

Using the Tuxedo Transport

3. You will see a screen like Figure 25.

[] Binding Editor - Artix Designer

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.
O Add to existing WSDL "widgetOrderForm.wsdl
(@) Add to new WEDL widgets-corbal
P SelectWsDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract
’ Previous] ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 25: Select WSDL Location

4. Select where to create the WSDL entry for the new service.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.
6. Enter a new for the new service and click Next.

295

CHAPTER 13 | Using the Tuxedo Plug-in

Example

296

10.
11.

Enter a name for the Tuxedo port.

From the Binding drop-down list select the SOAP binding which this
port will expose to the network.

Click Next.
Select tuxedo from the Transport drop-down list.

The Attributes table will look similar to the one shown in Figure 26.

) New Service - Artix Designer

~Property Cefinitions in Port- "PersinTuxzPort*
0 R =1 R,
Transport Type E
“Attribute
Address
Aftribute | WValue | Specified
ServiceMame [| =]
Define Service
Define Port
= Define Extensar Properties
Port Summary
Senice Summary
H Previous I [Mext] | FEinish | [Cancel] [Help

Figure 26: Edit Tuxedo Port Properties

12. Enter a valid Tuxedo service name in the ServiceName Value field.

13. Click Next to review the settings for the new service and Tuxedo port.

14. Click Finish to create the new service and Tuxedo port.

Artix Designer will create a new contract containing the new service and
place it in the project tree.

An Artix contract exposing the per sonal | nf oSer vi ce, defined in
Example 111 on page 293, would contain a <ser vi ce> element similar to
Example 112 on page 297.

Using the Tuxedo Transport

Example 112:Tuxedo port description

<servi ce name="per sonal | nf oServi ce">
<port bi ndi ng="t ns: per sonal | nf oBi ndi ng" nane="t uxl nf oPort">
<t uxedo: server servi ceNane="personal | nf oService" />
</ port>
</ servi ce>

297

CHAPTER 13 | Using the Tuxedo Plug-in

Embedding Artix in the Tuxedo Container

Overview In order to have Artix interact properly with native Tuxedo applications, you
need to embed Artix into the Tuxedo container. At a minimum this involves
adding information about Artix to your Tuxedo configuration file and
registering your Artix processes with the Tuxedo bulletin board. You can also
have Tuxedo bring up your Artix process as a Tuxedo server when running

t nboot .

Procedure To embed an Artix process into a Tuxedo container complete the following
steps:

1. Ensure that your environment is properly configured for Tuxedo.

2. Add the Tuxedo plug-in, t uxedo, to your Artix process’s or b_pl ugi ns
list. See “ORB Plug-ins List” on page 36.
orb_plugins=["iiop_profile", "giop", "iiop", "tuxedo"];

3. Set pl ugi ns: t uxedo: server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed into the
directory specified in the APPDI R entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration’s SERVERS section to include an entry for
your Artix process.

For example, if the executable of your Artix process is boi ngo, you
make the following entry in the SERVERS section:

boi ngo SVRGRP=A N&O SVR D=1

This associates boi ngo with the Tuxedo group called a N&in your
configuration and assigns boingo a server ID of 1. You can modify the
server's properties as needed.

6. Edit your Tuxedo configuration’s SERVI CES section to include an entry

298

for your Artix process.

While standard Tuxedo servers only require a SERVI CES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry even if no optional runtime properties are

Embedding Artix in the Tuxedo Container

being set. The name entered for the Artix process is the name specified
in the servi ceNane attribute of the Tuxedo port defined in the process’
Artix contract.
For example, given the port definition shown in Example 112 on
page 297, the SERVI CES entry would be per sonal | nf oSer vi ce.

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBOONFI G reload the TUXOONFI G with t i oad.

Once you have properly configured Tuxedo, it will manage your Artix process
as if it were a regular Tuxedo server.

299

CHAPTER 13 | Using the Tuxedo Plug-in

300

In this chapter

CHAPTER 14

Jsing the TIBCO
Rendezvous
Plug-in

Artix supports the integration of applications using TIBCO
Rendezvous and TIBCO JMS messaging systems. Artix also
supports the use of the TibrvMsg payload format.

This chapter discusses the following topics:

Introduction page 302
Using TibrvMsg page 303
Using the TIB/RV Transport page 307

301

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

Introduction

Overview

Requirements

Supported Features

302

The TIBCO Rendezvous plug-in lets you use Artix to integrate systems based
on TIBCO Rendezvous (TIB/RV) software. TIB/RV uses its own proprietary
message schema and transport protocol, and the plug-in bridges these to
and from Artix data types, based on a given WSDL contract and the
mapping rule. Artix also allows you to send raw XML and opaque data
across the TIB/RV messaging transport.

To use the plug-in, you need to have a TIBCO Rendezvous 7.1 installed on
your system. No special configuration is required for running the plug-in. At
this time, the plug-in is only supported on Solaris 8 and Windows 2000.

Table 27 shows the matrix of TIBCO Rendezvous features Artix supports.

Table 27: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server Side Advisory Callbacks X

Certified Message Delivery X

Fault Tolerance (Ti br vFt Menber / Moni t or) X
Virtual Connections (Ti br v\VcTransport) X
Secure Daemon (rvsd/ Ti br vSDCont ext) X
TI BRUSG | PADDR32 X
TI BRUWSG | PPCRT16 X

Using TibrvMsg

Using TibrvMsg

Overview Artix supports the use of the TibrvMsg format when using the TIBCO
Rendezvous transport.

Binding tags To use this message format you need to define a binding between the
interface you are exposing and the TibrvMsg format. The binding description
is placed inside the standard <bi ndi ng> tag and uses the tags listed in
Table 28.

Table 28: TibrvMsg Binding Attributes
Attribute Description
ti brv: bi ndi ng Specifies that the interface is exposed using TibrvMsgs.
ti brv: bi ndi ng@t ri ngEncodi ng Specifies the charset used to encode TI BRUWBG STRI NGdata. Use

IANA preferred MIME charset names
(http://www.iana.org/assignments/character-sets). This parameter
must be the same for both client and server.

tibrv:operation Specifies that the operation is exposed using TibrvMsgs.

tibrv:input Specifies that the input message is mapped to a TibrvMsg.

tibrv:input @ortFields Specifies whether the server will sort the input message parts when
they are unmarshalled.

ti brv:input @essageNaneFi el dPat h Specifies the field path that includes the input message name.

ti brv:input @essageNaneFi el dval ue Specifies the field value that corresponds to the input message
name.

ti brv: out put Specifies that the output message is mapped to a TibrvMsg.

ti brv: out put @ortFi el ds Specifies whether the client will sort the output message parts
when they are unmarshalled.

tibrv:out put @essageNaneFi el dPath | Specifies the field path that includes the output message name.

303

http://www.iana.org/assignments/character-sets

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

Table 28: TibrvMsg Binding Attributes

Attribute

Description

ti brv: out put @essageNaneFi el dval ue

Specifies the field value that corresponds to the output message

name.

TIBRVMSG type mapping

Table 29 shows how TibrvMsg data types are mapped to XSD types in Artix

contracts and C+ + data types in Artix application code.

Table 29: T/BCO to XSD Type Mapping

TIBRVMSG XSD Artix C++
TI BRUMBG_STR NGL xsd: string IT BUS :String
Tl BRVWBG_BOOL xsd: bool ean | T_BUS: : Bool ean
TI BRYMSG | 8 xsd: byt e | T_BUS: : Byte
TI BRVVBG | 16 xsd: short I T_BUS: : Short
TI BRYMSG | 32 xsd: i nt I T_BUS: : I nt
TI BRVMSG | 64 xsd: | ong I T_BUS: : Long
TI BRUMSG_UB xsd: unsi gnedByt e I T_BUS: : UByte
TI BRYMBG_U16 xsd: unsi gnedShor t | T_BUS: : UShor t
TI BRYMBG_U32 xsd: unsi gnedl! nt I T_BUS: : U nt
TI BRYMBG_U64 xsd: unsi gnedLong | T_BUS: : ULong
Tl BRYMBG_F32 xsd: f| oat I T_BUS: : Fl oat
TI BRVVMBG _F64 xsd: doubl e | T_BUS: : Doubl e
TI BRVMBG_STRI NG xsd: deci nal I T_BUS: : Deci nal
Tl BRVVBG _DATETI ME2 xsd: dat eTi e I T_BUS: : Dat eTi ne
TI BRYMBG_CPAQUE xsd: base64Bi nary | T_BUS: : Base64Bi nary
TI BRUMBG_CPAQUE xsd: hexBi nary I T_BUS: : HexBi nary
TI BRUMBG_MBG3 xsd: conpl exType/ sequence | | T_BUS: : SequenceConpl exType

304

Table 29:

Using TibrvMsg

TIBCO to XSD Type Mapping

TIBRVMSG

XSD Artix C++

TI BRYBG M5GA

xsd: conpl exType/ al | I T_BUS: : Al | Conpl exType

TI BRISG_M5GB

xsd: conpl exType/ choi ce I T_BUS: : Choi ceConpl exType

TI BRVVBG _* ARRAY/ MBG6

xsd: conpl exType/ sequence
with el enent
MaxQoccurs > 1

I T_BUS:: Array

TI BRVMBG_* ARRAY/ M5G6

SQOAP- ENC: Array7 I T_BUS:: Array

TI BRVWBG MBGE3

SQOAP- ENV: Faul t 8 I T_BUS: : Faul t Excepti on

TIB/RV does not provide any mechanism to indicate the encoding of
strings in a TibrvMsg. The TIBCO plug-in port definition includes a
property, st ri ngEncodi ng, for specifying the string encoding. However,
neither TIB/RV nor Artix look at this attribute; they merely pass the
data along. It is up to the application developer to handle the encoding
details if desired.

TI BRYMBG_DATATI ME has microsecond precision. However,
xsd: dat eTi me has only millisecond precision. Therefore, when using
Artix sub-millisecond percision will be lost.

Sequences are mapped to nested messages where each element is a
separate field. These fields are placed in the same order as they appear
in the original sequence with field IDs beginning at 1. The fields are
accessed by their field ID.

Alls are mapped to nested messages where each elements is mapped
to a separate field. The fields representing the elements of the all are
given the same field name as element name and field IDs beginning
from 1. They can be accessed by field name beginning from field ID 1.
That means that the order of fields can be changed.

Choices are mapped to nested messages where each elements is a
separate field. Each field is enclosed with the same field name/type as
element name/type of active member, and accessed by field name with
field ID 1.

Arrays having i nteger or float elements are mapped to appropriate
TIB/RV array types; otherwise they are mapped to nested messages.

305

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

306

SOAP RPC-encoded multi-dimensional arrays will be treated as
one-dimensional: e.g. a 3x5 array will be serialized as a
one-dimensional array having 15 elements. To keep dimensional
information, use nested sequences with maxCccurs > 1 instead.

When a server response message has a fault, it includes a field of type
TI BRUWWBG MG with the field name faul t and field ID 1. This
submessage has two fields of TI BRUMBG STRI NG One is named

faul t code and has field ID 1, and the other is named faul tstring
and has field ID 2.

Using the TIB/RV Transport

Using the TIB/RV Transport

Overview Artix contract descriptions of TIB/RV ports use a number of Artix specific
WSDL extensions. These extensions allow you to specify a number of
TIB/RV properties for the port.
Port attributes Table 30 lists the Artix contract elements used to describe a TIB/RV port.
Table 30: T/B/RV Transport Properties
Attribute Explanation
tibrv: port Indicates that the port uses the TIB/RV transport.
tibrv: port @er ver Subj ect A required element that specifies the subject to which

the server listens. This parameter must be the same
between client and server.

tibrv:port @l ient Subj ect Specifies the subject that the client listens to. The
default is to use the transport inbox name. This
parameter only affects clients.

ti brv: port @i ndi ngType Specifies the message binding type.

tibrv: port @al | backLevel Specifies the server-side callback level when TIB/RV
system advisory messages are received.

ti brv: port @esponseD spat chTi meout Specifies the client-side response receive dispatch
timeout.

tibrv:port @ransport Service Specifies the UDP service name or port for
TibrvNetTransport.

ti brv: port @ransport Net wor k Specifies the binding network addresses for
TibrvNetTransport.

tibrv: port @r anspor t Daenon Specifies the TCP daemon port for the
TibrvNetTransport.

ti brv: port @ransport Bat chMode Specifies if the TIB/RV transport uses batch mode to

send messages.

307

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

Table 30: T/B/RV Transport Properties

Attribute Explanation

tibrv: port @nBuppor t Specifies if Certified Message Delivery support is
enabled.

tibrv: port @nir anspor t Ser ver Nare Specifies the server's TibrvCmTransport
correspondent name.

tibrv: port @niransportd i ent Name Specifies the client TibrvCmTransport correspondent
name.

ti brv: port @nir anspor t Request 4 d Specifies if the endpoint can request old messages on
start-up.

ti brv: port @nTr anspor t Ledger Narme Specifies the TibrvCmTransport ledger file.

ti brv: port @nTr anspor t SyncLedger Specifies if the endpoint uses a synchronous ledger.

tibrv: port @nTr anspor t Rel ayAgent Specifies the endpoint’s TibrvCmTransport relay
agent.

tibrv: port @nir anspor t Def aul t Ti neLi ni t Specifies the default time limit for a Certified
Message to be delivered.

tibrv: port @nti st ener Cancel Agreenent s Specifies if Certified Message agreements are
canceled when the endpoint disconnects.

ti brv: port @nQueueTr anspor t Ser ver Nane Specifies the server's TibrvCmQueueTransport
correspondent name.

ti brv: port @nQueueTr ansport d i ent Nane Specifies the client’s TibrvCmQueueTransport
correspondent name.

ti brv: port @nQueueTr anspor t Vor ker Vi ght Specifies the endpoint’s TibrvCmQueueTransport
wor ker wei ght .

ti brv: port @nQueueTr anspor t Vr ker Tasks Specifies the endpoint’s TibrvCmQueueTransport
wor ker tasks parameter.

ti brv: port @nQueueTr anspor t Schedul er Wi ght Specifies the TibrvCmQueueTransport schedul er
wei ght parameter.

tibrv: port @nQueueTr anspor t Schedul er Hear t beat Specifies the endpoint’s TibrvCmQueueTransport

schedul er heartbeat parameter.

308

Using the TIB/RV Transport

Table 30: T/B/RV Transport Properties

Attribute

Explanation

tibrv: port @nQueueTransport Schedul er Activation | Specifies the TibrvCmQueueTransport schedul er

activati on parameter.

tibrv: port @mQueueTr anspor t Conpl et eTi me Specifies the TibrvCmQueueTransport conpl ete ti me

parameter.

tibrv:port@bindingType

ti brv: port @i ndi ngType specifies the message binding type. TIB/RV Artix

ports support three types of payload formats as described in Table 31.

Table 31: T/B/RV Supported Payload formats

Setting Payload Formats TIB/RV Message Implications

nsg TibrvMsg The top-level messages will have fields of type TI BRUMBG_STRI NG
The value of each field is the name of a WSDL part name from
the coressponding WSDL message. If the WSDL part is a
primitive type then the value of this type is put against the name
of the WSDL part. If the WSDL part is a complex type then a
nested TibrvMsg is created and added against the WSDL part
name.

xm SOAP, tagged data The message data is encapsulated in a field of TI BRMWBG XM with
a null name and an ID of 0.

opaque fixed record length data, The message data is encapsulated in a field of TI BRYMBG_CPAQUE

variable record length data | with a null name and an ID of 0.

tibrv:port@callbackLevel

tibrv: port @al | backLevel specifies the server-side callback level when

TIB/RV system advisory messages are received. It has three settings:
® INFO

° VRN

® ERRCR(default)

This parameter only affects servers.

309

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

tibrv:port@responseDispatchTim
eout

tibrv:port@transportService

tibrv:port@transportNetwork

tibrv:port@transportDaemon

tibrv:port@transportBatchMode

tibrv:port@cmSupport

310

tibrv: port @esponseDi spat chTi meout specifies the client-side response
receive dispatch timeout. The default is TI BRV_WAl T_FCREVER. Note that if
only the TibrvNetTransport is used and there is no server return response for
a request, then not setting a timeout value causes the client to block forever.
This is because client has no way to know whether any server is processing
on the sending subject or not. In this case, we recommend that

r esponseDi spat chTi neout is set.

tibrv: port @ransport Servi ce specifies the UDP service name or port for
TibrvNetTransport. If empty or omitted, the default is r endezvous. If no
corresponding entry exists in / et ¢/ servi ces, 7500 for the TRDP daemon, or
7550 for the PGidaemon will be used. This parameter must be the same for
both client and server.

tibrv: port @r anspor t Net wor k specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host
for the TRDP daemon, 224. 0. 1. 78 for the P@Mdaemon. This parameter must
be interoperable between the client and the server.

ti brv: port @r anspor t Daenon specifies the TCP daemon port for
TibrvNetTransport. The default is to use 7500 for the TRDP daemon, or 7550
for the PGvdaemon.

tibrv: port @r anspor t Bat chMbde specifies if the TIB/RV transport uses
batch mode to send messages. The default is f al se which specifies that the
endpoint will send messages as soon as they are ready. When set to true,
the endpoint will send its messages in timed batches.

tibrv: port @nsupport specifies if Certified Message Delivery support is
enabled. The default is f al se which disables CM support. Set this
parameter to t r ue to enable CM support.

Note: When CM support is disabled all other CM properties are ignored.

tibrv:port@cmTransportServerNa
me

tibrv:port@cmTransportClientNa
me

tibrv:port@cmTransportRequest
Oid

tibrv:port@cmTransportLedgerN
ame

tibrv:port@cmTransportSyncLed
ger

tibrv:port@cmTransportRelayAge
nt

tibrv:port@cmTransportDefaultTi
meLimit

tibrv:port@cmListenerCancelAgr
eements

Using the TIB/RV Transport

ti brv: port @nir ansport Ser ver Narre specifies the server's
TibrvCmTransport correspondent name. The default is to use a transient
correspondent name. This parameter must be the same for both client and
server if the client also uses Certified Message Delivery.

tibrv: port @niransport d i ent Name specifes the client’s
TibrvCMTransport correspondent name. The default is to use a transient
correspondent name.

ti brv: port @nir anspor t Request A d specifies if the endpoint can request
old messages on start-up. requestOld parameter. The default is f al se which
disables the endpoint’s ability to request old messages when it starts up.
Setting this property to t rue enables the ability to request old messages.

ti brv: port @nilr anspor t Ledger Nane specifes the file name of the
endpoint’s TibrvCMTrasnport ledger. The default is to use an in-process
ledger that is stored in memory.

ti brv: port @nir ansport SyncLedger Specifies if the endpoint uses a
synchronous ledger. true specifies that the endpoint uses a synchronous
ledger. The default is f al se.

ti brv: port @nilr ansport Rel ayAgent Specifies the endpoint’s
TibrvCmTransport relay agent. If this property is not set, the endpoint does
not use a relay agent.

ti brv: port @nilr anspor t Def aul t Ti meLi mi t specifies TibrvCmTransport
message default time limit. The default is that no message time limit will be
set.

ti brv: port @nli st ener Cancel Agr eenent s specifies if the TibrvCmListener
cancels Certified Message agreements when the endpoint disconnects.
parameter. If set to t rue, CM agreements are cancelled when the endpoint
disconnects. The default is f al se.

311

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

tibrv:port@cmQueueTransportSe
rverName

tibrv:port@cmQueueTransportCli
entName

tibrv:port@cmQueueTransportW
orkerWeight

tibrv:port@cmQueueTransportW
orkerTasks

tibrv:port@cmQueueTransportSc
hedulerWeight

tibrv:port@cmQueueTransportSc
hedulerHeartbeat

tibrv:port@cmQueueTransportSc
hedulerActivation

312

ti brv: port @mQueueTr anspor t Ser ver Nane specifies the server's
TibrvCmQueueTransport correspondent name. If this property is set, the
server listener joins to the distributed queue of the specified name. This
parameter must be the same among the server queue members.

ti brv: port @nmQueueTr anspor t A i ent Nane specifies the client’s
TibrvCmQueueTransport correspondent name. If this property is set, the
client listener joins to the distributed queue of the specifies name. This
parameter must be the same among all client queue members.

Note: If distributed queue is enabled on the client side, the transport
does not handle any request-response semantics. This is for load-balanced
polling-type clients, e.g. one client in the distributed queue periodically
invokes an operation that only has outputs and no input, and one listener
in the group processes the response.

ti brv: port @mQueueTr anspor t Wr ker Vi ght specifies the endpoint’s
TibrvCmQueueTransport wor ker wei ght . The default is
TI BRVCM DEFAULT WRKER VWl GHT.

ti brv: port @mQueueTr anspor t Wr ker Tasks specifies the endpoint’s
TibrvCmQueueTransport wor ker t asks parameter. The default is
TI BRVYCM DEFAULT_WIRKER TASKS.

ti brv: port @nmQueueTr anspor t Schedul er Wi ght specifies the
TibrvCmQueueTransport schedul er wei ght parameter. The default is
Tl BRVOM DEFAULT_SCHEDULER Wl GHT.

ti brv: port @mQueueTr anspor t Schedul er Hear t beat specifies the
TibrvCmQueueTransport schedul er heartbeat parameter. The default is
Tl BRVOM DEFAULT_SCHEDULER HB.

ti brv: port @nmQueueTr anspor t Schedul er Acti vat i on Specifies the
TibrvCmQueueTransport schedul er acti vati on parameter. The default is
TI BRVOM DEFAULT_SCHEDULER ACTI VE.

Using the TIB/RV Transport

tibrv:port@cmQueueTransportCo ti brv: port @nQueueTr anspor t Conpl et eTi ne specifies the
mpleteTime TibrvCmQueueTransport conpl et e ti me parameter. The default is 0.

313

CHAPTER 14 | Using the TIBCO Rendezvous Plug-in

314

In this chapter

CHAPTER 15

Using the |IOP
Tunnel

The lIOP tunnel provides access to CORBA services while using
non-CORBA payload formats.

This chapter discusses the following topics:

Introduction to [IOP Tunnels page 316
Modifying a Contract to Use the [IOP Tunnel page 317
Using the CORBA Naming Service page 323

315

CHAPTER 15 | Using the 1IOP Tunnel

Introduction to IIOP Tunnels

Overview An 1IOP tunnel provides a means for taking advantage of existing CORBA
services while transmitting messages using a payload format other than
CORBA. For example, you could use an IIOP tunnel to send fixed format
messages to an endpoint whose address is published in a CORBA naming
service.

Benefits Using IIOP tunnels provides the following benefits:
® Endpoints can publish their addresses in a CORBA naming service or a
CORBA trader service
® Active connection management
® Transport level security
® Codeset negotiation
® Persistence

Supported payload formats [IOP tunnels can transport messages using the following payload formats:
* SOAP
® Fixed format
® Fixed record length
* G2++
® Octet streams

316

Modifying a Contract to Use the IIOP Tunnel

Modifying a Contract to Use the IIOP Tunnel

Overview

Address specification

Service Access Points (SAPs) that use the IIOP tunnel require that a special
port be added to the physical portion of the Artix contract.The port definition
specifies the IOR used to locate the CORBA object and any POA policies the
used in exposing the IIOP tunnel.

[IOP tunnel ports are described using the IONA-specific WSDL elements
<i i op: addr ess> and <i i op: pol i cy> within the WSDL <port > element, to
specify how the IIOP tunnel is configured.

The IOR, or address, of the IIOP tunnel is specified using the
<i i op: addr ess> element. You have four options for specifying IORs in Artix
contracts:

® Specify the objects IOR directly, by entering the object’s IOR directly
into the contract using the stringified IOR format:

| CR 22342. ...
® Specify a file location for the IOR, using the following syntax:
file://file_nane

® Specify that the IOR is published to a CORBA name service, by
entering the object’'s name using the cor baname format:

cor banane: ri r: NameSer vi ce#obj ect _nare

For more information on using the name service with Artix see “Using
the CORBA Naming Service” on page 323.

® Specify the IOR using corbal oc, by specifying the port at which the
service exposes itself, using the cor bal oc syntax.

corbal oc: i i op: host : port/servi ce_nane

When using cor bal oc, you must be sure to configure your service to
start up on the specified host and port.

317

CHAPTER 15 | Using the 1IOP Tunnel

Specifying type of payload
encoding

Specifying POA policies

318

The 1IOP tunnel can perform codeset negotiation on the encoded messages
passed through it if your CORBA system supports it. By default, this feature
is turned off so that the agents sending the message maintain complete
control over codeset conversion. If you wish to turn automatic codeset
negotiation on use the following:

<iiop: payl oad type="string" />

Using the optional <i i op: pol i cy> element, you can describe a number of
POA polices the Artix service will use when creating the [IOP tunnel. These
policies include:

* POA Name

® Persistence

® |D Assignment

Setting these policies lets you exploit some of the enterprise features of
IONA’s Application Server Platform 6.0, such as load balancing and fault
tolerance, when deploying an Artix integration project using the I1OP tunnel.
For information on using these advanced CORBA features, see the
Application Server Platform documentation.

POA Name

Artix POAs are created with the default name of Ws_CRB. To specify a name
of the POA that Artix creates for the IIOP tunnel, you use the following:

<iiop: policy poanane="poa_nane" />

The POA name is used for setting certain policies, such as direct persistence
and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA’s have a persistence policy of f al se. To set the POA’s
persistence policy to true, use the following:

<iiop:policy persistent="true" />

Modifying a Contract to Use the IIOP Tunnel

ID Assignment

By default Artix POAs are created with a SYSTEM | D policy, meaning that
their ID is assigned by Artix. To specify that the 1IOP tunnel’s POA should
use a user-assigned ID, use the following:

<cor ba: pol i cy servi cei d="PQA d" />

This creates a POA with a USER | D policy and an object id of PQai d.

Procedure To add an IIOP tunnel port to your service contract using the GUI, complete
the following steps:

1. From the project tree, select the contract to which you want to add the
IIOP tunnel port.
2. Select Services|New Service from the Contract menu of the designer.

319

CHAPTER 15 | Using the IIOP Tunnel

320

[] Binding Editor - Artix Designer

P SelectWSDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract

3. You will see a screen like Figure 27.

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.

O Add to existing WSDL "widgetOrderForm.wsdl

(@) Add to new WEDL widgets-corbal

T W B N

Figure 27: Select WSDL Location

4. Select where to create the WSDL entry for the new service.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.

6. Enter a unique name for the new service.

Modifying a Contract to Use the IIOP Tunnel

7. Click Next.
Enter a name for the new IIOP tunnel port that is being created.
9. From the drop down list, select the binding that the port is going to
expose.
10. Click Next.
11. You will see a dialog similar to Figure 28.
[® New Service - arix Designer |
~Property Definitions in Paort - "IIOPport*
Transpart Type fhinnel =]
~Attribute
Address
Attribute] Walue J
location (REQUIRED) |
Folicy
Aftribute Walue
poaname
seniceid
persistent
Fayload
S — Attribute] Walue J
: type |
Define Service
| Define Port
P Define Extensar Properties
| Fort Summary
I Previous I ’ Mext] ’ Finish] ’ Cancel] ’ Help
Figure 28: Edit I/OP Tunnel Port Properties
12. From the drop down list in the Transport box, select tunnel.
13. In the Address table, enter the address in the line for Location.
14. If you want to set any of the supported POA policies, place a check in

15.

the Specified box on the appropriate line in the Policy table and enter
a valid value.

Click Next.

321

CHAPTER 15 | Using the 1IOP Tunnel

16.
17.
18.

19.

Review the settings for the new I10OP tunnel port.
If it is correct, click Next.

Review the settings for the new service in which the [IOP port is
described.

If it is correct, click Finish.

Example For example, an IIOP tunnel port for the per sonal | nf oLookup binding would
look similar to Example 113:

Example 113:CORBA personalinfoLookup Port

<servi ce name="per sonal | nf oLookupServi ce">

<port name="personal | nf oLookupPort"

bi ndi ng="t ns: per sonal | nf oLookupBi ndi ng" >
<iiop:address location="file://objref.ior" />
<iiop:policy persistent="true" />
<iiop:policy serviceid="personal | nfoLookup" />

</ port>

</ service>

Artix expects the IOR for the [IOP tunnel to be located in a file called
obj ref.ior,and creates a persistent POA with an object id of per sonal | nf o
to configure the 11OP tunnel.

322

Using the CORBA Naming Service

Using the CORBA Naming Service

Overview

Servers

In order to fully integrate with deployed CORBA systems, Artix can use a
CORBA naming service that supports the CosNani ng interface. Doing so
requires editing the port information in the service’s contract and modifying
the Artix configuration.

To specify that an Artix instance (acting as proxy for a server) is to use the
CORBA naming service, you edit the <i i op: addr ess> element of the I110OP
tunnel port. In place of the file name used in the | ocat i on attribute, specify
a cor banane. For example, to specify that the IIOP tunnel for the personal
info server publishes its IOR to the CORBA naming service, specify the
<cor ba: addr ess> as follows:

<cor ba: addr ess | ocati on="cor banane: rir:/ NaneSer vi ce#per sonal | nf oSer vi ce”/ >

Clients

Configuration

This registers the server in the name service under the name
per sonal | nf oSer vi ce.

An Artix instance (acting as a proxy for a client) can also use the

<i i op: addr ess> element to specify what name to look up in the CORBA
name service. The name the client looks up in the name service is the string
after the # in the specified location. For example, a client using the

<i i op: addr ess> shown above in “Servers” looks up the IOR for an object
named per sonal | nf 0Ser vi ce.

Artix applications that wish to use a CORBA name service must be
configured to load a name resolver plug-in and have an initial reference for
the running name service.

323

CHAPTER 15 | Using the 1IOP Tunnel

To modify the Artix configuration do the following:

1. Open the Artix configuration file,
IT_PRODUCT_DIRartix\1. 2\etc\artix.cfg, in a text editor.

2. In the global scope, add the following lines:
initial _references: NameSer vi ce: ref erence="cor bal oc: : | ocal host : port Nunber/ NaneSer vi ce";

url _resol vers: cor banare: pl ugi n="nam ng_r esol ver";
pl ugi ns: nam ng_resol ver: shl i b_name="it_nam ng";

por t Nunber is the number of the port on which the name service is
running.

For more information on Artix configuration, see “Configuration” on page 27.

324

CHAPTER 16

Payload Formats

Artix supports several transport independent payload format
such as SOAP and Fixed Record Length buffers.

In this chapter This chapter discusses the following topics:
G2++ Data Format page 326
Fixed Record Length Data Format page 333
Pure XML Format page 350
Tagged Data Format page 355

325

CHAPTER 16 | Payload Formats

G2+ + Data Format

Overview

Simple G2+ + mapping example

<t ypes>

G2+ + is a set of mechanisms for defining and manipulating hierarchically
structured messages. G2+ + messages can be thought of as records, which
are described in terms of their structure and the data types they contain.

G2+ + is an alternative to “raw” structures (such as C or C++ structs),
which rely on common data representation characteristics that may not be
present in a heterogeneous distributed system.

Consider the following instance of a G2+ + message:

Note: Because tabs are significant in G2+ + files (that is, tabs indicate
scoping levels and are not simply treated as “white space”), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
Seven spaces.

Example 114:£Record G2+ + Message

ERecord

R XYZ_Part

N N XYZ_Code” soneVal uel

2 & passwor d? soneVal ue2

S S servi ceFi el dName” sonmeVal ue3

n newPar t

2 & newAct i onCode” soneVal ue4

S S newSer vi ced assNane” someVal ueb
S S ol dSer vi ced assNane” sonmeVal ue6

This G2++ message can be mapped to the following logical description,
expressed in WSDL:

Example 115:WSDL Logical Description of ERecord Message

<schera t ar get Namespace="htt p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: // waw. W3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl /" >

326

G2+ + Data Format

Example 115:WSDL Logical Description of ERecord Message

<conpl exType nane="XYZ Part">
<al |l >
<el enent name="XYZ_Code" type="xsd:string"/>
<el ement nanme="passwor d" type="xsd:string"/>
<el enent nane="servi ceFi el d\ane" type="xsd:string"/>
</all>
</ conpl exType>
<conpl exType nane="newPart">
<all>
<el ement nanme="newActi onCode" type="xsd: string"/>
<el enent nane="newServi ced assNarme" type="xsd:string"/>
<el enent name="ol dServi ced assNarme" type="xsd:string"/>
</all>
<conpl exType nane="PRequest ">
<all>
<el enent name="newPart" type="xsdl: newPart"/>
<el ement nanme="XYZ Part" type="xsdl: XYZ Part"/>
</all>
</ conpl exType>

Note that each of the message sub-structures (newPart and XYZ_Part) are
initially described separately in terms of their elements, then the two
sub-structure are aggregated together to form the enclosing record
(PRequest).

327

CHAPTER 16 | Payload Formats

This logical description is mapped to a physical representation of the G2+ +
message, also expressed in WSDL:

Example 116:WSDL Physical Representation of ERecord Message

<bi ndi ng name="ERecor dBi ndi ng" type="t ns: ERecor dRequest Por t Type" >
<soap: bi ndi ng styl e="rpc"
transport="http://schenas. xnl soap. or g/ soap/ http"/>
<artix: bi ndi ng transport ="t uxedo" fornat="g2++">
<&0Defi ni ti ons>
<@MessageDescri pti on name="creation" type="nsg">
<@MessageConponent name="ERecord" type="struct">
<@MessageConponent nane="XYZ Part" type="struct">
<el ement name="XYZ_Code" type="el enent"/>
<el enent name="passwor d" type="el enent"/>
<el enent name="servi ceFi el dNane" type="el enent"/>
</ 2MessageConponent >
<@MessageConponent nane="newPart" type="struct">
<el enent name="newAct i onCode" type="el ement"/>
<el ement name="newServi ced assNanme" type="el enent"/>
<el ement nane="ol dServi ced assNanme" type="el enent"/>
</ 2MessageConponent >
</ @MessageConponent >
</ @MessageDescri pti on>
</ @Def i ni ti ons>
</ arti x: bi ndi ng>

Note that all G2+ + definitions are contained within the scope of the
<@Defini tions> </ @Definitions> tags. Each of the messages are
defined with the scope of a <@MessageDescri pti on>

</ @MessageDescri pti on> construct. The type attribute for message
descriptions must be "nsg" while the name attribute simply has to be
unique.

Each record is described within the scope of a <@MessageConponent >
</ @MessageConponent > construct. Within this, the nane attribute must
reflect the G2+ + record name and the t ype attribute must be "struct".

Nested within the records are the element definitions, however if required a
record could be nested here by inclusion of a nested <&@MessageConponent >
scope (newPart and XYZ_Part are nested records of parent ERecor d).
Element “name” attributes must match the G2 element name. Defining a
record and then referencing it as a nested struct of a parent is legal for the
logical mapping but not the physical. In the physical mapping, nested
structs must be defined in-place.

328

G2+ + Data Format

The following example illustrates the custom mapping of arrays, which
differs from strictly defined G2+ + array mappings. The array definition is
shown below:

| VB_Met aDat a® 2

2 0

S S col umNane? SERVI CENAMVE

o o col umVal ue” soneVal uel

2 1

n n col utmNane” SERVI CEACTI ON
o o col umVal ue” soneVal ue2

This represents an array with two elements. When placed in a G2+ +
message, the result is as follows:

Example 117:Extended ERecord G2+ + Message

ERecord

n XYZ_Part

& R XYZ_Code” soneVal uel

N A passwor d* soneVal ue2

o S servi ceFi el dName” soneVal ue3

& XYZ_Met adat a” 1

N N O

N A N col unnNarre” pushToTal k
& R & col umVal ue” PTO1

n newPar t

o S newAct i onCode” soneVal ued

2 2 newSer vi ced assNane” soneVal ueb
o S ol dServi ced assNane” soneVal ue6

In this version of the ERecord record, XYZ_Part contains an array called
XYZ_Met aDat a, whose size is one. The single entry can be thought of as a
name/value pair: pushToTal k/ PT01, which allows us to ignore col unmName
and col unmVval ue.

329

CHAPTER 16 | Payload Formats

Mapping the new ERecord record to a WSDL logical description results in
the following:

Example 118:WSDL Logical Description of Extended ERecord Message

<types>
<schera t ar get Namespace="htt p: / / soapi nt er op. or g/ xsd"
xm ns="ht t p: / / www. w8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: / / schemas. xm soap. or g/ wsdl /" >

<conpl exType nane="XYZ Part">
<al | >
<el enent name="XYZ_Code" type="xsd:string"/>
<el enent name="passwor d" type="xsd:string"/>
<el enent name="ser vi ceFi el dNane" type="xsd:string"/>
<el enent name="pushToTal k" type="xsd: string"/>
</all>
</ conpl exType>

<conpl exType nane="newPart">
<al |l >
<el enent name="newAct i onCode" type="xsd:string"/>
<el enent name="newSer vi ced assNane" type="xsd:string"/>
<el enent name="ol dServi ced assNane" type="xsd:string"/>
</all>

<conpl exType nane="PRequest ">
<all>
<el enent name="newPart" type="xsdl: newPart"/>
<el enent name="XYZ Part" type="xsdl: XYZ Part"/>
</all>
</ conpl exType>

330

G2+ + Data Format

Thus the array elements col umName and col umval ue are “promoted” to a

name/Value pair in the logical mapping. This physical G2+ + representation
can now be mapped as follows:

Example 119:WSDL Physical Representation of Extended ERecord
Message

<bi ndi ng name="ERecor dBi ndi ng" type="t ns: ERecor dRequest Por t Type" >
<soap: bi ndi ng styl e="rpc"
transport ="http://schenas. xnl soap. or g/ soap/ htt p"/>
<artix: binding transport="tuxedo" fornat="g2++">
<@Defi niti ons>
<@MessageDescri pti on name="creating" type="nsg">
<@MessageConponent name="ERecord" type="struct">
<@MessageConponent nanme="XYZ Part" type="struct">
<el enent name="XYZ_Code" type="el enent"/>
<el enent name="password" type="el enent"/>
<el enent name="ser vi ceFi el dNane" type="el enent"/>
<@MessageConponent nane="XYZ_Met aDat a" type="array" size="1">
<el enent name="pushToTal k" type="el ement"/>
</ @MessageConponent >
</ @MessageConponent >
<&MessageConponent name="newPart" type="struct">
<el enent name="newAct i onCode" type="el ement"/>
<el enent name="newSer vi ced assNane" type="el enent"/>
<el enent name="ol dServi ced assNane" type="el enent"/>
</ @MessageConponent >
</ @MessageConponent >
</ @MessageDescri pti on>
</ @Def i ni ti ons>
</ arti x: bi ndi ng>

This physical mapping of the extended ERecord message now contains an
array, described with its Xyz_Met aDat a name (as per the G2+ + record
definition). Its type is "array" and its size is one. This
@MessageConponent contains a single element called "pushToTal k" .

331

CHAPTER 16 | Payload Formats

It is possible to create a GDef i ni t i ons scope that begins with a G2-specific
configuration scope. This configuration scope is called @Confi g in the
following example:

Ignoring unknown elements

<Q@&2Def i ni tions>

A <RXConfi g>

2 & <I gnor eUnknownH enents val ue="true"/>
</ QConfi g>

In this scope, the only variable used is | gnor eUnknownEl enent s, which can
have a value of “true” or “false”. If the value is set to true, elements or array
elements that are not defined in the G2 message definitions will be ignored.
For example the following record would be valid if | gnor eUnknownEl enent s
is set to true.

Example 120:Valid G2++ Record With Ignored Fields

ERecord

n XYZ_Part

S XYZ_Code” sonmeVal uel

2 AnH enent foo

A passwor d? soneVal ue2

S servi ceFi el dName” soneVal ue3

o XYZ_Met aDat a” 2

AN N O

N N N col utmNane” pushToTal k
2 & & col unmVal ue” PTO1

AN N 1

N N N col utmmNane” AnArrayH enent
2 & & col utmVal ue” bar

A newPar t

S S newAct i onCode” soneVal ued

2 & newSer vi ced assNane” soneVal ueb
2 & ol dServi ced assNane” soneVal ueé

When parsed, the above ERecord would not include the elements
"AnEl emrent " or " AnArrayFEl emrent . If | gnor eUnknownEl enent s is set to
false, the above record would be rejected as invalid.

332

Fixed Record Length Data Format

Fixed Record Length Data Format

Overview

Type support

Binding namespace

In this section

Many applications send data in fixed length records. For example, COBOL
applications often send fixed record data over WebSphere MQ. Artix
provides a binding that maps logical messages to concrete fixed record
length messages. The binding allows you to specify attributes such as
encoding style, justification, and padding characters.

Artix supports text-based fixed length record data. For instance, numerals,
such as 42, are represented as the ASCI| characters * 4 and ' 2’ . This
allows the data to be easily translated from one codeset to another if
needed.

Binary data, such as packed decimals, are not supported.

The IONA extensions used to describe fixed record length bindings are
defined in the namespace ht t p: // schenas. i ona. cond bi ndi ngs/ fi xed. Artix
tools use the prefix f i xed to represent the fixed record length extensions and
add the following line to your contracts:

xm ns: fixed="http://schenas. i ona. con bi ndi ngs/ fi xed

If you add a fixed record length binding to an Artix contract by hand you
must also include this namespace.

This section discusses the following topics:

Fixed Record Length Message Data Mapping page 334

Adding a Fixed Record Length Binding to an Artix Contract page 343

333

CHAPTER 16 | Payload Formats

Fixed Record Length Message Data Mapping

Overview Artix defines seven elements that extend the WSDL binding element to
support the fixed record length binding. These elements are:

® <fixed:binding>

® <fixed:operation>

® <fixed:body>

* <fixed:field>

® <fixed:enumeration>
® <fixed:sequence>

®* <fixed:choice>

® <fixed:case>

<fixed:binding> <fi xed: bi ndi ng> specifies that the binding is for fixed record length data. It
has three optional attributes:

justification Specifies the default justification of the data contained in
the messages. Valid values are | eft and ri ght . Default is

left.

encodi ng Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is en.

padHexCode Specifies the hex value of the character used to pad the
record.

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message by message basis.

<fixed:operation> <fi xed: operation>is a child element of the WSDL <oper at i on> element
and specifies that the operation’s messages are being mapped to fixed
record length data. It takes one optional attribute, di scri mi nat or, which
allows you to assign a name to the operation for identifying the operation as
it is sent down the wire by the Artix runtime.

334

<fixed:body >

<fixed:field>

Fixed Record Length Data Format

<fi xed: body> is a child element of the <i nput >, <out put>, and <faul t >
messages being mapped to fixed record length data. It specifies that the
message body is mapped to fixed record length data on the wire and
describes the exact mapping for the message’s parts.

<fi xed: body> takes three optional attributes:

justification Specifies the default justification of the data contained in
the messages. Valid values are l eft and ri ght.

encodi ng Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

These values override the defaults set in the <f i xed: bi ndi ng> element.
<fi xed: body> will have one or more of the following child elements:

* <fixed:field>

® <fixed:sequence>

® <fixed:choice>

They describe the detailed mapping of the data to fixed length record data to
be sent on the wire.

<fixed: fiel d>is used to map simple data types to a fixed length record.
Each <fi xed: fi el d> element has one required attribute, nane, which
corresponds to the name of the message part being mapped to the fixed
record. This name must be the name of a message part defined in the
logical message description.

Each <fixed: fi el d> element that maps a message part also requires either
the si ze attribute or the f or mat attribute. A <fi xed: fi el d> element would
never use both attributes.

335

CHAPTER 16 | Payload Formats

336

size
si ze specifies the length of a string record. For example, the logical

message part, raver | D, described in Example 121 would be mapped to a
<fixed: fiel d>similar to Example 122.

Example 121:Fixed String Message

<nessage nane="fi xedStri ngMessage">
<part name="raver|D' type="xsd:string" />
</ message>

In order to complete the mapping, you must know the length of the record
field and supply it. In this case, the field, raver| D, can contain no more
than twenty characters.

Example 122:Fixed String Mapping
<fixed:field nane="raver| D' size="20" />

format

format specifies how non-string data is formatted. For example, if a field
contains a 2-digit numeric value with one decimal place, it would be
described in the logical part of the contract as an xsd: f1 oat, as shown in
Example 123.

Example 123:Ffixed Record Numeric Message

<nessage nane="fi xedNunber Message" >
<part name="ragelLevel " type="xsd:float" />
</ message>

From the logical description of the message, Artix has no way of determining
that the value of rageLevel is a 2-digit number with one decimal place
because the fixed record length binding treats all data as characters. When
mapping rageLevel in the fixed binding you would specify its f or mat with
##. #, as shown in Example 124. This provides Artix with the meta-data
needed to properly handle the data.

Example 124:Mapping Numerical Data to a Fixed Binding

<fixed:flield nanme="ragelLevel " fornat="## #"' />

Fixed Record Length Data Format

Dates are specified in a similar fashion. For example, the f or mat of the date
12/02/72 is v DIY YY. When using the fixed binding it is recommended that
dates are described in the logical part of the contract using xsd: string. For
example, a message containing a date would be described in the logical part
of the contract as shown in Example 125.

Example 125:Fixed Date Message

<nessage name="fi xedDat eMessage" >
<part name="goDate" type="xsd:string" />
</ message>

If goDat e is entered using the standard short date format for US English
locales, mmi dd/ yyyy, you would map it to a fixed record field as shown in
Example 126.

Example 126:Ffixed Format Date Mapping
<fixed: field nane="goDate" format="nnidd/yyyy" />

bindingOnly

<fixed: fiel d>elements supports an optional bi ndi ngOnl y attribute.

bi ndi ngnl y is a boolean attribute that specifies that the field is specific to
the binding and does not appear in the logical message description. When
bi ndi ngOnl y is set to t rue, the field described by the <fi xed: fi el d>
element is not propagated beyond the binding. For input messages, this
means that the field is read in and then discarded. For output messages,
you must also use the fi xedval ue attribute.

fixedValue

fixedVval ue can be used in place of the si ze and format attributes. It
specifies a static value to be passed on the wire. When used without

bi ndi ngOnl y="true", the value specified by fi xedVal ue replaces any data
that is stored in the message part passed to the fixed record binding. For
example, if gobDat e, shown in Example 125 on page 337, were mapped the
the fixed field shown in Example 127, the actual message returned from the
binding would always have the date 11/11/2112.

Example 127:fixedValue Mapping

<fixed: field name="goDate" fixedVal ue="11/11/2112" />

337

CHAPTER 16 | Payload Formats

<fixed:enumeration>

338

<fi xed: enuner ati on> is a child element of <fi xed: fi el d> and is used to
map enumerated types to a fixed record length message. It takes two
required attributes, val ue and fi xedVal ue. val ue corresponds to the
enumeration value as specified in the logical description of the enumerated
type. fi xedVal ue specifies the concrete value that will be used to represent
logical value on the wire.

For example, if you had an enumerated type with the values Frui t yTooty,
Rai nbow, Ber ryBonb, and O angeTango the logical description of the type
would be similar to Example 128.

Example 128:/ce Cream Enumeration

<xs: si npl eType name="f| avor Type" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="FruityTooty"/>
<xs: enuneration val ue="Rai nbow'/ >
<xs: enuneration val ue="BerryBonb"/>
<xs: enuneration val ue="Q angeTango"/ >
</xs:restriction>
</ xs: si npl eType>

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
respresentations can be identical to the logical or some other value. The
enumerated type in Example 128 could be mapped to the fixed field shown
in Example 129. Using this mapping Artix will write OT to the wire for this
field if the enumerations value is set to O angeTango.

Example 129:Fixed Ice Cream Mapping

<fixed:field name="fl avor" size="2">
<fixed: enuneration val ue="FruityTooty" fixedVal ue="FT" />
<fi xed: enuner ati on val ue="Rai nbow' fixedVal ue="RB" />
<fi xed: enuner ati on val ue="BerryBonb" fi xedVal ue="BB"' />
<fixed: enunerati on val ue="C angeTango" fi xedVal ue="0Or" />
</fixed:field>

Note that the parent <fi xed: fi el d> element uses the si ze attribute to
specify that the concrete representation is two characters long. When
mapping enumerations, the si ze attribute will always be used to represent
the size of the concrete representation.

<fixed:sequence>

Fixed Record Length Data Format

<fi xed: sequence> maps arrays and sequences to a fixed record length
message. It has one required attribute, name, that corresponds to the name
of the logical message part being mapped by this element.

<fi xed: sequence> also takes two optional attributes, occurs and
count er Nane. occur s specifies the number of times this sequence occurs in
the message buffer. The default for occurs is 1.

When you specify a value greater that 1 for occurs, you must also use
count er Nane. count er Narre specifies the field used for indexing the array or
sequence. The value of count er Nane corresponds to a bi ndi ngnl y
<fixed: fiel d>with at least enough digits to count to the value specified in
occur s as shown in Example 130.

Example 130:Using counterName

<fixed:field nane="count" format="##" bindi ngOnl y="true"/>
<fixed: sequence nane="itens" counterName="count" occurs="10">

</ fi xed: sequence>

A <fi xed: sequence> can contain any number of <fi xed: fi el d>,

<fi xed: sequence>, or <f i xed: choi ce> child elements to describe the data
contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three
<fixed: fiel d>elements to fully describe the mapping of the data to the
fixed record message. Example 131 shows an Artix contract fragment for
such a mapping.

Example 131:Mapping a Sequence to a Fixed Record Length Message

<?xm version="1.0" encodi ng="UTF-8" 2>
<defi ni tions nane="fi xedMappi ngsanpl e"
t ar get Namespace="ht t p: / / www. i ona. coni Fi xedSer vi ce"
xm ns="ht t p: // schemas. xm soap. or g/ wsdl / "
xm ns: fixed="http://schenas. i ona. coni bi ndi ngs/ fi xed"
xm ns: tns="htt p: // ww. i ona. coni Fi xedSer vi ce"
xm ns: xsd="htt p: / / waww. W3. or g/ 2001/ XM_Schena" >
<t ypes>
<schera t ar get Nanespace="htt p: // wmv. i ona. coni Fi xedSer vi ce"
xm ns="htt p: // wa. w3. or g/ 2001/ XM_Schena"
xm ns: wsdl ="ht t p: // schenmas. xm soap. or g/ wsdl /" >

339

CHAPTER 16 | Payload Formats

Example 131:Mapping a Sequence to a Fixed Record Length Message

<xsd: conpl exType nanme="person">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="date" type="xsd:string"/>
<xsd: el ement nane="ID' type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>
</types>
<nessage name="fi xedSequence" >
<part name="personPart" type="tns: person" />
</ message>
<port Type nane="fi xedSequencePort Type" >

</ port Type>
<bi ndi ng name="f i xedSequenceBi ndi ng"
type="t ns: f i xedSequencePort Type" >
<fi xed: bi nding />

<f i xed: sequence nane="personPart">
<fixed: field nane="nane" size="20" />
<fixed: field nane="date" format="M DD YY" />
<fixed:field nane="1D"' formnat="####" | >

</ fixed: sequence>

</ bi ndi ng>

</ definition>

<fixed:choice> <fi xed: choi ce> is used to map unions into fixed record length messages. It
takes one required attribute, name, which corresponds to the name of the
logical message part being mapped.

<fi xed: choi ce> also supports an optional attribute, di scri m nat or Nane,
that specifies the message part used as the discriminator for the union. The
value for di scri ni nat or Nane corresponds to the name of a bi ndi ngnl y
<fixed: fi el d>that describes the type used for the union’s descriminator as
shown in Example 132. The only restriction in describing the descriminator

340

<fixed:case>

Fixed Record Length Data Format

is that it must be able to handle the values used to determine the case of the
union. Therefore the values used in the union mapped in Example 132 must
be two digit integers.

Example 132:Using discriminatorName

<fixed:field nane="di sc" format="##" bindi ngOnl y="true"/>
<fi xed: choi ce nane="uni onSt ati on" di scri nm nat or Nane="di sc">

</ fi xed: choi ce>

A <fi xed: choi ce> may contain one or more <fi xed: case> child elements to
map the cases for the union to a fixed record length message.

<fixed: case> is a child element of <fi xed: choi ce> and describes the
complete mapping of a union’s individual cases to a fixed record length
message. It takes two required attributes, nane and fi xedval ue. nane
corresponds to the name of the case element in the union’s logical
description. fi xedVval ue specifies the value of the descriminator that selects
this case. The value of fi xedVal ue must correspond to the format specified
by the di scri mi nat or Nane attribute of <fi xed: choi ce>.

<fi xed: case> must contain one child element to describe the mapping of
the case’s data to a fixed record length message. Valid child elements are
<fixed: fiel d>, <fixed: sequence>, and <fi xed: choi ce>. Example 133
shows an Artix contract fragment mapping a union to a fixed record length
message.

Example 133:Mapping a Union to a Fixed Record Length Message

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<defi ni ti ons nane="fi xedMvappi ngsanpl e"
t ar get Namespace="ht t p: / / ww. i ona. coni Fi xedSer vi ce"
xm ns="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/ fi xed"
xm ns: tns="http://ww: i ona. con Fi xedServi ce"
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_Scherma" >
<t ypes>
<schera t ar get Namespace="htt p: //wmv i ona. com Fi xedSer vi ce"
xm ns="htt p: / / www, w3. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / " >

341

CHAPTER 16 | Payload Formats

Example 133:Mapping a Union to a Fixed Record Length Message

<xsd: conpl exType nanme="uni onSt at i onType" >
<xsd: choi ce>
<xsd: el ement nane="train" type="xsd:string"/>
<xsd: el ement nane="bus" type="xsd:int"/>
<xsd: el ement nane="cab" type="xsd:int"/>
<xsd: el ement nane="subway" type="xsd:string" />
</ xsd: choi ce>
</ xsd: conpl exType>
</ types>
<nessage name="fi xedSequence" >
<part name="stationPart" type="tns:unionStationType" />
</ message>
<port Type nane="fi xedSequencePort Type" >

</ port Type>
<bi ndi ng name="f i xedSequenceBi ndi ng"
type="t ns: f i xedSequencePort Type" >
<fi xed: bi nding />

<fixed:field nane="di sc" format="##" bi ndi ngOnl y="true"

<fi xed: choi ce nane="st ati onPart"
descri nm nat or Nane="di sc" >
<fi xed: case name="train" fixedVal ue="01">
<fixed: field name="nanme" size="20" />
</ fixed: case>
<fi xed: case name="bus" fi xedVal ue="02">
<fixed: field name="nunber" format="###" />
</ fi xed: case>
<fi xed: case name="cab" fixedVal ue="03">
<fixed: field name="nunber" format="###" />
</ fi xed: case>
<fi xed: case name="subway" fixedVal ue="04">
<fixed:field name="nane" format="10" />
</ fi xed: case>
</ fi xed: choi ce>

</ bi ndi ng>

</ definition>

342

/>

Fixed Record Length Data Format

Adding a Fixed Record Length Binding to an Artix Contract

Overview Currently Artix does not provide an automated tool to generate fixed record
length message bindings for logical interfaces defined in an Artix contract.
You must hand enter the mapping information or create a new contract in
Artix Designer using the fixed record length data description as a starting
point.

Using Artix Designer To create a new contract using fixed record length data complete the
following steps:

1. Select New|Contract From....
2. You will see a screen similar to Figure 29.

| Generate Contract - Artix Designer
Data Formats
®

O Tagged

P Select Data Format
Input Data
View WEDL Contract

|Erevinus H Mext H Finish H Cancel H Help

Figure 29: Binding Selection

3. Select Fixed.
4. Click Next to enter the binding information.

343

CHAPTER 16 | Payload Formats

5. You will see a screen similar to Figure 30.

€ Generate Contract - Artix Designer

Fixed Binding Defaults =
Set Binding defaults. They may he overridden per Message.

| Encoding | Padding \|

[
Right [I

Cperations
Select Mewto create an operation. Set Style to change default messages

MName Style Discriminator Mo
placewyidgetOrder REQUEST_RESFONSE idoetDise
I Remove I E|
Messages
Select a message to enable fisld creation.
[Mame | Type [Justi | Encoding | Padding ||
Select Data Format widgetOrder Input [[[|
P Input Data mridgetorderBill Output |

View WSDL Contract

Fields E
Select Mew Field to create a field or New Sub-field for a Seguence, Choice, or Case.

Mame | Type | Size [Formaf value | Rendering |oc.[c..[Di.] MNew Field
[=] amount Field g

5] order_datField . [MewsunFien |

Elwe Enum.2 | mungolg e

M shinninatGeaue 0 Famave =
|| Previous I { Next I l Finish] I Cancel I { Help]

Figure 30: Fixed Binding Information Screen

6. Under the Fixed Bindings Defaults enter the default justification,
encoding, padding for this binding.
These values correspond to the j usti fi cati on, encodi ng, and
padHexCode attributes of the <f i xed: bi ndi ng> tag as described on
page 334.

7. Under Operations enter the information for the operations your service
offers.

8. Under Messages enter the messages for the operation selected in the
Operations field.
You are able to provide alternate values for the j usti fi cati on,
encodi ng, and padHexCode attributes here. These values are set on the
<f i xed: body> tag as described on page 335.

9. Under Fields enter the fields that make up the message selected in the
Messages field.

344

Fixed Record Length Data Format

Each message part can be either a field as described in “<fixed:field>"
on page 335, an enumeration as described in “<fixed:enumeration>"
on page 338, a sequence as described in “<fixed:sequence>" on

page 339, or a choice as described in “<fixed:choice>" on page 340.

10. Click Finish to create the contract with the fixed record binding.

Example Example 134 shows an example of an Artix contract containing a fixed
record length message binding.

Example 134:Fixed Record Length Message Binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defi ni ti ons nane="wi dget O der For m wsdl "
t ar get Nanmespace="ht t p: / / wi dget Vendor . corm wi dget O der For n¥
xm ns="ht t p: // schenas. xn soap. or g/ wsdl / "
xm ns: tns="htt p: //w dget Vendor . com w dget O der For n¥
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: fi xed="ht t p: // schenas. i ona. cont bi ni ngs/ fi xed"
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM-Schera"
xm ns: xsd1="ht t p: / / wi dget Vendor . com t ypes/ wi dget Types" >
<t ypes>
<schema t ar get Namespace="htt p: // wi dget Vendor . coni t ypes/ wi dget Types"
xm ns="htt p: // waw w3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="ht t p: // schenas. xm soap. org/ wsdl / " >
<xsd: si npl eType nane="wi dget Si ze" >
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="bi g"/ >
<xsd: enuner ati on val ue="|arge"/>
<xsd: enuner ati on val ue="rungo"/>
<xsd: enuner ati on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType nane="Address">
<xsd: sequence>
<xsd: el ement nane="nanme" type="xsd:string"/>
<xsd: el enent nanme="street 1" type="xsd:string"/>
<xsd: el enent nanme="street 2" type="xsd:string"/>
<xsd: el ement nane="city" type="xsd:string"/>
<xsd: el enent nane="state" type="xsd:string"/>
<xsd: el enent nanme="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

345

CHAPTER 16 | Payload Formats

Example 134:Fixed Record Length Message Binding

<xsd: conpl exType nanme="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el ement nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetS ze"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget O derBil || nfo">
<xsd: sequence>
<xsd: el ement nane="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nane="type" type="xsdl:w dgetSi ze"/>
<xsd: el ement nane="ant Due" type="xsd:float"/>
<xsd: el ement name="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schena>
</ types>
<nessage nanme="w dget O der ">
<part name="w dget O der Form type="xsd1: w dget O der | nfo"/>
</ message>
<nessage nanme="w dget OrderBill">
<part name="w dget O der Conf or mati on" type="xsdl: w dget O derBilllnfo"/>
</ message>
<port Type nane="or der Wdget s">
<oper ati on name="pl aceW dget O der ">
<i nput nessage="t ns: wi dget O der" nane="order"/>
<out put message="tns:w dgetCrderBill" name="bill"/>
</ oper at i on>
</ por t Type>

346

Fixed Record Length Data Format

Example 134:Fixed Record Length Message Binding

<bi ndi ng nanme="or der W dget sBi ndi ng" type="tns: order Wdget s">
<fi xed: bi ndi ng/ >
<oper ati on nane="pl aceW dget O der ">
<fixed: operation di scri m nator="wi dget D sc"/>
<i nput nane="wi dget O der ">
<f i xed: body>
<fi xed: sequence nanme="wi dget Or der For n{' >
<fixed:field nane="anount" fornat="###" />
<fixed: field name="order_date" format="M DI YYYY" />
<fixed:field name="type" size="2">
<fi xed: enuner ati on val ue="bi g" fi xedVval ue="bg" />
<fixed: enurer ati on val ue="I| arge" fixedVal ue="1g" />
<fi xed: enurer ati on val ue="nungo" fi xedVal ue="ng" />
<fi xed: enuner ati on val ue="gar gant uan" fixedVal ue="gg" />
</fixed:field>
<fi xed: sequence nane="shi ppi ngAddr ess" >
<fixed:field name="name" size="30" />
<fixed:field nane="street1" size="100" />
<fixed:field nane="street?2" size="100" />
<fixed:field name="city" size="20" />
<fixed:field name="state" size="2" />
<fixed:field name="zip" size="5" />
</ fi xed: sequence>
</fixed: sequence>
</ fi xed: body>
</i nput >

347

CHAPTER 16 | Payload Formats

Example 134:Fixed Record Length Message Binding

<out put nane="wi dget OrderBil|">
<fi xed: body>
<f i xed: sequence nane="wi dget O der Conf or mat i on" >
<fixed:field nane="anount" format="###" />
<fixed: field nane="order_date" fornat="M DD YYYY" />
<fixed: field nane="type" size="2">
<fixed: enunerati on val ue="bi g" fi xedval ue="bg" />
<fixed: enuneration val ue="1arge" fixedVal ue="Ig" />
<fixed: enuneration val ue="nungo" fixedVval ue="ng" />
<fi xed: enunerati on val ue="gargant uan" fixedval ue="gg" />
</fixed:field>
<fixed: field nane="ant Due" format="####. ##" [>
<fixed: field name="order Nunber" size="20" />
<fi xed: sequence nane="shi ppi ngAddr ess" >
<fixed: field nane="nane" size="30" />
<fixed: field name="street1" size="100" />
<fixed: field nane="street2" size="100" />
<fixed:field nane="city" size="20" />
<fixed:field nane="state" size="2" />
<fixed: field nane="zi p" size="5" />
</ fi xed: sequence>
</ fixed: sequence>
</ fi xed: body>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="order W dget sServi ce">
<port name="w dget O derPort" bindi ng="t ns: or der W dget sBi ndi ng" >
<http: address | ocation="http://I ocal host: 8080"/ >
</ port>
</ servi ce>
</ defi ni ti ons>

348

Pure XML Format

Pure XML Format

Overview

Binding namespace

Type support

The pure XML payload format provides an alternative to the SOAP binding
by allowing services to exchange data using straight XML documents
without needing the overhead of the SOAP envelope.

The IONA extensions used to describe XML format bindings are defined in
the namespace ht t p: / / schenas. i ona. cond bi ndi ngs/ xni f or mat . Artix tools
use the prefix xm f or mat to represent the fixed record length extensions and
add the following line to your contracts:

xm ns: fi xed="http://schenas. i ona. con bi ndi ngs/ xni f or nat

If you add an XML format binding to an Artix contract by hand you must also
include this namespace.

The XML data format supports all of the types supported by the SOAP
binding using doc/literal encoding. See “Supported XML Types” on
page 417 for a full listing of the supported types.

Messages mapped to an XML format binding can only have one part. For
example the message in Example 135 can be mapped to an XML format
binding:

Example 135:Valid XML Binding Message

<message nane="operator" >
<part name="lineNunber" type="xsd:int" />
</ message>

However, the message in Example 136 cannot be mapped to an XML
format binding because it has more than one part.

Example 136:/nvalid XML Binding Message
<nessage name="nati | das" >
<part nanme="danci ng" type="xsd: bool ean" />

<part name="nunber" type="xsd:int" />
</ message>

349

CHAPTER 16 | Payload Formats

Mapping to an XML format The XML format binding uses a single IONA-specific extension,

binding <xni f or mat : bi ndi ng>, to identify the binding type. <xmi f or mat : bi ndi ng>
takes no attributes and is listed just after the <bi ndi ng> element. Beyond
the use of <xni f or mat : bi ndi ng>, an XML format binding is identical to a
SOAP binding. Each operation is listed and its input, output, and fault
messages are listed.

For example, Example 137 shows how the widget service would be mapped
to an XML format binding.

Example 137:XML Format Binding for Widgets

<nessage name="w dget O der ">
<part name="wi dget O der Form type="xsdl: w dget O der | nfo"/>
</ message>
<nessage name="w dget O derBill">
<part name="wi dget O der Conf or mati on" type="xsdl:w dgetrderBilllnfo"/>
</ message>
<port Type nane="or der Wdget s">
<oper at i on name="pl aceW dget O der ">
<i nput nmessage="tns: w dget O der" name="order"/>
<out put message="tns:w dgetOderBill" nane="bill"/>
</ oper ati on>
</ port Type>
<bi ndi ng name="w dget XM_Bi ndi ng" type="t ns: or der Wdget s">
<xm f or mat : bi ndi ng />
<oper at i on name="pl aceW dget Or der ">
<i nput nane="order" />
<out put name="bill" />
</ oper ati on>
</ bi ndi ng>

Adding an XML format bindingto To add an XML format binding to an Artix contract using Artix designer
an Artix Contract complete the following steps:

1. From the project tree, select the service to which you want to add the
XML format binding.

2. Select Contract|Bindings | New Binding from the menu of the
designer.

350

Pure XML Format

3. You will see a screen like Figure 31.

[] Binding Editor - Artix Designer

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.
O Add to existing WSDL "widgetOrderForm.wsdl
(@) Add to new WEDL widgets-corbal
P SelectWsDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract
’ Previous] ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 31: Select WSDL location

4. Select where to create the WSDL entry for the new binding.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.
6. Select XML from the list of possible bindings.

351

CHAPTER 16 | Payload Formats

N

Click Next to select the interface you want mapped to the XML format
binding.

8. You will see a dialog similar to Figure 32.

[} Binding Editor - Artix Designer

~Port Type

Port Type Iorder‘v’\fidgets E]]

Binding Name [ordenidgets_xMLEBinding |

Operations Ta Bind

placeWwidgetOrder

Select\WSDL

Select Binding Type
P Select Part Type

Edit Binding

Wiew W3DL Contract

I Previous I" Mext H’ Finish ” Cancel ” Help

Figure 32: Select Interface to Map to XML Format

9. From the drop down list select the interface you want to map to the
XML format binding.

10. Enter the name for the new binding.

11. If there is more than one operation described in the interface, select
the operation that are to be mapped into the XML format binding.

12. Click Next to edit the new XML format binding.

352

Pure XML Format

13. You will see a dialog similar to Figure 33.

[} Binding Editor - Artix Designer

~¥ML Binding

[arderidgets_XMLBinding
=3 Binding
L E placeWWidgetOrder

aw

~Port Type Operation: "placelWidgetOrder"
This is the logical {untranslated) operation.

Type | Message] Name
ingut {tnswidgetOrder Jarder
output {tnswidgetOrderBill hill

Select\WSDL
Select Binding Type
Select Port Type

~#ML Operation: "placeWwidgetOrder”

P Edit Binding This is the physical itranslated) operation.
Wiew W3DL Contract
Type J Mame
ingut Jarder
output hill
I Previous I || Mext H ’ Finish] ’ Cancel] ’ Help

Figure 33: Edit the CORBA Binding

14. Examine the different elements of the binding by selecting them from
the tree at the top of the dialog.

15. Edit the values shown in white if they are not correct.
16. When you are finished editing the binding, click Next.

17. Review the newly created contract containing the new XML format
binding.

18. If the contract is correct, click Finish.

353

CHAPTER 16 | Payload Formats

Tagged Data Format

Overview

Binding namespace

In this section

354

The tagged data format supports applications that use self-describing, or
delimited, messages to communicate. Artix can read tagged data and write
it out in any supported data format. Similarly, Artix is capable of converting
a message from any of its supported data formats into a self-describing or
tagged data message.

The IONA extensions used to describe tagged data bindings are defined in
the namespace htt p: // schemas. i ona. coni bi ndi ngs/ t agged. Artix tools
use the prefix t agged to represent the tagged data extensions and add the
following line to your contracts:

xm ns: t agged="htt p: // schemas. i ona. com bi ndi ngs/ t agged"

If you add a tagged data binding to an Artix contract by hand you must also
include this namespace.

This section discusses the following topics:

Tagged Data Mapping page 356

Adding a Tagged Data Binding to an Artix Contract page 364

Tagged Data Format

Tagged Data Mapping

Overview

<tagged:binding>

Artix defines seven elements that extend the WSDL binding element to
support the tagged data format. These elements are:

® <tagged:binding>

® <tagged:operation>

® <tagged:body>

® <tagged:field>

® <tagged:enumeration>

® <tagged:sequence>

® <tagged:choice>

® <tagged:case>

<t agged: bi ndi ng> specifies that the binding is for tagged data format
messages. It has five attributes:

sel f Descri bi ng Required attribute specifying if the message data
on the wire includes the field names. Valid
values are true or f al se. If this attribute is set to
fal se, the setting for fi el dNaneVal ueSepar at or
is ignored.

fi el dSepar at or Required attribute that specifies the delimiter the
message uses to separate fields. Supported
values are new i ne(\n), comma(,), and pi pe(|).

fi el dNanmeVal ueSepar at or Specifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equal s(=),
tab(\t), and col on(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are t ab(\t),
curl ybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If sel f Descri bi ng is
fal se, then this attribute is automatically set to
true.

355

CHAPTER 16 | Payload Formats

<tagged:operation>

<tagged:body>

356

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding. All of the values
can be overridden on a message-by-message basis.

<t agged: oper at i on> is a child element of the WSDL <oper at i on> element
and specifies that the operation’s messages are being mapped to a tagged
data format. It takes two optional attributes:

di scri m nat or Specifies a name to the operation for identifying the
operation as it is sent down the wire by the Artix
runtime.

discrimnatorStyl e Specifies how the discriminator will identify data as it
is sent down the wire by the Artix runtime. Supported
values are nsgnane, partlist, and fi el dnane.

<t agged: body> is a child element of the <i nput >, <out put >, and <f aul t >
messages being mapped to a tagged data format. It specifies that the
message body is mapped to tagged data on the wire and describes the exact
mapping for the message’s parts.

<t agged: body> takes six optional attributes:

sel f Descri bi ng Specifies if the message data on the wire
includes the field names. Valid values are t rue or
fal se. If this attribute is set to f al se, the setting
for fi el dNameVal ueSepar at or is ignored.

fi el dSepar at or Specifies the delimiter the message uses to
separate fields. Supported values are
new i ne(\n), comma(,), and pi pe(|).

fi el dNaneVal ueSepar at or Specifies the delimiter used to separate field
names from field values in self-describing
messages. Supported vales are: equal s(=),
tab(\t), and col on(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are t ab(\t),
curl ybr ace({dat a}), and none. The default is
tab.

<tagged:field>

Tagged Data Format

flattened Specifies if data structures are flattened when
they are put on the wire. If sel f Descri bi ng is
f al se, then this attribute is automatically set to
true.

These values override the defaults set in the <t agged: bi ndi ng> element.

Note: The value of the sel f Descri bi ng attribute is overridden by the
value set for sel f Descri bi ng at the message level.

<t agged: body> will have one or more of the following child elements:
® <tagged:field>

® <tagged:sequence>

® <tagged:choice>

They describe the detailed mapping of the message to the tagged data to be
sent on the wire.

<t agged: fi el d> is used to map simple types and enumerations to a tagged
data format. It has four attributes:

nane A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.

bi ndi ngOnl'y An optional attribute specifying that the field is only
specified in the binding and has no corresponding logical
message part. Valid settings are true and fal se. The
default is f al se.

fi xedval ue An optional attribute specifying the value of a
bi ndi ngnl y field. If bi ndi ngOnl y is set to f al se, this
attribute is ignored. If bi ndi ngOnl y is set to t rue, this
attribute is required.

When describing enumerated types <t agged: fi el d> will have a number of
<t agged: enuner at i on> child elements.

357

CHAPTER 16 | Payload Formats

<tagged:enumeration> <t agged: enuner at i on> is a child element of <t aggeded: fi el d> and is used
to map enumerated types to a tagged data format. It takes one required
attribute, val ue, that corresponds to the enumeration value as specified in
the logical description of the enumerated type.

For example, if you had an enumerated type, f| avor Type, with the values
Frui t yToot y, Rai nbow, Ber r yBonb, and O angeTango the logical description
of the type would be similar to Example 138.

Example 138:/ce Cream Enumeration

<xs: si npl eType name="f| avor Type" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="FruityTooty"/>
<xs: enuneration val ue="Rai nbow'/ >
<xs: enuneration val ue="BerryBonb"/>
<xs: enuneration val ue="Q angeTango"/ >
</xs:restriction>
</ xs: si npl eType>

fl avor Type would be mapped to the tagged data format shown in
Example 139.

Example 139:Tagged Data Ice Cream Mapping

<t agged: field name="fl avor ">
<t agged: enurrer at i on val ue="Frui tyTooty" />
<t agged: enurrer at i on val ue="Rai nbow" />
<t agged: enurrer at i on val ue="BerryBonb" />
<t agged: enurrer at i on val ue="Cr angeTango" />
</tagged: fiel d>

<tagged:sequence> <t aggeded: sequence> maps arrays and sequences to a tagged data format.
It has three attributes:

nane A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data sequence.

occurs An optional attribute specifying the number of
occurrences of the sequence’s child elements in the
message. Default is 1.

358

Tagged Data Format

alias An optional attribute specifying an alias for the sequence
that can be used to identify it on the wire.

A <t agged: sequence> can contain any number of <t agged: fi el d>,

<t agged: sequence>, or <t agged: choi ce> child elements to describe the
data contained within the sequence being mapped. For example, a structure
containing a name, a date, and an ID number would contain three

<t agged: fi el d> elements to fully describe the mapping of the data to the
fixed record message. Example 140 shows an Artix contract fragment for
such a mapping.

Example 140:Mapping a Sequence to a Tagged Data Format

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<defi ni ti ons nane="t aggedDat aMappi ngsanpl e"
t ar get Namespace="ht t p: / / waww. i ona. coni t aggedSer vi ce"
xm ns="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/ t agged"
xm ns: tns="http://ww:. i ona. con t aggedSer vi ce"
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_Schena" >
<t ypes>
<schera t ar get Namespace="htt p: // waw i ona. coni t aggedSer vi ce"
xm ns="htt p: / / www, w3. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / " >
<xsd: conpl exType name="person">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el ement nane="date" type="xsd:string"/>
<xsd: el ement nane="ID' type="xsd:int"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ types>
<nessage name="t aggedSequence" >
<part name="personPart" type="tns:person" />
</ message>
<port Type nane="t aggedSequencePort Type" >

</ por t Type>
<bi ndi ng name="t aggedSequenceBi ndi ng"
t ype="t ns: t aggedSequencePor t Type" >
<t agged: bi ndi ng sel f Descri bi ng="f al se" fi el dSepar at or =" pi pe"/>

359

CHAPTER 16 | Payload Formats

<tagged:choice>

<tagged:case>

360

Example 140:Mapping a Sequence to a Tagged Data Format

<t agged: sequence name="personPart">
<t agged: fi el d name="nane"/>
<tagged: fi el d name="date" />
<tagged:field name="1D" />

</ t agged: sequence>

</ bi ndi ng>

</ definition>

<t agged: choi ce> maps unions to a tagged data format. It takes three
attributes:

name A required attribute that must correspond to the name
of the logical message part that is being mapped to the
tagged data union.

di scri m nat or Nane Specifies the message part used as the discriminator for
the union.

alias An optional attribute specifying an alias for the union
that can be used to identify it on the wire.

A <t agged: choi ce> may contain one or more <t agged: case> child elements
to map the cases for the union to a tagged data format.

<t agged: case> is a child element of <t agged: choi ce> and describes the
complete mapping of a unions individual cases to a tagged data format. It
takes one required attribute, nare, that corresponds to the name of the case
element in the union’s logical description.

<t agged: case> must contain one child element to describe the mapping of
the case’s data to a tagged data format. Valid child elements are

<t agged: fi el d>, <t agged: sequence>, and <t agged: choi ce>. Example 141
shows an Artix contract fragment mapping a union to a tagged data format.

Tagged Data Format

Example 141:Mapping a Union to a Tagged Data Format

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<defi ni ti ons nane="fi xedMVappi ngsanpl e"
t ar get Namespace="ht t p: / / waw. i ona. coni t agSer vi ce"
xm ns="ht t p: // schenas. xm soap. or g/ wsdl /"
xm ns: fi xed="http://schenas. i ona. coni bi ndi ngs/ t agged"
xm ns: tns="http://ww:. i ona. coni t agServi ce"
xm ns: xsd="ht t p: / / ww. W3. or g/ 2001/ XM_Scherma" >
<t ypes>

<schera t ar get Namespace="htt p: //wa i ona. coni t agSer vi ce"

xm ns="htt p: / / www, w8. or g/ 2001/ XM-Schena"
xm ns: wsdl ="ht t p: // schemas. xm soap. or g/ wsdl / " >
<xsd: conpl exType name="uni onSt ati onType">
<xsd: choi ce>
<xsd: el ement nane="train" type="xsd:string"/>
<xsd: el ement nane="bus" type="xsd:int"/>
<xsd: el ement nane="cab" type="xsd:int"/>
<xsd: el ement nane="subway" type="xsd:string" />
</ xsd: choi ce>
</ xsd: conpl exType>
</ types>
<nessage name="t aglnhi on" >
<part name="stationPart" type="tns:unionStationType" />
</ message>
<port Type nane="t aglhi onPort Type" >

</ por t Type>

<bi ndi ng name="t agUni onBi ndi ng" type="t ns: taguni onPort Type">

<t agged: bi ndi ng sel f Descri bi ng="f al se"
fi el dSepar at or =" comma"/ >

361

CHAPTER 16 | Payload Formats

Example 141:Mapping a Union to a Tagged Data Format

<t agged: choi ce nane="stationPart" descri m nat or Name="di sc" >
<t agged: case nane="train">
<tagged: fiel d nane="name" />
</t agged: case>
<t agged: case nane="hus">
<tagged: fi el d name="nunber" />
</t agged: case>
<t agged: case nane="cab">
<tagged: fi el d name="nunber" />
</t agged: case>
<t agged: case nanme="subway" >
<tagged: fi el d name="name"/>
</t agged: case>
</ t agged: choi ce>

</ bi ndi ng>

</ definition>

362

Tagged Data Format

Adding a Tagged Data Binding to an Artix Contract

Overview Currently Artix does not provide an automated tool to generate tagged data
format bindings for logical interfaces defined in an Artix contract. You can
either create a new contract for the tagged data binding and operations or
hand enter the mapping information.

Using Artix Designer Currently Artix does not provide an automated tool to generate fixed record
length message bindings for logical interfaces defined in an Artix contract.
You must hand enter the mapping information or create a new contract in
Artix Designer using the fixed record length data description as a starting
point.

363

CHAPTER 16 | Payload Formats

Using Artix Designer To create a new contract using fixed record length data complete the
following steps:

1. Select New|Contract From....
2. You will see a screen similar to Figure 34.

2 Generate Contract - Artix Designer x|
~Data Format:
O Fixed
®

P Select Data Format
Input Data
Wiew WEDL Contract

|Erevluu5 H HNext H Einish H Cancel H Help

Figure 34: Binding Selection

3. Select Tagged.
4. Click Next to enter the binding information.

364

5.

Tagged Data Format

You will see a screen similar to Figure 35.

£ Generate Contract - Artix Designer

Tagged Binding Defaults E
Set Binding defaults. They may be overridden per Message.

\ Self-Describing \ Field Separator |F\e|d Mame Value Sep. .LE‘.cupeT e \ Flattened
tab

|false Ipipe colon false

Operations
Select New to create an operation. Set Style to change default messages.

Name | Style I Discriminator I l ew]
[placevidgetorder |REQUEST_RESPONSE widgetDisc
l Remaove] =]
Messages
Select a message to enable field creation
[wame | Type [SelfDescri.]Field Separ. [Field Name.| Scope Type | Flattened ||
IR (s widuetOrder lnput false pioe | b Talse
P Input Data widgetOorde. . Output false pipe tab false J

Wiew WSDL Contract

Fields E
Select Mew Field to create a field or New Sub-field for a Sequence, Choice, or Case.

Mame \ Alias | Type |Pr\mmve .|F\xed\/a\.] Qccurs \D\smm\.. MNew Field
=] amoun Field int
EBlocer |Field |sting | [Mewsusfien |
Eltme [Enumer.|sving iy e o
M shiopil Seauence 0 [Famoa | =
H Previous I l Mesxt] I Finish I { Cancel] I Help I

Figure 35: Tagged Binding Information Screen

6.

Under the Tagged Bindings Defaults enter the default values for the
sel f Descri bi ng, fi el dSeperator, fi el dNaneSeper at or, scopeType,
and fl att ened attributes for this binding.

These attributes of the <t agged: bi ndi ng> tag are described on page
356.

Under Operations enter the information for the operations your service
offers.

Under Messages enter the messages for the operation selected in the
Operations field.

You are able to provide alternate values for the sel f Descri bi ng,

fi el dSeperat or, fi el dNammeSeper at or , scopeType, and f| at t ened
attributes here. These values are set on the <t agged: body> tag as
described on page 357.

Under Fields enter the fields that make up the message selected in the
Messages field.

365

CHAPTER 16 | Payload Formats

Each message part can be either a field as described in
“<tagged:field>" on page 358, an enumeration as described in
“<tagged:enumeration>" on page 359, a sequence as described in
“<tagged:sequence>" on page 359, or a choice as described in
“<tagged:choice>" on page 361.

10. Click Finish to create the contract with the tagged data binding.

Example Example 142 shows an example of an Artix contract containing a tagged
data format binding.

Example 142:Tagged Data Format Binding

<?xm version="1.0" encodi ng="UTF- 8" ?>
<defini ti ons nane="wi dget O der For m wsdl "
t ar get Namespace="ht t p: / / wi dget Vendor . corm wi dget O der For n¥
xm ns="http://schenas. xm soap. or g/ wsdl / "
xm ns: tns="htt p: //wi dget Vendor . com wi dget O der For n¥
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: fi xed="htt p://schanes. i ona. coni bi ni ngs/ t agged"
xm ns: xsd="ht t p: / / waw. W8. or g/ 2001/ XM_Schena"
xm ns: xsd1="ht t p: // w dget Vendor . coni t ypes/ wi dget Types" >
<t ypes>
<schera t ar get Namespace="ht t p: / / wi dget Vendor . coni t ypes/ wi dget Types"
xm ns="ht t p: / / waw. w8. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="htt p: // schemas. xm soap. or g/ wsdl /">
<xsd: si npl eType nane="wi dget Si ze">
<xsd:restriction base="xsd:string">
<xsd: enurrer ati on val ue="bi g"/>
<xsd: enurrer ati on val ue="| arge"/ >
<xsd: enurrer ati on val ue="nungo"/ >
<xsd: enurrer at i on val ue="gar gant uan"/ >
</xsd:restriction>
</ xsd: si npl eType>
<xsd: conpl exType name="Address">
<xsd: sequence>
<xsd: el ement nanme="nane" type="xsd:string"/>
<xsd: el ement nane="street1" type="xsd:string"/>
<xsd: el ement nane="street2" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el ement nane="state" type="xsd:string"/>
<xsd: el ement nane="zi pCode" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>

366

Example 142:Tagged Data Format Binding

<xsd: conpl exType nanme="wi dget O der | nf 0" >
<xsd: sequence>
<xsd: el ement nane="anount" type="xsd:int"/>
<xsd: el enent nanme="or der_date" type="xsd:string"/>
<xsd: el enent nanme="type" type="xsdl:wi dgetSi ze"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="wi dget OrderBil | | nfo">
<xsd: sequence>
<xsd: el enent nanme="anount" type="xsd:int"/>
<xsd: el ement nane="order_date" type="xsd:string"/>
<xsd: el ement nanme="type" type="xsdl:wi dgetSi ze"/>
<xsd: el enent nanme="ant Due" type="xsd:float"/>
<xsd: el ement nane="or der Nunber" type="xsd: string"/>
<xsd: el ement nane="shi ppi ngAddr ess" type="xsd1l: Address"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schenma>
</ types>
<nessage name="w dget O der" >
<part name="w dget O der Form{ type="xsd1: w dget O der | nfo"/>
</ message>
<nessage name="w dget OrderBill">
<part name="w dget O der Conf or nati on" type="xsdl: w dget O derBillInfo"/>
</ message>
<port Type nane="order Wdget s">
<oper ati on name="pl aceW dget O der" >
<i nput nessage="tns: wi dget O der" nane="or der"/>
<out put message="tns:w dget O derBill" name="bill"/>
</ oper at i on>
</ por t Type>

Tagged Data Format

367

CHAPTER 16 | Payload Formats

Example 142:Tagged Data Format Binding

<bi ndi ng nane="or der W dget sBi ndi ng" type="tns: order Wdgets">
<t agged: bi ndi ng sel f Descri bi ng="f al se" fi el dSepar at or =" pi pe" />
<oper ati on name="pl aceW dget Or der" >
<t agged: oper ati on di scri m nat or ="wi dget D sc"/>
<i nput nane="wi dget O der ">
<t agged: body>
<t agged: sequence name="wi dget O der For n{ >
<t agged: fi el d name="amount" />
<t agged: fi el d name="order_date" />
<tagged:field name="type" >
<t agged: enuner ati on val ue="bi g" />
<t agged: enurrer at i on val ue="Il arge" />
<t agged: enuner ati on val ue="nungo" />
<t agged: enuner ati on val ue="gar gant uan" />
</tagged: fiel d>
<t agged: sequence name="shi ppi ngAddr ess" >
<t agged: fi el d nane="name" />
<tagged:field nane="street1" />
<tagged:field nane="street2" />
<tagged:field name="city" />
<tagged:field nane="state" />
<tagged: field name="zip" />
</t agged: sequence>
</ t agged: sequence>
</ t agged: body>
</i nput >

368

Example 142:Tagged Data Format Binding

<out put nanme="wi dget OrderBill">
<t agged: body>
<t agged: sequence nare="wi dget O der Conf or nat i on" >
<t agged: fi el d name="anmount" />
<t agged: fi el d name="or der_date" />
<t agged: fi el d name="t ype" >
<t agged: enuner ati on val ue="bi g" />
<t agged: enuner ati on val ue="| arge" />
<t agged: enuner ati on val ue="nungo" />
<t agged: enuner ati on val ue="gar gant uan" />
</tagged: fiel d>
<t agged: fi el d name="ant Due" />
<t agged: fi el d name="or der Nunber" />
<t agged: sequence nane="shi ppi ngAddr ess" >
<t agged: fi el d name="name"/>
<tagged: field name="street1"/>
<t agged: field name="street2" />
<tagged: field name="city" />
<tagged: field name="state" />
<t agged: fi el d name="zi p" />
</ t agged: sequence>
</ t agged: sequence>
</t agged: body>
</ out put >
</ oper at i on>
</ bi ndi ng>
<servi ce name="or der W dget sServi ce">
<port name="w dget O derPort" bi ndi ng="t ns: or der W dget sBi ndi ng" >
<http: address | ocati on="http://| ocal host: 8080"/ >
</ port >
</ servi ce>
</ defini ti ons>

Tagged Data Format

369

CHAPTER 16 | Payload Formats

370

Tagged Data Format

371

CHAPTER 16 | Payload Formats

372

In this chapter

CHAPTER 17

SOAP Payload
Format

The SOAP plug-in lets you configure an Artix integration
solution to use the SOAP payload format for communication
between distributed applications. This chapter first provides
an introductory overview of SOAP. It then explains how to
configure and extend a WSDL contract to use a SOAP binding
and a SOAP-over-HTTP port. It provides a description of the
WSDL extensions involved in extending a WSDL contract for
SOAP. It outlines the XML types supported by SOAP in Artix.
Finally, it provides an overview of the WSDL extension schema
that supports the use of SOAP with Artix.

This chapter discusses the following topics:

Overview of SOAP page 374
Adding a SOAP Binding page 392
Adding a Port for SOAP over HTTP page 398
SOAP WSDL Extensions page 405
Supported XML Types page 417

373

CHAPTER 17 | SOAP Payload Format

Overview of SOAP

Overview

In this section

374

This section provides an introductory overview of the simple object access
protocol (SOAP) in terms of its purpose, how it evolved, the elements of a
SOAP message, and how it handles (encodes) application data types.

This section discusses the following topics:

Background to SOAP page 375
SOAP Messages page 378
SOAP Encoding of Data Types page 384

Note: A complete introduction to SOAP is outside the scope of this guide.
For more details see the W3C SOAP 1.1 specification at

ht t p: // wawv. w3. or g/ TR/ SQAP/ . IONA’s Artix product supports only version
1.1 of the W3C SOAP specification.

Overview of SOAP

Background to SOAP

Overview

What is SOAP?

XML

This subsection discusses the purpose of SOAP and how it evolved. It
discusses the following topics:

® “What is SOAP?” on page 375.

® “XML" on page 375.

® “XML and Unicode” on page 376.
® “HTTP” on page 376.

® “SOAP specification” on page 377.

SOAP is a lightweight, XML-based protocol that is used for client-server
communications on the World Wide Web. The primary function of SOAP is
to enable access to distributed services and to facilitate the exchange of
structured and typed information between peers across the Web.

With the evolution of the Web, and the ever-increasing need to do business
more quickly and more proactively across it, there arose a need to have a
dynamic, flexible, extensible, but standards-based system of communication
between applications across the Internet. SOAP evolved as a solution to this
need, by combining existing standards such as extensible markup language
(XML) and the hypertext transfer protocol (HTTP).

SOAP is termed a messaging protocol. It is a framework for transporting
client request and server response messages in the form of XML documents
over (usually) the HTTP transport.

XML is a simple form of standard generalized markup language (SGML). The
purpose of a markup language is to facilitate preparation of electronic
documents, by allowing information to be added to the document text that
indicates the logical components of the document or how they are to be
formatted. SGML describes the relationship between a document’s content
and its structure.

XML uses user-defined tags to describe the actual data elements contained
within a web page or file. (This is unlike the hypertext markup language
(HTML), which can only use a limited set of predefined tags to describe how
the contents of a web page or file are to be formatted.) XML tags are

375

CHAPTER 17 | SOAP Payload Format

XML and Unicode

HTTP

376

unlimited, because they can be defined at the user’s discretion, depending
on the data elements that need to be defined. This is why XML is termed
extensible. XML processors now exist for any common platform or language.

XML works on the assumption that all character data belongs to the
universal character set (UCS). UCS is more commonly known as unicode.
This is a mechanism for setting up binary codes for text or script characters
that relate to the principal written languages of the world. Unicode therefore
provides a standard means of interchanging, processing, and displaying
written texts in diverse languages. See ht t p: / / wwa. uni code. or g for details.

Because unicode uses 16 bits to represent a particular character, it can
represent more than 65,000 different international text characters. This
makes Unicode much more powerful than other text representation formats,
such as ASCII (American standard code for information interchange), which
only uses 7 bits to represent a particular character and can only represent
128 characters. Unicode uses a conversion method called UTF (universal
transformation format) that can convert text to 8-bit or 16-bit Unicode
characters. To this effect, there are UTF-8 and UTF-16 encoding formats.
All XML processors, regardless of the platform or programming language for
which they are implemented, must accept character data encoded using
UTF-8 or UTF-16 encoding formats.

HTTP is the standard TCP/IP-based transport used for client-server
communications on the Web. Its main function is to establish connections
between distributed web browsers (clients) and web servers for exchanging
files and possibly other information across the Internet. HTTP is available on
all platforms, and HTTP requests are usually allowed through security
firewalls. See “Using the HTTP Plug-in” on page 227 for a more detailed
overview of HTTP.

Given the dynamic features of XML and HTTP, SOAP has therefore become
regarded as the optimum tool for enabling communication between
distributed, heterogeneous applications over the Internet.

Note: Although most implementations of SOAP are HTTP-based, SOAP
can be used with any transport that supports transmission of XML data.
Depending on the particular transport in use, SOAP can also be
implemented to support different types of message-exchange patterns,
such as one-way or request-response.

SOAP specification

Overview of SOAP

SOAP is a framework for transporting client request and server response
messages in the form of XML documents over HTTP or some other
transport. The W3C SOAP specification at ht t p: // waw. w8. or g/ TRl SQAP/
defines the standards for SOAP in relation to:

Format and components of SOAP messages.

SOAP usage with HTTP.

SOAP encoding rules for application-defined data types.

SOAP standards for representing remote procedure calls (RPCs) and
responses.

“SOAP Messages” on page 378 briefly discusses the format and
components of SOAP messages, and their use with HTTP. “SOAP Encoding
of Data Types” on page 384 briefly discusses how data types are handled in
SOAP. Again, a complete introduction to these topics is outside the scope of
this guide, and you should see the W3C SOAP 1.1 specification at

ht t p: // www. W8. or g/ TR/ SQAP/ for full details.

377

CHAPTER 17 | SOAP Payload Format

SOAP Messages

Overview This subsection uses an example of a simple client-server application to
outline the typical format of a SOAP request and response message. It
discusses the following topics:
® “Example overview” on page 378.
® “Example of SOAP request message” on page 379.
® ‘“Explanation of SOAP request message” on page 379.
® “Example of SOAP response message” on page 380.
® “Explanation of SOAP response message” on page 381.
® “Example of SOAP response with fault” on page 381.
® ‘“Explanation of SOAP response with fault” on page 382.

Example overview The distributed application in this example involves a client that invokes a
Get St udent @ ade method on a target server. The client passes a student
code and subject name, both of type string, as input parameters to the
method request. On processing the request, the server returns the grade
achieved by that student for that subject—the grade is of type i nt. The
following example shows the logical definition of this application in a WSDL
contract:

Example 143:Example of logical definition in WSDL

<nessage nane="CGet St udent G ade" >
<part nanme="Student Code" type="xsd:string"/>
<part name="Subj ect" type="xsd:string"/>
</ message>
<nessage name="CGet St udent G adeResponse” >
<part name="QG ade" type="xsd:int"/>
</ message>
<por t Type nanme="St udent Port Type" >
<oper ati on name="Get St udent G ade" >
<i nput nmessage="t ns: Get St udent G ade" nanme="Cet St udent @ ade"/ >
<out put message="tns: Get St udent @ adeResponse" nane="Get St udent @ adeResponse"/ >
</ oper at i on>
</ port Type>

378

Overview of SOAP

Example of SOAP request Example 144 shows an example of the format of a typical SOAP request
message message, based on Example 143 on page 378 (in this case, the client has
passed student code 815637 and subject H st ory as input parameters):

Example 144:E£xample of a SOAP Request Message

1 PCST /StockQuote HITP/ 1.1
Host: www st ockquot eserver. com
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn
SQAPAct i on: " Sone- UR "

<?xm versi on="1.0" encodi ng=" UTF-8" ?>
2 <SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenas. xn soap. or g/ soap/ envel ope/ "
SQOAP- ENV: encodi ngStyl e="ht t p: / / schenmas. xn soap. or g/ soap/
encodi ng/ "/ >
3 <SQAP- ENV: Body>
<m Cet St udent & ade xni ns: n¥" Sone- UR ">
<St udent Code>815637</ St udent Code>
<Subj ect >H st or y</ Subj ect >
</ m Get St udent G ade>
</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Explanation of SOAP request Example 144 on page 379 can be explained as follows:

message 1. Thefirst five lines represent HTTP header information (in this example,

the SOAP request is running over HTTP). When a SOAP request is
running over HTTP, the HTTP method must be set to PCsT, the HTTP
Cont ent - Type header must be set to text/xm , and a SOAPAct i on
HTTP header should also be included that specifies a URI indicating
what is being requested. (However, the SOAPAct i on field can be left
blank, in which case the URI specified in the first couple of lines is
taken to indicate the intent of the request instead.)

Note: See “Using the HTTP Plug-in" on page 227 for more details of
the format of HTTP request headers.

379

CHAPTER 17 | SOAP Payload Format

Example of SOAP response
message

380

2. The SOAP Envelope is the top-level element and is mandatory in every
SOAP message. It defines a framework for describing what is in the
message and how to process it.

3. The SOAP Body element is mandatory in every SOAP message. It holds

the actual message data in sub-elements called body entries. Each
body entry relates to a particular data type and must be encoded as an
independent element. Body entries can contain attributes called
encodi ngStyl e, i d, and href (see “SOAP Encoding of Data Types” on
page 384 for more details of these).

In Example 144 on page 379, the SOAP Body contains two body
entries, St udent Code and Subj ect , within a wrapper element that
corresponds to the Get St udent G ade operation. The two body entries
in this case correspond to the two input parameters for the

Get St udent G ade operation.

Example 145 shows an example of the format of a typical SOAP response
message, based on Example 143 on page 378 (in this case, the server has
returned grade A):

Example 145:Example of a SOAP Response Message

HTTP/ 1.1 200 CK
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<?xm version="1.0" encodi ng=" UTF- 8’ ?>
<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenas. xm soap. or g/ soap/ envel ope/ "
SQOAP- ENV: encodi ngSt yl e="htt p: / / schenas. xni soap. or g/ soap/
encodi ng/ "/ >
<SQAP- ENV: Body>
<m Get St udent & adeResponse xm ns: m&" Sorre- URl " >
<G ade>A</ G ade>
</ m Get St udent @ adeResponse>
</ SQAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Explanation of SOAP response
message

Example of SOAP response with
fault

Overview of SOAP

Example 145 can be explained as follows:

1. The first three lines represent HTTP header information (in this
example, the SOAP response is running over HTTP). See “Using the
HTTP Plug-in” on page 227 for more details of the format of HTTP
response headers.

2. The explanation of the SOAP Envelope element is the same as in
“Explanation of SOAP request message” on page 379.

3. The explanation of the SOAP Body element is the same as in
“Explanation of SOAP request message” on page 379, except in this
case the SOAP Body contains one body entry, G ade, within a wrapper
element that corresponds to the server response part of the
Get St udent @ ade operation. The body entry in this case corresponds to
the output parameter returned by the server in response to the client
request (that is, the grade for the student and subject combination
specified by the client).

If an error occurs during the processing of a SOAP request, the server can
handle and report the error within the SOAP Body of the response.
Example 146 shows an example of the format of a typical SOAP response
message indicating an error.

Example 146:£xample of SOAP Response with Error Information

HTTP/ 1.1 500 Internal Server Error
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schenmas. xn soap. or g/ soap/ envel ope/ ">
<SQAP- ENV: Body>
<SQAP- ENV: Faul t >
<f aul t code>S0OAP- ENV: Ser ver </ f aul t code>
<faul tstring>Server Error</faul tstring>

<det ai | >
<e:nyfaul tdetails xm ns: e="Some- UR ">
<message>
Application did not work
</ message>

381

CHAPTER 17 | SOAP Payload Format

Explanation of SOAP response

with fault

382

Example 146:E£xample of SOAP Response with Error Information

<error code>
1001
</ error code>
</ e: nyfaul tdetail s>
</detail >
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Example 146 on page 381 can be explained as follows:

1. The first three lines represent HTTP header information (in this

example, the SOAP response is running over HTTP). See “Using the
HTTP Plug-in” on page 227 for more details of the format of HTTP
response headers.

2. Errors are reported within a SOAP Fault element within the SOAP

Body. In this case, the SOAP Body must not contain any other
elements. Only one SOAP Fault element can be defined in any SOAP
message. SOAP Fault in turn defines the following four sub-elements:

faul t code This describes the error. The default faultcode values

defined by the W3C SOAP specification are:

® \Versi onM smat ch—This means the SOAP
Envelope was associated with an invalid
namespace (that is, a namespace other than
ht t p: // schemas. xm soap. or g/ soap/ envel ope/).

® Mist Under st and—This means a header element
that needed to be processed was not processed
correctly.

® dient—This means the message was not
properly formed or did not contain appopriate
information to be successfully processed.

® Server—This means the message could not be
processed, but not due to message contents.

faultstring This provides a human-readable explanation of the
fault.

faul tactor

detail

Overview of SOAP

This indicates where the fault originated along the
message path. This element is mandatory for an
intermediary proxy application along the message
path, but it is optional for the ultimate target server.

Note: Artix supports the use of only one intermediary
proxy along the message path.

Example 146 on page 381 is an example of an error
being reported by the ultimate target server, and it
omits a faul tactor attribute.

This in turn contains sub-elements, called detail
elements, that hold application-specific error
information when the fault is due to unsuccessful
processing of the SOAP Body.

383

CHAPTER 17 | SOAP Payload Format

SOAP Encoding of Data Types

Overview

What is encoding?

Role of SOAP encoding

384

This subsection provides an overview of the concepts of SOAP encoding. It
discusses the following topics:

® “What is encoding?” on page 384.

® “Role of SOAP encoding” on page 384.

® “SOAP encoding styles” on page 386.

® “Encoding simple types” on page 386.

® “Encoding complex struct types” on page 388.
® “Encoding complex array types” on page 390.

Encoding is the process of converting application-defined data to binary
form for transfer across a network. Decoding is the process of converting
binary data back to an application-defined format. XML encoding and
decoding rules, such as UTF-8 or UTF-16, define how data is to be
converted between application-defined and binary form.

SOAP encoding rules define how application data types are to be structured
in an XML document before being converted to binary. The overall process
of encoding, data transfer, and subsequent decoding is termed serialization.

XML uses the UTF-8 and UTF-16 encoding formats to convert data to binary
form. As explained in “Background to SOAP” on page 375, all XML
processors (regardless of platform or programming language) must accept
character data encoded using UTF-8 or UTF1-16 formats.

Problems can arise, however, when converting data to and from binary, if
the data is represented differently by different applications. For example,
some systems might have an integer as a 32-bit value, while others might
have it as a 16-bit value. Such disparities can lead to data corruption during
the data conversion process.

To avoid potential data corruption due to differences between source and
target systems, SOAP encoding and decoding rules are used as a stepping
stone between the expression of data types in a particular programming
language and the XML UTF-8 or UTF-16 encoding or decoding rules used to
convert those data types to and from binary. (See Figure 36 on page 385 for

Overview of SOAP

more details.) SOAP encoding rules, therefore, define the elements and data
types that are designed to support serialization of data between disparate
systems.

As shown in Figure 36, all data transferred as part of a SOAP payload is
marshalled across the network as UTF-encoded binary strings.

Application Data Application Data
Binary data——————Binary data

SOAP Message SOAP Message
UTF-encoded UTF-decoded
binary strings binary strings

Transport Layer Artix Transport Layer

(for example, HTTP) /4 (for example, HTTP)
Network

Figure 36: Overview of Role of SOAP Encoding and Decoding

385

CHAPTER 17 | SOAP Payload Format

SOAP encoding styles

Encoding simple types

386

A standard XML schema for SOAP encoding has been developed by the
W3C and is located at http://schemas/xmlsoap/org/soap/encoding/. This
W3C SOAP encoding schema uses the following namespace declaration:

xm ns: SOAP- ENC="ht t p: / / schenas. xml soap/ or g/ soap/ encodi ng/ "

It is recommended, but not mandatory, that a SOAP implementation
adheres to the encoding style based on the W3C SOAP encoding schema.
The W3C SOAP specification states that a company can use alternative
encoding styles if it wants. To this effect, an encodi ngSt yl e attribute can be
specified for any element within a SOAP message, to indicate the encoding
rules that apply to that particular element.

An encodi ngStyl e attribute can take one or more URIs as its value, with
each URI denoting the location of a particular set of encoding rules. If
specifying a list of URIs, each URI should be separated by a space. A list
should also be ordered so that the URI relating to the most restrictive set of
encoding rules is specified first, and the URI relating to the least restrictive
set of encoding rules is specified last.

The W3C SOAP specification states that SOAP encodings can support all
the simple types that are specified in the W3C XML Schema Part 2:
Datatypes specification at ht t p: // wwv. w3. or g/ TR SOAP/ #XM.S2. In other
words, a SOAP encoding should support any simple type that can be used in
XML schema definition language.

The W3C SOAP encoding schema defines elements whose names
correspond to each of the simple types defined in the W3C XML Schema
Part 2: Datatypes specification. Among the simple types supported are
integers, floats, doubles, booleans, and so on. Other types considered
“simple” for the purposes of a SOAP encoding are strings, enumerations,
and arrays of bytes.

In a SOAP encoding, each data value must be specified within an element.
The type of a particular value can be denoted by the element name that
encompasses it, provided that element name has been defined in the

Overview of SOAP

encoding schema as a derived type. The following is an example of a
schema fragment that defines a series of elements (for example, an element
called age of type i nt, an element called hei ght of type fl oat, and so on):

<el ement nane="age" type="int"/>
<el ement nane="hei ght" type="float"/>
<el enent name="di spl acenent" type="negati vel nteger"/>
<el enent name="col or">
<si npl eType base="xsd: string">
<enuner ation val ue="Bl ue"/>
<enuner ati on val ue="Brown"/>
</ si npl eType>
</ el ement >

The following is an example of how the elements defined in the preceding
sample schema might then be used in a SOAP encoding:

<age>34</ age>

<hei ght >6. 0</ hei ght >

<di spl acenent >- 350</ di spl acenent >
<col or >Br own</ col or >

If an element name in a SOAP encoding has not been defined as a derived
type in an encoding schema (for example, the element name relating to a
member of an array), that element must include an xsi : t ype attribute in the
SOAP encoding to indicate the data type. See “Encoding complex array
types” on page 390 for an example of this.

387

CHAPTER 17 | SOAP Payload Format

Encoding complex struct types The W3C SOAP specification defines two complex data types—structs and
arrays. A struct is a compound value whose members are each
distinguished by a unique name (also known as that member’s accessor).

The following is an example of a schema fragment that defines elements
called Book, Aut hor, and Addr ess respectively, each of which is a structure
containing a series of types:

<el enent nane="Book" >

<conpl exType>
<sequence>
<el ement name="title" type="xsd:string"/>
<el enent name="aut hor" type="tns: Aut hor"/>
</ sequence>

</ conpl exType>

</ e: Book>

<el enent name="Aut hor ">

<conpl exType>
<sequence>
<el enent name="nane" type="xsd:string"/>
<el ement name="addr ess" type="tns: Address"/>
</ sequence>

</ conpl exType>

</ e: Aut hor >

<el enent name="Address">

<conpl exType>
<sequence>
<el enent name="street" type="xsd:string"/>
<el enent name="city" type="xsd:string"/>
<el enent name="country" type="xsd:string"/>
</ sequence>

</ conpl exType>

</ e: Addr ess>

388

Overview of SOAP

The following is an example of how the preceding schema definition could
be subsequently used in a SOAP encoding (the following example shows
embedded single-reference values for the author and address):

<e: Book>
<title>Qeat Expectations</title>
<aut hor >
<nane>Char | es D ckens</ nane>
<addr ess>
<street >Whi t echurch Road</ street >
<ci ty>London</ci ty>
<count r y>Engl and</ count r y>
</ addr ess>
</ aut hor >
</ e: Book>

In some cases an element might potentially contain more than one possible
value. For example, if there was another book also called Great
Expectations, written by some other author, there could be potentially more
than one possible value for the author and address in the preceding
example. When an element can contain more than one possible value it is
termed multireference. In this case, an i d attribute must be used to identify
a multireference element, and a href attribute can be used to reference that
element. For example, the href attribute of the <aut hor > element in the
following example refers to the i d attribute of the multireference <Per son>
element. Similarly, the href attribute of the <addr ess> element refers to the
i d attribute of the multireference <Hone> element (this is assuming the
author in question has more than one home).

<e: Book>
<title>Qeat Expectations</title>
<aut hor hr ef =" #Per son- 1"/ >

</ e: Book>

<e: Person i d="Person-1">
<nane>Char| es D ckens</ name>
<addr ess> href =" Hone- 1"/ >

</ e: Per son>

<e: Hone i d="Home-1"/>
<st reet >Wi t echur ch Road</ st reet >
<ci t y>London</ ci t y>
<count r y>Engl and</ count r y>

</ e: Hone>

389

CHAPTER 17 | SOAP Payload Format

Encoding complex array types

390

The W3C SOAP specification defines two complex data types—structs and
arrays. An array is a compound value whose member values are
distinguished by means of ordinal position within the array. An array in
SOAP is of type SOAP- ENC. Array or a type derived from that.

The following is an example (taken from the W3C SOAP specification) of a
schema fragment that defines an element called nyFavori t eNunber s that is
of type SOAP- ENC. Array:

<el enent nanme="nyFavori t eNunber s"
type="SOAP- ENC. Array"/>

The following is an example (taken from the W3C SOAP specification) of
how the array defined in the preceding sample schema could be
subsequently used in a SOAP encoding:

<nyFavoriteNunbers SOAP- ENC arrayType="xsd:int[2]">
<nunber >3</ nunber >
<nunber >4</ nunber >

</ nyFavori t eNunber s>>

The preceding example shows an array of two integers, with both members
of the array called nunber (this is unlike the members of a struct which must
all have unique names). The members of a SOAP array do not have to be all
of the same type. The following is an example of the SOAP encoding for an
array where an xsi : t ype attribute is used to specify the type of each
member of the array:

Note: As explained in “Encoding simple types” on page 386, if the type
of a value is not identifiable from the element name (or accessor)
corresponding to that value, an xsi : t ype attribute must be used in the
SOAP encoding.

<SQOAP- ENC: Array SOAP- ENC: arrayType="xsd: ur-type[4] ">

<t hi ng xsi :type="xsd: i nt">98765</t hi ng>

<t hi ng xsi : type="xsd: deci mal ">3. 857</t hi ng>

<t hing xsi:type="xsd: string">The cat sat on the nat</thing>

<t hi ng xsi:type="xsd: uri Ref erence">htt p://ww i ona. conx/t hi ng>
</ SOAP- ENC. Arr ay>

Overview of SOAP

SOAP encoding rules also support:

® Arrays of complex structs or other arrays.
® Multi-dimensional arrays.

® Partially transmitted arrays.

® Sparse arrays.

See the W3C SOAP specification for more details of the encoding guidelines
for arrays.

391

CHAPTER 17 | SOAP Payload Format

Adding a SOAP Binding

Overview

GUI steps

392

You can configure an Artix WSDL contract with various extensions that
support the use of a SOAP binding with Artix. This section describes how to

use the Artix Designer GUI to add a SOAP binding to a WSDL contract. It

discusses the following topics:
® “GUI steps” on page 392.
“WSDL example” on page 397.

Note: This section deals specifically with how to set up a SOAP binding
within an Artix WSDL contract. It assumes that you have already set up

the logical components of the contract relating to types, messages, and
port types.

To add a SOAP binding to your service contract, using the Artix Designer
GUI, complete the following steps:

1. From the project tree, select the contract to which you want to add the
SOAP binding.

2. Select New|Binding from the Contract menu of the designer.

Adding a SOAP Binding

3. You will see a screen like Figure 37.

[] Binding Editor - Artix Designer

~SelectWSDL
Selectthe WSDL file this new
contract itern should be added to.
O Add to existing WSDL "widgetOrderForm.wsdl
(@) Add to new WEDL widgets-corbal
P SelectWsDL
Select Binding Type
Select Port Type
Edit Binding
Wiew W3DL Contract
’ Previous] ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 37: Select WSDL location

4. Select where to create the WSDL entry for the new binding.

+ Add to existing WSDL adds the routing information to the bottom
of the existing contract and does not make a back-up of the
non-routed WSDL file.

+ Add to new WSDL creates a new WSDL document that contains
the routing information and imports the original WSDL document.

5. Click Next.
6. Select SOAP as your binding type.

393

CHAPTER 17 | SOAP Payload Format

394

10.

11.

12.
13.

Click Next.

From the Port Type drop down list, select the port type that the
binding relates to.

Type a name for your binding in the Binding Name field, or accept the
default that consists of the port type name with a _SOAPBinding suffix.

From the Use drop down list, select either encoded or literal, to
indicate whether message parts are to consist of abstract type
definitions or concrete schema definitions. The value you choose is
subsequently populated in the soap: body use attribute in your WSDL
contract. See “soap:body element” on page 410 for more details.

From the Style drop down list, select either rpc or document, to
indicate whether message parts pertaining to each operation are to
consist of RPC-based parameters and return values or document-based
body entries by default. The value you choose is subsequently
populated in the soap: bi ndi ng styl e attribute in your WSDL contract.
See “soap:binding element” on page 407 for more details.

Click Next.

Click on the name of an operation within your binding. The screen then
appears as shown in Figure 38. (For this example, assume that
encoded was selected in point 7, and rpc was selected in point 8.)

Adding a SOAP Binding

[] Binding Editor - Artix Designer

~S0AP Binding
D StudentPordType_SOAPBinding

& 23 Binding
L B [cetstudentGrade

AW eeeerrrererrrrerrrrrrr sy

~Port Type Operation: "GetStudentGrade”

Type | Message [Name
input {tns:GetStudentGrade \GetStudentGrade
output |tnS:GetStudentGradeResponse |Get8tudentGradeResp0nse
Select Binding Type
Select Port Type
P Edit Binding “S0AP Operation: "GetStudentGrade”
NGRSO Gl ExtensonMessag... Name SOAP Action | Style (Encoded) Use
soapaperation rpc
input GetStudentGrade hitpiifschemasx.. encoded
output GetStudentGrade. .. hitpiifschemasx.. encoded
I Previous I ’ Mext] ’ Finish] ’ Cancel] ’ Help

Figure 38: Editing a SOAP Binding for an Operation

395

CHAPTER 17 | SOAP Payload Format

396

14.

15.

16.

17.

18.
19.

20.

If you want to include a SOAPAction field in the HTTP header of a
SOAP message, use the highlighted SOAP Action field to type the URL
that represents the resource being requested by the operation.

Note: This step only relates to the use of SOAP over HTTP, but it is
not mandatory for the purposes of Artix. It is available in case some
third-party SOAP servers that do use a SOAPAction field in their
HTTP headers are to be contacted.

If you want to override for a particular operation the default setting for
Style that you set in point 8, delete the default value and type the new
value in the relevant field in the Style (Encoded) column. (See point 8
for more details of valid values.)

If you want to override for a particular operation the default setting for
Use that you set in point 7, delete the default value and type the new
value in the relevant field(s) in the Use column. (See point 7 for more
details of valid values.)

If you want to use one or more customized encoding styles, add the
URL(s) relating to each customized encoding style to the relevant
field(s) in the Style (Encoded) column.

Note: If you want this field to contain more than one URL, ensure
that each URL is separated by a space, and the URLs are ordered
according to the most restrictive set of rules first and least restrictive
set of rules last.

Click Next.
Review the WSDL for the new SOAP binding. See Example 147 for an
example of how the WSDL might appear.

If it is correct, click Finish.

Adding a SOAP Binding

WSDL example Example 147 provides an example of how the WSDL might appear for a
SOAP binding in an Artix contract.

Example 147:Example of WSDL for a SOAP Binding

<wsdl : bi ndi ng nanme=" St udent Por t Type_SQOAPBI ndi ng" type="nsl: St udent Port Type" >
<soap: bi ndi ng styl e="rpc" transport="http://schenas. xnl soap. or g/ soap/ http"/>
<wsdl : operati on nane="Cet St udent G ade" >
<soap: oper ati on soapAction="" style="rpc"/>
<wsdl : i nput name="Cet St udent @ ade" >
<soap: body encodi ngStyl e="htt p: //schenas. xm soap. or g/ soap/ encodi ng/ "
use="encoded"/ >
</wsdl : i nput >
<wsdl : out put nane="Get St udent G adeResponse" >
<soap: body encodi ngStyl e="htt p: //schenas. xnm soap. or g/ soap/ encodi ng/ "
use="encoded"/ >
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>

397

CHAPTER 17 | SOAP Payload Format

Adding a Port for SOAP over HTTP

Overview You can configure an Artix WSDL contract with various extensions that
support the use of a SOAP-over-HTTP port. This section describes how to
use the Artix Designer GUI to add to a WSDL contract a port that enables
the use of SOAP over HTTP.

Note: This section is only relevant if you want to use SOAP over HTTP. If
you are using SOAP with another transport type, ignore this section and
see the relevant chapter in this guide that pertains to that transport type.

In this section This section discusses the following topics:
Adding a Port for Non-Secure Connections page 399
Adding a Port for Secure Connections page 402

398

Adding a Port for SOAP over HTTP

Adding a Port for Non-Secure Connections

Overview

GUI steps

This subsection describes how to use the Artix Designer GUI to add a port
for SOAP over HTTP that does not enable secure connections. It discusses
the following topics:

® “GUI steps” on page 399.

Note: This section deals specifically with how to set up port information
within the <servi ce> component of a WSDL contract. To add a port, you
must have already created a payload format binding within the <bi ndi ng>
component of the contract. See “Adding a SOAP Binding” on page 392 or
the relevant chapter relating to the payload format you are using for more
details about setting up a binding in @ WSDL contract.

Complete the following steps to add a port to your service contract, using
the Artix Designer GUI, to enable the use of SOAP over HTTP:

1. From the project tree, select the contract to which you want to add the
port.

Select Services|New Service from the Contract menu of the designer.
Enter a unique name for the new service.
Click Next.

Enter a name for the new port that is being created.

o ok wb

From the Binding drop down list, select the binding that the port is
going to expose.

399

CHAPTER 17 | SOAP Payload Format

@ New Service - Artix Designer

Define Service
Define Port

P Define Extensar Properties
Fort Summary

Service Summary

400

7. Click Next to open the screen shown in Figure 39.

~Property Definitions in Part- "S0AP_HTTP_Port"
ELEAN S H0 e
Transpor Type
~Attribute
Address
Attribute [Walue [Specified
Incation | | 5]
Client
Attribute Walue Specified [
URL O (<]
SendTimeout O
P ; = -
Server
Attribute Walue Specified [
Port O (<]
SendTimeout O
i - = -
l Previous ||| Mext ||| Finish H Cancel ” Help

Figure 39: Selecting a SOAP Transport Type

8. Ensure that SOAP is selected as your transport type.

9. In the Value field corresponding to the location line of the Address
configuration table, type the URL that represents the resource being
requested.

Note: The Address configuration table relates to the soap: addr ess
element within the port component of the WSDL contract. You must
specify a value for the location attribute. See “SOAP WSDL
Extensions” on page 405 for more details of the soap: addr ess

| ocat i on attribute.

10.

11.
12.
13.
14.
15.

Adding a Port for SOAP over HTTP

To specify a value for another attribute, place a check in the Specified
box on the appropriate line in the appropriate configuration table, and
type or (in the case of certain true or false attributes) select the value

you want.

Note: All attributes are optional in the Client and Server
configuration tables. These relate to the ht t p- conf: cli ent and

ht t p- conf : server elements that can be specified as peers of the
soap: addr ess element under the same port binding. See “Using the
HTTP Plug-in” on page 227 for details of each attribute relating to
http-conf:client and http-conf: server.

Click Next.

Review the settings for the new port.

If it is correct, click Next.

Review the settings for the new service in which the port is described.
If it is correct, click Finish.

Example Example 148 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract. As shown in Example 148,
client and server HTTP configuration attributes are contained respectively
within elements, called http-conf:client and http-conf: server, which
are peers of the soap: addr ess element.

Example 148:Extract of Example WSDL Contract

<wsdl : servi ce nane="BaseSer vi ce">

<wsdl : port bi ndi ng="ns1: St udent Port Type_SQOAPBi ndi ng" name="SQAP_HTTP_Port">
<soap: address | ocation="http://ww:. i ona. coni support/docs/i ndex. xm "/ >
<http-conf:client Password="goofy" ReceiveTi neout ="3000" SendTi neout ="3000"
User Nane="j smth"/>
<htt p- conf: server Honor KeepAl i ve="true" Recei veTi meout ="3000"
SendTi neout =" 3000" Suppr essd i ent Recei veErrors="f al se"
Suppr essd i ent SendErrors="fal se"/>

</wsdl : port >
</ wsdl : servi ce>

401

CHAPTER 17 | SOAP Payload Format

Adding a Port for Secure Connections

Overview This subsection describes how to use the Artix Designer GUI to add a port
for SOAP over HTTP that enables secure connections. It discusses the
following topics:

® “SSL-related attributes” on page 402.
® “GUI steps” on page 403.
® “WSDL example” on page 403.

Note: This section deals specifically with how to set up port information
within the <ser vi ce> component of a WSDL contract. To add a port, you
must have already created a payload format binding within the <bi ndi ng>
component of the contract. See the chapter relating to the payload format

you are using for more details about setting up a binding for it in a WSDL
contract.

SSL-related attributes The SSL-related attributes that can be configured to be included in the

<htt p- conf: client>and <htt p- conf: server > elements of an HTTP port
binding are as follows:

Client SSL Attributes Server SSL Attributes
UseSecur eSocket s UseSecur eSocket s
dientCertificate ServerCertificate
AdientCertificateChain Server CertificateChain
dientPrivat eKey Server Pri vat eKey
dientPrivat eKeyPassword Ser ver Pri vat eKeyPasswor d
Trust edRoot Certificate TrustedRoot Certificate

See “Using the HTTP Plug-in" on page 227 more details of these attributes.

402

Adding a Port for SOAP over HTTP

GUI steps All the GUI steps described in “GUI steps” on page 399 are relevant and

should be followed here, with the following stipulations:

® Specify https:// rather than http:// as the prefix for the value of the
location attribute in the Address configuration table.

® Enter values for the various SSL-related attributes in the Client and
Server configuration tables. See “SSL-related attributes” on page 402
for a listing of these attributes.

Note: When you specify https:// as the prefix for the value of the
location attribute in the Address configuration table, a secure HTTP
connection is automatically enabled, even if UseSecureSockets is not set
to true.

WSDL example Figure 40 shows an example summary of SSL-related HTTP configuration

settings in the GUI

@ New Service - Artix Designer 3

FPart Summary

Mewly Created Port Information

hitp-conficlient -
ClientCedificate=claspenxs09icertsikey.certpem
Password=goofy
ClientPrivatekey=claspents09icensiprivkey.pem
LIRL=https:itaneniona.comisupportidocsiindexxml
UseSecureSockets=true
ClientPrivatekKeyPassword=mypasskey
UserMarme=sjsmith
ClientCerificateChain=claspenua0certsikey cart pem
TrustedRootCetificates=claspenwaicalcacert pem
http-conf.server -
SererCertificateChain=claspenws0Nceartsikey cart pem
ServerPrivatekey=claspenxa09icensiprivkey.pem
UseSecureSockets=true
SererCetificate=claspenxiifcertsikey.cart.pem

Define Service

Define Port

Define Extensor Properties
= Part Summary

Senice Summary

Check here to create anaother Port [

" Pravious I" et "’ Finish H Cancel ” Help]

Figure 40: Example Set of SSL-Related HTTP Configuration Settings

403

CHAPTER 17 | SOAP Payload Format

Example 149 shows the WSDL extract that is subsequently generated for
the service component of your Artix contract, based on the example settings
in Figure 40 on page 403. As shown in Example 149, client and server
HTTP configuration attributes are contained respectively within elements
called http-conf:client and http-conf:server.

Example 149:Extract of Example WSDL Contract with SSL Attributes

<wsdl : servi ce name="BaseServi ce">
<wsdl : port bi ndi ng="ns1: St udent Port Type_SQOAPBi ndi ng" nane="SQAP_HTTP_Port">
<soap: address | ocation="http://ww. i ona. coni support/docs/i ndex. xm "/ >

<htt p-conf:client

<ht t p- conf: server

</wsdl : port >
</ wsdl : servi ce>

404

dientCertificate="c:\aspen\x509\certs\key. cert. pent
dientCertificateChai n="c:\aspen\x509\ cert s\ key. cert. pent
d i ent Privat eKey="c: \ aspen\ x509\ cert s\ pri vkey. pent

d i ent Pri vat eKeyPasswor d="nykeypass" Passwor d="goof y"
Trust edRoot Certi ficates="c:\ aspen\ x509\ ca\ cacert . pen{
UseSecur eSocket s="t r ue"

Passwor d=" goof y"

User Nane="j smth"/>

Server Certificate="c:\aspen\x509\ certs\key. cert. pent
Server Certificat eChai n="c: \ aspen\ x509\ cert s\ key. cert. pent
Server Pri vat eKey="c: \ aspen\ x509\ cert s\ pri vkey. pent

Ser ver Pri vat eKeyPasswor d="nykeypass"

Trust edRoot Certi ficates="c:\ aspen\ x509\ ca\ cacert . pent
UseSecur eSocket s="t rue" />

SOAP WSDL Extensions

SOAP WSDL Extensions

Overview This subsection provides an overview and description of the attributes that
you can set as extensions to a WSDL contract for the purposes of using the
SOAP payload format plug-in with Artix.

In this section This section discusses the following topics:
SOAP WSDL Extensions Overview page 406
SOAP WSDL Extensions Details page 407

405

CHAPTER 17 | SOAP Payload Format

SOAP WSDL Extensions Overview

Overview This subsection provides an overview of the WSDL extensions involved in
configuring the SOAP payload format plug-in for use with Artix.

Configuration layout Example 150 shows (in bold) the WSDL extensions used to configure the
SOAP message format plug-in for use with Artix. (Ellipses (that is, ...) are
used to denotes sections of the WSDL that have been omitted for brevity.)

Example 150:SOAP Configuration WSDL Extensions
<definitions...

xm ns: soap="ht t p: // schenmas. xm soap. or g/ wsdl / soap"

<definitions >
<binding >
<soap: bi ndi ng styl e="rpc| docunent" transport="uri">
<operation >
<soap: operation soapAction="uri" style="rpc|docunent">
<i nput >
<soap: body use="literal | encoded" encodi ngStyl e="uri-list">
</i nput >
<out put >
<soap: body use="literal | encoded" encodi ngStyl e="uri-list">
</ out put >
<faul t >*
<soap: faul t name="nnt oken" use="literal | encoded" encodi ngStyl e="uri-list">
</faul t>
</ oper ati on>
</ bi ndi ng>

<port >
<soap: address | ocation="uri"/>
</ port>
</ definitions>

406

SOAP WSDL Extensions

SOAP WSDL Extensions Details

Overview

soap:binding element

This subsection describes each of the configuration attributes that can be
set up as part of the WSDL extensions for configuring the SOAP message
format plug-in for use with Artix. It discusses the following topics:

® ‘“spap:binding element” on page 407.

® ‘“soap:operation element” on page 409.

® ‘“spap:body element” on page 410.

® ‘“soap:fault element” on page 414.

® ‘“soap:address element” on page 415.

The soap: bi ndi ng element in a WSDL contract is defined within the
<bi ndi ng> component, as follows:

<bi ndi ng name=".."" type=".."">
<soap: bi nding style=".!" transport=".">

Only one soap: bi ndi ng element is defined in a WSDL contract. It is used to
signify that SOAP is the message format being used for the binding.
Table 32 describes the attributes defined within the soap: bi ndi ng element.

Table 32: Attributes for soap:binding

Configuration Attribute

Explanation

style

The value of the styl e attribute within the soap: bi ndi ng element acts
as the default for the st yl e attribute within each soap: operati on
element. It indicates whether request/response operations within this
binding are RPC-based (that is, messages contain parameters and return
values) or document-based (that is, messages contain one or more
documents).

Valid values are r pc and docunent . The specified value determines how
the SOAP Body within a SOAP message is structured.

407

CHAPTER 17 | SOAP Payload Format

Table 32: Attributes for soap:binding

Configuration Attribute

Explanation

If r pc is specified, each message part within the SOAP Body is a
parameter or return value and will appear inside a wrapper element
within the SOAP Body. The name of the wrapper element must match
the operation name. The namespace of the wrapper element is based on
the value of the soap: body namespace attribute. The message parts
within the wrapper element correspond to operation parameters and
must appear in the same order as the parameters in the operation. Each
part name must match the parameter name to which it corresponds.

For example, the SOAP Body of a SOAP request message (based on the
WSDL example in Example 143 on page 378) is as follows if the style is
RPC-based:
<SQAP- ENV: Body>
<m Get St udent & ade xnm ns: m=" URL" >
<St udent Code>815637</ St udent Code>
<Subj ect >H st or y</ Subj ect >
</ m Get St udent G ade>
</ SOAP- ENV: Envel ope>

If docunent is specified, message parts within the SOAP Body appear
directly under the SOAP Body element as body entries and do not appear
inside a wrapper element that corresponds to an operation. For example,
the SOAP Body of a SOAP request message (based on the WSDL
example in Example 143 on page 378) is as follows if the style is
document-based:
<SQAP- ENV: Body>

<St udent Code>815637</ St udent Code>

<Subj ect >H st or y</ Subj ect >
</ SOAP- ENV: Envel ope>

transport

This defaults to the URL that corresponds to the HTTP binding in the
W3C SOAP specification (ht t p: / / schemas. xn soap. or g/ soap/ ht t p). If
you want to use another transport (for example, SMTP), modify this
value as appropriate for the transport you want to use.

408

soap:operation element

SOAP WSDL Extensions

A soap: oper at i on element in a WSDL contract is defined within an
<oper at i on> component, which is defined in turn within the <bi ndi ng>
component, as follows:

<bi ndi ng name=".." type="." >
<soap: bi nding style="." transport=".">
<operation name="." >
<soap: operation style="." soapAction=".."">

A soap: oper ati on element is used to encompass information for an
operation as a whole, in terms of input criteria, output criteria, and fault
information. Table 32 describes the attributes defined within a

soap: oper at i on element.

Table 33: Attributes for soap:operation

Configuration Attribute

Explanation

style

This indicates whether the relevant operation is RPC-based (that is,
messages contain parameters and return values) or document-based
(that is, messages contain one or more documents).

Valid values are r pc and docunent . See “soap:binding element” on
page 407 for more details of the style attribute.

The default value for soap: operation styl e is based on the value
specified for the soap: bi ndi ng styl e attribute.

soapActi on

This specifies the value of the SOAPAct i on HTTP header field for the
relevant operation. The value must take the form of the absolute URI
that is to be used to specify the intent of the SOAP message.

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.

409

CHAPTER 17 | SOAP Payload Format

soap:body element A soap: body element in a WSDL contract is defined within both the <i nput >
and <out put > components within an <oper at i on> component, as follows:

<bi ndi ng name=".." type=".."">
<soap: bi ndi ng style=".!" transport="..">
<operati on nanme="..">
<soap: operation style="." soapAction="..">
<i nput >
<soap: body use=".." encodi ngStyl e=".." nanmespace="..">
</ i nput >
<out put >
<soap: body use=".." encodi ngStyl e=".." nanmespace="..">
</ out put >
</ oper ati on>

A soap: body element is used to provide information on how message parts
are to be appear inside the body of a SOAP message. As explained in
“soap:operation element” on page 409, the structure of the SOAP Body
within a SOAP message is dependent on the setting of the soap: operati on
styl e attribute.

Table 32 describes the attributes defined within the soap: body element.

Table 34: Attributes for soap:body

Configuration Attribute Explanation

use This attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn
might relate to an abstract type definition or a concrete schema
definition.

An abstract type definition is a type that is defined in some remote
encoding schema whose location is referenced in the WSDL contract via
an encodi ngSt yl e attribute. In this case, types are serialized based on
the set of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the
WSDL contract itself, within a <schena> element within the <t ypes>
component of the contract.

Valid values for soap: body use are encoded and literal .

410

SOAP WSDL Extensions

Table 34: Attributes for soap:body

Configuration Attribute

Explanation

If encoded is specified, the type attribute that is specified for each
message part (within the <message> component of the WSDL contract) is
used to reference an abstract type defined in some remote encoding
schema. In this case, a concrete SOAP message is produced by applying
encoding rules to the abstract types. The encoding rules are based on
the encoding style identified in the soap: body encodi ngStyl e attribute.
The encoding takes as input the nane and t ype attribute for each
message part (defined in the <message> component of the WSDL
contract). If the encoding style allows variation in the message format for
a given set of abstract types, the receiver of the message must ensure
they can understand all the format variations.

Ifliteral is specified, either the el enent or type attribute that is
specified for each message part (within the <message> component of the
WSDL contract) is used to reference a concrete schema definition
(defined within the <t ypes> component of the WSDL contract). If the

el enent attribute is used to reference a concrete schema definition, the
referenced element in the SOAP message appears directly under the
SOAP Body element (if the operation style is document-based) or under
a part accessor element that has the same name as the message part (if
the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP
message becomes the schema type of the SOAP Body (if the operation
style is documented-based) or of the part accessor element (if the
operation style is document-based).

The use attribute is mandatory.

encodi ngStyl e

This attribute is used when the soap: body use attribute is set to
encoded. It specifies a list of URIs (each separated by a space) that
represent encoding styles that are to be used within the SOAP message.
The URIs should be listed in order, from the most restrictive encoding to
the least restrictive.

This attribute can also be used when the soap: body use attribute is set
toliteral, to indicate that a particular encoding was used to derive the
concrete format, but that only the specified variation is supported. In this
case, the sender of the SOAP message must conform exactly to the
specified schema.

411

CHAPTER 17 | SOAP Payload Format

Table 34: Attributes for soap:body

Configuration Attribute Explanation

namespace If the soap: oper ation styl e attribute is set to rpc, each message part
within the SOAP Body of a SOAP message is a parameter or return value
and will appear inside a wrapper element within the SOAP Body. The
name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the

soap: body nanespace attribute.

soap:fault element A soap: faul t element in a WSDL contract is defined within the <faul t >
component within an <oper at i on> component, as follows:

<bi ndi ng name=".." type="..">
<soap: bi ndi ng style=".!" transport="..">
<operati on nanme="..">
<soap: operation style="." soapAction="..">
<i nput >
<soap: body use=".." encodi ngStyl e="..">
</ i nput >
<out put >
<soap: body use=".." encodi ngStyl e="..">
</ out put >
<faul t>
<soap: fault name=".. use=".! encodi ngStyl e=".."
</faul t>
</ oper ati on>
</ bi ndi ng>

Only one soap: faul t element is defined for a particular operation. The
operation must be a request-response or solicit-response type of operation,
with both <i nput > and <out put > elements. The soap: faul t element is used
to transmit error and status information within a SOAP response message.

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap: operati on styl e element in the WSDL is set to
docunent , because faults do not contain parameters.

412

SOAP WSDL Extensions

Table 32 describes the attributes defined within the soap: faul t element.

Table 35: soap:fault attributes

Configuration Attribute

Explanation

name This specifies the name of the fault. This relates back to the nane
attribute for the <f aul t > element specified for the corresponding
operation within the <port Type> component of the WSDL contract.

use This attribute is used in the same way as the use attribute within the

soap: body element. See “use” on page 410 for more details.

encodi ngStyl e

This attribute is used in the same way as the encodi ngStyl e attribute
within the soap: body element. See “encodingStyle” on page 411 for
more details.

soap:address element

The soap: addr ess element in a WSDL contract is defined within the <port >
component within the <servi ce> component, as follows:

<service name="..">
<port binding="." name=".">
<soap: address | ocati on="..">
</ port >

</ servi ce>

Only one soap: addr ess element is defined in a WSDL contract. It is only
specified when you want to use SOAP over HTTP. If you want to use SOAP
over a different transport (for example, IIOP), the element name in this case
is i i op: addr ess. Similarly, if you want to use a different payload format
over HTTP, the http-conf:client URL attribute is used instead.

Note: When you are using SOAP over HTTP, the htt p- conf: client and
ht t p- conf : server elements can still be validly specified as peer elements
of the soap: addr ess element. See the "Using the HTTP Plug-in" chapter of
this guide for more details of htt p-conf: client and htt p-conf : server.

413

CHAPTER 17 | SOAP Payload Format

Table 32 describes the | ocat i on attribute defined within the soap: addr ess
element.

Table 36: Attribute for soap:address

Configuration Attribute Explanation

| ocati on This specifies the URL of the server to which the client request is being
sent.

Valid values are of the form:

http:// nyserver/ nypat h/
https://nyserver/nypath
htt p: // nyser ver: 9001/ nypat h

The soap: addr ess element is mandatory if you want to use SOAP over
HTTP. It does not need to be set if you want to use SOAP over any other
transport.

414

Supported XML Types

Supported XML Types

Overview

Supported simple (built-in) types

This section provides an overview of the XML data types that are supported
by SOAP with Artix. It discusses the following topics:

® “Supported simple (built-in) types” on page 417.
® “Other supported types” on page 418.

Note: Artix does not currently support the use of multipart/related MIME
attachments with SOAP.

The following simple (built-in) types are supported:

xsd: string
xsd: i nt

xsd: | ong

xsd: short

xsd: f| oat

xsd: doubl e
xsd: bool ean
xsd: byte

xsd: deci mal
xsd: dat eTi ne
xsd: base64Bi nary
xsd: hexBi nary

415

CHAPTER 17 | SOAP Payload Format

Other supported types The following list provides an overview (and in some cases an example of)
other supported types:

Type Description/Example

Enumeration For example:

<xsd: el ement nane="EyeCol or"
type="EyeCol or Type"/ >
<xsd: si npl eType nane="EyeCol or Type" >
<xsd: restriction base="xsd:string" >
<xsd: enuneration val ue="Qeen" />
<xsd: enuneration val ue="Bl ue" />
<xsd: enurrer ati on val ue="Brown" />
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType> | For example:

<xsd: conpl exType nare="USAddr ess" >
<xsd: sequence>
<xsd: el enent name="narme"
type="xsd: string"/>
<xsd: el ement name="street"
type="xsd: string"/>
<xsd: el enent name="ci ty"
type="xsd: string"/>
<xsd: el enent nane="stat e"
type="xsd: string"/>
<xsd: el ement nane="zi p"
t ype="xsd: deci mal "/ >
</ xsd: sequence>
<xsd: attribute name="country"
t ype="xsd: NVTCKEN'
fixed="US"/>
</ xsd: conpl exType>

Circular references that can occur with, for
example, circular linked lists are not supported.

xsd: attribute For example:

<xsd:attribute name="country"
t ype="xsd: NMICKEN'
fixed="US"/>

416

Supported XML Types

Type

Description/Example

xsd: el ement

Occurence constraints (m nCccur s and
maxQeceur s) for xsd: el ement within
xsd: sequence. For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd: sequence>
<xsd: el enent nane="shi pTo"
type="USAddr ess"/ >
<xsd: el ement nane="bi || To"
type="USAddr ess"/ >
<xsd: el enent ref="comment"
m nCcecurs="0"/>
<xsd: el ement nane="itens"
type="Iltens"/>
</ xsd: sequence>
<xsd: attribute name="order Date"
type="xsd: dat e"/ >

</ xsd: conpl exType>

<xsd: ref>

Attribute for reference to global elements.

Derived simple
types.

Derived simple types by restriction of an existing
simple type. For example:

<xsd: si npl eType nane="nyl nt eger">
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="10000"/>
<xsd: max| ncl usi ve val ue="99999"/ >
</xsd:restriction>
</ xsd: si npl eType>

Array derived from
soap: Array.

Array derived from soap: Array by restriction
using the wsdl : ar r ayType attribute. For example:

<conpl exType nane="Array(f | nteger">
<conpl exCont ent >
<restriction base="soapenc: Array" >
<attribute
ref =" soapenc: arrayType"

wsdl : arrayType="xsd:int[]"/>
</restriction>
</ conpl exCont ent >
</ conpl exType>

417

CHAPTER 17 | SOAP Payload Format

Type Description/Example

<xsd: sequence> For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd: sequence>
<xsd: el ement name="shi pTo"
t ype="USAddr ess"/ >
<xsd: el ement narme="bi | | To"
t ype="USAddr ess"/ >
<xsd: el enent name="itens"
type="Itens"/>
</ xsd: squence>
</ xsd: conpl exType>

In this case, ni nCccur s and naxCeceur s attributes
are ignored.

<xsd: choi ce> For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd: sequence>
<xsd: choi ce>
<xsd: group ref="shi pAndBill"/>
<xsd: el ement name="si ngl eUSAddr ess"
t ype="USAddr ess"/ >
</ xsd: choi ce>
<xsd: el enent name="itens"
type="Itens"/>
</ xsd: sequence>
</ xsd: conpl exType>

In this case, m nGccurs and maxQeeur s attributes
are ignored.

<xsd: al | > For example:

<xsd: conpl exType name="Pur chaseQ der Type" >
<xsd:al | >
<xsd: el enent nare="shi pTo"
t ype="USAddr ess"/ >
<xsd: el ement name="bi |l | To"
t ype="USAddr ess"/ >
<xsd: el ement nane="itens"
type="Itens"/>
</ xsd: al | >
</ xsd: conpl exType>

418

Supported XML Types

Type

Description/Example

Complex type
derived from simple

type.

For example:

<xsd: el ement nane="international Price">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on
base="xsd: deci nal ">
<xsd:attribute
nane="currency"

type="xsd: string"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

419

CHAPTER 17 | SOAP Payload Format

420

Supported XML Types

421

CHAPTER 17 | SOAP Payload Format

422

Glossary

Binding
A binding associates a specific protocol and data format to operations defined
in a portType.

Connection

An established communication link between any two Artix endpoints. Also
the representation of such a link in System Designer, which displays
connection characteristics such as its binding.

Contract

An Artix contract is a WSDL file that defines the interface and all connection
(binding) information for that interface. A contract contains two components:
logical and physical. The logical contract defines things that are independent
of the underlying transport and wire format: ‘portType’, ‘Operation’, ‘Message’,
‘Type’, and ‘Schema.’

The physical contract defines the wire format, middleware transport, and
service groupings, as well as the mapping between the portType ‘operations’
and wire formats, and the buffer layout for fixed formats and extensors, The
physical contract defines: ‘Port,” ‘Binding’ and ‘Service.’

Distillation

The process by which Artix helps the user reconcile type information among
WSDL, message formats, and marshalling schemes. Artix supports only typed
contracts, and type support for conversions is limited by the WSDL type
meta-model and by the types supported for a specific marshalling. For
example, ANYs are not supported in GIOP, and must be replaced with the
typed data definition for the specific case.

Embedded Mode

Operational mode in which an application directly invokes Artix APIs. Code
generated by System Designer is compiled into the application program. This
provides the highest switch performance but is also the most invasive to the
applications.

423

CHAPTER 18 |

424

End-point

The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application).

Host

The network node on which a particular switch (service) resides. Also the
representation of that node (in the context of an integration project) in Service
Designer.

Language Binding

Support for a specified programming language, which allows Artix to generate
server skeletons, client stubs, or both from a contract. Use of a language
binding requires the Artix runtime to be linked with the application.

Marshalling Format

A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

Routing

The redirection of a message from one WSDL binding to another. Routing
rules apply to an end-point, and the specification of routing rules is required
for an Artix standalone service. Artix supports topic-, subject- and
content-based routing. Topic- and subject-based routing rules can be fully
expressed in the WSDL contract. However, content-based routing rules may
need to be placed in custom handlers (C plug-ins). Content-based routing
handler plug-ins are dynamically loaded.

Service

An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but no generated language bindings (contrast this with end-point).
The service acts as a daemon that has no compile-time dependencies. A
service is dynamically configured by deploying one or more contracts on it.

Standalone Mode

Operational mode in which an Artix switch runs in a separate process, and is
invoked as a service. This is the least invasive approach but provides the
lowest performance.

Switch

The implementation of an Artix WSDL service contract. Also the
representation of such a service contract in System Designer.

System
A collection of services—for example, an WebSphere MQ system with several
different queues on it.

System Designer

The main design tool within the Artix development tool suite. This component
lets the developer graphically describe the integration project in terms of hosts,
systems, services, and connections.

System Diagram

A diagram produced by System Designer, which represents the integration
project being solved by Artix.

Transport Plug-In

A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the ‘Port’ property in of a contract.

425

CHAPTER 18 |

426

Index

A

Adaptive Runtime Architecture 31
Address specification
CORBA 206
[IOP 317
Applicationld data type 149
arrays
CORBA 184
ART 31
Artix contract
logical view 23
physical view 25
Artix Designer
binding editor 200

begin_session() 120
below_capacity() 105
binding 8
binding element 25
bindings
client-side 38
CORBA 198
bus contracts 3

C
configuration variables
data type 34
constructed 34
configuring 1IOP 318
corba:address 206
corba:alias 183
corba:array 184
corba:binding 198
corba:case 182
corba:enum 178
corba:enumerator 179
corba:excpetion 187
corba:fixed 179
corba:member 178, 187
corba:operation 198
corba:param 199

corba:policy 206
corba:raises 199
corba:return 199
corba:struct 178
corba:union 182
corba:unionbrach 182

D
_DEFAULT in logging 151

E
Embedded mode 4
endpointNotExistFault 102
end_session() 126
enumerations

CORBA 178
Eventld data type 149
EventParameters data type 150
EventPriority data type 150
exceptions

CORBA 187
extension 193

F
Field Manipulation Language 288
fixed:binding 334
fixed:body 335
fixed:enumeration 338
fixedValue 338
fixed:field 335
bindingOnly 337
fixedValue 337
format 336
size 336
fixed:operation 334
fixed:sequnce 339
fixed data types
CORBA 179
FML 288
fml:binding 292
fml:element 292
fml:idNameMapping 292

427

INDEX

fml:operation 292
format_message() 151

G

get_all_endpoints() 121
getendpoints() 122
get_input_message attributes() 124
get _port() 123
getservice_endpoint() 103
getsession_id() 120

H
high_water_mark 40

ignorecase 80
iiop:address 317
iiop:payload 318
iiop:policy 318
initial_threads 40
interceptors

client request-level 38
IOR specification 206, 317
IT_Bus::get_service() 104
IT_Bus_Services::renewSessionFaultException 125
IT_Bus_Services::SessionID 120
IT_LOG_MESSAGE() macro 133
IT_LOG_MESSAGE_1() macro 134

L

LocatorServiceClient 101
LOG_ALL_EVENTS 150
LOG_ALL_INFO 151
LOG_ERROR 151
LOG_FATAL ERROR 151
logical portion 3

logical view 23
LOG_INFO 150
LOG_INFO_HIGH 150
LOG_INFO_LOW 150
LOG_INFO_MED 150
LOG_NO_EVENTS 150
LOG_WARNING 151
lookup_endpoint() 102
low_water_mark 41

428

M
MIB

definition 135
mgq:client 273, 283
mgq:server 273, 283

N

namespaces
WebSphere MQ 274

nillable 195

o)
orb_plugins 36

P
physical portion 3
physical view 25

defining 25
plugins

corba 36

fixed 37

fml 37

G2 37

http 36

mq 36

soap 37

tibrv 36

tunnel 36

tuxedo 36

ws_orb 36, 221
plugins:locator:peer_timeout 48, 106
plugins:locator:service_url 48
plugins:locator:wsdl_url 49
plugins:routing:use_pass_through 44
plugins:session_endpoint_manager:default_group 5

2

plugins:session_endpoint_manager:endpoint_manag
er_url 52
plugins:session_endpoint_manager:header_validatio
n 52
plugins:session_endpoint_manager:peer_timout 49,
106, 127
plugins:session_endpoint_manager:wsdl_url 52
plugins:session_manager:peer_timeout 127
plugins:session_manager_service:peer_timeout 50
plugins:session_manager_service:service_url 50
plugins:sm_simple_policy:max_concurrent_sessions
51

plugins:sm_simple_policy:max_session_timeout 51,
120

plugins:sm_simple_policy:min_session_timeout 51,
120

plugins:tuxedo:server 47

port 8

portType 8, 17

R

reached_capacity() 105
renew_session() 125
report_event() 153
report_message() 154
routing

broadcast 78

failover 79

fanout 78
routing:contains 81
routing:destination 73

port 73

service 73
routing:empty 81
routing:endswith 81
routing:equals 80

name 80
routing:greater 80
routing:less 80
routing:nonempty 81
routing:operation 75

name 75

target 75
routing:propagatelnputAttribute 82
routing:propagateOutputAttribute 83
routing:route 72

multiRoute 78, 79

failover 79
fanout 78

name 72
routing:source 72

port 72

service 72
routing:startswith 81
routing:transportAttribute 80

S

service access point 8, 21, 166
service element 25
SessionManagerClient 119

INDEX

setendpoint_group() 120
setprefered_renew_timeout() 120
setservice_gname() 102
setsession_id() 121
size 336
SNMP

definition 135

Management Information Base 135
snmp_log_stream 140
soapenc:base64 189
Specifying POA policies 206, 318
Standalone mode 4
structures

CORBA 178
Subsystemld data type 151

T
tagged:binding 356
tagged:body 357
tagged:case 361
tagged:choice 361
tagged:enumeration 359
tagged:field 358
tagged:operation 357
tagged:sequence 359
thread_pool:high_water_mark 40
thread_pool:initial_threads 40
thread_pool:low_water_mark 41
thread pool policies 40

initial number of threads 40

maximum threads 40

minimum threads 41
tibrv:binding 303
tibrv:binding@stringEncoding 303
tibrv:input 303
tibrv:input@messageNameFieldPath 303
tibrv:input@messageNameFieldValue 303
tibrv:input@sortFields 303
tibrv:operation 303
tibrv:output 303
tibrv:output@messageNameFieldPath 303
tibrv:output@messageNameFieldValue 304
tibrv:output@sortFields 303
tibrv:port 307
tibrv:port@bindingType 309
tibrv:port@callbackLevel 309
tibrv:port@clientSubject 307
tibrv:port@cmlListenerCancelAgreements 311
tibrv:port@cmQueueTransportClientName 312

429

INDEX

tibrv:port@cmQueueTransportCompleteTime 313
tibrv:port@cmQueueTransportSchedulerActivation 3
12
tibrv:port@cmQueueTransportSchedulerHeartbeat 3
12
tibrv:port@cmQueueTransportSchedulerWeight 312
tibrv:port@cmQueueTransportServerName 312
tibrv:port@cmQueueTransportWorkerTasks 312
tibrv:port@cmQueueTransportWorkerWeight 312
tibrv:port@cmSupport 310
tibrv:port@cmTransportClientName 311
tibrv:port@cmTransportDefaultTimeLimit 311
tibrv:port@cmTransportLedgerName 311
tibrv:port@cmTransportRelayAgent 311
tibrv:port@cmTransportRequestOld 311
tibrv:port@cmTransportServerName 311
tibrv:port@cmTransportSyncLedger 311
tibrv:port@serverSubject 307
tibrv:port@transportBatchMode 310
tibrv:port@transportDaemon 310
tibrv:port@transportNetwork 310
tibrv:port@transportService 310
TibrvMsg 303
Timestamp data type 152
tuxedo:server 294
typedefs
CORBA 183

U
unions

Artix mapping 181

CORBA 180, 182

logical description 180
use_input_message attributes 123

VvV
value 338

w

W3C 8

Web Service Definition Language 3

Web Services Definition Language 8

WebSphere MQ
AccessMode 277
AccountingToken 282
ApplicationData 282
ConnecitonName 276
ConnectionFastPath 276

430

ConnectionReusable 276
Convert 282
Correlationld 282
CorrelationStyle 276
DeliveryMode 279
FormatType 280
MessageExpiry 278
Messageld 282
MessagePriority 279
ModelQueueName 275
QueueManagerName 275
QueueName 275
ReplyQueueManager 275
ReplyQueueName 275
ReportOption 279
Timeout 278
Transactional 279
UsageStyle 276

World Wide Web Consortium 8

WSDL 3,8

WSDL endpoint 8

wsdltocorba 204, 211

X

xmlformat:binding 351
XSD 11
xsd:base64Binary 189
xsd:hexBinary 189

INDEX

431

INDEX

432

	List of Figures
	List of Tables
	Preface
	Introduction to Using Artix
	The Artix Bus
	The Artix Design Process

	Understanding Artix Contracts
	Web Services Description Language Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details
	Artix Contract Specifics
	The Logical Section
	The Physical Section

	Configuration
	Establishing the Host Computer Environment
	Configuring Artix Runtime Behavior
	Runtime Configuration Variables
	ORB Plug-ins List
	Binding Lists
	Thread Pool Control

	Artix Plug-in Configuration
	Routing Plug-in
	CORBA Plug-in
	TIBCO Rendezvous Plug-in
	Tuxedo Plug-in
	Locator Service Plug-in
	Locator Service Endpoint Plug-in
	Session Manager Plug-in
	Session Manager Simple Policy Plug-in
	Session Manager Endpoint Plug-in

	Artix Standalone Service
	The Artix Standalone Service
	Configuring the Service
	Starting and Stopping the Service
	Installing the Service as a Windows Service
	Contracts for the Standalone Service

	Routing
	Artix Routing
	Configuring Artix to Use Routing
	Compatibility of Ports and Operations
	Defining Routes in Artix Contracts
	Using Port-Based Routing
	Using Operation-Based Routing
	Advanced Routing Features

	Attribute Propagation through Routes
	Routing with Artix Designer
	Error Handling

	Using the Artix Locator Service
	Deploying the Locator
	Registering a Server with the Locator
	Obtaining References from the Locator
	Controlling Server Workloads
	Fault Tolerance

	Using the Artix Session Manager
	Introduction to Session Management in Artix
	Deploying the Session Manager
	Registering a Server with the Session Manager
	Working with Sessions
	Fault Tolerance

	Artix Logging and SNMP Support
	Artix Logging
	Using Trace Macros
	Application Server Platform Trace Macros

	Using the SNMP Logging Plug-in
	Using the XML Logging Plug-in
	IT_Logging Overview
	IT_Logging::LogStream Interface
	Example
	Using the Logging Functionality

	Performance Logging

	Load Balancing
	Load Balancing with the Artix Locator
	Load Balancing with CORBA

	Using the CORBA Plug-in
	CORBA Type Mapping
	Primitive Type Mapping
	Complex Type Mapping
	Mapping XMLSchema Features that are not Native to IDL

	Modifying a Contract to Use CORBA
	Adding a CORBA Binding
	Adding a CORBA Port

	Generating IDL from an Artix Contract
	Generating a Contract from IDL
	Configuring Artix to Use the CORBA Plug-in
	Using the CORBA Naming Service
	Embedding Artix in a CORBA Application

	Using the HTTP Plug-in
	HTTP Overview
	Adding an HTTP Port
	Adding an HTTP Port for Non-Secure Connections
	Adding an HTTP Port for Secure Connections

	HTTP WSDL Extensions
	HTTP WSDL Extensions Overview
	HTTP WSDL Extensions Details

	HTTP Transport Attributes
	Transport Attributes Overview
	Server Transport Attributes
	Client Transport Attributes

	Using the WebSphere MQ Plug-in
	Introduction
	Describing an Artix WebSphere MQ Port
	Configuring an Artix WebSphere MQ Port
	Adding an WebSphere MQ Port to an Artix Contract

	Using the Tuxedo Plug-in
	Introduction
	Using FML Buffers
	Mapping FML Buffer Descriptions to Artix Contracts

	Using the Tuxedo Transport
	Embedding Artix in the Tuxedo Container

	Using the TIBCO Rendezvous Plug-in
	Introduction
	Using TibrvMsg
	Using the TIB/RV Transport

	Using the IIOP Tunnel
	Introduction to IIOP Tunnels
	Modifying a Contract to Use the IIOP Tunnel
	Using the CORBA Naming Service

	Payload Formats
	G2++ Data Format
	Fixed Record Length Data Format
	Fixed Record Length Message Data Mapping
	Adding a Fixed Record Length Binding to an Artix Contract

	Pure XML Format
	Tagged Data Format
	Tagged Data Mapping
	Adding a Tagged Data Binding to an Artix Contract

	SOAP Payload Format
	Overview of SOAP
	Background to SOAP
	SOAP Messages
	SOAP Encoding of Data Types

	Adding a SOAP Binding
	Adding a Port for SOAP over HTTP
	Adding a Port for Non-Secure Connections
	Adding a Port for Secure Connections

	SOAP WSDL Extensions
	SOAP WSDL Extensions Overview
	SOAP WSDL Extensions Details

	Supported XML Types

	Glossary
	Index

